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Purpose: Recent advances in dynamic contrast-enhanced MRI (DCE-MRI) algorithms have employed low-rank plus sparse matrix decomposition 
for joint reconstruction of multicoil data. Such methods model DCE-MRI data as the superposition of low-rank and sparse components because the 
high spatio-temporal correlations of the static background image are inherently low-rank while the remaining dynamic contrast component is often 
sparse with respect to an appropriate temporal transformation (e.g., wavelet/Fourier transform). A predominant approach for performing low-rank 
plus sparse decomposition has been to adopt a low-rank regularization term involving the nuclear norm ‖. ‖∗ and a sparse regularization term 
involving the ℓଵ norm ‖. ‖ଵ. In this work, we replace the popular nuclear norm with a recently developed1 optimal rank-regularizer derived in the 
context of random matrix theory. We compare the performance of the resulting algorithm to recent work2 based on nuclear norm rank regularization 
in the context of DCE-MRI for cardiac perfusion. 
 

Theory: Low-rank plus sparse reconstruction for DCE-MRI was recently investigated2 through solving the convex optimization problem argmin௅,ௌ ଵଶ‖ܧሺܮ ൅ ܵሻ െ ݀‖ிଶ ൅ ∗‖ܮ‖௅ߣ ൅  ௌ‖ܶܵ‖ଵߣ

where ܧ is the multicoil encoding operator, ݀ is k-space data, ܶ is a sparsifying transformation, and ߣ௅ and ߣௌ are regularization parameters that 
control the relative cost of the low-rankness of ܮ and sparsity of ܵ, respectively. The algorithm output is ܯ ൌ ܮ ൅ ܵ, a matrix whose columns contain 
the reconstructed dynamic images. Efficient algorithms for solving this problem employ low-rank updates involving the proximity operator of the 
nuclear norm - singular value thresholding3 – applied to a low-rank plus noise matrix. The use of the nuclear norm as a low-rank regularizer is often 
justified by noting that it is the tightest convex relaxation of the hard rank constraint. However, this does not guarantee that the nuclear norm is 
optimal. Indeed, it was recently shown1 that the MMSE low-rank proximity operator is OptShrink, a singular value shrinkage function uniquely 
determined by the noise spectrum. We leverage this result in DCE-MRI by proposing a modified version of Otazo’s algorithm2 for low-rank plus 
sparse decomposition where we replace singular value thresholding with the data-driven OptShrink estimator from Algorithm 1 of [1]. In the 
resulting algorithm, the regularization parameter ߣ௅ is replaced by a parameter ݎ that directly specifies the desired rank of ܮ (often small in practice 
due to the high spatio-temporal correlation of the background in DCE-MRI). The proposed algorithm can be seen as a first principles alternative to 
kt-SLR4, a method that uses the Schatten ݌-norm ‖. ‖௣ with ݌ ൏ 1 as a replacement rank regularizer for ‖. ‖∗. 
 

Methods: We compare the performance of Otazo’s algorithm with our proposed algorithm 
on a cardiac perfusion data set.2 The data ݀ contains k-space data corresponding to 40 frames, 
each with resolution 128 x 128, acquired via DCE-MRI with 12 coils and Cartesian sampling. 
The data was retroactively downsampled by a factor of 8 with random subsampling patterns in 
k-space for each time point. The corresponding encoding operator ܧ incorporates coil 
sensitivities and performs FFT operations, and the sparsifying transform ܶ was a temporal 
FFT. For technical data acquisition specifications, see [2]. Parameters were chosen for each 
algorithm to yield qualitatively superior images. In particular, we set ݎ ൌ 2. 
 

Results: Figure 1 shows two representative reconstructed frames for each algorithm. The 
proposed algorithm improves clarity of the myocardial wall. A drawback of singular value 
thresholding is that all singular values are shrunk uniformly to zero, resulting in unnecessary 
degradation of high SNR image components. OptShrink1 avoids this phenomenon by 
shrinking singular values in an SNR-dependent fashion that maximizes the accuracy of the 
resulting low-rank image. OptShrink yields sharper low-rank images without sacrificing 
compressibility (i.e., without increasing the rank of ܮ). Comparing the sparse components of 
the two approaches suggests that OptShrink more fully exploits the spatio-temporal 
correlation of the frame backgrounds. Indeed, more frame-independent body regions were 
absorbed in the low-rank component of the proposed approach, while the resulting sparse 
component contains a focused visualization of the dynamic contrast enhancement. To 
quantitatively compare the performance of the algorithms, we retroactively added Gaussian 
noise over a range of variances to the k-space data and measured the resulting NRMSE of the 
algorithm outputs, using the output of Otazo’s algorithm on the original data as ground truth. 
Table 1 shows that the proposed approach produces lower NRMSE over the range of noise 
levels. 
 

Conclusion: We proposed a new optimal rank penalty for low-rank plus sparse 
decomposition in DCE-MRI. The resulting algorithm was shown to outperform existing 
techniques in both qualitative image quality and quantitative robustness to noise. Our low-
rank penalty preserves the quality of high SNR image features without sacrificing 
compressibility and produces sparse components with fewer temporally static elements. 
 

Normalized Noise Variance 5 7 9 11 13 15 17 19 21 23 25 

NRMSE (%) 
Otazo2 11.2 12.6 14.5 16.8 19.3 21.6 23.0 23.7 24.1 24.9 25.7 

Proposed 10.4 12.1 14.1 16.5 18.1 18.9 20.0 20.9 21.7 22.5 23.7 
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Figure 1: Cardiac perfusion reconstruction via (a) 
Otazo’s algorithm2 and (b) the proposed method. In 
each row, (L+S):  reconstructed image; (L): low-rank 
component; (S): sparse component. Above: Frame 
2/40. Below: Frame 14/40. 

Table 1: Comparison of reconstruction errors for cardiac MRI data with additional synthetic noise 
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