Iterative methods for image formation in MRI

Jeffrey A. Fessler

EECS Department
The University of Michigan

UM CEE 682-183
Jan. 23, 2008

Acknowledgements: Doug Noll, Brad Sutton, Chunyu Yip, Will Grissom
MRI: excellent soft tissue contrast, and no ionizing radiation. (But, expensive, slow, big, small bone signal...)

www.gehealthcare.com

www.cis.rit.edu
Outline

- MR imaging physics
- MR image reconstruction problem description
- Overview of image reconstruction methods
- MR image reconstruction introduction
- Conventional reconstruction
- Model-based image reconstruction
- Iterations and computation (NUFFT etc.)
- Regularization
- Field inhomogeneity correction
- Parallel (sensitivity encoded) imaging
- Iterative methods for RF pulse design

Image reconstruction toolbox:
http://www.eecs.umich.edu/~fessler
Physics
Bloch Equation - Overview

Time evolution (phenomenological) of local magnetization $M(r,t)$:

$$\frac{dM}{dt} = M \times \gamma B - \frac{M_x i + M_y j}{T_2} - \frac{(M_z - M_0) k}{T_1}$$

Precession ↑
Relaxation ↑
Equilibrium ↑
Bloch Equation and Imaging

\[
\frac{dM(r,t)}{dt} = M(r,t) \times \gamma B(r,t) - \frac{M_x i + M_y j}{T_2(r)} - \frac{(M_z - M_0(r))k}{T_1(r)}
\]

Image properties depend on:
- Spin (Hydrogen) density \(M_0(r)\)
- Longitudinal (spin-lattice) relaxation \(T_1(r)\)
- Transverse (spin-spin) relaxation \(T_2(r)\)
- Chemical shift
 (resonant frequency of H is \(\approx 3.5\) ppm lower in fat than in water)

Applied field \(B(r,t)\) includes three components we can control:
- Main field \(B_0\)
- RF field \(B_1(t)\)
- Field gradients \(r \cdot G(t) = xG_x(t) + yG_y(t) + zG_z(t)\)

\[B(r,t) = B_0 + B_1(t) + r \cdot G(t)k\]
Systems view of MRI

Applied field $B(r, t) \rightarrow$ Patient \rightarrow magnetization pattern $M(r, t) \rightarrow$ RF coil(s) (Faraday induction) \rightarrow received signal $s_r(t)$

\rightarrow demodulate (Larmor frequency) \rightarrow baseband signal $s(t) \rightarrow$ sample (A/D) \rightarrow recorded data $y_i, i = 1, \ldots, M$

\rightarrow reconstruction algorithm \rightarrow displayed image $f(\vec{r})$

Research areas:
- design of RF pulses / gradient waveforms (many possibilities!)
- coil design
- reconstruction algorithm development
Example: Iterative Reconstruction under ΔB_0
Example: Iterative RF Pulse Design
Introduction to Reconstruction
Standard MR Image Reconstruction

MR k–space data

Reconstructed Image

Cartesian sampling in k-space. An inverse FFT. End of story.

Commercial MR system quotes 400 FFTs (256^2) per second.
Non-Cartesian MR Image Reconstruction

“k-space” data
\[y = (y_1, \ldots, y_M) \]

image
\[f(\vec{r}) \]

k-space trajectory:
\[\vec{k}(t) = (k_x(t), k_y(t)) \]

spatial coordinates:
\[\vec{r} \in \mathbb{R}^d \]
Ignoring lots of things, the standard measurement model is:

\[y_i = s(t_i) + \text{noise}_i, \quad i = 1, \ldots, M \]

\[s(t) = \int f(\vec{r}) e^{-i2\pi \vec{k}(t) \cdot \vec{r}} \, d\vec{r} = F(\vec{k}(t)). \]

\(\vec{r} \): spatial coordinates
\(\vec{k}(t) \): k-space trajectory of the MR pulse sequence
\(f(\vec{r}) \): object’s unknown transverse magnetization
\(F(\vec{k}) \): Fourier transform of \(f(\vec{r}) \). We get noisy samples of this!

\(e^{-i2\pi \vec{k}(t) \cdot \vec{r}} \) provides spatial information \(\implies \) Nobel Prize

Goal of image reconstruction: find \(f(\vec{r}) \) from measurements \(\{y_i\}_{i=1}^M \).

