
P-OMP algorithm layout 
Set F̂ an empty matrix. Set the initial residual dr =0

. Set 1=k . 

Loop until the magnitude of the residual 
1−kr  is sufficiently small. { 

-  Compute cumulative correlation1 between columns in F and rk – 1 
-  Pick columns whose cumulative correlation is bigger than a threshold 

-  Add selected columns to F̂ and do orthogonal projection of d onto  
  ]ˆ,,ˆ[ˆ
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-  Set the new residual bAdrk
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1Cumulative correlation : Let 

if  be i-th column of F. Let j be a coil index 

P-OMP(lp) : 
p
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P-OMP(projection) : do orthogonal projection of d onto, { }iRii fSfSfS ,...,, 21
 

and compute the magnitude of projected vector.  
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Introduction 
We propose a novel, fast method based on a hybrid version of Simultaneous Orthogonal Matching Pursuit(S-OMP)[1] to select sparse phase-encoding locations in a 
Echo-Volumar(EV) trajectory for parallel excitation pulse design with slice-selective subpulses [2]-[3]. In [2]-[3], the pulse length is dominated by the number of phase-
encoding locations in the EV trajectory, so sparse phase-encoding is critical to generating a short RF pulse. This problem of enforcing sparsity in phase-encoding 
locations was presented as a convex optimization problem in a Second Order Cone Program(SOCP) form and solved in [3]. Unfortunately, typical SOCP routines with 
parallel excitation setting are too slow to be computed in real-time, which may not be acceptable in many in-vivo MRI scans. We present a much faster greedy algorithm, 
Parallel-OMP(P-OMP), which will solve the same problem in a few seconds. We also show that the accuracy of our approach is very similar to that of SOCP in both the 
single and multiple coil cases. 
Theory 
In parallel excitation pulse design with slice-selective subpulses, the amplitudes of the subpulses are computed by solving 

2
minarg

~
Abdb b −=  where d is the desired 

in-plane excitation pattern, A = [S1F,S2F,...SRF] is a stack of matrices where Si is a diagonal matrix of the i-th coil’s sensitivity pattern, and F is a 2D-Fourier encoding 
matrix restricted to the support of d. The vector b = [b1;b2;...;bR] is a vertically concatenated vector where bi is a vector composed of complex amplitudes of slice-
selective pulses transmitted by the i-th coil and its element indices denote phase encoding locations. Each column of F represents a candidate phase-encoding location. 
Therefore, enforcing sparsity in phase encoding locations can be viewed as selecting a minimal number of columns of F such that a new matrix of selected columns, F̂ , 
can be used to form A in place of F to span d or its close approximation. Our algorithm is an iterative procedure where at each step, we choose columns of F that span a 
large portion of the residual of d, and then add those columns to F̂ , and update the residual by performing an orthogonal projection of d onto ]ˆ,,ˆ[ˆ
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One important distinction that our problem makes from standard sparse 
approximation problems is that choosing one column of F corresponds to R 
columns in the approximation of d, because A  has R columns associated with the 
selected column in F. Therefore, to assess how much of the residual is spanned by 
each candidate column in F, we experimented with three different approaches as in 
the algorithm layout on the left: P-OMP(l1), P-OMP-(l2),and P-OMP(projection). 
We call this value cumulative correlation, and large correlation implies that a large 
portion of the residual can be spanned by the corresponding R columns. At each 
iteration of our algorithm, we compute the cumulative correlation of the candidate 
columns of F and pick the columns of cumulative correlation value above a certain 
threshold. Here we set the threshold to be 99% of the maximum cumulative 
correlation at each iteration. By utilizing an efficient conjugate gradient solver for 
least squares calculations as well as implicitly constructing the matrix A using 
FFT’s, we were able to ensure that our implementation is both fast and very 
memory efficient.  
 
Experiments and Discussion 
To compare the performance between the convex optimization method[3] and our 
method, we measured the Normalized Root Mean Squared Error(NRMSE) of the 
approximated pattern with these two methods as we increment the number of phase 

encoding locations. Fig1. and Fig.2 show the NRMSE measured in the computer simulation. On a computer with Intel Core2 Quad CPU 2.4GHz, 4GB RAM and 
Matlab 7, we ran the above two algorithms to excite a uniform circular pattern of a radius 10.125cm with a single coil and with 8 coils. The field of excitation is 24cm 
by 24cm over a 64x64 sampling grid. As seen in the Figs.1 and 2, the NRMSE curves along the number of chosen phase-encoding locations show that our method 
shows compatible accuracy to the convex optimization. Also the Table 1 shows that our method runs much faster than the convex optimization on the same problem 
instance.  

 

 Table 1. Runtime of OMP and Convex optimization method 

Fig 1. NRMSE in a single coil excitation          Fig 2. NRMSE in 8 coils, parallel excitation    Fig 3.Phase encoding locations- 8 coils:P-OMP  v.s. Convex optimization 
 

Conclusion 
Our P-OMP-based method to enforce sparse phase-encoding locations in parallel excitation performs comparably with the SOCP solver in terms of accuracy.  However, 
our greedy approach is significantly faster, and thus, is more desirable in applications where on-line computation of the RF pulse is crucial. 
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 Convex optimization OMP 
Single coil 16 min Less than 5sec 
8 coils 48 min Less than 25sec 
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