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Fig. 1: B1 magnitude and relative phase of each individual coil 
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Introduction: Parallel excitation pulse design usually requires accurate magnitude and phase maps of the B1 field produced by each coil. Bloch-Siegert (BS) B1 
mapping [1] has been shown to be fast and accurate; however, the B1 map produced by this phase-based method may suffer from low SNR in low magnitude regions 
having insufficient excitation or low spin density. This problem has been mitigated in [2] by using combinations of multiple coils for imaging excitation. However, it 
does not help for low spin density regions and insufficient excitation is still possible as accurate B1 maps are unknown; furthermore, estimation of B1 phase needs 
another set of scans, which is time-consuming and information redundant. In this work, we propose a regularized method to jointly estimate the magnitude and (relative) 
phase of multi-coil B1 maps from BS B1 mapping data without using additional scans for phase estimation. By utilizing the prior knowledge that B1 maps are smooth [3], 
the regularization terms can help improve quality of the B1 maps in low magnitude regions. The method was demonstrated by phantom experiments. 
Theory: We propose to acquire the standard BS B1 mapping data [1] that needs 2*R scans (R = the number of coils). In each scan, the same coil combination is used for 
the BS pulse and its corresponding slice excitation pulse. The composite	Bଵା field	ܧ௥(࢞) 
produced at each time r is described in (1), where	ߙ௥,௝ is a complex weight that indicates 
how the coils are combined at each time,	ܤ௝(࢞) is the magnitude of the B1 map produced 
by the jth coil with a unit input current, and	߶௝(࢞) is the corresponding B1 phase map. A 
convenient choice of 	ߙ௥,௝ is the “all-but-one” strategy, where	ߙ௥,௥ = 0 and	ߙ௥,௝ = 1 when ݆ ≠  The signal models for the BS data (reconstructed images) of the rth pair of scans .ݎ
are described in (2), where r = 1, 2, …, R; the superscripts +/– denote the scan 
with	+߱ோி or	– ߱ோி BS pulse,	ܫ௥±(࢞) is the image of each scan,	ߤ is the ratio between the 
actual flip and	|ܧ௥(࢞)|,	݉௥±(࢞) is the magnitude related to spin density, T1, T2, TR, TE, flip 
angle, receive sensitivity, magnetization transfer (MT) effect, etc., 	߶௕(࢞)  is the 
corresponding background phase, and	ܭ஻ௌ±  is the BS pulse constant that incorporates (࢞)
the B0 field map	߱଴(࢞) [1]. We simplify (2) into (3) by changing variables:	ݖ௥(࢞) (࢞)௜థ್݁(࢞)௥ܧ≜ , 	߶෨௥(࢞) ≜ (࢞)௥ݖ∠ , (࢞)෨௥ܤ	 ≜ |(࢞)௥ݖ| , and ܯ௥±(࢞) ≜ (࢞)±௥݉(|(࢞)௥ݖ|ߤ)݊݅ݏ . 
Thus we can obtain the magnitude and relative phase of the B1 maps by only estimating ܤ෨௥(࢞)  and 	߶෨௥(࢞) . (࢞)±௥ܯ	  is a set of nuisance parameters that needs to be jointly 
estimated, but they are fortunately linear terms that can be easily estimated.  
Regularization enforces prior knowledge to improve estimation. It is reasonable to 
assume that the magnitudes of the composite B1 maps,	ܤ෨௥(࢞), are spatially smooth.  Although the absolute phase	߶෨௥(࢞) is not necessarily smooth, the difference of it 
relative to a reference coil, e.g.,	߶෨௥(࢞) − ߶෨ଵ(࢞), should be smooth. Therefore, a finite differencing matrix C can be applied in regularization terms to penalize roughness. 
Since	߶෨௥(࢞) − ߶෨ଵ(࢞) is likely to have phase wrap, we use the regularizer proposed in [4] that instead regularizes the roughness of	݁௜[థ෩ೝ(࢞)ିథ෩భ(࢞)]. Our final cost function 
for estimating B1 is in (4), where	ܤ෨(࢞) = ,(࢞)෨ଵܤ] … , (࢞)෨߶	,[(࢞)෨ோܤ = [߶෨ଵ(࢞), , … , ߶෨ோ(࢞)], M(x) = [M1(x), …, MR(x)], ߚଵ and ߚଶ are scalar regularization parameters. 
We estimate all the unknowns by minimizing	ߖ ቀܤ෨(࢞), ߶෨(࢞),(࢞)ܯቁ, during which ܤ෨(࢞), ߶෨(࢞)	and	(࢞)ܯ are cyclically updated. We update (࢞)ܯ by simply taking the 
real least square solution of (4) in each iteration. We use conjugate gradients with line search algorithm [5] to update ܤ෨(࢞)	and	߶෨(࢞), where backtracking line search [6] 
and monotonic line search [5] are used for ܤ෨(࢞) and	߶෨(࢞) respectively. The standard approach [1] produces good initial guess for	ܤ෨(࢞), and initial guess of	߶෨(࢞) can 
then be solved analytically from equation (3) once	ܤ෨(࢞) is initialized, without knowing M(x). Once ܤ෨(࢞)	and	߶෨(࢞) are estimated, the magnitude and relative phase of 
the original coils can be derived easily by (5), where	߶௥ᇱ(࢞) = ߶௥(࢞) + ߶௕(࢞) which does not change the relative phase of the rth coil. 
Methods and Results: The 
proposed method was tested by a 
phantom experiment on a 3T GE 
scanner equipped with an 8-coil 
custom parallel transmit/receive 
system [7]. Other than a routine 
B0 mapping, we did a total of 16 
scans with “all-but-one” coil 
combinations for the excitation 
and the BS pulse, where 8 ms 
Fermi BS pulses with	±4000 Hz 
off-resonance were followed by 
2D spin-warp readout. Sequence 
parameters: 5 mm slice thickness, 
matrix 64*64, 26 cm FOV. Fig. 1 
shows the results by the proposed 
method and the conventional 
method (B1 magnitude is 
computed as in [1] and B1 phase is 
computed by solving (3)).  
Conclusions: The proposed 
method uses the same coil 
combinations for the slice 
excitation and BS pulses to jointly 
estimate B1 phase and magnitude, 
which saves the set of R scans for 
phase estimation. This iterative 
regularized estimation produces improved B1 magnitude and phase maps for low SNR regions. Future work will be to optimize the coil combinations, ݅. ݁. ,  ,௥,௝ in (1)ߙ
to better reduce low excitation regions. 
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(࢞)௥ܧ =෍ߙ௥,௝ܤ௝(࢞)݁௜థೕ(࢞)ோ
௝ୀଵ 																																				 (1) 

