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The Challenge for Quantitative X-ray CT:
Polyenergetic X-ray Source Spectra
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(Tungsten anode, 0.5 mm Be, Imm Al, 0.5mm Cu, GSO scintillator)



The Opportunity for Dual-Energy CT:
Energy-Dependent Attenuation
Mass attenuation coefficients
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Applications of Dual-Energy CT

e Nondestructive evaluation
o Security purposes like baggage inspection
o Rock characterization for petrochemical industry
o Soil sample analysis in agriculture
o Radioactive waste drums

e Medical diagnosis (quantitative CT)
o Bone mineral density measurements
o Bone marrow composition
o Adipose tissue volume determinations
o Liver iron concentrations
o Detection of contrast agents in spinal canal
o Body composition
o Carotid artery plagues

e SPECT & PET attenuation correction
o Arms down
o lodine contrast
o Dose / noise



Conventional Dual-Energy CT Model
(Alvarez and Macovski, 1976)

Object Model
Component material basis functions for linear attenuation coefficient:

= IZ Bi(E)pi(T)

e L =2 usually. (Compton/photoelectric or bone/water or iodine/tissue)
e 3(E): mass attenuation coefficient of Ith material - known
e p|(T) : spatial distribution of material density - unknown

Measurement Model
Implicit model for log-processed dual-energy sinogram measurements {ymi}:

i 2 —Iog(ymil__rmi) =~ fim(si) (1)
L

fim(si) = —log (l—l_/lmi(E)eXp<— ZBI(E)3I> dE) (2)
mi =1

si(p) = /L _p|(F’)d€ “component line integrals” , (3)

where | indexes rays, and m Indexes energy settings, and s; = (31, .,SL)-
Total source intensity: Iy = [Ini(E)dE



Conventional Dual-Energy CT Approach

e Ignoring noise leads to a (typically 2 x 2) system of nonlinear equations:
fi=fi(s), where f & (fir,..., fm).
(One such equation for each ray in the sinogram.)
e Characterize nonlinear function fi(s;) using polynomial approximations
e Solve nonlinear equations numerically for component line integrals:
§ = fi_l(fi) :

o This sinogram preprocessing is a noise amplifying step!
o Great care with implementation details required.

e Perform FBP reconstruction of Ith component using sinogram {§ :\':dl.



Simulation Example
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Raw Dual-Energy CT Sinograms

{ymi}

{ fim}
» Poisson measurements based on 10° incident photons/ray for 140 kVp case.
e No electronic readout noise simulated.



Estimated Component Line Integrals {3} (g/cm?)
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Correlation of Component Line Integral Errors {si— si}

Component line integral errors
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FBP Reconstruction
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FBP treats all rays equally, ignoring information in nonlinearity and in noise statistics.



Water-Corrected Reconstructions

Water
Correction

FBP provides unfavorable bias-variance tradeoff...



Dual-Energy CT Reconstruction Methods

Data
Reconstruction
. Het Preprocessed Unprocessed
Algorithm
FBP Alvarez & Macovski, 1976
(many others since)
Alaebraic Kotzi et al., 1992 )
J Markham et al., 1993
Statistical Clinthorne & Sukovic
(Monoenergetic) 2000
Statistical
(here) (here)

(Polyenergetic)




Penalized Weighted Least Squares Reconstruction
for Polyenergetic Dual-Energy X-ray CT

e Preprocess by solving 2 x 2 equations in sinogram space: s; = fi_l(fi)

e Using statistical model for measurement variances,
apply error propagation to estimate 2 x 2 covariances for each ray pair:

~ ; A~y -1 :
Cov{3} ~ {(D f)Cov{fi} Df.)} , Cov{ fi} ~~ diag{ Var{ymi}}
e Penalized weighted least-squares (PWLS) estimator and cost function:
N é .
T = argirzuonLIJ(w)

Zd; ) Cov{5i}  (yi — [Az]i) + R(z)

oXj : Jth pixel in Ith component image.
o [Ax]|; : discrete approximation to ith line integral



Regularization

Edge-preserving regularizing roughness penalty function:

=3 Z Z Z Wik P(Xij — Xik)

|=1]=1k=1

Hyperbola potential function:

(X =) = \/1+ (’qi émk)z

e Separable between basis components.

e [3 controls resolution/noise tradeofft.
e O controls degree of edge preservation

e Quadratic data-fit term + convex penalty = simple iterative minimization.
(Globally convergent, relaxed ordered-subsets PWLS algorithm.)



PWLS Simulation Results
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FBP vs PWLS
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FBP vs PWLS Errors

NRMS Error
Method | Soft Tissue | Cortical Bone
FBP 22.7% 29.6%
PWLS 13.6% 16.2%
PL 11.8% 15.8%




Maximum-Likelihood Dual-Energy CT Approach

Parameterized object model:
L p
WrE) =3 S BI(E)bj(7)x,
I=1]=1

e Bi(E) : spectral basis
e b;(T) : spatial basis (e.g., voxels)

Polyenergetic model for sinogram measurements {ymi}:
L
Ymi(z) = /Imi(E)exp<ZB|(E)s| (w)) dE + scattery,
=1
L
si(e) = ) ajX;
=1
aj = / b;(T)d¢ (system matrix / reprojector) .
Lmi

Statistical model:
e independent measurements {Yp;}
e very mild regularity conditions on log-likelihood



Penalized-Likelihood DE CT Image Reconstruction
Choose a statistical model with marginal negative log-likelihood functions {{m;}

Penalized-likelihood estimator:
x =argmin¥(x)

Penalized-likelihood cost function:
M Ng

W(x) = j{ Z;qhn(yh(aﬁ)_FF«aﬁ

m=1i

Example: for Poisson statistical model

Wmi(y) =y — ymilogy.

Example: pairwise hyperbolic (edge preserving) roughness penalty:

L p p o 2
R(z) =) ZkZij\/le(X” Bxlk)
=1]=1k=1

Challenging minimization problem! Requires iterative algorithms.



Optimization Transfer lllustrated
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Separable Surrogate Algorithm
Lengthy derivation with repeated use of optimization transfer...

lteration:

2D [ _ D(wm))w(w(n))]

_|_

e [-]. enforces the nonnegativity constraint.

e One choice of D guarantees monotonic decrease in W(x)
(W (x) is nonconvex so stronger convergence conditions are unlikely)

e An alternative choice of D is precomputable and usually is monotonic

e Ordered subsets variation is trivial:
replace backprojections with partial backprojections



Penalized-Likelihood DE CT Simulation Results
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DE CT Comparison
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NRMS Error

Method | Soft Tissue | Cortical Bone
FBP 22.7% 29.6%
PWLS 13.6% 16.2%
PL 11.8% 15.8%




Correlated Errors
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Summary

Statistical image reconstruction methods for dual-energy X-ray CT
o Penalized weighted least-squares approach (preprocessed sinograms)
o Maximume-likelihood / penalized-likelihood algorithm (raw sinograms)

First statistical approach based on fully polyenergetic source spectrum model.
o Sukovic and Clinthorne (IEEE T-MI, 2000) used monoenergetic model
o Prior polyenergetic dual-energy CT approaches have been non-statistical

ML formulation/algorithm accommodates general statistical model
Monotonic version of ML algorithm (but slow)

Fast ordered-subsets ML algorithm
Relaxation may not ensure convergence due to non-convexity?

Reduced noise in idealized simulations

Future work:
o ldentify suitable noise model / log-likelihood
o Real CT data...
o Explore applicability to attenuation correction for PET-CT systems



