
Learning Image Priors through Patch-based Diffusion
Models for Solving Inverse Problems

Jason Hu Bowen Song Xiaojian Xu Liyue Shen Jeffrey A. Fessler

Department of Electrical and Computer Engineering
University of Michigan
Ann Arbor, MI 48109

{jashu, bowenbw, xjxu, liyues, fessler}@umich.edu

Abstract

Diffusion models can learn strong image priors from underlying data distributions
and use them to solve inverse problems, but the training process is computationally
expensive and requires lots of data. Such bottlenecks prevent most existing works
from being feasible for high-dimensional and high-resolution data such as 3D
images. This paper proposes a method to learn an efficient data prior for the entire
image by training diffusion models only on patches of images. Specifically, we
propose a patch-based position-aware diffusion inverse solver, called PaDIS, where
we obtain the score function of the whole image through scores of patches and their
positional encoding and use this as the prior for solving inverse problems. We show
that this diffusion model achieves improved memory efficiency and data efficiency
while still maintaining the ability to generate entire images via positional encoding.
Additionally, the proposed PaDIS model is highly flexible and can be paired with
different diffusion inverse solvers (DIS). We demonstrate that the proposed PaDIS
approach enables solving various inverse problems in both natural and medical
image domains, including CT reconstruction, deblurring, and superresolution,
given only patch-based priors. Notably, PaDIS outperforms previous DIS methods
trained on entire image priors in the case of limited training data, demonstrating
the data efficiency of our proposed approach by learning patch-based prior. Code:
https://github.com/sundeco/PaDIS

1 Introduction

Diffusion models learn the prior of an underlying data distribution and can use the prior to generate
new images [1–3]. By starting with a clean training images and gradually adding higher levels of
noise, eventually obtaining images that are indistinguishable from pure noise, the score function of
the image distribution, denoted s(x) = ∇ log p(x), can be learned by a neural network. The reverse
process (sampling or generation) then starts with pure noise and uses the learned score function to
iteratively remove noise, ending with a clean image sampled from the underlying distribution p(x).

Inverse problems are ubiquitous in image processing, and aim to reconstruct an image x from a
measurement y, where y = A(x) + ϵ, A represents a forward operator, and ϵ represents random
unknown noise. By Bayes rule, p(x|y) is proportional to p(x) · p(y|x). Hence, to recover x, it is
important to have a good estimate of the prior p(x), particularly when y contains far less information
than x. Diffusion models are known for their ability to learn a strong prior, so there is a growing
literature on using them to solve inverse problems [4–8].

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://github.com/sundeco/PaDIS

Figure 1: Training the proposed Patch Diffusion Inverse Solver (PaDIS) method. Different sized
patches are used in each training iteration. The X and Y position arrays have the same size as the
patch and consist of the normalized X and Y coordinates of each pixel of the patch.

However, diffusion models require large quantities of training data and vast computational power
to be able to generate high resolution images; Song et al. [2] and Ho et al. [3] used several days to
weeks of training on over a million training images in the ImageNet [9] and LSUN [10] datasets to
generate 256× 256 images. This high cost motivates the research on improved training efficiency for
diffusion models, such as fine-tuning an existing checkpoint on a different dataset [11, 12] to reduce
the required training time and data. However, this strategy restricts the range of usable network
architectures and requires the existence of a pretrained network, which limits the range of applications.
Besides the demanding training data and computational cost, diffusion models also struggle in very
large-scale problems, such as very high resolution images or 3D images. To address these challenges,
latent diffusion models [13, 14] have been proposed to learn the image distribution in a smaller
latent space, but it is difficult to solve general inverse problems in the latent space [15]. Patch-based
diffusion models have also been proposed to reduce computational cost. For example, Wang et
al. [16] trained on patches of images, but for image generation, ultimately still relied on computing
the score function of the whole image at once. Ding et al. [17] used patches in the feature space,
requiring an additional encoding and decoding step. For 3D volumes, the most common method
involves breaking up the volume into 2D slices [12], [18]. These methods add regularizers between
slices to enforce consistency during sampling, and thus do not provide a self-contained method for
computing the score function of the whole volume. These application-specific strategies make it
difficult to adapt these methods to general purpose inverse problem solvers using diffusion models
[5], [19], [7], [20].

