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Introduction:  RF transmit coils produce non-uniform field strengths, yielding tip angles that vary substantially over the field of view.  In ultra-high MR fields, these 
variations are particularly severe, causing nonuniform signal and contrast in the image.  A map of the B1

+ field strength (and phase), called a B1
 map, is required to 

correct this inhomogeneity, through tailored RF pulses [1,2] or proper pre-scan calibration [3].  An accurate map is especially important for parallel excitation (using a 
coil array).  The standard approach to B1 mapping, the double angle method (DAM) [4], performs best with high flip angles that are hard to achieve across the full 
object with single coil excitation at high field strengths. DAM also lacks phase estimates and requires at least 2K scans for K transmit coils.  Recent proposed methods 
use coil combinations to achieve larger, more optimal flip angles over the field of view [5,6].  These matrix approaches were combined with existing B1

 mapping 
methods that often require multiple tip angles per measurement or separate measurements (or previous estimates) for the phase.  In this work, we combine matrix 
approaches with our regularized B1 estimate that incorporates the effects of slice-selection [7].  We estimate both the magnitude and phase of the complex B1

 map using 
as few as K+1 measurements for K transmit coils. 

Method:  Let K represent the number of coils; we take M measurements by transmitting with coil 
combinations and receiving from a common coil.  The (possibly complex) matrix α (M x K) represents 
which coils are used for each scan and their relative amplitudes.  Possible coil combinations include: one-at-
a-time (standard method), leave-one-out [5], or constant-amplitude/varying-phase [6].  The same RF pulse 
drives each coil simultaneously with relative amplitudes denoted αmk and the fields add linearly.  We model 
the resulting signal measurements in (Eq. 1) where j denotes the pixel value, εjm is (complex) noise, fj is the 
underlying object transverse magnetization and zjk denotes the (complex) B1

 map. The function F2 replaces 
the typical sin function in DAM and inherently incorporates slice selection effects that would otherwise 
cause residual error in both the flip angle itself and its distribution [8].  F2 is a sinusoidal-like function 
tabulated using a Bloch equation simulator, thus incorporating MR effects beyond the simplified sin model.   
To solve for the unknown B1

 maps zk, we jointly estimate f and zk by solving the penalized least-squares 
minimization problem in Eq. 2.  Because B1 maps are inherently smooth, we regularize the maps.  R(zk) is a 
regularizing roughness penalty where β is a parameter that controls the smoothness and, here, is chosen 
empirically.  When α is well-conditioned and invertible, we choose to estimate the M composite maps and 
finally solve for the B1

 maps by inverting the matrix α.  When α is ill-conditioned, we can estimate the B1 
maps directly in a similar amount of computation time.  We use iterative methods and a block minimization 
method where we first estimate x and then f during each iteration, using the current value of the maps.  The 
minimizer with respect to f is found analytically (Eq. 3).  We use quadratic majorizer principles to derive an 
iterative estimate of x that has the form (Eq. 4) where D is a diagonal matrix.     
To reduce scan time, we desire M ≈K.  We propose using M=K+1 measurements, using leave-one-out coil 
combinations for the first K measurements and then double one row of the α matrix (i.e., use twice the tip 
angle for the one of the coil combinations) for the last measurement.  As long as there are not too many 
signal voids, we can use these two matching measurements and the DAM [3] and (Eq. 3) above to initialize 
our algorithm for x and f.  If the signal void from the missing coil is too large,  
we can use M=K+2 total measurements.   

Results and Discussion:  We investigated for our method using a simulated brain image [9] and simulated complex B1 maps based on equations for a magnetic field in 
a circular loop [10] (true object and B1 maps shown in Figure 1).  We simulated K=4 coils and used M=5, using leave-one-out for the first four coil combinations and 
doubled the relative amplitudes of the first 
measurement for the last measurement.  We assumed 
a truncated sinc pulse and used it to tabulate F2 for the 
algorithm.  We added complex Gaussian noise for a 
final SNR of approximately 27 dB.  We used our 
iterative algorithm and compared to the standard 
DAM method (using M=8 single coil excitations) as 
well as using our matrix approach with M=8 
(doubling the tip angle of each of the first 4 
measurements), both with single-coil excitation and 
leave-one-out excitation.  We used an empirically 
controlled parameter (β=2-8) for all simulations and 
250 iterations.  The standard DAM method (M=8) in 
Figure 2 is very noisy and has a high NRMSE (37% 
|z| and 37% phase z), especially in pixels with low 
signal (skull and nasal area NRMSE of 114% |z| and 
68% phase z).  The proposed method in Figure 3 with 
M=5 and using leave-one-out as described has a lower 
NRMSE both over the whole object (9% |z| and 11% 
phase z) and in pixels with low signal (13% |z| and 
24% phase z).  The proposed method with M=5 has 
similar levels of NRMSE to the M=8 methods when 
we use enough iterations.   The proposed method has 
smoother maps which interpolate into signal voids.  
Overall, this method uses a smaller number of 
measurements, incorporates slice selection effects, and is more accurate than conventional methods. 
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