ቊܫ௥ା(࢞) = sin(ܧ|ߤ௥(࢞)|) ݁௜∠ாೝ(࢞)݉௥ା(࢞)݁௜థ್(࢞)݁௜௄ಳೄశ ௥ିܫమ|(࢞)ாೝ|(࢞) (࢞) = sin(ܧ|ߤ௥(࢞)|) ݁௜∠ாೝ(࢞)݉௥ି ௜௄ಳೄష݁(࢞)௜థ್݁(࢞) మ|(࢞)ாೝ|(࢞) 					(2) ቊܫ௥ା(࢞) = ௜[௄ಳೄశ݁(࢞)௥ାܯ ௥ିܫ[(࢞)మାథ෩ೝ(࢞)஻෨ೝ(࢞) (࢞) = ௥ିܯ ௜[௄ಳೄష݁(࢞) [(࢞)మାథ෩ೝ(࢞)஻෨ೝ(࢞) 																																														(3) Ψቀܤ෨(࢞), ߶෨(࢞),(࢞)ܯቁ =෍ ෍ ቛܫ௥చ(࢞) − ௜ൣ௄ಳೄഒ݁(࢞)௥చܯ ି,൧ቛଶచୀା(࢞)మାథ෩ೝ(࢞)஻෨ೝ(࢞)
ோ
௥ୀଵ+ߚଵ෍ฮܤܥ෨௥(࢞)ฮଶோ

௥ୀଵ + ൧ฮଶோ(࢞)థ෩భି(࢞)௜ൣథ෩ೝ݁ܥଶ෍ฮߚ
௥ୀଶ 																											(4) 

቎ܤଵ(࢞)݁௜థᇱభ(࢞)⋮ܤோ(࢞)݁௜థᇱೃ(࢞)቏ = ൥ߙଵ,ଵ ⋯ ⋮ଵ,ோߙ ⋱ ோ,ଵߙ⋮ ⋯ ோ,ோ൩ߙ
ିଵ ቎ܤ෨ଵ(࢞)݁௜థ෩భ(࢞)⋮ܤ෨ோ(࢞)݁௜థ෩భ(࢞)቏ (5) 
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