Our proposed method tackles these challenges in a unified way by training diffusion models on
patches of images, as opposed to whole images (see Fig. 1). We provide the location of the randomly
extracted patch to the network to help it learn global image properties. Since each training image
contains many patches, the required size of the training dataset is greatly reduced, from the millions
usually needed to generate high quality images to only a couple thousand or even several hundred
(see Tab. 5). The required memory and training time is also reduced because it is never necessary
to backpropagate the whole image through the network. Our proposed method allows for a flexible
network architecture and only requires it to accept images of any size, a property true of many
UNets [3], so there is much more flexibility in the architecture design than fine-tuning methods.

At inference time (see Fig. 2), by first zero padding the image, the proposed approach partitions it into
patches in many different ways (see Fig. 3), eliminating the boundary artifacts between patches that
would appear if non-overlapping patches were used. We develop a method to express the distribution
of the whole image in terms of the patch distribution that is learned by the proposed patch-based

2

Figure 2: Overview of reconstruction process for the proposed Patch Diffusion Inverse Solver (PaDIS)
method. Starting at t = T , at each iteration we choose a random partition of the zero padded image
and use the neural network trained on patches to get the score function of the entire image. Due to
the shifting patch locations, the output image has no boundary artifacts.

network. By incorporating positional information of patches, this framework allows us to compute
the score function of the whole image without ever inputting the whole image into the network.
Unlike previous patch-based works that may be task-specific [21–23], the prior defined by our
approach may be treated in a black box manner and then paired with any other stochastic differential
equation (SDE) solver to sample from the prior, or with any general purpose inverse problem solver
to perform image reconstruction. We conduct experiments on multiple datasets and different inverse
problems and demonstrate that the proposed method is able to synthesize the patches to produce
reasonably realistic images and very accurate reconstructions for inverse problems. Furthermore,
PaDIS provides a promising avenue for which generation and inverse problem solving of very large
and high dimensional images may be tackled in the future.

In summary, our main contributions are as follows:

• We provide a theoretical framework whereby a score function of a high-resolution high-
dimensional image is learned purely through the score function of its patches.

• The proposed method greatly reduces the amount of memory and training data needed
compared to traditional diffusion models.

• The trained network has great flexibility and can be used with many existing sampling algo-
rithms and is the first patch-based model that can solve inverse problems in an unsupervised
manner.

• We perform experiments on a variety of inverse problems to show superior image quality
over whole image diffusion model methods while being far less resource heavy.

2 Background and Related Work

Diffusion models. Diffusion models consist of defining a forward stochastic differential equation
(SDE) that adds noise to a clean image [2]: for t ∈ [0, T], x(t) ∈ Rd, we have

dx = −(β(t)/2)x dt+
√
β(t) dw, (1)

where β(t) is the noise variance schedule of the process. The distribution of x(0) is the data
distribution and the distribution of x(T) is (approximately) a standard Gaussian. Then, image
generation is done through the reverse SDE [24]:

dx = (−β(t)/2− β(t)∇xt
log pt(xt)) dt+

√
β(t)dw. (2)

By training a neural network to learn the score function ∇xt
log pt(xt), one can start with noise and

run the reverse SDE to obtain samples from the learned data distribution.

3

To reduce the computational burden, latent diffusion models [13] have been proposed, aiming to
perform the diffusion process in a much smaller latent space, allowing for faster training and sampling.
However, that method requires a pretrained encoder and decoder [25] for a fixed dataset, so it must
be retrained for different datasets, and it still requires large amounts of training data. Patch-based
diffusion models [16, 17] focus on image generation while training only on patches. Supervised
patch-based diffusion methods [23, 26] are task specific and do not learn an unconditional image prior
that can be applied to all inverse problems. Other patch-based methods [27–29] learn an unconditional
image prior but require the whole image as an input during inference time. Finally, work has been
done to perform sampling faster [14, 30, 31], which is unrelated to the training process.

Solving inverse problems. For most real-world inverse problems, the partial measurement y is
corrupted and incomplete, so the mapping from x to y is many-to-one, even in the absence of noise,
making it impossible to exactly recover x. Hence, it is necessary to enforce a prior on x. Traditionally,
methods such as total variation (TV) [32] and wavelet transform [33] have been used to enforce image
sparsity. To capture more global image information, low-rank methods are also popular [34–37].
These methods frequently involve solving an optimization problem that simultaneously enforces data
consistency and the image prior.

In recent years, data-driven methods have risen in popularity in signal and image processing [38–42].
In particular, for solving inverse problems, when large amounts of training data is available, a learned
prior can be much stronger than the handcrafted priors used in traditional methods. For instance, plug
and play and regularized by denoising methods [43–49] involve pretraining a denoiser and applying
it at reconstruction time to iteratively recover the image. These methods have the advantage over
supervised deep learning methods such as [50–53] that the same denoiser may be applied to solve a
wide variety of inverse problems.

