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Outline

•MR image reconstruction introduction
(k-space, FFT, gridding, density compensation)

•Model-based reconstruction overview

• Iterations and computation (NUFFT etc.)

• Regularization

• Field inhomogeneity correction

• Parallel (sensitivity encoded) imaging

• Iterative methods for RF pulse design

• Examples
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Introduction
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Standard MR Image Reconstruction

MR k−space data Reconstructed Image

Cartesian sampling in k-space. An inverse FFT. End of story.

Commercial MR system quotes 400 FFTs (2562) per second.
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Non-Cartesian MR Image Reconstruction

“k-space” image

kx

ky

=⇒
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Example: Iterative Reconstruction under ∆B0
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Example: Iterative RF Pulse Design
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Textbook MRI Measurement Model

Ignoring lots of things:

yi = s(ti)+noisei, i = 1, . . . ,N

s(t) =
Z

f (~r)e−ı2π~κ(t) ·~r d~r,

where~r denotes spatial position, and
~κ(t) denotes the “k-space trajectory” of the MR pulse sequence,
determined by user-controllable magnetic field gradients.

e−ı2π~κ(t) ·~r provides spatial information =⇒ Nobel Prize

•MRI measurements are (roughly) samples of the Fourier
transform F(~κ) of the object’s transverse magnetization f (~r).

• Basic image reconstruction problem:
recover f (~r) from measurements {yi}

N
i=1.

Inherently under-determined (ill posed) problem
=⇒ no canonical solution.
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Image Reconstruction Strategies

The unknown object f (~r) is a continuous-space function,
but the recorded measurements yyy = (y1, . . . ,yN) are finite.

Options?

• Continuous-discrete formulation using many-to-one linear model:

yyy = A f +εεε.
Minimum norm solution (cf. “natural pixels”):

min
f̂

∥
∥ f̂
∥
∥ subject to yyy = A f̂

f̂ = A
∗(AA

∗)−1yyy = ∑N
i=1ci e−ı2π~κi ·~r , where AA

∗ccc = yyy.

• Discrete-discrete formulation
Assume parametric model for object:

f (~r) =
M

∑
j=1

f j p j(~r) .
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• Continuous-continuous formulation
Pretend that a continuum of measurements are available:

F(~κ) =
Z

f (~r)e−ı2π~κ ·~r d~r,

vs samples yi = F(~κi)+εi, where~κi ,~κ(ti) .
The “solution” is an inverse Fourier transform:

f (~r) =
Z

F(~κ)eı2π~κ ·~r d~κ .

Now discretize the integral solution (two approximations!):

f̂ (~r) =
N

∑
i=1

F(~κi)eı2π~κi ·~r wi ≈
N

∑
i=1

yiwi e
ı2π~κi ·~r ,

where wi values are “sampling density compensation factors.”
Numerous methods for choosing wi value in the literature.
For Cartesian sampling, using wi = 1/N suffices,
and the summation is an inverse FFT.
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Conventional MR Image Reconstruction

1. Interpolate measurements onto rectilinear grid (“gridding”)

2. Apply inverse FFT to estimate samples of f (~r)

0

0

k
x

k y
Gridding from Polar to Cartesian
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Gridding Approach 1: Pull from K nearest

0

0

k
x

k y

Gridding by pulling from 10 nearest
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Gridding Approach 2: Pull from neighborhood

0

0

k
x

k y

Gridding by pulling from within neighborhood
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Gridding Approach 3: Push to neighborhood

0

0

k
x

k y

Gridding by pushing onto neighborhood
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Gridding Approaches

Ignore noise: yi = F(~κi)

Pull:
for each Cartesian grid point, use weighted average
of nonuniform k-space samples within some neighborhood
◦ Does not require density compensation
◦ Requires cumbersome search/indexing to find neighbors

Push:
each nonuniform k-space sample onto a Cartesian neighborhood

F̂(~κ) =
N

∑
i=1

yiwi C(~κ−~κi)

◦ C(~κ) denotes the gridding kernel, typically separable Kaiser-Bessel
Jackson et al., IEEE T-MI, 1991

◦ “∗” denotes convolution.
◦ δ(·) denotes the Dirac impulse
◦ density compensation factors wi essential
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Post-iFFT Gridding Correction

Gridding as convolution in k-space:

F̂(~κ) =
N

∑
i=1

yiwi C(~κ−~κi) = C(~κ)∗
N

∑
i=1

yiwi δ(~κ−~κi) .

