
INTRODUCTION: MRI reconstruction from undersampled k-space data requires regularization to reduce artifacts and improve image quality. Nonquadratic regularizers, e.g., 
edge-preserving ones or those based on the l1-norm, have proven to be useful in MRI [1], but successful application of such criteria depends on proper selection of the 
regularization parameter (λ) that controls the degree of smoothness imposed on the reconstruction. Several quantitative methods are available for automatic selection of λ [2] 
such as the discrepancy principle (DP) [2], the L-curve method (LCM) [3], generalized cross-validation (GCV) [4] and the estimation of mean-squared error (MSE) type 
measures [5]. DP and the LCM are able to handle a variety of nonlinear reconstruction algorithms, but can lead to over-smoothing [2] or become sensitive to changes in λ [3], 
respectively. GCV is a popular choice in reconstruction problems especially involving linear algorithms [4]. In the linear case, GCV is simple to implement and can provide 
asymptotically optimal selection of λ [4]. MSE-type estimates are attractive alternatives to GCV as such estimates can provide (near) optimal results even in the nonasymptotic 
regime [5]. However, both GCV [6] and estimation of MSE-type measures become nontrivial and computationally involved for nonlinear algorithms. In this work, we propose  
a practical means of computing GCV and an MSE-type estimate for nonlinear MRI reconstruction using the split-Bregman algorithm [7]. We illustrate with experiments on real 
MR data that they can be employed for near-optimal adjustment of λ for reconstruction from undersampled Cartesian k-space data using nonquadratic regularization.
METHODS
MRI Reconstruction: We perform MRI reconstruction by minimizing a cost function: uλ(y) = argminu{Ψ(u) := ||y - Au||2 + λΦ(Ru)}, where ||•|| denotes Euclidean norm, y is the M×1 
undersampled Cartesian k-space data, A is the M×N undersampled DFT matrix, R is a regularization operator (e.g., finite differences), Φ is the regularization and the N×1 reconstruction is 
written as uλ(y) to indicate its dependence on λ and y. For minimizing the cost Ψ, we employ the split-Bregman (SB) reconstruction algorithm [7] that is nonlinear and can handle several 
regularizers Φ including total variation (TV) and l1-regularization exactly. The SB algorithm is based on variable splitting that employs an auxiliary constraint variable v to transform the 
original minimization problem (involving the cost Ψ) 
in to the following equivalent constrained problem: 
minu ||y - Au||2 + λΦ(v) subject to v = Ru. This problem 
is then solved in an augmented Lagrangian-type 
framework leading to the following algorithm [7]:

u(i+1)= B-1[A’y + µR’(v(i) - η(i))], 
v(i+1) = dΦ(ρ(i)),
η(i+1) = ρ(i) - v(i+1),

where µ > 0 governs the convergence speed of the 
SB algorithm, B := A’A + µR’R, ρ(i) := Ru(i+1)+η(i), 
(•)’ denotes Hermitian-transpose, and dΦ(•) represents 
a denoising operator that admits explicit analytical 
forms for several instances of Φ (e.g., dΦ represents 
soft-thresholding and vector-shrinkage operations for   
l1-regularization and TV, respectively) [8].
GCV & MSE-Type Measures: The generalized GCV measure (that applies to linear and nonlinear 
algorithms [6]) is given by GCV(λ) = M-1||y - Auλ(y)||2 / (1-M-1Re{tr{AJu(y)}})2, where  Re{•} 
denotes the real part of a complex-valued entity, tr{•} represents the trace of a matrix and Ju(y) 
represents the Jacobian matrix whose rows contain gradients of the components of the reconstruction 
uλ(y) evaluated with respect to y (treating y*, the complex conjugate of y, as constant) [9]. 
 When k-space is undersampled, y has only partial information about the underlying object of interest x. It is therefore possible to assess the reconstruction error only at the 
sample locations in k-space [10]: This corresponds to the so-called predicted MSE (PMSE) given by PMSE(λ) = ||A(x - uλ(y))||2. Assuming y is corrupted by complex-valued 
Gaussian noise (i.i.d. zero-mean with variance σ2), Stein’s principle [11] can be used to estimate PMSE(λ) and leads to the predicted Stein’s Unbiased Risk Estimate (PSURE) given 
by PSURE(λ) = M-1||y - Auλ(y)||2 - σ2 + 2M-1σ2Re{tr{AJu(y)}} [10]. PSURE requires the knowledge of σ2 (that can be estimated in practice) unlike GCV, but PSURE provides 
relatively better selection of λ compared to GCV as illustrated in our experiments. Practical application of GCV and PSURE for tuning λ requires (apart from simple computations 
such as ||y - Auλ(y)||2) the computation of Ju(y) corresponding to the algorithm used for reconstruction. In the sequel, we show how to evaluate Ju(y) analytically for the SB algorithm.