Diffusion models serve as an even stronger prior as they can generate entire images from pure noise.
Most methods that use diffusion models to solve inverse problems involve writing the problem as
a conditional generation problem [54–56] or as a posterior sampling problem [4–7, 57]. In the
former case, the network requires the measurement y (or an appropriate resized transformation of
y) during training time. Thus, for these task-specific trained models, at reconstruction time, that
network is useful only for solving that specific inverse problem. In contrast, for the posterior sampling
framework, the network learns an unconditional image prior for x that can help solve any inverse
problem related to x without retraining. Our proposed method may be paired with most existing
posterior sampling algorithms [5–7, 58].

3 Methods

To be able to solve large 2D imaging problems as well as 3D and 4D inverse problems, our goal is to
develop a model for p(x) that does not require inputting the entire image x into any neural network.
We would like to simply partition x into nonoverlapping patches, learn the distribution of each of the
patches, and then piece them together to obtain the distribution of x. However, this would result in
boundary artifacts between the patches. Directly using overlapping patches would result in sections
of the image covered by multiple patches to be updated multiple times, which is inconsistent with the
theory of diffusion models. Ideally, we would like to use nonoverlapping patches to update x, but
with a variety of different patch tiling schemes so that boundaries between patches do not remain the
same through the entire diffusion process.

To accomplish this task, we zero pad x0 and learn the distribution of the resulting zero padded image.
More precisely, consider an N ×N image x0 and let 1 ≤ P < N be an integer denoting the patch
size and let k = ⌊N/P ⌋. Then x0 could be covered with a (k + 1)× (k + 1) nonoverlapping patch
grid but that would result in (k + 1)P −N additional rows and columns for the patches. Hence, we
zero pad x0 on all four sides by M = (k + 1)P −N to form a new image with N + 2M rows and
columns. With slight abuse of notation, we also denote this larger image by x. Let i, j be positive
integers between 1 and M inclusive. Fig. 3 illustrates that we may partition x into (k + 1)2 + 1
regions as follows: (k + 1)2 of the regions consist of evenly chopping up the square consisting of
rows i through i+N + P and columns j through j +N + P into a k + 1 by k + 1 grid, with each
such partition being P × P , and the last region consists of the remaining bordering part of x that
is not included in the first (k + 1)2 regions. This last region will always be entirely zeros, and the
(k + 1)2 square patches fully cover the central N ×N image.

4

Each pair of integers i and j correspond to one possible partition, so when we let i and j range
through all the possible values, our proposal is to model the distribution of x as the following product
distribution:

p(x) =

i,j=M∏
i,j=1

pi,j,B(xi,j,B)

(k+1)2∏
r=1

pi,j,r(xi,j,r)/Z, (3)

where xi,j,B represents the aforementioned bordering region of x that depends on the specific values
of i and j, pi,j,B is the probability distribution of that region, xi,j,r is the rth P ×P patch when using
the partitioning scheme corresponding to the values of i and j, pi,j,r is the probability distribution of
that region, and Z is an appropriate scaling factor. Generative models based on products of patch
probabilities have a long history in the Markov random field literature; see §A.6.

The score function of the entire image follows directly from (3):

∇ log p(x) =
∑i,j=M

i,j=1

(
si,j,B(xi,j,B) +

∑(k+1)2

r=1
si,j,r(xi,j,r)

)
. (4)

Thus, we have expressed the score function of the whole image x as sums of scores of patches
xi,j,r and the border xi,j,B . The former can be learned through score matching as in §3.1. For
the latter, by construction, if x is a zero padded image then xi,j,B is everywhere zero. Thus, for
all x, D(xi,j,B) = E[xi,j,B , t = 0|xi,j,B , t = T] is everywhere zero, where D represents the
denoiser function. Then the computation of its score function is trivial by Tweedie’s formula [59].

Figure 3: Schematic for zero padding and parti-
tioning image into patches

Importantly, unlike previous papers like [16]
and [17], our method can compute the score
function of the entire image through only inputs
of patches to the neural network. This makes it
possible to learn a black box function for score
functions of large images, where directly train-
ing a diffusion model would be infeasible due
to memory and time constraints. Furthermore,
§4 shows that in the case of limited data, the
large number of patches present in each training
image allows the patch-based model to learn a
model for the underlying distribution that per-
forms better than whole image models.

