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Introduction

e Desirable properties of statistical image reconstruction algorithms
o Convergence to a solution
o Fast convergence rate

e Ordered subsets (OS) algorithms
o Synonyms: incremental gradient, block iterative, row action, ...
o Fast initial convergence rates but not convergent

e Convergent OS type algorithms for emission tomography
o Relaxed OS algorithms (Ahn and Fessler, 2003):
inconvenient to determine relaxation parameters
o Incremental EM (COSEM) (Hsiao et al., 2002)

e For transmission tomography?

e Incremental optimization transfer: generalizes incremental EM
o Transmission incremental optimization transfer (TRIOT)



Review: Optimization Transfer Methods

e Optimization transfer: general framework for designing iterative optimiza-

tion algorithms to find = = arg mak D (x)
xrc

o For each iterate x(",
[S-step] choose a surrogate function ¢(-; ")

[M-step] maximize the surrogate: =" = argmag¢(m;a;(”))
xrc

» Desirable properties of surrogate function ¢(-; ")
o minorization conditions

(™ 2M) = o (M) “matched current value”
{ ¢(z;2) < P(x), VeeD “lie below”
Voo (2|, = VP (2)],_.0  “matched gradient”

—> monotonicity = convergence (?)
o easier to maximize (e.g. separabile, ...)
o low curvature —- fast convergence rate
o example: EM surrogates (EM), quadratic surrogates (PS/SPS), ...



1D lllustration
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Review: Ordered Subsets Methods

e Goal: accelerate convergence rates

e What to need
o partially-separable objective function (e.g., independent observed data)

\Y/ \Y]
Om(x; ) = Pm(w)
@ — @ Y — ? .
Jom o= Sem {gisin Sl
o surrogate ¢m(-; ") for each subobjective function @,

e Idea: In M-step, use ¢y instead of ¢ = Emzlq)m for some k

2" = argmax oy (z; ™)
xeD

e In terms of “gradients”. use partial gradient V&, instead of Vo

e Key to success
o To compute V& is cheaper than Vo.
o Subset gradient balance: V&, ~ --- ~ Vdy, that is, V& ~ MV®,



2D lllustration

e Two subset case:
O = Pq+ P, with £ = argmax, ®(x), 1 = argmax, @1(x), €2 = argmax, P,(x)
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o For z\" far from % (early iterations), even partial gradients V&, or Vd,
point approximately at .

o For 2 near z (late iterations), Vd; = —Vd, since V& = 0
= usually gets into a limit cycle = convergence problem!



Incremental Optimization Transfer

e Goal: achieve convergence in OS approach

e Key idea
o In M-step, use all most recent sub-surrogates ¢, (or V&,,).
o Update only one of ¢S (or compute only one of Vd,,’s) at a time.

e Define augmented objective function

M
F(w;fla“' 75|v|) — E (l)m(wiigm)-
=

e Fact: B ) A A
al'g maX<ZB;CU_1,---,ZB_M)EDM+1F (:E, L1, ’ml\/l) = (m’ c o 733)

T = argmaX,<p P(x)
So, maximize F W.r.t (z,z1, -, om) < maximize ® w.rt. x

e Alternate between updating = and one of x's
—> incremental optimization transfer

e Special case: use of EM surrogates — incremental EM



Incremental Optimization Transfer Algorithms

Initialize z©@, 2>, , 2\ € D
forn=0,--- Niter — 1

form=1--- M

" = argmax (a:;:E:(L”H),--. »5<r:+11)>33n?)75($17“'5(|\2))
ZD) arg max = (mnew;5<1n+1)’ . @(r;ljll), = 5&317 y E(erl)) _ o hew
end L
n+
w(n+1) = ),

end

e Monotone in F (not necessarily in @)

e Convergence is ensured under mild conditions.