Inverse FT reconstruction:

f̂initial(~r) = F
−1
{

F̂(~κ)
}

= c(~r)
N

∑
i=1

yiwi e
−ı2π~κi ·~r .

Post-correction:

f̂final(~r) =
f̂initial(~r)

c(~r)
.
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Gridding Kernels and Post-corrections
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Density Compensation

f (~r) =
Z

F(~κ)eı2π~κ ·~r d~κ≈
N

∑
i=1

yi e
ı2π~κi ·~r wi.

• Voronoi cell area
Bracewell, 1973, Astrophysical Journal; Rasche et al., IEEE T-MI, 1999

• Jacobians Norton, IEEE T-MI, 1987

• Jackson’s area density Jackson, IEEE T-MI, 1991

• Iterative methods Pipe and Menon, MRM, 2000

• ...

Tradeoffs between simplicity and accuracy.
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Voronoi Cell Area
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Limitations of Gridding Reconstruction

1. Artifacts/inaccuracies due to interpolation

2. Contention about sample density “weighting”

3. Oversimplifications of Fourier transform signal model:

•Magnetic field inhomogeneity
•Magnetization decay (T2)
• Eddy currents
• ...

4. Sensitivity encoding ?

5. ...

(But it is faster than iterative methods...)
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Model-Based Image Reconstruction: Overview
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Model-Based Image Reconstruction

MR signal equation with more complete physics:

s(t) =
Z

f (~r)scoil(~r)e−ıω(~r) t e−R∗2(~r) t e−ı2π~κ(t) ·~r d~r

yi = s(ti)+noisei, i = 1, . . . ,N

• scoil(~r) Receive-coil sensitivity pattern(s) (for SENSE)
• ω(~r) Off-resonance frequency map

(due to field inhomogeneity / magnetic susceptibility)
• R∗2(~r) Relaxation map

Other physical factors (?)
• Eddy current effects; in~κ(t)
• Concomitant gradient terms
• Chemical shift
• Motion

Goal?
(it depends)
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Field Inhomogeneity-Corrected Reconstruction

s(t) =
Z

f (~r)scoil(~r)e−ıω(~r) t e−R∗2(~r) t e−ı2π~κ(t) ·~r d~r

Goal: reconstruct f (~r) given field map ω(~r).
(Assume all other terms are known or unimportant.)

Motivation
Essential for functional MRI of brain regions near sinus cavities!

(Sutton et al., ISMRM 2001; T-MI 2003)
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Sensitivity-Encoded (SENSE) Reconstruction

s(t) =
Z

f (~r)scoil(~r)e−ıω(~r) t e−R∗2(~r) t e−ı2π~κ(t) ·~r d~r

Goal: reconstruct f (~r) given sensitivity maps scoil(~r).
(Assume all other terms are known or unimportant.)

Can combine SENSE with field inhomogeneity correction “easily.”

(Sutton et al., ISMRM 2001, Olafsson et al., ISBI 2006)
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Joint Estimation of Image and Field-Map

s(t) =
Z

f (~r)scoil(~r)e−ıω(~r) t e−R∗2(~r) t e−ı2π~κ(t) ·~r d~r

Goal: estimate both the image f (~r) and the field map ω(~r)
(Assume all other terms are known or unimportant.)

Analogy:
joint estimation of emission image and attenuation map in PET.

(Sutton et al., ISMRM Workshop, 2001; ISBI 2002; ISMRM 2002;
ISMRM 2003; MRM 2004)
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The Kitchen Sink

s(t) =
Z

f (~r)scoil(~r)e−ıω(~r) t e−R∗2(~r) t e−ı2π~κ(t) ·~r d~r

Goal: estimate image f (~r), field map ω(~r), and relaxation map R∗2(~r)

Requires “suitable” k-space trajectory.