The unknown object \(f(\vec{r}) \) is a continuous-space function, but the recorded measurements \(y = (y_1, \ldots, y_M) \) are finite.

Under-determined (ill posed) problem \(\implies \) no canonical solution.

All MR scans provide only “partial” k-space data.
Image Reconstruction Strategies

- **Continuous-continuous formulation**
 Pretend that a continuum of measurements are available:
 \[
 F(\vec{k}) = \int f(\vec{r}) e^{-i2\pi \vec{k} \cdot \vec{r}} d\vec{r}.
 \]
 The “solution” is an inverse Fourier transform:
 \[
 f(\vec{r}) = \int F(\vec{k}) e^{i2\pi \vec{k} \cdot \vec{r}} d\vec{k}.
 \]
 Now discretize the integral solution:
 \[
 \hat{f}(\vec{r}) = \sum_{i=1}^{M} F(\vec{k}_i) e^{i2\pi \vec{k}_i \cdot \vec{r}} w_i \approx \sum_{i=1}^{M} y_i w_i e^{i2\pi \vec{k}_i \cdot \vec{r}},
 \]
 where \(w_i\) values are “sampling density compensation factors.”
 Numerous methods for choosing \(w_i\) values in the literature.
 For Cartesian sampling, using \(w_i = 1/N\) suffices, and the summation is an inverse FFT.
 For non-Cartesian sampling, replace summation with gridding.
Continuous-discrete formulation

Use many-to-one linear model:

\[y = \mathcal{A} f + \epsilon, \text{ where } \mathcal{A} : L_2(\mathbb{R}^d) \to \mathbb{C}^M. \]

Minimum norm solution (cf. “natural pixels”):

\[
\min_{\hat{f}} \| \hat{f} \| \text{ subject to } y = \mathcal{A} \hat{f}
\]

\[
\hat{f} = \mathcal{A}^* (\mathcal{A} \mathcal{A}^*)^{-1} y = \sum_{i=1}^{M} c_i e^{-i2\pi \mathbf{k}_i \cdot \mathbf{r}}, \text{ where } \mathcal{A} \mathcal{A}^* c = y.
\]

Discrete-discrete formulation

Assume parametric model for object:

\[
f(\mathbf{r}) = \sum_{j=1}^{N} f_j p_j(\mathbf{r}).
\]

Estimate parameter vector \(\mathbf{f} = (f_1, \ldots, f_N) \) from data vector \(y \).
Conventional MR Image Reconstruction

1. Interpolate measurements onto rectilinear grid ("gridding")
2. Apply inverse FFT to estimate samples of $f(\vec{r})$
Gridding Approach 1: Pull from K nearest

Gridding by pulling from 10 nearest
Gridding Approach 2: Pull from neighborhood

Gridding by pulling from within neighborhood
Gridding Approach 3: Push to neighborhood

Gridding by pushing onto neighborhood
Gridding Approaches

Ignore noise: \(y_i = F(\vec{k}_i) \)

Pull:
for each Cartesian grid point, use weighted average of nonuniform k-space samples within some neighborhood
- Does not require density compensation
- Requires cumbersome search/indexing to find neighbors

Push:
each nonuniform k-space sample onto a Cartesian neighborhood

\[
\hat{F}(\vec{k}) = \sum_{i=1}^{M} y_i w_i C(\vec{k} - \vec{k}_i)
\]

- \(C(\vec{k}) \) denotes the *gridding kernel*, typically separable Kaiser-Bessel
- “\(*\)” denotes convolution.
- \(\delta(\cdot) \) denotes the Dirac impulse
- density compensation factors \(w_i \) essential
Post-iFFT Gridding Correction

Gridding as convolution in k-space:

\[\hat{F}(\vec{k}) = \sum_{i=1}^{M} y_i w_i C(\vec{k} - \vec{k}_i) = C(\vec{k}) \ast \sum_{i=1}^{M} y_i w_i \delta(\vec{k} - \vec{k}_i). \]

Inverse FT reconstruction:

\[\hat{f}_{\text{initial}}(\vec{r}) = \mathcal{F}^{-1} \{ \hat{F}(\vec{k}) \} = c(\vec{r}) \sum_{i=1}^{M} y_i w_i e^{-i2\pi \vec{k}_i \cdot \vec{r}}. \]