3.1 Patch-wise training

Following the work in [16] and [14], we train
a denoiser using the score matching approach.
Our neural network Dθ(x, σt) accepts the noisy
image x and a noise level σt, and is trained
through the following loss function:

Et∼U(0,T)Ex∼p(x)Eϵ∼N (0,σ2
t I)

∥Dθ(x+ ϵ, σt)− x∥22. (5)

By Tweedie’s formula [59], the score function is given by sθ(x, σt) = (Dθ(x, σt)− x)/σ2
t . Here,

we want to learn the score function of patches xi,j,r, so we apply (5) to patches of x instead of
the entire image. Following [16], we extract patches randomly from the zero-padded image x. To
incorporate the positional information of the patch, we first define the x positional array as the size
N + 2M 2D array consisting of the x positions of each pixel of the image scaled between -1 and 1;
the y positional array is similarly defined. We then extract the corresponding patches of these two
positional arrays and concatenate them along the channel dimension of the noisy image patch as
inputs into the network, nothing that noise is not added to the positional arrays.

When directly applying (5), it would suffice to fix the patch size P and then train using size P patches
exclusively. However, [16] found that by training with patches of varying sizes, training time can be
reduced and the neural network learns cross-region dependencies better. Hence, we train both with
patches of size P and also patches of smaller size, where the size is chosen according to a stochastic
scheduling scheme. By using the UNet architecture in [3], the same network can take images of
different sizes as input. The Appendix provides details of the experiments.

5

3.2 Sampling and reconstruction

The proposed patch-based method for learning p(x) may be paired with any method that would
otherwise be used for sampling with a full image diffusion model, such as Langevin dynamics [1]
and DDPM [3], as well as acceleration methods such as second-order solvers [14] and DDIM [30].
At training time, the network only receives patches of the image as input, along with the positional
information of the patch. Nevertheless, we show that when the number of sampling iterations is
sufficiently large, the proposed method is still capable of generating reasonably realistic appearing
entire images. However, our main goal is solving large-scale inverse problems, not image generation.

Computing s(x) via (4) would require summing over the score functions of all (k + 1)2 patches a
total of M2 times (corresponding to the M2 different ways of selecting i and j). This method would
be prohibitively slow due to the size of M2; instead, for each iteration we randomly choose integers i
and j between 1 and M and estimate s(x) using just that corresponding term of the outer summation.

Algorithm 1 Patch Diffusion Inverse Solver
(PaDIS)

Require: σ1 < σ2 < . . . < σT , ϵ > 0, ζi > 0,
P,M,y
Initialize x ∼ N (0, σ2

T I)
for t = T : 1 do

Sample z ∼ N (0, σ2
t I)

Set αt = ϵ · σ2
t

Randomly select integers i, j ∈ [1,M]
For all 1 ≤ r ≤ (k+1)2, extract patch xi,j,r

Compute Di,j,r = Dθ(xi,j,r, σt)
Set si,j,r = (Di,j,r − xi,j,r)/σ

2
t

Apply (4) to get s = s(x, σt)
Set x to x− ζt∇xt∥y −A(D)∥22
Set x to x+ αt

2 s+
√
αtz

end for

For solving inverse problems with diffusion
models, there are general algorithms e.g., [19]
and [5], as well as more model-specific algo-
rithms, e.g., [6] and [7]. Here, we demonstrate
that our method applies to a broad range of in-
verse problems, and opt to use generalizable
methods that do not rely on any special prop-
erties (such as the singular value decomposi-
tion of the system matrix as in [6], [7]) of the
forward operator. We found that DPS [5] in
conjunction with Langevin dynamics generally
yielded the most stable and high quality results,
so we use this approach as our central algo-
rithm. Similar to [5], we chose the stepsize to
be ζi = ζ/∥y −A(D(x))∥2. To the best of our
knowledge, this is the first work that learns a
fully patch-based diffusion prior and applies it
to solve inverse problems; we call our method
Patch Diffusion Inverse Solver (PaDIS). Com-
puting the score functions of the patches at each
iteration is easily parallelized, allowing for fast
sampling and reconstruction. Alg. 1 shows the pseudocode for the main image reconstruction
algorithm; the appendix shows the pseudocode for the other implemented algorithms.