Statistical Model for Monoenergetic Transmission Scan

Y; ~ Poisson{bie 4" 1} i=1,... N

oY =1[Y1,---,Yn]': measurement data

o A ={a}: system matrix (N x p)

o 2= [x{"¢,--- ,x}"¥": unknown attenuation coefficient
e b=[by,---,bn])": known blank scan counts

o r=1[rg,---,rn]": known background contributions

Goal: estimate =" from observed data Y



Penalized-Likelihood Reconstruction

x=agmax®(x), P(x)=L(x)—R(x)

xeD

e Log-likelihood (data-fit term):

L(z) = ihi([Aw]i), hi(l) =yilog(bie™' +ri) — (bie™ +ri)

e Roughness penalty (regularization term):

[3 P
252 E Wik (X) — X)

J:lkéNj

B: regularization parameter, 1: potential function
wik: weight, N;: neighborhood of pixel ]

R(x)

e Box constraint: D = {x e RP: 0<x; <U, V]} for some bound U

e If ri > 0 and y; > r; for some i, then ® can be nonconcave, complicating
maximization.



Application to Transmission Tomography: TRIOT
Use separable paraboloidal surrogates (SPS) (Erdogan and Fessler, 1999)

- 1+

Ty = |:§ ék(5k>:| % [Cv'k(w_kﬁgk—i— V(I)k<w_k)} , m=1--- M
k=1 k=1

] "] ; = median{0,x;,U }
Cilx) = diag, {8 (=)}

y 2
Crj () = max{. auaiCi([Aw]i)ﬂLMﬁ Y Wiy (Xj —Xd), £}
e kENj

for some small ¢ > 0.

e Choices for curvature ¢;(-)
o Maximum curvature (MC): convergent, slow
o Optimum curvature (OC): convergent, fast, but extra backprojection
o Precomputed curvature (PC): faster, practically convergent

e Note: built-in weighted averaging in TRIOT



Methods

e 2D attenuation map reconstruction
e Real PET data (Siemens/CIT ECAT EXACT 921 PET scanner)
e 128 x 128 image, 160 x 192 sinogram
e Test algorithms:
SPS-MC/PC, OS-SPS, TRIOT-MC/PC
(the second part denotes curvature type)

» Regularization parameter, p = 2'8° chosen by visual inspection

e Edge-preserving nonquadratic penalty

P(t) = 8%|t/d] —log(1+ |t/3])]
where 8 = 4 x 10~*mm~1, chosen by visual inspection

e Initialized with a uniform image



Results (16 subsets)

e 1 iteration of OS-SPS + SPS, TRIOT

16 subsets, initialized with uniform image
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e Initial convergence rates of TRIOT are slow. But ...



Results (16 subsets)

e If TRIOT is applied when OS-SPS reaches a limit cycle, ...
e 6 iterations of OS-SPS + SPS, TRIOT

16 subsets, initialized with uniform image
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e Recall the built-in averaging in TRIOT.



Results (64 subsets)

e 2 iterations of OS-SPS + SPS, TRIOT

64 subsets, initialized with uniform image
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e TRIOT is quite effective.



Results (64 subsets)

e The same as the previous one, but in terms of distance from the optimal
iImage

64 subsets, initialized with uniform image

o ol SPS-MC
210 —— SPS-PC

E TRIOT-MC
© —— TRIOT-PC
= —o- OS-SPS

o

(@]

=

o

3
"-I“33333333333333333
B 10 F ]
©

©

(]

N

©

£

(@]

< 2 iterations of OS-SPS included

0] 5 10 15 20
iteration



Reconstructed Images

FBP PL optimal image
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(64 subsets, 20 iterations) (64 subsets, 20 iterations
one point of the limit cycle incl 2 iterations of OS-SPS)



Summary

e A broad family of convergent incremental optimization transfer algorithms
that do not require relaxation parameters

e A particular algorithm: TRIOT for transmission tomography
o not limited to transmission tomography

e Very effective to switch from OS-SPS to TRIOT when OS-SPS gets to a
limit cycle (a couple of iterations of OS-SPS was enough for 64 subsets).

o Computational cost per iteration for TRIOT-PC/MC
o 1 projection + 1 backprojection + “overhead” mainly due to penalty
o Overhead depends on the number of subsets, system size, ...

e TRIOT-OC and TRIOT-MC are provably convergent. TRIOT-PC is conver-
gent?

e Ahn et al. (2004) submitted to TMI:
http://ww. eecs. um ch. edu/ ~f essl er
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