Post-correction:

\[\hat{f}_{\text{final}}(\vec{r}) = \frac{\hat{f}_{\text{initial}}(\vec{r})}{c(\vec{r})}. \]
Gridding Kernels and Post-corrections

Convolution kernels

Post-gridding correction functions

Kaiser–Bessel, J=4 $\beta=18.5547$

Sinc
Density Compensation

\[f(\vec{r}) = \int F(\vec{k}) e^{i2\pi \vec{k} \cdot \vec{r}} d\vec{k} \approx \sum_{i=1}^{M} y_i e^{i2\pi \vec{k}_i \cdot \vec{r}} w_i. \]

- Voronoi cell area
- Jacobians
 Norton, IEEE T-MI, 1987
- Jackson’s area density
 Jackson, IEEE T-MI, 1991
- Iterative methods
 Pipe and Menon, MRM, 2000
- ...

Tradeoffs between simplicity and accuracy.
Voronoi Cell Area
Limitations of Gridding Reconstruction

1. Artifacts/inaccuracies due to interpolation
2. Contention about sample density “weighting”
3. Oversimplifications of Fourier transform signal model:
 - Magnetic field inhomogeneity
 - Magnetization decay (T_2)
 - Eddy currents
 - ...
4. Sensitivity encoding ?
5. ...

(But it is faster than iterative methods...)
Model-Based Image Reconstruction: Overview
Model-Based Image Reconstruction

MR signal equation with more complete physics:

\[s(t) = \int f(\vec{r}) s^{\text{coil}}(\vec{r}) e^{-i\omega(\vec{r}) t} e^{-R^*_2(\vec{r}) t} e^{-i2\pi \vec{\kappa}(t) \cdot \vec{r}} d\vec{r} \]

\[y_i = s(t_i) + \text{noise}_i, \quad i = 1, \ldots, M \]

- \(s^{\text{coil}}(\vec{r}) \): Receive-coil sensitivity pattern(s) (for SENSE)
- \(\omega(\vec{r}) \): Off-resonance frequency map
 (due to field inhomogeneity / magnetic susceptibility)
- \(R^*_2(\vec{r}) \): Relaxation map

Other physical factors (?)
- Eddy current effects; in \(\vec{\kappa}(t) \)
- Concomitant gradient terms
- Chemical shift
- Motion

Goal?
(it depends)
Field Inhomogeneity-Corrected Reconstruction

\[s(t) = \int f(\vec{r}) s_{\text{coil}}(\vec{r}) e^{-i \omega(\vec{r}) t} e^{-R_2^*(\vec{r}) t} e^{-i 2\pi \vec{\kappa}(t) \cdot \vec{r}} \, d\vec{r} \]

Goal: reconstruct \(f(\vec{r}) \) given field map \(\omega(\vec{r}) \). (Assume all other terms are known or unimportant.)

Motivation

Essential for functional MRI of brain regions near sinus cavities!

(Sutton et al., ISMRM 2001; T-MI 2003)
Sensitivity-Encoded (SENSE) Reconstruction

\[s(t) = \int f(\vec{r}) s^\text{coil}(\vec{r}) e^{-i \omega(\vec{r}) t} e^{-R_s^x(\vec{r}) t} e^{-i 2\pi \vec{κ}(t) \cdot \vec{r}} d\vec{r} \]

Goal: reconstruct \(f(\vec{r}) \) given sensitivity maps \(s^\text{coil}(\vec{r}) \).
(Assume all other terms are known or unimportant.)

Can combine SENSE with field inhomogeneity correction “easily.”

(Sutton et al., ISMRM 2001, Olafsson et al., ISBI 2006)
Joint Estimation of Image and Field-Map

\[s(t) = \int f(\vec{r}) s^{\text{coil}}(\vec{r}) e^{-i\omega(\vec{r})t} e^{-R(\vec{r})^* t} e^{-i2\pi \vec{k}(t) \cdot \vec{r}} \, d\vec{r} \]

Goal: estimate both the image \(f(\vec{r}) \) and the field map \(\omega(\vec{r}) \) (Assume all other terms are known or unimportant.)

Analogy:
joint estimation of emission image and attenuation map in PET.