Finally, we comment on some high-level similarities between our proposed method and [18]; in both
cases, the image in question is partitioned into smaller parts in multiple ways. In [18], one of the
partitions consists of 2D slices in the x-y direction, and the other partition consists of 2D slices in
the x-z direction, whereas for our method, each of the partitions consists of (k + 1)2 square patches
and the outer border region. For both methods, the score functions of each of the parts are learned
independently during training. Then for each sampling iteration, both methods involve choosing one
of the partitions, computing the score functions for each of the parts independently, and then updating
the entire image by updating the parts separately. For our approach, the zero-padding method allows
for many possible partitions of the image and eliminates boundary artifacts between patches.

4 Experiments

Experimental setup. For the main CT experiments, we used the AAPM 2016 CT challenge
data [60] that consists of 10 3D volumes. We cropped the data in the Z-direction to select 256 slices
and then rescaled the images in the XY-plane to have size 256× 256. Finally, we used the XY slices
from 9 of the volumes to define 2304 training images, and used 25 of the slices from the tenth volume
as test data. For the deblurring and superresolution experiments, we used a 3000 image subset of the
CelebA-HQ dataset [61] (with each image being of size 256× 256) for training to demonstrate that
the proposed method works well in cases with limited training data. We preprocessed the data by
dividing all the RGB values by 255 so that all the pixel values were between 0 and 1. The test data
was a randomly selected subset of 25 of the remaining images. In all cases, we report the average

6

metrics across the test images: peak SNR (PSNR) in dB, and structural similarity metric (SSIM) [62].
For the colored images, these metrics were computed in the RGB domain.

For the main patch-based networks, we trained mostly with a patch size of 56× 56 to allow the target
image to be completely covered by 5 patches in each direction while minimizing the amount of zero
padding needed. We used the network architecture in [14] for both the patch-based networks and
whole image networks. All networks were trained on PyTorch using the Adam optimizer with 2 A40
GPUs. The Appendix provides full details of the hyperparameters.

Image generation. Our proposed method is able to learn a reasonable prior for whole images,
despite never being trained on any whole images. Fig. 4 shows generation results for the CT dataset
using three different methods. The top row used the network trained on whole images; the middle
row used the method of [16] except that the entire image is never supplied to the network either at
training or sampling time; the bottom row used the proposed method. The middle row shows that the
positional encoding does ensure reasonably appropriate generated patches at each location. However,
simply generating each of the patches independently and then naively assembling them together leads
to obvious boundary artifacts due to lack of consistency between patches. Our proposed method
solves this problem by using overlapping patches via random patch grid shifts, leading to generated
images with continuity throughout.

Figure 4: Unconditional generation of CT images. Top row: generation with a network trained on
whole image; middle row: patch-only version of [16]; bottom row: proposed PaDIS method.

Inverse problems. We tested the proposed method on a variety of different inverse problems: CT
reconstruction, deblurring, and superresolution. For the forward and backward projectors in CT
reconstruction, we used the implementation provided by [63]. We performed two sparse view CT
(SVCT) experiments: one using 8 projection views, and one using 20 projection views. Both of
these were done using a parallel-beam forward projector where the detector size was 512 pixels. For
the deblurring experiments, we used a uniform blur kernel of size 9× 9 and added white Gaussian
noise with σ = 0.01 where the clean image was scaled between 0 and 1. For the superresolution
experiments, we used a scaling factor of 4 with downsampling by averaging and added white Gaussian
noise with σ = 0.01. DPS has shown to benefit significantly from using a higher number of neural
function evaluations (NFEs) [5], so we use 1000 NFEs for all of the diffusion model experiments.
Appendix A.7 discusses this further.

For the comparison methods, we trained a diffusion model on entire images using the same denoising
score matching method shown in Section 3.1. The inference process was identical to that of the
patch-based method, with the exception that the score function of the image at each iteration was
computed directly using the neural network, as opposed to needing to break up the zero-padded
image into patches. We also compared with two traditional methods: applying a simple baseline and
reconstructing via the total variation regularizer (ADMM-TV). For CT, the baseline was obtained by
applying the filtered back-projection method to the measurement y. For deblurring, the baseline was
simply equal to the blurred image. For superresolution, the baseline was obtained by upsampling the
low resolution image and using nearest neighbor interpolation. The implementation of ADMM-TV
can be found in [64]. We also implemented two plug and play (PnP) methods: PnP-ADMM [42]

7

and regularization by denoising (RED) [46]. We trained denoising CNNs on each of the datasets
following [65] and then used them to solve the inverse problems.