(Sutton et al., ISMRM 2002; Twieg, MRM, 2003)
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Estimation of Dynamic Maps

s(t) =
Z

f (~r)scoil(~r)e−ıω(~r) t e−R∗2(~r) t e−ı2π~κ(t) ·~r d~r

Goal: estimate dynamic field map ω(~r) and “BOLD effect” R∗2(~r)
given baseline image f (~r) in fMRI.

Motion...
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Model-Based Image Reconstruction: Details
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Back to Basic Signal Model

s(t) =
Z

f (~r)e−ı2π~κ(t) ·~r d~r

Goal: reconstruct f (~r) from yyy = (y1, . . . ,yN), where yi = s(ti)+ εi.

Series expansion of unknown object:

f (~r)≈
M

∑
j=1

f j p(~r−~r j)←− usually 2D rect functions.

yi ≈
Z

[
M

∑
j=1

f j p(~r−~r j)

]

e−ı2π~κi ·~r d~r =
M

∑
j=1

[
Z

p(~r−~r j)e−ı2π~κi ·~r d~r

]

f j

=
M

∑
j=1

ai j f j, ai j = P(~κi)e−ı2π~κi ·~r j , p(~r)
FT
⇐⇒ P(~κ) .

Discrete-discrete measurement model with system matrix AAA= {ai j}:

yyy = AAA fff + εεε.
Goal: estimate coefficients (pixel values) fff = ( f1, . . . , fM) from yyy.
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Small Pixel Size Need Not Matter
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Profiles
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Regularized Least-Squares Estimation

f̂ff = argmin
fff∈CM

Ψ( fff ), Ψ( fff ) = ‖yyy−AAA fff‖2+αR( fff )

• data fit term ‖yyy−AAA fff‖2

corresponds to negative log-likelihood of Gaussian distribution
• regularizing roughness penalty term R( fff ) controls noise

R( fff )≈
Z

‖∇ f‖2d~r

• regularization parameter α > 0
controls tradeoff between spatial resolution and noise
(Fessler & Rogers, IEEE T-IP, 1996)
• Equivalent to Bayesian MAP estimation with prior ∝ e−αR( fff )

Quadratic regularization R( fff ) = ‖CCC fff‖2 leads to closed-form solution:

f̂ff =
[
AAA′AAA+αCCC′CCC

]−1
AAA′yyy

(a formula of limited practical use)
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Choosing the Regularization Parameter

f̂ff =
[
AAA′AAA+αCCC′CCC

]−1
AAA′yyy

E
[

f̂ff
]

=
[
AAA′AAA+αCCC′CCC

]−1
AAA′E[yyy]

E
[

f̂ff
]

=
[
AAA′AAA+αCCC′CCC

]−1
AAA′AAA

︸ ︷︷ ︸

blur

fff

AAA′AAA and CCC′CCC are Toeplitz =⇒ blur is approximately shift-invariant.

Frequency response of blur:

L(ω) =
H(ω)

H(ω)+αR(ω)

where H = FFT(AAA′AAAej) (lowpass) and R= FFT(CCC′CCCej) (highpass)

Adjust α to achieve desired spatial resolution.
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Spatial Resolution Example
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Spatial Resolution Example: Profiles
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Iterative Minimization by Conjugate Gradients

Choose initial guess fff (0) (e.g., fast conjugate phase / gridding).
Iteration (unregularized):

ggg(n) = ∇Ψ
(

fff (n)
)

= AAA′(AAA fff (n)−yyy) gradient
ppp(n) = PPPggg(n) precondition

γn =







0, n = 0
〈ggg(n), ppp(n)〉

〈ggg(n−1), ppp(n−1)〉
, n > 0

ddd(n) =−ppp(n) + γnddd
(n−1) search direction

vvv(n) = AAAddd(n)