(Sutton et al., ISMRM Workshop, 2001; ISBI 2002; ISMRM 2002; ISMRM 2003; MRM 2004)
\[s(t) = \int f(\vec{r}) \, s^{\text{coil}}(\vec{r}) \, e^{-i \omega(\vec{r}) t} \, e^{-R^*_2(\vec{r}) t} \, e^{-i 2\pi \kappa(t) \cdot \vec{r}} \, d\vec{r} \]

Goal: estimate image \(f(\vec{r}) \), field map \(\omega(\vec{r}) \), and relaxation map \(R^*_2(\vec{r}) \)

Requires “suitable” k-space trajectory.

(Sutton et al., ISMRM 2002; Twieg, MRM, 2003)
Goal: estimate **dynamic** field map $\omega(\vec{r})$ and “BOLD effect” $R_2^*(\vec{r})$ given baseline image $f(\vec{r})$ in fMRI.
Model-Based Image Reconstruction: Details
Basic Signal Model

\[y_i = s(t_i) + \varepsilon_i, \quad E[y_i] = s(t_i) = \int f(\vec{r}) e^{-i2\pi \vec{k}_i \cdot \vec{r}} d\vec{r} \]

Goal: reconstruct \(f(\vec{r}) \) from \(y = (y_1, \ldots, y_M) \).

Series expansion of unknown object:

\[f(\vec{r}) \approx \sum_{j=1}^{N} f_j p(\vec{r} - \vec{r}_j) \quad \text{← usually 2D rect functions.} \]

Substituting into signal model yields

\[
E[y_i] = \int \left[\sum_{j=1}^{N} f_j p(\vec{r} - \vec{r}_j) \right] e^{-i2\pi \vec{k}_i \cdot \vec{r}} d\vec{r} = \sum_{j=1}^{N} \left[\int p(\vec{r} - \vec{r}_j) e^{-i2\pi \vec{k}_i \cdot \vec{r}} d\vec{r} \right] f_j
\]

\[= \sum_{j=1}^{N} a_{ij} f_j, \quad a_{ij} = P(\vec{k}_i) e^{-i2\pi \vec{k}_i \cdot \vec{r}_j}, \quad p(\vec{r}) \overset{\text{FT}}{\leftrightarrow} P(\vec{k}). \]

Discrete-discrete measurement model with system matrix \(A = \{a_{ij}\} \):

\[
y = Af + \varepsilon.
\]

Goal: estimate coefficients (pixel values) \(f = (f_1, \ldots, f_N) \) from \(y \).
Small Pixel Size Need Not Matter
Profiles

\[|f(x,0)| \]

- true
- \(N=32 \)
- \(N=64 \)
- \(N=128 \)
- \(N=256 \)
- \(N=512 \)

horizontal position [mm]

\[|f(x,0)| \]

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

-100 -50 0 50 100
Regularized Least-Squares Estimation

Estimate object by minimizing a cost function:

$$\hat{f} = \arg \min_{f \in \mathbb{C}^N} \Psi(f), \quad \Psi(f) = \|y - Af\|^2 + \alpha R(f)$$

- **data fit term** $\|y - Af\|^2$
 - corresponds to negative log-likelihood of Gaussian distribution
- **regularizing term** $R(f)$ controls noise by penalizing roughness,
 - e.g.: $R(f) \approx \int \|
 \nabla f\|^2 \, d\vec{r}$
- **regularization parameter** $\alpha > 0$
 - controls tradeoff between spatial resolution and noise
- Equivalent to Bayesian MAP estimation with prior $\propto e^{-\alpha R(f)}$

Issues:
- choosing $R(f)$
- choosing α
- computing minimizer rapidly.
Quadratic regularization

1D example: squared differences between neighboring pixel values:

\[R(f) = \sum_{j=2}^{N} \frac{1}{2} |f_j - f_{j-1}|^2. \]

In matrix-vector notation, \(R(f) = \frac{1}{2} \| Cf \|^2 \) where

\[C = \begin{bmatrix} -1 & 1 & 0 & 0 & \ldots & 0 \\ 0 & -1 & 1 & 0 & \ldots & 0 \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \ldots & 0 & -1 & 1 \end{bmatrix}, \quad \text{so} \quad Cf = \begin{bmatrix} f_2 - f_1 \\ \vdots \\ f_N - f_{N-1} \end{bmatrix}. \]

For 2D and higher-order differences, modify differencing matrix \(C \).

