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Introduction: Standard reconstruction methods for SENSitivity Encoding (SENSE) [1, 2] suffer from SNR degradation due to k-space undersampling and instability 
arising from correlation in sensitivity maps. Nonquadratic regularization can be used to improve reconstruction quality but demands computation intensive nonlinear 
optimization. We present a new algorithm for (nonquadratic) regularized reconstruction from sensitivity-encoded data—SENSE-reconstruction—using the augmented 
Lagrangian (AL) formalism that constitutes a powerful framework for solving large-scale constrained optimization problems. Based on numerical experiments with in-
vivo human brain data, we demonstrate that the proposed AL algorithm converges faster compared to general-purpose algorithms such as nonlinear conjugate gradient 
(NCG) (that has been used for compressed sensing MRI [3]) and state-of-the-art Monotone Fast Iterative Shrinkage-Thresholding Algorithm (MFISTA) [4].  
Problem Formulation: We employ a combination of TV and l1-regularization and formulate regularized SENSE-
reconstruction as P0: xrecon = arg minx 1/2 ||d - FSx||2 + λ1 ||Wx||1 + λ2 TV{x}, where d represents undersampled 
data from a coil-array, F and S represent the Fourier encoding and sensitivity-map matrices, respectively, W 
represents 2-levels of undecimated Haar-wavelet transform (excluding “scaling” coefficients), and TV{x} = ∑i (∑n 
|[Rn x]i|2)1/2 is composed of matrices Rn that correspond to finite-differences along the n-th spatial dimension of the 
image, n=1,2,…d, [x]i denotes the i-th element of x, and λ1, and λ2 are regularization parameters. The above 
formulation can be used to deal with correlated noise after applying a suitable noise-decorrelation procedure [2].  
Method: We write P0 as an equivalent constrained optimization problem P1:  arg minu f(u) subject to u0 = Sx,       
u1 = Ru2, and u2 = x, where R = [WT R11

T…R1d
T]T, u1 = [u10

H u11
H…u1d

H]H whose components {u1n} correspond to 
the block-rows of R, u = [u0 u1 u2 x], and f(u) = 1/2 ||d - Fu0||2 + λ1 ||u10||1 + λ2 ∑i (∑n |[u1n]i|2)1/2. This type of 
constrained reformulation is different from those in [5, 6]. We construct an AL function [7] for P1 using a 
Lagrange multiplier η = [η0 η1 η2] as L(u, η, μ) = f(u) + μ/2 ||u0 - Sx - η0||2 + μν1/2 ||u1 - Ru2 - η1||2 + μν2/2 ||u2 - x - 
η2||2, where μ,ν1,ν2 > 0 are scalars that do not affect the solution of P1 (and P0). The traditional AL scheme [7] for 
solving P1 alternates between jointly minimizing L with respect to u = [u0 u1 u2 x] for a fixed η and updating η. 
The joint-minimization step can be computationally expensive, so we apply an alternating minimization scheme 
(that minimizes L alternatively with respect to u0, u1, u2, and x one at a time while holding the others at their most 
recent values). This simplifies the minimization leading to the following AL algorithm for solving P1 (and P0).  

AL algorithm:  
Select u(0), η(0) and μ,ν1,ν2 > 0; set iteration number m = 0;  
Repeat until stop criterion is met; 
1. u0

(m+1) = arg minu0 1/2 ||d - Fu0||2 + μ/2 ||u0 - Sx(m) - η0
(m)||2; 

2. u1
(m+1) = arg minu1 λ1 ||u10||1 + λ2 ∑i

 (∑
n
 |[u1n]i|2)1/2 + μν1/2 ||u1 - Ru2

(m) - η1
(m)||2; 

3. u2
(m+1) = arg minu2 ν1/2 ||u1

(m+1)
 - Ru2 - η1

(m)||2 + ν2/2 ||u2 - x(m) - η2
(m)||2; 