αn = 〈ddd(n),−ggg(n)〉/〈AAA fff (n), AAA fff (n)〉 step size
fff (n+1) = fff (n) +αnddd

(n) update

Bottlenecks: computing AAA fff and AAA′yyy.
• AAA is too large to store explicitly (not sparse)
• Even if AAA were stored, directly computing AAA fff is O(NM)

per iteration, whereas FFT is only O(N logN).
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Computing AAA fff Rapidly

[AAA fff ]i =
M

∑
j=1

ai j f j = P(~κi)
M

∑
j=1

e−ı2π~κi ·~r j f j, i = 1, . . . ,N

• Pixel locations {~r j} are uniformly spaced
• k-space locations {~κi} are unequally spaced

=⇒ needs nonuniform fast Fourier transform (NUFFT)
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NUFFT (Type 2)

• Compute over-sampled FFT of equally-spaced signal samples
• Interpolate onto desired unequally-spaced frequency locations
• Dutt & Rokhlin, SIAM JSC, 1993, Gaussian bell interpolator
• Fessler & Sutton, IEEE T-SP, 2003, min-max interpolator

and min-max optimized Kaiser-Bessel interpolator.
NUFFT toolbox: http://www.eecs.umich.edu/∼fessler/code
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?
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Worst-Case NUFFT Interpolation Error
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Further Acceleration using Toeplitz Matrices

Cost-function gradient:

ggg(n) = AAA′(AAA fff (n)−yyy)
= TTT fff (n)−bbb,

where
TTT , AAA′AAA, bbb , AAA′yyy.

In the absence of field inhomogeneity, the Gram matrix TTT is Toeplitz:

[AAA′AAA] jk =
N

∑
i=1

|P(~κi)|
2e−ı2π~κi ·(~r j−~rk) .

Computing TTT fff (n) requires an ordinary (2× over-sampled) FFT.
(Chan & Ng, SIAM Review, 1996)

In 2D: block Toeplitz with Toeplitz blocks (BTTB).

Precomputing the first column of TTT and bbb requires a couple NUFFTs.
(Wajer, ISMRM 2001, Eggers ISMRM 2002, Liu ISMRM 2005)
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NUFFT with Field Inhomogeneity?

Combine NUFFT with min-max temporal interpolator
(Sutton et al., IEEE T-MI, 2003)
(forward version of “time segmentation”, Noll, T-MI, 1991)

Recall signal model including field inhomogeneity:

s(t) =
Z

f (~r)e−ıω(~r) t e−ı2π~κ(t) ·~r d~r .

Temporal interpolation approximation (aka “time segmentation”):

e−ıω(~r) t ≈
L

∑
l=1

al(t)e−ıω(~r)τl

for min-max optimized temporal interpolation functions {al(·)}
L
l=1.

s(t)≈
L

∑
l=1

al(t)
Z [

f (~r)e−ıω(~r)τl

]

e−ı2π~κ(t) ·~r d~r

Linear combination of L NUFFT calls.
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Field Corrected Reconstruction Example

Simulation using known field map ω(~r).
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Simulation Quantitative Comparison

• Computation time?

• NRMSE between f̂ff and fff true?

Reconstruction Method Time (s) NRMSE NRMSE
complex magnitude

No Correction 0.06 1.35 0.22
Full Conjugate Phase 4.07 0.31 0.19
Fast Conjugate Phase 0.33 0.32 0.19
Fast Iterative (10 iters) 2.20 0.04 0.04
Exact Iterative (10 iters) 128.16 0.04 0.04
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Human Data: Field Correction
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Acceleration using Toeplitz Approximations

In the presence of field inhomogeneity, the system matrix is:

ai j = P(~κi)e−ıω(~r j)ti e−ı2π~κi ·~r j

The Gram matrix TTT = AAA′AAA is not Toeplitz:

[AAA′AAA] jk =
N

∑
i=1

|P(~κi)|
2e−ı2π~κi ·(~r j−~rk) e−ı(ω(~r j)−ω(~rk))ti .