Leads to closed-form solution:

\[
\hat{f} = \arg \min_{f} \| y - Af \|^2 + \alpha \| Cf \|^2 \\
= \left[A'A + \alpha C'C \right]^{-1} A'y.
\]

(a formula of limited practical use for computing \(\hat{f} \))
Choosing the Regularization Parameter

Spatial resolution analysis (Fessler & Rogers, IEEE T-IP, 1996):

\[\hat{f} = \left(A'A + \alpha C'C \right)^{-1} A'y \]
\[\mathbb{E}\left[\hat{f} \right] = \left(A'A + \alpha C'C \right)^{-1} A' \mathbb{E}[y] \]
\[\mathbb{E}\left[\hat{f} \right] = \underbrace{\left(A'A + \alpha C'C \right)^{-1} A'A}_{\text{blur}} f \]

\(A'A \) and \(C'C \) are Toeplitz \(\implies \) blur is approximately shift-invariant.

Frequency response of blur:

\[L(\omega) = \frac{H(\omega)}{H(\omega) + \alpha R(\omega)} \]

- \(H(\omega_k) = \text{FFT}(A'A e_j) \) (lowpass)
- \(R(\omega_k) = \text{FFT}(C'C e_j) \) (highpass)

Adjust \(\alpha \) to achieve desired spatial resolution.
Spatial Resolution Example

Radial k-space trajectory, FWHM of PSF is 1.2 pixels
Spatial Resolution Example: Profiles

\[H(\omega) \]

\[R(\omega) \]

\[L(\omega) \]
Resolution/noise tradeoffs

Noise analysis:

\[
\text{Cov}\{\hat{f}\} = [A'A + \alpha C'C]^{-1} A' \text{Cov}\{y\} A [A'A + \alpha C'C]^{-1}
\]

Using circulant approximations to \(A'A\) and \(C'C\) yields:

\[
\text{Var}\{\hat{f}_j\} \approx \sigma^2 \varepsilon \sum_k \frac{H(\omega_k)}{(H(\omega_k) + \alpha R(\omega_k))^2}
\]

- \(H(\omega_k) = \text{FFT}(A'A e_j)\) (lowpass)
- \(R(\omega_k) = \text{FFT}(C'C e_j)\) (highpass)

\(\implies\) Predicting reconstructed image noise requires just 2 FFTs. (cf. gridding approach?)

Adjust \(\alpha\) to achieve desired spatial resolution / noise tradeoff.
Resolution/Noise Tradeoff Example

In short: one can choose α rapidly and predictably for quadratic regularization.
Iterative Minimization by Conjugate Gradients

Choose initial guess $f^{(0)}$ (e.g., fast conjugate phase / gridding).

Iteration (unregularized):

- $g^{(n)} = \nabla \Psi(f^{(n)}) = A'(Af^{(n)} - y)$ gradient
- $p^{(n)} = P g^{(n)}$ precondition
- $\gamma_n = \begin{cases} 0, & n = 0 \\ \frac{\langle g^{(n)}, p^{(n)} \rangle}{\langle g^{(n-1)}, p^{(n-1)} \rangle}, & n > 0 \end{cases}$
- $d^{(n)} = -p^{(n)} + \gamma_n d^{(n-1)}$ search direction
- $v^{(n)} = Ad^{(n)}$
- $\alpha_n = \frac{\langle d^{(n)}, -g^{(n)} \rangle}{\|v^{(n)}\|^2}$ step size
- $f^{(n+1)} = f^{(n)} + \alpha_n d^{(n)}$ update

Bottlenecks: computing $Af^{(n)}$ and $A'r$.
- A is too large to store explicitly (not sparse)
- Even if A were stored, directly computing Af is $O(MN)$ per iteration, whereas FFT is only $O(M \log M)$.
Computing Af Rapidly

$$[Af]_i = \sum_{j=1}^{N} a_{ij} f_j = P(\vec{k}_i) \sum_{j=1}^{N} e^{-i2\pi \vec{k}_i \cdot \vec{r}_j} f_j, \quad i = 1, \ldots, M$$

- Pixel locations $\{\vec{r}_j\}$ are uniformly spaced
- k-space locations $\{\vec{k}_i\}$ are unequally spaced

\implies needs nonuniform fast Fourier transform (NUFFT)
NUFFT (Type 2)

- Compute over-sampled FFT of equally-spaced signal samples
- Interpolate onto desired unequally-spaced frequency locations
- Dutt & Rokhlin, SIAM JSC, 1993, Gaussian bell interpolator