4. x(m+1) = arg minx 1/2 ||u0
(m+1)

 - Sx - η0
(m)||2 + ν2/2 ||u2

(m+1)
 - x - η2

(m)||2; 
5. η0

(m+1) = η0
(m) - (u0

(m+1) - Sx(m+1)); 
6. η1

(m+1) = η1
(m) - (u1

(m+1) - Ru2
(m+1)); 

7. η2
(m+1) = η2

(m) - (u2
(m+1) - x(m+1)); 

8. m = m +1; 
Step 2 of the AL algorithm is a denoising problem (that can further be decoupled in terms of the individual 
elements of u1) whose solution is obtained using shrinkage operations [5]. Steps 1, 3, and 4 involve quadratic costs 
and therefore have closed-form updates with simple matrix-inverses that can be computed efficiently. We adjust μ, 
ν1, and ν2 based on easily computed condition numbers of these matrix-inverses for fast convergence of the 
proposed AL algorithm.  
Results: We used a 3-D in-vivo human brain data-set (256x144 uniformly-spaced samples in the phase-encode 
plane, and 128 samples along the read-out direction) acquired from a GE 3T scanner (TR = 25 ms, TE = 5.172 ms, 
and voxel-size = 1x1.35x1 mm3), with a 8-channel head-coil. Figure 1a shows one slice of the iFFT-reconstruction 
of fully-sampled data collected with a body-coil for comparison. To estimate the sensitivity maps S, we separately 
optimized a quadratic-regularized least-squares criterion that encouraged smooth maps that “closely” fit a low-
resolution version of the body-coil image in Figure 1a to low-resolution head-coil images, all obtained from iFFT-reconstruction of corresponding central 32x32 phase-
encodes. We estimated the inverse of noise covariance matrix from data collected during a dummy scan where only the static magnetic-field (and no RF excitations) 
was applied and carried out noise-decorrelation of data as described in [2]. We then performed regularized SENSE-reconstruction of the 2-D slice (corresponding to 
Figure 1a) from undersampled phase-encodes where we applied the Poisson-disk-based undersampling pattern (with a reduction factor of ≈ 6) in Figure 1e in the phase-
encode plane. We obtained the reconstruction x* (that represents a solution of P0) numerically by running thousands of iterations of MFISTA. Figure 1c shows x* 
where aliasing artifacts and noise have been suppressed considerably compared to the conventional (square-root of sum-of-squares) zero-filled iFFT-reconstruction in 
Figure 1b. We compared the proposed AL algorithm to NCG and MFISTA in terms of speed of convergence to the reconstruction x* by computing the normalized l2-
distance ξ(m) between the estimate x(m) and x* as ξ(m) = 20 log10(||x(m) - x*||2/||x*||2). We evaluated ξ(m) for all algorithms and plotted it as a function of algorithm run-
time tm (time elapsed from start until iteration m) in Figure 1f. It is seen that AL converges faster than NCG and MFISTA. We obtained promising results (not shown) 
similar to that in Figure 1 for experiments with several slices of the above human brain data-set and with various synthetic data-sets and a real breast-phantom data-set.  
Conclusions: The augmented Lagrangian (AL) formalism combined with alternating minimization can be used for solving large-scale unconstrained optimization 
problems effectively by posing them as equivalent constrained tasks. We adopted such an approach for regularized SENSE-reconstruction and developed an AL 
algorithm that converges faster than NCG and MFISTA, is simple to implement and can also be easily extended to handle (combinations of) several nonquadratic 
regularization criteria.  
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Fig. 1 Experiment with a 2-D slice of a in-vivo
human brain data-set: (a) Body-coil image; (b)
Zero-filled iFFT reconstruction; (c) Regularized
SENSE-reconstruction x*; (d) Absolute difference
between (a) and (c); (e) Poisson-disk-based
undersampling pattern (on a Cartesian grid); (f)
Plot of ξ(m) versus tm  for AL, NCG and MFISTA.
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