Approximation (“time segmentation”):

e−ı(ω(~r j)−ω(~rk))ti ≈
L

∑
l=1

bil e−ı(ω(~r j)−ω(~rk))τl

TTT = AAA′AAA≈
L

∑
l=1

DDD′lTTT lDDDl ,
DDDl , diag

{
e−ıω(~r j)τl

}

[TTT l ] jk , ∑N
i=1 |P(~κi)|

2bil e−ı2π~κi ·(~r j−~rk)
.

Each TTT l is Toeplitz =⇒ TTT fff using L pairs of FFTs.

(Fessler et al., IEEE T-SP, Sep. 2005, brain imaging special issue)
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Toeplitz Results
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Toeplitz Acceleration

Precomputation NRMS % vs SNR
Method L BBB,CCC AAA′DDDyyy bbb = AAA′yyy TTT l 15 iter Total Time ∞ 50 dB 40 dB 30 dB 20 dB
Conj. Phase 6 0.4 0.2 0.6 30.7 37.3 46.5 65.3 99.9
CG-NUFFT 6 0.4 5.0 5.4 5.6 16.7 26.5 43.0 70.4
CG-Toeplitz 8 0.4 0.2 0.6 1.3 2.5 5.5 16.7 26.4 42.9 70.4

• Reduces CPU time by 2× on conventional workstation (Mac G5)
• No SNR compromise
• Eliminates k-space interpolations =⇒ ideal for FFT hardware
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Joint Field-Map / Image Reconstruction

Signal model:

yi = s(ti)+ εi, s(t) =
Z

f (~r)e−ıω(~r) t e−ı2π~κ(t) ·~r d~r .

After discretization:

yyy = AAA(ωωω) fff + εεε, ai j(ωωω) = P(~κi)e−ıω jti e−ı2π~κi ·~r j .

Joint estimation via regularized (nonlinear) least-squares:

( f̂ff , ω̂ωω) = argmin
fff∈CM,ωωω∈RM

‖yyy−AAA(ωωω) fff‖2+β1R1( fff )+β2R2(ωωω).

Alternating minimization:
• Using current estimate of fieldmap ω̂ωω,

update f̂ff using CG algorithm.

• Using current estimate f̂ff of image,
update fieldmap ω̂ωω using gradient descent.

Use spiral-in / spiral-out sequence or “racetrack” EPI.
(Sutton et al., MRM, 2004)
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Joint Estimation Example

(a) uncorr., (b) std. map, (c) joint map, (d) T1 ref, (e) using std, (f) using joint.
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Activation Results: Static vs Dynamic Field Maps
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Functional results for the two reconstructions for 3 human subjects.

Reconstruction using the standard field map
for (a) subject 1, (b) subject 2, and (c) subject 3.

Reconstruction using the jointly estimated field map
for (d) subject 1, (e) subject 2, and (f) subject 3.

Number of pixels with correlation coefficients higher than thresholds
for (g) subject 1, (h) subject 2, and (i) subject 3.

Take home message: dynamic field mapping is possible, using
iterative reconstruction as an essential tool.
(Standard field maps based on echo-time differences work poorly
for spiral-in / spiral-out sequences due to phase discrepancies.)
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Tracking Respiration-Induced Field Changes
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Regularization Variations
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Regularization Revisited

• Conventional regularization for MRI uses a roughness penalty
for the complex voxel values:

R( fff )≈
M

∑
j=1

| f j− f j−1|
2 (in 1D).

• Regularizes the real and imaginary image components equally.
• In some MR studies, including BOLD fMRI:
◦ magnitude of f j carries the information of interest,
◦ phase of f j should be spatially smooth.
◦ This a priori information is ignored by R( fff ).

• Alternatives to R( fff ):
◦ Constrain fff to be real?

(Unrealistic: RF phase inhomogeneity, eddy currents, ...)
◦ Determine phase of fff “somehow,” then estimate its magnitude.
◦ Non-iteratively (Noll, Nishimura, Macovski, IEEE T-MI, 1991)

◦ Iteratively (Lee, Pauly, Nishimura, ISMRM, 2003)

53



Separate Magnitude/Phase Regularization

Decompose fff into its “magnitude” mmm and phase xxx:

f j(mmm,xxx) = mj e
ıx j , mj ∈ R, x j ∈ R, j = 1, . . . ,M.

