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Target Audience: MR physicists and engineers working on accelerated imaging methods.
Purpose: Combinations of parallel MRI and compressed sensing have been proposed for reducing MRI scan time." One can combine

parallel MRI with compressed sensing by minimizing a cost function of the form, ¥(x) = %lly — Ax||5 + BIIRx||;, where 4 is a

SENSE system matrix and R is a sparsity-promoting transform (e.g., orthogonal wavelets). This cost function is difficult to minimize
since the ¢, term is nondifferentiable. Variable-splitting methods are one option for minimizing this function, but these require tuning
of penalty parameters.” Majorize-minimize methods are an alternative that do not have these same penalty parameters, but they do
require a tight bound for the behavior of RA’AR’.> BARISTA is an algorithm that gives a procedure for computing these bounds and
combines it with momentum and adaptive momentum restarting.* Here, we review the BARISTA approach for orthogonal wavelets
and propose a new momentum update that has a faster convergence rate. We also compare BARISTA to the AL-P2 algorithm,” a
comparison that had not been made previously.

Methods: For brevity, we only describe the procedure for orthogonal wavelets. When the regularizer uses orthogonal wavelets we can
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instead optimize W(z) = 3 lly — AR'z||3 + BlIz|l;, where x = R’z. Majorize-minimize methods require finding a surrogate function
and then minimizing the surrogate. One such surrogate is to replace the quadratic term  with
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¢r(2) = % ||Z - (z(k) - DElRA'(AR’Z(k) - y)) ”D , where z(®) is the estimate of z at the kth iteration and Dy is a diagonal matrix
R

such that Dg > RA'AR’. The minimum of ¢ (z) + B|z||, is calculated via the #,-shrinkage operator. In Cartesian SENSE MRI,
A'A < S'S, where S is a block-column matrix of sensitivity coil profiles. If R is an orthogonal wavelet transform, then we construct Dy
by taking maximums over patches of the sum-of-squares of the sensitivity maps corresponding to the support size of the wavelet
coefficient of interest.” To minimize ¥(z) we iteratively apply shrinkage to ¢ (z) + £||z||; with Dk constructed in this manner. This

approach extends to analysis regularizers such as total variation.* Accelerating the method with momentum® and adaptive restarting®
()1

gives BARISTA.* We propose to further accelerate BARISTA by using a new momentum update: u®+1 = z(+1) 4 Z—= (7 (k+1)
T
(k)
z(")) + T(Tk =) (z®+D — 48, which gives a theoretical factor of 2 increase in convergence speed of the cost function.” We applied

BARISTA with this new momentum term and compared convergence speed to previous methods. Our experiments consisted of
collecting a 144 by 256 by 128 sample 3D data set on a GE 3T scanner with an 8-channel head coil. One slice was selected for
experiments. The data were retrospectively downsampled with a Poisson-disk sampling pattern with a densely-sampled center. We
then minimized W(x) with BARISTA, split Bregman (with optimized parameters for this data set, denoted SB), AL-P2 with
parameters based on heuristics (denoted AL-P2),> AL-P2 with optimized parameters (denoted Al-P2, opt), and our proposed optimized

momentum BARISTA (OMBARISTA) to compare convergence speed.
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Results: We plot £(k) = w

thousands of iterations. Figure 2 compares the convergence speed of the algorithms in the orthogonal Haar wavelet case, showing the
\/2-factor increase in norm-residual convergence speed. Figure 3 compares the convergence speed with undecimated Haar wavelets.
The difference is not as large as with the orthogonal Haar case since the undecimated Haar algorithm requires solving a denoising
subproblem,’ but OMBARISTA is still the fastest method.

Discussion: In addition to converging rapidly, the methods presented use parameters that are easier to tune than the penalty
parameters used by variable-splitting methods, making them more robust to use in a clinical setting. We also observed the
theoretically-predicted increase in convergence speed with the new momentum term. In conclusion, we have made an improvement to
a fast algorithm and observed faster convergence with the new algorithm than current state-of-the-art methods.

References: 1. Lustig et. al, MRM 2007, 2. Ramani et. al, [IEEE-TMI 2011, 3. Beck et. al, STAM-JIS 2009, 4. Muckley et. al, IEEE-
TMI to appear, 5. Muckley et. al, ICIP 2014, 6. O’Donoghue et. al, FCM, 7. Kim et. al, arXiv 2014.

, the norm-residual to convergence, vs. time in all figures. x(*) was calculated by running many
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Figure 1: A) Image estimated with orthogonal Haar Figure 2: Convergence plot using orthogonal Figure 3: Convergence plot for minimizing
wavelets. B) Image estimated by minimizing ¥(x) Haar regularizer, showing V2 increase in ¥(x) with 2-level undecimated Haar wavelets.
with 2-level undecimated Haar wavelets speed. AL-P2 requires parameter optimization for this
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