NUFFT toolbox: http://www.eecs.umich.edu/~fessler/code
Worst-Case NUFFT Interpolation Error

Maximum error for K/N=2

- Min–Max (uniform)
- Gaussian (best)
- Min–Max (best L=2)
- Kaiser–Bessel (best)
- Min–Max (L=13, $\beta=1$ fit)
Further Acceleration using Toeplitz Matrices

Cost-function gradient:

\[g^{(n)} = A'(Af^{(n)} - y) = T f^{(n)} - b, \]

where

\[T \triangleq A'A, \quad b \triangleq A'y. \]

In the absence of field inhomogeneity, the Gram matrix \(T \) is Toeplitz:

\[[A'A]_{jk} = \sum_{i=1}^{M} |P(\vec{k}_i)|^2 e^{-i2\pi\vec{k}_i \cdot (\vec{r}_j - \vec{r}_k)}. \]

Computing \(T f^{(n)} \) requires an ordinary \((2 \times\) over-sampled) FFT.
(Chan & Ng, SIAM Review, 1996)

In 2D: block Toeplitz with Toeplitz blocks (BTTB).

Precomputing the first column of \(T \) and \(b \) requires a couple NUFFTs.

This formulation seems ideal for “hardware” FFT systems.
Toeplitz Acceleration

Example: 256^2 image. radial trajectory, $2 \times$ angular under-sampling.

(Iterative provides reduced aliasing energy.)
Toeplitz Acceleration

<table>
<thead>
<tr>
<th>Method</th>
<th>$A'Dy$</th>
<th>$b = A'y$</th>
<th>T</th>
<th>20 iter</th>
<th>Total Time</th>
<th>NRMS (50dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conj. Phase</td>
<td>0.3</td>
<td></td>
<td></td>
<td>12.5</td>
<td>12.5</td>
<td>7.8%</td>
</tr>
<tr>
<td>CG-NUFFT</td>
<td></td>
<td></td>
<td>0.3</td>
<td></td>
<td>4.1%</td>
<td></td>
</tr>
<tr>
<td>CG-Toeplitz</td>
<td>0.3</td>
<td>0.8</td>
<td>3.5</td>
<td></td>
<td>4.6</td>
<td>4.1%</td>
</tr>
</tbody>
</table>

- Toeplitz aproach reduces CPU time by more than $2 \times$ on conventional workstation (Xeon 3.4GHz)
- Eliminates k-space interpolations \Rightarrow ideal for FFT hardware
- No SNR compromise
- CG reduces NRMS error relative to CP, but $15 \times$ slower...
 (More dramatic improvements seen in fMRI when correcting for field inhomogeneity.)
NUFFT with Field Inhomogeneity?

Recall signal model including field inhomogeneity:

\[s(t) = \int f(\vec{r}) e^{-i \omega(\vec{r}) t} e^{-i2\pi \vec{k}(t) \cdot \vec{r}} d\vec{r}. \]

Temporal interpolation approximation (aka “time segmentation”):

\[e^{-i \omega(\vec{r}) t} \approx \sum_{l=1}^{L} a_l(t) e^{-i \omega(\vec{r}) \tau_l} \]

for min-max optimized temporal interpolation functions \(\{a_l(\cdot)\}_{l=1}^{L} \).

\[s(t) \approx \sum_{l=1}^{L} a_l(t) \int \left[f(\vec{r}) e^{-i \omega(\vec{r}) \tau_l} \right] e^{-i2\pi \vec{k}(t) \cdot \vec{r}} d\vec{r} \]

Linear combination of \(L \) NUFFT calls.
Field Corrected Reconstruction Example

Simulation using known field map $\omega(\vec{r})$.
Simulation Quantitative Comparison

- Computation time?
- NRMSE between \(\hat{f} \) and \(f^{\text{true}} \)?