For further comparison of diffusion model methods, we implemented different sampling and data
consistency algorithms and applied them in conjunction with our patch-based prior. In particular, we
compared with Langevin dynamics [1], predictor-corrector sampling [19], and variation exploding
DDNM (VE-DDNM) [7]. For all these sampling methods, we used the variation exploding framework
for consistency and to avoid retraining the network. We also compared with two other ways of
assembling priors of patches to form the prior of an entire image: patch averaging [23] and patch
stitching [66]. App. A.5 contains pseudocode for these comparison algorithms.

Table 1 shows the main inverse problem solving results. The best results were obtained after training
the patch-based models for around 12 hours, while the whole image models needed to be trained for
24-36 hours, demonstrating a significant improvement in training time. Furthermore, when averaging
the metrics across the test dataset, our proposed method outperformed the whole image method in
terms of PSNR and SSIM for all the inverse problems. The score functions of all the patches can
be computed in parallel for each iteration, so the reconstruction times for these methods were very
similar (both around 5 minutes per image). The whole-image results could be more favorable if more
training data were used. See data-size study in App. A.3.

We also ran ablation studies examining the effect of various parameters of the proposed method.
Namely, we studied the usage of different patch sizes during reconstruction, varying dataset sizes,
importance of positional encoding for patches, and different sampling and inverse problem solving
algorithms. The results of these studies are in App. A.2.

Table 1: Comparison of quantitative results on three different inverse problems. Results are averages
across all images in the test dataset. Best results are in bold.

Method CT, 20 Views CT, 8 Views Deblurring Superresolution
PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑

Baseline 24.93 0.595 21.39 0.415 24.54 0.688 25.86 0.739
ADMM-TV 26.82 0.724 23.09 0.555 28.22 0.792 25.66 0.745
PnP-ADMM [42] 26.86 0.607 22.39 0.489 28.82 0.818 26.61 0.785
PnP-RED [46] 27.99 0.622 23.08 0.441 29.91 0.867 26.36 0.766
Whole image diffusion 32.84 0.835 25.74 0.706 30.19 0.853 29.17 0.827
Langevin dynamics [1] 33.03 0.846 27.03 0.689 30.60 0.867 26.83 0.744
Predictor-corrector [19] 32.35 0.820 23.65 0.546 28.42 0.724 26.97 0.685
VE-DDNM [7] 31.98 0.861 27.71 0.759 - - 26.01 0.727
Patch Averaging [23] 33.35 0.850 28.43 0.765 29.41 0.847 27.67 0.802
Patch Stitching [66] 32.87 0.837 26.71 0.710 29.69 0.849 27.50 0.780
PaDIS (Ours) 33.57 0.854 29.48 0.767 30.80 0.870 29.47 0.846

In addition to the main inverse problems shown in Table 1, we also ran experiments on three additional
inverse problems to demonstrate the effectiveness of our method on a wide variety of inverse problems:
60 view CT reconstruction, fan beam reconstruction using 180 views, and deblurring with a uniform
kernel of size 17 × 17. For the deblurring experiment, we again added Gaussian noise with level
σ = 0.01 to the measurement. Table 2 shows the quantitative results of these experiments and
Figure A.10 shows the visual results.

Table 2: Extra inverse problem experiments. Results are averages across all images in the test dataset.
Best results are in bold.

Method CT, 60 Views CT, Fan Beam Heavy Deblurring
PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑

Baseline 25.89 0.746 20.07 0.521 21.14 0.569
ADMM-TV 30.93 0.833 25.78 0.719 26.03 0.724
Whole image diffusion 35.83 0.894 26.89 0.835 28.35 0.808
PaDIS (Ours) 39.28 0.941 29.91 0.932 28.91 0.818

In the bottom of Figure 5, some artifacts are present in the reconstructions obtained by the diffusion
model methods, although they are more apparent in the whole image model than with PaDIS. The
measurements are very compressed in this case, so it is very difficult for any model to obtain
diagnostic-quality reconstructions; the baselines perform significantly worse in terms of quantitative

8

1200

800
1

0

Ground truthADMM-TV Whole image PaDISFBP

Figure 5: Results of CT reconstruction. 60 views are used for the top two rows, 20 views are used
for the bottom two rows. To better show contrast between organs, we use modified Hounsfield units
(HU) in the top figure, while we use the same scale the images were trained on in the bottom figure.

metrics and exhibit severe blurring. In clinical settings, patient diagnosis are typically performed
with CT scans consisting of hundreds of views. The top of Figure 5 shows that when 60 views are
used, our proposed method yields a much better reconstruction without artifacts. Nevertheless, we
show the potential of our proposed methods to reconstruct images from very sparse views with a
decent image quality, which could be potentially used for applications such as patient positioning.