(Allow “magnitude” mj to be negative.)

Proposed cost function with separate regularization of mmm and xxx:

Ψ(mmm,xxx) = ‖yyy−AAA fff (mmm,xxx)‖2+ γR1(mmm)+βR2(xxx) .

Choose β� γ to strongly smooth phase estimate.

Joint estimation of magnitude and phase via regularized LS:

(m̂mm, x̂xx) = argmin
mmm∈RM, xxx∈RM

Ψ(mmm,xxx)

Ψ is not convex =⇒ need good initial estimates (mmm(0),xxx(0)).
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Alternating Minimization

Magnitude Update:

mmmnew= argmin
mmm∈RM

Ψ
(
mmm,xxxold

)

Phase Update:
xxxnew= argmin

xxx∈RM
Ψ(mmmnew,xxx),

Since f j = mj eıx j is linear in mj, the magnitude update is easy.
Apply a few iterations of slightly modified CG algorithm
(constrain mmm to be real)

But f j = mj eıx j is highly nonlinear in xxx. Complicates “argmin.”

Steepest descent?

xxx(n+1) = xxx(n)−λ∇xxxΨ
(
mmmold,xxx(n)

)
.

Choosing the stepsize λ is difficult.

55



Optimization Transfer
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Surrogate Functions

To minimize a cost function Φ(xxx), choose surrogate functions φ(n)(xxx)
that satisfy the following majorization conditions:

φ(n)
(
xxx(n)
)

= Φ(xxx(n))

φ(n)(xxx) ≥ Φ(xxx), ∀xxx∈ R
M.

Iteratively minimize the surrogates as follows:

xxx(n+1) = argmin
xxx(n)∈RM

φ(n)(xxx) .

This will decrease Φ monotonically; Φ(xxx(n+1))≤Φ(xxx(n)).

The art is in the design of surrogates.
Tradeoffs:
◦ complexity
◦ computation per iteration
◦ convergence rate / number of iterations.
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Surrogate Functions for MR Phase

L(xxx) , ‖yyy−AAA fff (mmm,xxx)‖2 =
N

∑
i=1

hi([AAA fff (mmm,xxx)]i),

where hi(t) , |yi− t|2 is convex.

Extending De Pierro (IEEE T-MI, 1995), for πi j ≥ 0 and ∑M
j=1πi j = 1:

[AAA fff (mmm,xxx)]i =
M

∑
j=1

bi j e
ıx j =

M

∑
j=1

πi j

[
bi j

πi j

(

eıx j−eıx
(n)
j

)

+ ȳ(n)

i

]

,

where bi j , ai jmj, ȳ(n)

i , [AAA fff (mmm,xxx(n))]i. Choose πi j ≥ 0 and ∑M
j=1πi j = 1.

Since hi is convex:

hi([AAA fff (mmm,xxx)]i) = hi

(
M

∑
j=1

πi j

[
bi j

πi j

(

eıx j−eıx
(n)
j

)

+ ȳ(n)

i

])

≤
M

∑
j=1

πi j hi

(
bi j

πi j

(

eıx j−eıx
(n)
j

)

+ ȳ(n)

i

)

,

with equality when xxx = xxx(n).
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Separable Surrogate Function

L(xxx) =
N

∑
i=1

hi([AAA fff (mmm,xxx)]i)≤
N

∑
i=1

M

∑
j=1

πi j hi

(
bi j

πi j

(

eıx j−eıx
(n)
j

)

+ ȳ(n)

i

)

=
M

∑
j=1

N

∑
i=1

πi j hi

(
bi j

πi j

(

eıx j−eıx
(n)
j

)

+ ȳ(n)

i

)

︸ ︷︷ ︸

Q j(x j;xxx(n))

.

