A Min-Max CRLB Optimization Approach to Scan Selection for Relaxometry

Gopal Nataraj¹, Jon-Fredrik Nielsen^{2,3}, and Jeffrey A. Fessler^{1,2}

¹Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, United States, ²Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States, ³Functional MRI Laboratory, University of Michigan, Ann Arbor, MI, United States

Target audience: Researchers interested in quantitative MRI, T_1/T_2 relaxometry, methods for scan design, and/or steady-state pulse sequences.

Introduction and Motivation

Many MR quantification methods require multiple scans with different scan parameters, to enable estimation of object parameters by per-voxel fitting. For such techniques, it is desirable to design fast scan protocols that provide maximal "information" about underlying parameters of interest. This "information" has previously been measured using contrast-to-noise ratio [1, 2] and variations [3, 4]. In this work, we instead contend that in relaxometry, estimator precision is a more natural benchmark for scan optimality. Specifically, we explore a min-max optimization approach for guiding scan design. At the heart of our method lies the Cramér-Rao Lower Bound (CRLB), a statistical metric useful for bounding the variance of an unbiased estimator. Though it has found success in optimizing scans for other applications [5, 6], to our knowledge the CRLB has not been used to guide scan design for relaxometry. Using this min-max CRLB approach, we optimized dual-echo steady state (DESS) [7] scans for T_2 estimation in the brain.

Theory and Problem Formulation

A broad class of pulse sequences produce signals that can be described with the general model $y_m = f_m(\boldsymbol{\theta}; \alpha_m, T_{R,m}, T_{E,m}) + \epsilon_m$, where f_m models the noiseless signal for a voxel in the *m*th dataset; $\boldsymbol{\theta} \coloneqq [M_0^*, T_1, T_2, \kappa]^T$ denotes the unknown object parameters; $\alpha_m, T_{B,m}, T_{E,m}$ are the *m*th choice of flip angle, repetition time, and echo time; and $\epsilon_m \sim \mathbb{CN}(0, \sigma^2)$ is complex white Gaussian noise. Here $M_0^* \coloneqq M_0 e^{-T_E/T_2^*}$ accounts for T_2^* relaxation; T_1 and T_2 are the spin-lattice and spin-spin relaxation parameters of typical interest; and κ captures spatial variation in the nominal flip angle. A

The matrix CRLB states that the covariance of any unbiased estimator of θ is bounded as $\operatorname{cov}(\theta; \alpha, T_R, T_E) \ge \mathbf{F}^{-1}(\theta; \alpha, T_R, T_E)$, where Fisher information F takes the form $F(\theta; \alpha, T_R, T_E) = \frac{1}{\sigma^2} [\nabla f(\theta; \alpha, T_R, T_E)]^T [\nabla f(\theta; \alpha, T_R, T_E)]$. In relaxometry, we are interested in precise T_1 and T_2 estimation. To optimize scan parameters, a reasonable objective function to minimize is thus given by: $\Psi(\sigma_{T_1}, \sigma_{T_2}) \coloneqq c\sigma_{T_1} + \sigma_{T_2}$, where

$$\sigma_{T_1} \coloneqq \sqrt{\left[\mathbf{F}^{-1}(\boldsymbol{\theta}; \, \boldsymbol{\alpha}, \boldsymbol{T}_{\boldsymbol{R}}, \boldsymbol{T}_{\boldsymbol{E}})\right]_{(2,2)}} \text{ and } \sigma_{T_2} \coloneqq \sqrt{\left[\mathbf{F}^{-1}(\boldsymbol{\theta}; \, \boldsymbol{\alpha}, \boldsymbol{T}_{\boldsymbol{R}}, \boldsymbol{T}_{\boldsymbol{E}})\right]_{(3,3)}}$$

are bounds on the standard deviations of unbiased T_1, T_2 estimates; and $c \in [0,1]$ controls the relative importance of T_1 versus T_2 estimation. This optimization cannot be performed directly over scan parameters α , T_R , T_E because of an implicit dependence on the unknown $\boldsymbol{\theta}$. We instead solve the following min-max optimization problem:

 $(\boldsymbol{\alpha}^*, \boldsymbol{T}_R^*, \boldsymbol{T}_E^*) \in \arg\min_{\boldsymbol{\alpha}, \boldsymbol{T}_R, \boldsymbol{T}_E T_1, \boldsymbol{T}_2, \boldsymbol{\kappa}} \Psi(\boldsymbol{\sigma}_{T_1}, \boldsymbol{\sigma}_{T_2}) s. t. \|\boldsymbol{T}_R\|_1 \leq T_{tot},$ where T_{tot} defines a scan time constraint. This optimization *minimizes* over $(\boldsymbol{\alpha}, \boldsymbol{T}_R, \boldsymbol{T}_E)$ the worst-case cost, viewed over an application-specific range of T_1, T_2, κ values.

