
 
       Fig.2: 0.4 sampling rate, background is masked out, the unit of phase is radian

Fig. 1: comparison of 3 regularizers; ߰ሺ·ሻ is hyperbola function (0.3=ߜ)

Fig. 4: the units of 2nd and 3rd columns are radian and cm/s respectively 

Fig.3: NRMS or RMS at different sampling rate 
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Introduction: Compressed sensing (CS) [3] is a general framework for speeding up MRI acquisition, but its use in applications with rapid spatial phase variations is 
challenging, e.g. B0 map estimation, PRF-shift thermometry [2], and velocity mapping [4]. Previously, an iterative MRI reconstruction with separate magnitude and 
phase regularization [1] was proposed for applications when magnitude and phase maps are both of interest, but it requires fully sampled data and unwrapped phase 
maps. In this work, we extend [1] by using CS to speed up the imaging acquisition, and using new phase regularization terms and optimization algorithms to improve its 
performance in imaging applications with wrapped phase. The method is demonstrated by simulated thermometry data and real velocity mapping data. 
Theory: The cost function of conventional CS is  Ψሺࢌሻ ൌ ԡ࢟ െ ԡଶࢌܣ ൅  is Fourier ܣ ,is the complex image ࢌ ,is randomly sampled k-space data ࢟ ԡଵ, whereࢌԡܷߚ
transform matrix, ܷ is the sparse transform matrix  (e.g. wavelet transform), ԡ·ԡ and ԡ·ԡଵ denote L2 and L1 norm, and ߚ is a 
scalar regularization parameter; in contrast, our cost function is Ψሺ࢞, ሻ࢓ ൌ ฮ࢟ െ ฮଶ࢞௜݁࢓ܣ ൅ ሻ࢞ଵܴሺߚ ൅  ࢓ ԡଵ, where࢓ଶԡܷߚ
and ࢞ are magnitude and phase of ߚ ,ࢌଵ and ߚଶ are scalar regularization parameters, and ܴሺ·ሻ is the regularizer for phase. 
Conventional CS works by exploiting sparsity of complex images in the sparse transform domain. This sparsity needs to be 
intensified by phase correction when complex images contain high phase variation [3]. Thus, our method, which enforces 
sparsity directly for magnitude, potentially works better. Meanwhile, features of the phase are exploited by ܴሺ·ሻ, which is ԡ࢞ܥԡଶ in [1] (ܥ is finite differencing matrix which penalizes roughness) assuming phase map is smooth. However, it cannot 
handle big jumps in the wrapped phase map, due to non-convexity of the cost function for ݔ. Alternatively, we propose ܴሺ࢞ሻ ൌ ฮ݁ܥ௜࢞ฮଶ

, which can solve this problem and approximates ԡ࢞ܥԡଶ very well when neighboring difference is below 1 
radian (Fig.1). Moreover, this method is general enough to design different regularizers for specific types of phase maps. For 
example, we designed a regularizer for applications that have distinct areas on top of smooth background in the phase map, 
e.g. hot spots in temperature maps and arteries in velocity maps; the regularizer is designed to be edge-preserving, that is, ܴሺݔሻ ൌ ∑ ߰ሺหሾ݁ܥ௜࢞ሿ௞หሻ௄௞ୀଵ  where ߰ሺ·ሻ is an edge-preserving potential function and ݇ is the index of pairs of neighboring 
pixels. Fig.1 shows the edge-preserving property of this regularizer. We estimate ࢓ ݀݊ܽ ࢞ from data ࢟ by minimizing Ψሺ࢞,  where magnitude is optimized by iterative soft threshholding algorithm [5] and phase by conjugate gradient with monotonic line search (CG-MLS) [6]. Here ࢓ and ࢞ ሻ. In each iteration, we alternate updating࢓
we use CG-MLS because it converges much faster than the separable optimization transfer algorithm used in [1] for such particular problems.  

Methods and Results: First, we tested this method by a simulated thermometry data from an 
abdomen magnitude image and its smooth field map [7]. The field map is scaled to be ሺെ2ߨ,  ሻ toߨ2
test performance of the proposed algorithm for wrapped phase maps; and then four “hot spots” are 
manually added onto this smooth phase map to simulate thermal ablation. Both magnitude and 
phase maps are cropped to be 320*208 matrix (40cm *26cm FOV). A single coil k-space data is 
simulated by randomly sampling in Cartesian grid with complex Gaussian noise added (SNRൎ24݀ܤ). ܴሺݔሻ ൌ ∑ ߰ሺหሾ݁ܥ௜࢞ሿ௞หሻ௄௞ୀଵ  where ߰ሺݐሻ ൌ ଶሺඥ1ߜ ൅ ଶ|ߜ/ݐ| െ 1ሻ  with ߜ ൌ 0.15, and U is 
wavelet transform. The proposed method was compared with conventional phase corrected CS at 
different sampling rates. Images shown in Fig. 2 demonstrate that the proposed method produces 
much cleaner phase maps than convention CS and almost the same magnitude images. MSE plots in 
Fig. 3 show the results at different sampling rates in which magnitude images are also improved but 

not very visible in images. We also collected real velocity mapping data of the abdominal aorta (160*160 Cartesian grid with FOV of 16*16 cm) by phase-contrast 
bSSFP sequence in 3T GE scanner. We used the 1st frame (as reference frame) and the 6th frame of the data to test the algorithm; here ܴሺݔሻ ൌ ∑ ߰ሺหሾ݁ܥ௜࢞ሿ௞หሻ௄௞ୀଵ  with 
the same potential function was used for velocity mapping and ܴሺ࢞ሻ ൌ ฮ݁ܥ௜࢞ฮଶ

 was for reference frame, and U is wavelet transform in both. Fig. 4 shows magnitude 
maps, reference phase maps (wrapped) and the final velocity maps reconstructed by (a) DFT on fully sampled data (FSD), (b) conventional CS and (c) the proposed 
method on undersampled data (33% sampled).  Good magnitude image and much better reference phase and velocity maps are reconstructed by the proposed method. 
Conclusions: The proposed method can produce an improved phase map (thermometry or velocity map) while preserving a good magnitude map on undersampled data, 
compared to conventional phase corrected CS. 
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