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Introduction 
We propose a novel compressed sensing algorithm for Phase Contrast MRI(PC-MRI) to estimate blood flow velocities.  Blood flow velocities provide clinically useful 
information such as pressure gradients and PC-MRI has become an established technique to measure them. In conventional PC-MRI, velocity information is computed 
by comparing the phases of the velocity-encoded image and the reference image without velocity encoding. This procedure requires multiple scans of the imaged object, 
which is time-intensive. For example, it takes about 20 minutes to cover a 3D volume of 16x12x6cm3 with a previously proposed PC-MRI sequence[1]. We have 
observed empirically that velocity encoding brings about phase changes only in blood vessel regions, which are sparse in the image domain[2]. Exploiting this sparse 
phase differences, we developed a non-convex greedy compressed sensing image reconstruction algorithm to accelerate the acquisition of velocity encoded images. 
Simulation results show that with random k-space sampling, our algorithm can perform well even with a high undersampling factor 15. We have also investigated an 
alternative convex optimization approach and compared its performance with our greedy algorithm. The simulation results show that our proposed greedy algorithm is 
more robust in high undersampling factors compared to the convex optimization method.  
Theory 
Let xref denote the reference image acquired without velocity encoding. The signal equation for the k-space data, y, of a velocity encoded object in the matrix-vector 
form can be modeled as )(,][][ ref

ii
ref xeex DiagFAAFy θθ ⋅==⋅=  where F is a undersampled Fourier encoding matrix, Diag(xref) is a diagonal matrix with entries 

populated with xref, θ is the unknown velocity encoding phase, and ][ θie  is a column vector representation of θie (each entry corresponds to θie  for each entry of   
θ ).We assume θ is sparse due to sparse blood vessel distributions but ][ θie is not as most of its entries are 1.  To generate a sparse parameter vector, we restate the 

problem as ]1[ −⋅=− θAA[1]y ie  where [1] is a column vector of entries 1. Rewriting 

this with a change of variables yields xAy ˆˆ =  where A[1]yy −=ˆ and ]1[ˆ −= θx ie . 
Now x̂ is a sparse vector so we may apply compressed sensing, but we have to change the 
optimization procedure in order to constrain the entries of x̂  to be ]1[ −θie . We modified a 
greedy algorithm[3] for this purpose as described on the left. The algorithm iteratively selects 
columns of A until the chosen columns span most of ŷ . In step (I), we estimate how much 
each column can span the residual of  ŷ with a coefficient in the constrained form and select 
the one spanning the most in step (II). In step (III) we project ŷ onto the selected columns 
with constraints on their coefficient set and update the residual. Step (I) has a closed form 
solution ))(( jj a,ar += anglejθ . In step (III), we iteratively update the intermediate solution 

by linearizing the equation with respect to a small update as in [4]. We have also noticed that 
the difference image, Δx, between the reference image and velocity encoded image is sparse, 
and implemented a convex optimization method expressed as 

ε≤+−
21

..min Δx)A(xyΔx refts , and solved it with the spgl1 package[5] We compared 

its performance with our non-convex greedy method.  
Simulation Results and Discussion 
We reconstructed the velocity encoded image, θi

ref ex , with the greedy method and the convex method with 2D random k-space sampling having undersampling 

factors ranging from 1 to 18. For each undersampling factor, we generated ten k-space sampling instances to quantify average performance of each method. We 
computed the root mean squared error(RMSE) of the intra-vascular phase and the normalized root mean squared error(NRMSE) of the estimated image. Fig.1 shows 
that the average RMSE plot of our greedy method works well with a high undersampling factor 15 while the convex method starts to break down around an 
undersampling factor between 6-8. The NRMSE plot is not presented, but it showed a very similar pattern with the RMSE plot.  

  
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. RMSEs v.s. undersampling factor         Figure 2. Truth set for  θ                   Figure 3. differences  in radian between the true θ and the estimated θ  from  
the greedy method(left) and the convex method(right) with undersampling factor 15 

Conclusion 
We have demonstrated in simulation that our proposed compressed sensing algorithm for velocity mapping in PC-MRI allows high acceleration rates when vessels are 
sparsely distributed. We expect our algorithm to be more optimal in 3D imaging because random k-space sampling can be used for determining phase encoding 
locations of the 3D k-space trajectory.  Future work includes testing our method with in-vivo data and developing feasible random k-space trajectories for 2D PC-MRI. 
References & Acknowledgements:  [1] Nielsen, Mag.Res.Med, 61(5):1096-1102(2009)  [2] King, ISMRM 2009, 2817 [3] Pati, Proceedings of 27th Asilomar 
Conference on Signals, Systems and Computers, 1993 [4] Olafsson, IEEE Trans.Med.Imag.,27(9):1177-88 2008  [5] http://www.cs.ubc.ca/labs/scl/spgl1/     
The author thanks Dr. Krishna Nayak for suggesting this problem. This work is supported by NIH grant R01NS058576. 

Proc. Intl. Soc. Mag. Reson. Med. 18 (2010) 4852