Experimentation and Results

We applied this min-max scan design method to joint T_1, T_2 estimation from DESS data. DESS has recently been proposed as a fast technique for T_2 relaxometry [8] because it provides two datasets with widely different T_2 contrasts per acquisition. With four unknowns, a minimum of two scans are required to yield M = 4 datasets. As a simple example, we selected c = 0 and optimized two DESS scans for precise T_2 estimation. We constrained unknown parameter T_1, T_2, κ ranges [500, 900]ms, [50, 90]ms, and [2^{-0.5}, 2^{0.5}], respectively, to encourage precise estimation in the brain. We selected our search space to keep scans as short as possible, fixing T_R and T_E to the minimum possible values and varying only α over [5, 90]°. For M = 4 datasets from two DESS scans, we found the minimizer to be at $\alpha^* = (15, 40)^\circ$ (Fig. 1a).

We evaluated our method by comparing our scan design against all possible two-scan combinations, within 5° resolution. We collected *in vivo* DESS data ($\alpha = 5.5:90^\circ$; $T_R/T_E = 17.3/4.7$ ms; 240x240x6 matrix size; 24x24x1.8cm³ FOV; 2 cycles of gradient dephasing along the slice-selective direction) from a 32-channel Nova receive head array in a 3T GE scanner and combined the coil data using coil sensitivity estimates [9]. For each flip angle combination, we estimated parameter maps by solving a nonlinear least-squares maximum-likelihood (ML) problem using the Variable Projection Method [10]. We then computed empirical \hat{T}_2 standard deviations (Fig. 1b) within white matter (WM) and grey matter (GM) regions of interest (ROIs). Predicted and empirical \hat{T}_2 standard deviations were minimized for similar choices of flip angles.

Table 1 compares T_2 estimates from the optimized flip angles $\alpha^* = (15, 40)^\circ$ (Fig. 2a) against a T_2 estimate from all (2 echoes)(18 flip angles) = 36 datasets (Fig. 2b). We obtained these images by adding modest edge-preserving regularization (through an optimization problem similar to the one proposed in [11]) to the unbiased T_2 maps. These numbers emphasize that, beyond two well-chosen acquisitions, collecting additional DESS data does not substantially change T_2 estimates.

Conclusions

We have described a CRLB-inspired min-max optimization problem for guiding scan design in relaxometry. As an illustration, we optimized a scan protocol consisting of two fast DESS acquisitions for T_2 relaxometry in the brain. Our results showed that predicted and empirical \hat{T}_2 standard deviations over WM/GM regions of interest recommend similar combinations of scan parameters. We then compared a regularized T₂ estimate from our suggested scan protocol against one from many acquisitions and found that much of the T_2 content in DESS data is well captured with only two scans.

Acknowledgments

We thank Daniel Weller and Donghwan Kim for their insightful discussions and NIH P01 CA87634 for partial support.

References

[1] Hardy et al., JMRI, 6(2):329-35, 1996. [2] Dufour et al., MRI, 11(1):87-93, 1993. [3] Deoni et al., MRM, 49(3):515-26, 2003. [4] Deoni et al., MRM, 51(1):194-9, 2004. [5] Pineda et al., MRM, 54(3):625-35, 2005. [6] Funai et al., Proc. IEEE ISBI, 712-5, 2010. [7] Bruder et al., MRM, 7(1):35-42, 1988. [8] Welsch et al., MRM, 62(2):544-9, 2009. [9] Roemer et al., MRM, 16(2):192-225, 1990. [10] Golub et al., Inv. Prob., 19(2):R1-26, 2003. [11] Nataraj et al., Proc. IEEE ICIP, 1877-81, 2014.

Figure 1: Comparison of (a) predicted and (b) observed \hat{T}_2 standard deviations. (a) Theoretical worst-case \hat{T}_2 standard deviations, over a T_1, T_2, κ range relevant in brain imaging. (b) Empirical ML \hat{T}_2 standard deviations; for each flip angle pair, the max over (separately computed) WM and GM ROIs is shown. All values (ms) are plotted as a is varied for 2 DESS scans. Predicted and empirical global minima (starred) occur at similar flip angle pairs (a) $(15,40)^{\circ}$ and (b) $(15,45)^{\circ}$, respectively

Figure 2: Regularized T_2 estimates from DESS data, for (a) two optimized flip angles (15,40)°, and (b) all 18 flip angles (5, 10, ..., 90)°. WM and GM ROIs are indicated. T2 estimates from two optimized DESS scans versus many are qualitatively similar.

 39.1 ± 2.6 40.4 ± 1.3 WM 59.7 ± 9.8 GM 66.6 ± 7.2 **Table 1**: T_2 means \pm standard deviations in the WM and GM ROIs marked in Fig. 2. Much T_2 content in DESS can be accurately and precisely

 $\alpha = (5, ..., 90)^{\circ}$

 $\alpha^* = (15, 40)$

captured with just two well-chosen scans