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Introduction: Functional connectivity studies, which look at low-frequency (<0.1 Hz) temporal correlations in functional 
MRI, have generated significant interest in recent years. However, these studies sample the cardiac and respiratory rhythms 
well  below  their  respective  Nyquist  frequencies,  confounding  analysis  of  the  underlying  temporal  correlations.  One 
potential avenue for reconstructing fMRI data with high spatiotemporal resolution is to exploit its sparsity in the temporal  
frequency domain. Here we propose a modification to the orthogonal matching pursuit (OMP) algorithm [1] that draws 
from elements of group sparsity. Other group sparsity approaches combined with random sampling and OMP algorithms  
have  been  used  previously  in  MRI  [2,3],  although  none  for 
reconstruction and physiological noise removal.

Theory: Mathematically,  we assume that  m(x ,t )=∑r=1

R
u r(x)v r( t )  

where each  v r( t)  is a pure complex exponential. This is similar to a 
low rank model, which has been used in a number of dynamic studies in 
cardiac MRI [4,5]. In this case, we restrict the temporal basis functions 
to be pure complex exponentials. The complex exponentials are found 
through  greedy  selection:  let  Φ  denote  a  DFT matrix  and  let  Y  
denote a P×M  matrix of measured data where M  is the number of 
k-space points and  P  is  the number of times each k-space point is 
sampled. We wish to select a small collection of “atoms” ϕi  from Φ  
that best approximates the sampled data in  Y . This is done via the 
orthogonal  matching  pursuit  algorithm outlined  in  Figure  1,  where 
R( j)  denotes the residual and Λ j  denotes the index set at iteration j . The matrix Wm is a P×N  matrix of 1s and 0s 

that contains the sampling information for the k-space point indexed by m .  The coefficients to the atoms are solved for in 
a least squares problem by using  A V , a matrix that contains the elements of the atoms embedded in such a way as to  
produce the corresponding output data vector. We combine this with random sampling at each k-space position across time  
(operator denoted by S ( ) ). This would be feasible in a 3D EPI sequence where each phase encode randomly goes to any 
one of the M  k-space locations. In this setting, we could apply the inverse DFT along the frequency encoding direction 
and reduce the 3D problem to a stack of 2D problems.
Experiments and Results: We examine the potential of this method via a 2D EPI experiment with high spatiotemporal 
resolution data. One volunteer was asked to perform a resting state connectivity task. The volunteer was scanned with a  2D 
single shot EPI sequence at a single slice with imaging parameters TR=100ms, TE=30ms, flip angle = 22o, FOV=22x22cm, 
matrix size=64x64. The data were detrended and low pass filtered with a cutoff of 0.08 Hz and temporal correlations were 
calculated relative to the posterior cingular cortex (PCC), known to be part of the default mode network. The correlation 
map obtained from the original high resolution data served as an “ideal” map. The data were then decimated by a factor of 
63/64s to simulate a random 3D EPI where the frequency direction is transverse to the slice. The high temporal resolution 
data set was then reconstructed with the OMP algorithm. Figure 2 shows the ideal correlation map, a simulated 2-second TR 
correlation map, and correlation maps with different numbers of atoms selected from the dictionary. As more atoms are 
added, the correlation maps are increasingly blurred. We observed the best results with 20 atoms.
Conclusions: We have demonstrated that  using the inherent temporal  Fourier  sparsity of fMRI data can allow one to  
reconstruct data sets with high spatiotemporal resolution with as little as 1/64th of the data. In the future we expect to  
explore other dictionaries besides the Fourier dictionary, along with other methods for selecting the atoms.
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Figure 2: Comparison of ideal correlation map (A), 2-second TR correlation map (B), 20-atom OMP correlation map (C), and 40-atom OMP correlation 
map (D). Note the removal of correlations from the ventricles in both of the reconstructed maps. Also, the 40-atom map exhibits issues with blurring due 
to the large number atoms used in reconstruction.

Figure 1: Outline of OMP algorithm.
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