<table>
<thead>
<tr>
<th>Reconstruction Method</th>
<th>Time (s)</th>
<th>NRMSE complex</th>
<th>NRMSE magnitude</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Correction</td>
<td>0.06</td>
<td>1.35</td>
<td>0.22</td>
</tr>
<tr>
<td>Full Conjugate Phase</td>
<td>4.07</td>
<td>0.31</td>
<td>0.19</td>
</tr>
<tr>
<td>Fast Conjugate Phase</td>
<td>0.33</td>
<td>0.32</td>
<td>0.19</td>
</tr>
<tr>
<td>Fast Iterative (10 iters)</td>
<td>2.20</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>Exact Iterative (10 iters)</td>
<td>128.16</td>
<td>0.04</td>
<td>0.04</td>
</tr>
</tbody>
</table>
Human Data: Field Correction
Acceleration using Toeplitz Approximations

In the presence of field inhomogeneity, the system matrix is:

\[a_{ij} = P(\vec{k}_i) e^{-i\omega(\vec{r}_j)t_i} e^{-i2\pi\vec{k}_i \cdot \vec{r}_j} \]

The Gram matrix \(\mathbf{T} = \mathbf{A}'\mathbf{A} \) is not Toeplitz:

\[[\mathbf{A}'\mathbf{A}]_{jk} = \sum_{i=1}^{M} |P(\vec{k}_i)|^2 e^{-i2\pi\vec{k}_i \cdot (\vec{r}_j - \vec{r}_k)} e^{-i(\omega(\vec{r}_j) - \omega(\vec{r}_k))t_i} \]

Approximation (“time segmentation”):

\[e^{-i(\omega(\vec{r}_j) - \omega(\vec{r}_k))t_i} \approx \sum_{l=1}^{L} b_{il} e^{-i(\omega(\vec{r}_j) - \omega(\vec{r}_k))\tau_l} \]

\[\mathbf{T} = \mathbf{A}'\mathbf{A} \approx \sum_{l=1}^{L} \mathbf{D}'_l \mathbf{T}_l \mathbf{D}_l, \quad \mathbf{D}_l \triangleq \text{diag}\left\{ e^{-i\omega(\vec{r}_j)\tau_l} \right\} \]

Each \(\mathbf{T}_l \) is Toeplitz \(\implies \mathbf{T} \mathbf{f} \) using \(L \) pairs of FFTs.

(Fessler et al., IEEE T-SP, Sep. 2005, brain imaging special issue)
Toeplitz Results

Uncorrected Conj. Phase, L=6

CG–NUFFT L=6

CG–Toeplitz L=8
Toeplitz Acceleration

<table>
<thead>
<tr>
<th>Method</th>
<th>L</th>
<th>B,C</th>
<th>$A'Dy$</th>
<th>$b = A'y$</th>
<th>T_I</th>
<th>15 iter</th>
<th>Total Time</th>
<th>NRMS % vs SNR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conj. Phase</td>
<td>6</td>
<td>0.4</td>
<td>0.2</td>
<td></td>
<td></td>
<td>5.0</td>
<td>5.4</td>
<td>30.7 50 dB</td>
</tr>
<tr>
<td>CG-NUFFT</td>
<td>6</td>
<td>0.4</td>
<td></td>
<td></td>
<td></td>
<td>1.3</td>
<td>2.5</td>
<td>5.6 50 dB</td>
</tr>
<tr>
<td>CG-Toeplitz</td>
<td>8</td>
<td>0.4</td>
<td>0.2</td>
<td>0.6</td>
<td></td>
<td></td>
<td></td>
<td>5.5 50 dB</td>
</tr>
</tbody>
</table>

- Reduces CPU time by $2 \times$ on conventional workstation (Mac G5)
- No SNR compromise
- Eliminates k-space interpolations \implies ideal for FFT hardware
Joint Field-Map / Image Reconstruction

Signal model:

\[y_i = s(t_i) + \varepsilon_i, \quad s(t) = \int f(\vec{r}) e^{-i\omega(\vec{r})t} e^{-i2\pi\vec{k}(t) \cdot \vec{r}} d\vec{r}. \]

After discretization:

\[y = A(\omega)f + \varepsilon, \quad a_{ij}(\omega) = P(\vec{k}_i) e^{-i\omega j t_i} e^{-i2\pi\vec{k}_i \cdot \vec{r}_j}. \]

Joint estimation via regularized (nonlinear) least-squares:

\[(\hat{f}, \hat{\omega}) = \underset{f \in \mathbb{C}^N, \omega \in \mathbb{R}^N}{\arg \min} \| y - A(\omega)f \|^2 + \beta_1 R_1(f) + \beta_2 R_2(\omega). \]

Alternating minimization:

- Using current estimate of fieldmap \(\hat{\omega} \),
 update \(\hat{f} \) using CG algorithm.