Measurement ADMM-TV Whole image PaDIS Ground truth

Figure 6: Results of deblurring with Gaussian noise (σ = 0.01).

9

Measurement ADMM-TV Whole image PaDIS Ground truth

Figure 7: Results of superresolution with Gaussian noise (σ = 0.01).

Finally, since the original AAPM dataset contained CT images of resolution 512× 512, we ran 60
view CT reconstruction experiments with these higher resolution images. Due to the lack of data,
we did not train a whole-image model on these higher resolution images. We used a zero padding
width of 64 and largest patch size of 64× 64 for training. Figure 8 shows the visual results of these
experiments. Hence, our proposed methods can obtain high quality reconstructions for both different
inverse problems and also for different image sizes.

Table 3: Results of 60 view CT reconstruction with 512× 512 images. Results are averages across
all images in the test dataset. Best results are in bold.

Method FBP ADMM-TV PaDIS
PSNR ↑ 28.38 29.48 36.93
SSIM ↑ 0.699 0.788 0.899

1400

800

FBP ADMM-TV PaDIS Ground truth

Figure 8: Results of 60 view CT reconstruction on 512× 512 images using modified HU units.

5 Conclusion

In this work, we presented a method of using score-based diffusion models to learn image priors
through solely the patches of the image, combined with suitable position encoding. Simulation
results demonstrated how the method can be used to solve a variety of inverse problems. Extensive
experiments showed that under conditions of limited training data, the proposed method outperforms
methods involving whole image diffusion models. In the future, more work could be done on
higher quality image generation using a multi-scaled resolution approach [67, 68], using acceleration
methods for faster reconstruction, and higher dimensional image reconstruction. Image priors like
those proposed in this paper have the potential to benefit society by reducing X-ray dose in CT scans.
Generative models have the risk of inducing hallucinations and being used for disinformation.

Acknowledgments and Disclosure of Funding

Work supported in part by a grant from the Michigan Institute for Computational Discovery and
Engineering (MICDE) and a gift from KLA.

10

References
[1] Y. Song and S. Ermon. “Generative Modeling by Estimating Gradients of the Data Distribution”. In:

Advances in Neural Information Processing Systems. Vol. 32. 2019.
[2] Y. Song, J. Sohl-Dickstein, D. P. Kingma, A. Kumar, S. Ermon, and B. Poole. “Score-Based Generative

Modeling through Stochastic Differential Equations”. In: 9th International Conference on Learning
Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021. 2021.

[3] J. Ho, A. Jain, and P. Abbeel. “Denoising Diffusion Probabilistic Models”. In: 33 (2020). Ed. by H.
Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and H. Lin, pp. 6840–6851.

[4] H. Chung, B. Sim, D. Ryu, and J. C. Ye. Improving Diffusion Models for Inverse Problems using Manifold
Constraints. 2022.

[5] H. Chung, J. Kim, M. T. Mccann, M. L. Klasky, and J. C. Ye. “Diffusion Posterior Sampling for General
Noisy Inverse Problems”. In: The Eleventh International Conference on Learning Representations. 2023.

[6] B. Kawar, M. Elad, S. Ermon, and J. Song. Denoising Diffusion Restoration Models. 2022.
[7] Y. Wang, J. Yu, and J. Zhang. Zero-Shot Image Restoration Using Denoising Diffusion Null-Space Model.

2022.
[8] B. Kawar, G. Vaksman, and M. Elad. SNIPS: Solving Noisy Inverse Problems Stochastically. 2021.
[9] O. Russakovsky et al. ImageNet Large Scale Visual Recognition Challenge. 2015.

[10] F. Yu, A. Seff, Y. Zhang, S. Song, T. Funkhouser, and J. Xiao. LSUN: Construction of a Large-scale
Image Dataset using Deep Learning with Humans in the Loop. 2016.

[11] T. Moon, M. Choi, G. Lee, J.-W. Ha, and J. Lee. “Fine-tuning Diffusion Models with Limited Data”. In:
NeurIPS 2022 Workshop on Score-Based Methods. 2022.

[12] H. Chung, D. Ryu, M. T. McCann, M. L. Klasky, and J. C. Ye. Solving 3D Inverse Problems using
Pre-trained 2D Diffusion Models. 2022.

[13] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer. High-Resolution Image Synthesis with
Latent Diffusion Models. 2022.