Construct similar surrogates {Sj} for (convex) roughness penalty...

Surrogate: φ(n)(xxx) =
M

∑
j=1

Q j(x j;xxx
(n))+βSj(x j;xxx

(n)).

Parallelizable (simultaneous) update, with 1D minimizations:

xxx(n+1) = argmin
xxx(n)∈RM

φ(n)(xxx) =⇒ x(n+1)

j = argmin
x j∈R

Q j(x j;xxx
(n))+βSj(x j;xxx

(n)).

Intrinsically guaranteed to monotonically decrease the cost function.
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1D Minimization: cos + quadratic

... Q j(x j;xxx
(n))≡−

∣
∣
∣r (n)

j

∣
∣
∣cos

(

x j−x(n)

j −∠r (n)

j

)

,

r (n)

j =
(

f (n)

j

)∗

[AAA′(yyy−AAAxxx(n))] j + |mj|
2M

N

∑
i=1

|P(~κi)|
2
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t

Simple 1D optimization transfer iterations...
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Final Algorithm for Phase Update

Diagonally preconditioned gradient descent:

xxx(n+1) = xxx(n)−DDD(xxx(n))∇Φ(xxx(n))

where the diagonal matrix DDD has elements that ensure Φ decreases
monotonically.

Alternate between magnitude and phase updates...
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Preliminary Simulation Example
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Parallel Imaging
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Sensitivity encoded (SENSE) imaging

Use multiple receive coils (requires multiple RF channels).
Exploit spatial localization of sensitivity pattern of each coil.

Note: at 1.5T, RF is about 60MHz.
=⇒ RF wavelength is about 3·108m/s/60·106Hz = 5 meters

RF coil sensitivity patterns
Array coil images

1 64

1

64

Regularized sensitivity maps

1 64

1

64

0

1.4

Pruessmann et al., MRM, 1999
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SENSE Model

Multiple coil data:

yli = sl(ti)+ εli , sl(t) =
Z

f (~r) scoil
l (~r)e−ı2π~κ(t) ·~r d~r, l = 1, . . . ,L = Ncoil

Goal: reconstruct f (~r) from coil data yyy1, . . . ,yyyL

“given” sensitivity maps
{

scoil
l (~r)

}L

l=1 .

Benefit: reduced scan time.

Left: sum of squares; right: SENSE.
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SENSE Reconstruction

Signal model:

sl(t) =
Z

f (~r) scoil
l (~r)e−ı2π~κ(t) ·~r d~r

Discretized form:

yyyl = AAADDDl fff + εεεl , l = 1, . . . ,L,

where AAA is the usual frequency/phase encoding matrix and
DDDl contains the sensitivity pattern of the l th coil: DDDl = diag

{
scoil

l (~r j)
}

.

Regularized least-squares estimation:

f̂ff = argmin
fff

L

∑
l=1

‖yyyl−AAADDDl fff‖2+βR( fff ).

Can generalize to account for noise correlation due to coil coupling.
Easy to apply CG algorithm, including Toeplitz/NUFFT acceleration.

For Cartesian SENSE, iterations are not needed.
(Solve small system of linear equations for each voxel.)
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RF Pulse Design
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Example: Iterative RF Pulse Design
(3D tailored RF pulses for through-plane dephasing compensation)
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Multiple-coil Transmit Imaging Pulses (Mc-TIP)
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Summary

• Iterative reconstruction: much potential in MRI

• Even nonlinear problems involving phase terms eıx are tractable
by using optimization transfer.

• Computation: reduced by tools like NUFFT / Toeplitz

• Optimization algorithm design remains important
(cf. Shepp and Vardi, 1982, PET)

Some current challenges

• Sensitivity pattern mapping for SENSE

• Through-voxel field inhomogeneity gradients

•Motion / dynamics / partial k-space data

• Establishing diagnostic efficacy with clinical data...
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Advertisement

“Image Reconstruction: Algorithms and Analysis”
book in preparation.

Email fessler@umich.edu for notification of web publication.
(Some chapters should be available in Summer 2006.)
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