- Using current estimate \(\hat{f} \) of image,
 update fieldmap \(\hat{\omega} \) using gradient descent.

Use spiral-in / spiral-out sequence or “racetrack” EPI.

(Sutton et al., MRM, 2004)
Joint Estimation Example

(a) uncorr., (b) std. map, (c) joint map, (d) T1 ref, (e) using std, (f) using joint.
Activation Results: Static vs Dynamic Field Maps

(a) Static Field Map
(b) Dynamic Field Map
(c) Activation Results

(d) Static Field Map
(e) Dynamic Field Map
(f) Activation Results

(g) Number Active vs Correlation Coefficient
(h) Number Active vs Correlation Coefficient
(i) Number Active vs Correlation Coefficient
Functional results for the two reconstructions for 3 human subjects.

Reconstruction using the standard field map for (a) subject 1, (b) subject 2, and (c) subject 3.

Reconstruction using the jointly estimated field map for (d) subject 1, (e) subject 2, and (f) subject 3.

Number of pixels with correlation coefficients higher than thresholds for (g) subject 1, (h) subject 2, and (i) subject 3.

Take home message: dynamic field mapping is possible, using iterative reconstruction as an essential tool. (Standard field maps based on echo-time differences work poorly for spiral-in / spiral-out sequences due to phase discrepancies.)
Tracking Respiration-Induced Field Changes
Parallel Imaging
Sensitivity encoded (SENSE) imaging

Use multiple receive coils (requires multiple RF channels). Exploit spatial localization of sensitivity pattern of each coil.

Note: at 1.5T, RF is about 60MHz.
$$\Rightarrow$$ RF wavelength is about $$3 \cdot 10^8 \text{m/s} / 60 \cdot 10^6 \text{Hz} = 5 \text{ meters}$$

RF coil sensitivity patterns

Pruessmann et al., MRM, 1999
Multiple coil data:

\[y_{li} = s_l(t_i) + \varepsilon_{li}, \quad s_l(t) = \int f(\vec{r}) s_l^{\text{coil}}(\vec{r}) e^{-i2\pi \vec{k}(t) \cdot \vec{r}} \, d\vec{r}, \quad l = 1, \ldots, L = N_{\text{coil}} \]

Goal: reconstruct \(f(\vec{r}) \) from coil data \(y_1, \ldots, y_L \) “given” sensitivity maps \(\{s_l^{\text{coil}}(\vec{r})\}_{l=1}^L \).

Benefit: reduced scan time.

Left: sum of squares; right: SENSE.
SENSE Reconstruction

Signal model:

\[s_l(t) = \int f(\vec{r}) s_{l,\text{coil}}(\vec{r}) e^{-i2\pi \vec{k}(t) \cdot \vec{r}} \, d\vec{r} \]

Discretized form:

\[y_l = AD_l f + \epsilon_l, \quad l = 1, \ldots, L, \]

where \(A \) is the usual frequency/phase encoding matrix and \(D_l \) contains the sensitivity pattern of the \(l \)th coil: \(D_l = \text{diag}\{ s_{l,\text{coil}}(\vec{r}_j) \} \).

Regularized least-squares estimation:

\[\hat{f} = \arg \min_f \sum_{l=1}^{L} \| y_l - AD_l f \|^2 + \beta R(f). \]

Can generalize to account for noise correlation due to coil coupling. Easy to apply CG algorithm, including Toeplitz/NUFFT acceleration.

For Cartesian SENSE, iterations are not needed. (Solve small system of linear equations for each voxel.)
RF Pulse Design
Example: Iterative RF Pulse Design
(3D tailored RF pulses for through-plane dephasing compensation)
Multiple-coil Transmit Imaging Pulses (Mc-TIP)
Summary

• Iterative reconstruction: much potential in MRI
• Quadratic regularization parameter selection is tractable
• Computation: reduced by tools like NUFFT / Toeplitz
• But optimization algorithm design remains important (cf. Shepp and Vardi, 1982, PET)

Some current challenges

• Sensitivity pattern mapping for SENSE
• Through-voxel field inhomogeneity gradients
• Motion / dynamics / partial k-space data
• Establishing diagnostic efficacy with clinical data...

Image reconstruction toolbox:
http://www.eecs.umich.edu/~fessler