
Model-based reconstruction for physiological noise correction in functional MRI 
Matthew J. Muckley1,2, Scott J. Peltier1,2, Douglas C. Noll1,2, and Jeffrey A. Fessler3 

1Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States, 2Functional MRI Laboratory, University of Michigan, Ann Arbor, MI, United States, 
3Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, United States 

 
Introduction: Recent years have seen an explosion in the number of fMRI studies analyzing connectivity between different brain 
regions. These studies, which study low frequency (<0.1 Hz) temporal correlations, are confounded by under-sampled cardiac and 
respiratory signals that can alias into this frequency range and confound analyses of neural networks. In cardiac MRI, low rank 
algorithms have been proposed to perform high resolution spatiotemporal 
reconstructions [1, 2]. Here we propose a low rank approach combined with 
temporal Fourier sparsity and random sampling to estimate physiological 
noise with high spatiotemporal resolution. 
Theory: We propose to model the spatiotemporal evolution of the 
magnetization in the object as being partially separable. Mathematically, we 
assume ݉ሺx,tሻ ൌ  ሻis the rth temporal basis function, and R is the model order or rank. Whenݐ௥ሺݒ ,ሻ is the rth spatial basis function࢞௥ሺݑ ሻ, whereݐ௥ሺݒሻ࢞௥ሺݑ∑
the time series of images are sampled and rearranged into an ܯ ൈܰ matrix ۱, 
then rankሺ۱ሻ ൑ ܴ. In addition, we can write ۱ ൌ UV where ܃௠௥=u௥ሺ࢞௠ሻand ܄௥௡=v௥ሺݐ௡ሻ. We further assume that the temporal basis functions are sparse in 
the Fourier domain and that the spatial basis functions are smooth. Recovering ۱ can then be formulated as the following matrix completion problem: ܃, ܄ ൌ argmin܃, ܄ ∥ ܡ െ ܵሺ܄܃ሻ ∥ଶଶ൅ 2ߚ ∥ ۲۴ିଵvecሺ܃ሻ ∥ଶଶ൅ ߣ ∥ ሻ܄vecሺۿ ∥ଵ, 
where ܡ is a ܲ ൈ 1 data vector, ܃ and  ܄ contain the spatial and temporal basis 
functions as described above, ܵሺሻ is a sparse sampling operator, ۲ is a 2D 
spatial finite differencing matrix, ۴ is a matrix that applies the 2D DFT, ۿ is a 
matrix that applies the DFT to the temporal dimension of ܄, and ߚ and ߣ are 
regularization parameters. This cost function implicitly incorporates the rank 
constraint while penalizing roughness in the spatial domain and promoting 
sparsity in the temporal Fourier domain. We propose to combine this 
reconstruction approach with a random 3D EPI sampling pattern that 
incoherently samples the temporal functions, which helps the recovery of ܄. 
The use of EPI allows the problem to be reduced to a stack of 2D problems by 
applying the inverse DFT along the frequency encoding direction. 
Experiments and Results: We demonstrate the potential of this method via a 
2D EPI experiment with high temporal resolution data. We evaluate the 
performance of the algorithm by examining functional correlations in a 
standard resting state connectivity experiment. One volunteer was asked to lie 
in the scanner and not think about anything in particular. The subject was 
scanned with a 2D single shot EPI sequence at a single slice with imaging 
parameters TR=100ms, TE=30ms, flip angle=22o, FOV=22x22cm, matrix 
size=64x64. The data were detrended and low pass filtered with a cutoff of 0.08 Hz and temporal correlations were calculated relative 
to the posterior cingulate cortex (PCC); this case served as the “ideal” map. To compare the reconstruction to the ideal map, the data 
was decimated by a factor of 63/64s to simulate a random 3D EPI where the frequency direction is transverse to the slice. The high 
temporal resolution data set was reconstructed with the low rank algorithm before detrending, low pass filtering and correlation 
calculations. Figure 1 compares the Fourier spectrum of the original high temporal resolution data set and the reconstructed data set, 
with the reconstructed data set being able to capture information from the cardiac and respiratory peaks. Figure 2 compares the 
correlation maps from the “ideal” data set, the reconstructed data set, and a simulated 2-second TR data set, highlighting the removal 
of correlations in the ventricles. 
Conclusions: We have demonstrated that low rank algorithms with temporal Fourier sparsity constraints have the potential to 
reconstruct much of the information with only 1/64th of the data. These techniques could be useful in functional connectivity studies 
where temporal correlations are of interest and the physiological noise is a significant confound. They can also be applied without 
recording external reference signals. 
References: [1] Zhao et al. IEEE-EMBS 2010. pp. 3390-3. [2] Hu, et al., IEEE TIP 21:742-753, 2012. 

Figure 2: Comparison of ideal correlation map (B), 2-second TR 
map (C), and the proposed method with 1/64 of data, highlighting 
removal of correlations in the ventricles (D). Example fMRI image 
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Figure 1: Comparison of ideal Fourier spectrum (blue) vs. 
reconstruction (red). R=24, β=1e-4, λ=6e3. 
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