Evaluating Ju(y): We recursively evaluate Ju(y) using linearity-, product- and chain-rule for Jacobian matrices [9]: As v and η are functions of y (via u) in the SB algorithm, we get 
Ju(i+1)(y) = B-1A’ + µB-1R’[Jv(i)(y) - Jη(i)(y)]. Applying chain rule [9], Jv(i+1)(y) = JdΦ(ρ(i))(y) = JdΦ(ρ(i))Jρ(i)(y) + JdΦ(ρ(i)*)Jρ(i)*(y), where from the definition of ρ(i) above, we have that 
Jρ(i)(y) = RJu(i+1)(y) + Jη(i)(y). The specific form of JdΦ(ρ(i)) depends on Φ and can be analytically evaluated on a case-by-case basis for several instances of Φ (including TV and l1-
regularization [8,10]). Finally, the update corresponding to η(i+1) in the SB algorithm yields Jη(i+1)(y) = Jρ(i)(y) - Jv(i+1)(y). The Jacobian matrices Ju(•)(y), Jv(•)(y), Jη(•)(y) have enormous 
sizes for typical reconstruction settings, so we store and update vectors of the form Ju(•)(y)n, Jv(•)(y)n, Jη(•)(y)n corresponding to matrix-vector products with an i.i.d. zero-mean unit-
variance (e.g., Gaussian) random vector n. Then the desired trace in GCV(λ) and PSURE(λ) can be stochastically well-approximated as tr{AJu(i)(y)} ≈ n’AJu(i)(y)n [5]. Thus while 
running the SB algorithm for a given λ, we propose to simultaneously manipulate Ju(i)(y)n, stochastically estimate tr{AJu(i)(y)} and compute GCV(λ) and PSURE(λ) at every iteration i. 
Experimental Setup: We acquired 10 independent sets of fully-sampled 2-D data (256 × 256) of a GE-phantom using a GE 3T scanner (GRE sequence with flip angle = 35○, TR = 200 ms, 
TE = 7 ms, FOV = 15 cm). These fully-sampled datasets were used to reconstruct (using iFFT) 2-D images that were then averaged to obtain a reference image that served as the true 
“unknown” x (Fig. 2a) for computing MSE(λ) = ||x - uλ(y)||2 and PSNR(λ) = 10 log10[N max{x}2 / MSE(λ)]. We separately acquired dummy-data (with the same scan setting) when no RF 
field was applied and used it to estimate σ2 (for PSURE) by the empirical variance. We retrospectively undersampled data from one of the 10 sets along the phase-encode (PE) direction in 
a random fashion (with16 central fully-sampled PEs,  see Fig. 2b). We ran the SB algorithm with TV regularization and tuned λ so as to minimize GCV(λ) and PSURE(λ) individually. 
RESULTS: We plot PSNR(λ) versus λ in Fig. 1 where we also indicate (by vertical dashed lines) λs obtained by minimizing GCV(λ) and PSURE(λ). GCV-based selection is away, while 
PSURE-based selection is close to the MSE-optimal-λ. The corresponding PSURE-based reconstruction (Fig. 2e) is therefore visually similar to the MSE-optimal one (Fig. 2d), while that 
due to GCV (Fig. 2f) exhibits slightly more artifacts and reduced PSNR. We obtained similar results for different undersampling rates in the above experiment and in various simulations.
CONCLUSIONS: We demonstrated the feasibility of using GCV and PMSE-estimation (via PSURE) for automated adjustment of the regularization parameter (λ) for nonlinear 
MRI reconstruction using the split-Bregman (SB) algorithm. GCV and PSURE require the trace of a linear transformation of the Jacobian matrix (tr{AJu(i)(y)}) that we estimated  
stochastically and iteratively for the SB algorithm. We illustrated with experiments on real MR (phantom) data that GCV and PSURE are able to provide near-MSE-optimal selection 
of λ. The techniques discussed here can also be extended, in principle, to other regularization criteria, reconstruction algorithms, and nonCartesian and parallel MRI.
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Fig. 1: Plot of PSNR(λ) versus λ.
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Fig.2: (a) Reference x; (b) Retrospective phase-encode undersampling 
(50%); (c) Zero-filled reconstruction (22.51 dB); TV-reconstructions that 
minimize (d) true MSE (34.3 dB); (e) PSURE (34.3 dB); (f) GCV (33.4 dB).
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