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Target Audience: MR physicists and engineers working on accelerated imaging methods. 
Purpose: Combinations of parallel MRI and compressed sensing have been proposed for reducing MRI scan time.1,2 One can combine 

parallel MRI with compressed sensing by minimizing a cost function of the form, Ψ(ݔ) = 	 ଵଶ ݕ‖ − ଶଶ‖ݔܣ +  is a ܣ ଵ, where‖ݔܴ‖ߚ

SENSE system matrix and ܴ is a sparsity-promoting transform (e.g., orthogonal wavelets). This cost function is difficult to minimize 
since the ℓଵ term is nondifferentiable. Variable-splitting methods are one option for minimizing this function, but these require tuning 
of penalty parameters.2 Majorize-minimize methods are an alternative that do not have these same penalty parameters, but they do 
require a tight bound for the behavior of ܴ3.′ܴܣ′ܣ BARISTA is an algorithm that gives a procedure for computing these bounds and 
combines it with momentum and adaptive momentum restarting.4 Here, we review the BARISTA approach for orthogonal wavelets 
and propose a new momentum update that has a faster convergence rate. We also compare BARISTA to the AL-P2 algorithm,2 a 
comparison that had not been made previously. 
Methods: For brevity, we only describe the procedure for orthogonal wavelets. When the regularizer uses orthogonal wavelets we can 

instead optimize Ψ෩(ݖ) = 	 ଵଶ ݕ‖ − ଶଶ‖ݖ′ܴܣ + ݔ ଵ, where‖ݖ‖ߚ =  Majorize-minimize methods require finding a surrogate function .ݖ′ܴ

and then minimizing the surrogate. One such surrogate is to replace the quadratic term with ߶௞(ݖ) = ଵଶቛݖ − ቀݖ(௞) − ோିܦ ଵܴܣᇱ൫ܴܣᇱݖ(௞) − ൯ቁቛ஽ೃଶݕ , where ݖ(௞) is the estimate of ݖ at the ݇th iteration and ܦோ is a diagonal matrix 

such that ܦோ ≽ (ݖ)The minimum of ߶௞ .′ܴܣ′ܣܴ + ܣᇱܣ ,ଵ is calculated via the ℓଵ-shrinkage operator. In Cartesian SENSE MRI‖ݖ‖ߚ ≼ ܵ′ܵ, where ܵ is a block-column matrix of sensitivity coil profiles. If ܴ is an orthogonal wavelet transform, then we construct ܦோ 
by taking maximums over patches of the sum-of-squares of the sensitivity maps corresponding to the support size of the wavelet 
coefficient of interest.4,5 To minimize Ψ෩(ݖ) we iteratively apply shrinkage to ߶௞(ݖ) +  ோ constructed in this manner. Thisܦ ଵ with‖ݖ‖ߚ
approach extends to analysis regularizers such as total variation.4 Accelerating the method with momentum3 and adaptive restarting6 

gives BARISTA.4 We propose to further accelerate BARISTA by using a new momentum update: ݑ(௞ାଵ) = (௞ାଵ)ݖ + ఛ(ೖ)ିଵఛ(ೖశభ) ൫ݖ(௞ାଵ) ൯(௞)ݖ− + ఛ(ೖ)ఛ(ೖశభ) (௞ାଵ)ݖ) −  which gives a theoretical factor of 2 increase in convergence speed of the cost function.7 We applied ,((௞)ݑ

BARISTA with this new momentum term and compared convergence speed to previous methods. Our experiments consisted of 
collecting a 144 by 256 by 128 sample 3D data set on a GE 3T scanner with an 8-channel head coil. One slice was selected for 
experiments. The data were retrospectively downsampled with a Poisson-disk sampling pattern with a densely-sampled center. We 
then minimized Ψ(ݔ) with BARISTA, split Bregman (with optimized parameters for this data set, denoted SB), AL-P2 with 
parameters based on heuristics (denoted AL-P2),2 AL-P2 with optimized parameters (denoted Al-P2, opt), and our proposed optimized 
momentum BARISTA (OMBARISTA) to compare convergence speed. 

Results: We plot ߦ(݇) = ฮ௫(ೖ)ି௫(ಮ)ฮฮ௫(ಮ)ฮ , the norm-residual to convergence, vs. time in all figures. ݔ(ஶ) was calculated by running many 

thousands of iterations. Figure 2 compares the convergence speed of the algorithms in the orthogonal Haar wavelet case, showing the √2-factor increase in norm-residual convergence speed. Figure 3 compares the convergence speed with undecimated Haar wavelets. 
The difference is not as large as with the orthogonal Haar case since the undecimated Haar algorithm requires solving a denoising 
subproblem,4 but OMBARISTA is still the fastest method. 
Discussion: In addition to converging rapidly, the methods presented use parameters that are easier to tune than the penalty 
parameters used by variable-splitting methods, making them more robust to use in a clinical setting. We also observed the 
theoretically-predicted increase in convergence speed with the new momentum term. In conclusion, we have made an improvement to 
a fast algorithm and observed faster convergence with the new algorithm than current state-of-the-art methods. 
References: 1. Lustig et. al, MRM 2007, 2. Ramani et. al, IEEE-TMI 2011, 3. Beck et. al, SIAM-JIS 2009, 4. Muckley et. al, IEEE-
TMI to appear, 5. Muckley et. al, ICIP 2014, 6. O’Donoghue et. al, FCM, 7. Kim et. al, arXiv 2014. 

  
Figure 3: Convergence plot for minimizing (ݔ)ߖ with 2-level undecimated Haar wavelets.
AL-P2 requires parameter optimization for this 
data set to have comparable speed. 

Figure 2: Convergence plot using orthogonal
Haar regularizer, showing √2 increase in 
speed. 

Figure 1: A) Image estimated with orthogonal Haar
wavelets. B) Image estimated by minimizing (ݔ)ߖ
with 2-level undecimated Haar wavelets 
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