[14] T. Karras, M. Aittala, T. Aila, and S. Laine. Elucidating the Design Space of Diffusion-Based Generative
Models. 2022.

[15] B. Song, S. M. Kwon, Z. Zhang, X. Hu, Q. Qu, and L. Shen. Solving Inverse Problems with Latent
Diffusion Models via Hard Data Consistency. 2023.

[16] Z. Wang, Y. Jiang, H. Zheng, P. Wang, P. He, Z. Wang, W. Chen, and M. Zhou. Patch Diffusion: Faster
and More Data-Efficient Training of Diffusion Models. 2023.

[17] Z. Ding, M. Zhang, J. Wu, and Z. Tu. Patched Denoising Diffusion Models For High-Resolution Image
Synthesis. 2023.

[18] S. Lee, H. Chung, M. Park, J. Park, W.-S. Ryu, and J. C. Ye. Improving 3D Imaging with Pre-Trained
Perpendicular 2D Diffusion Models. 2023.

[19] H. Chung and J. C. Ye. “Score-based diffusion models for accelerated MRI”. In: Medical Image Analysis
80 (2022), p. 102479. DOI: https://doi.org/10.1016/j.media.2022.102479.

[20] Y. Song, L. Shen, L. Xing, and S. Ermon. “Solving Inverse Problems in Medical Imaging with Score-Based
Generative Models”. In: International Conference on Learning Representations. 2022.

[21] W. Xia, W. Cong, and G. Wang. Patch-Based Denoising Diffusion Probabilistic Model for Sparse-View
CT Reconstruction. 2022.

[22] W. Xia, H. W. Tseng, C. Niu, W. Cong, X. Zhang, S. Liu, R. Ning, S. Vedantham, and G. Wang. Parallel
Diffusion Model-based Sparse-view Cone-beam Breast CT. 2024.

[23] O. Ozdenizci and R. Legenstein. “Restoring Vision in Adverse Weather Conditions With Patch-Based
Denoising Diffusion Models”. In: IEEE Transactions on Pattern Analysis & Machine Intelligence 45.08
(Aug. 2023), pp. 10346–10357. DOI: 10.1109/TPAMI.2023.3238179.

[24] B. D. Anderson. “Reverse-time diffusion equation models”. In: Stochastic Processes and their Applica-
tions 12.3 (1982), pp. 313–326. DOI: https://doi.org/10.1016/0304-4149(82)90051-5.

[25] P. Esser, R. Rombach, and B. Ommer. Taming Transformers for High-Resolution Image Synthesis. 2021.
[26] W. Xia, C. Niu, W. Cong, and G. Wang. Sub-volume-based denoising diffusion probabilistic model for

cone-beam CT reconstruction from incomplete data. 2023.
[27] F. Bieder, J. Wolleb, A. Durrer, R. Sandkuehler, and P. C. Cattin. “Denoising diffusion models for

memory-efficient processing of 3D medical images”. In: Proc. Mach. Learning Res. 227 (2024), 552–67.
[28] T. Luhman and E. Luhman. Improving diffusion model efficiency through patching. 2022.
[29] W. Peebles and S. Xie. “Scalable Diffusion Models with Transformers”. In: arXiv.org (2023). DOI:

10.48550/arxiv.2212.09748.
[30] J. Song, C. Meng, and S. Ermon. Denoising Diffusion Implicit Models. 2022.
[31] C. Lu, Y. Zhou, F. Bao, J. Chen, C. Li, and J. Zhu. DPM-Solver: A Fast ODE Solver for Diffusion

Probabilistic Model Sampling in Around 10 Steps. 2022.

11

https://doi.org/https://doi.org/10.1016/j.media.2022.102479
https://doi.org/10.1109/TPAMI.2023.3238179
https://doi.org/https://doi.org/10.1016/0304-4149(82)90051-5
https://doi.org/10.48550/arxiv.2212.09748

[32] P. J. Huber. Robust statistics. New York: Wiley, 1981.
[33] I. Daubechies, M. Defrise, and C. De Mol. “An iterative thresholding algorithm for linear inverse

problems with a sparsity constraint”. In: Comm. Pure Appl. Math. 57.11 (Nov. 2004), 1413–57. DOI:
10.1002/cpa.20042.

[34] W. Ren, X. Cao, J. Pan, X. Guo, W. Zuo, and M.-H. Yang. “Image Deblurring via Enhanced Low-Rank
Prior”. In: IEEE Transactions on Image Processing 25.7 (2016), pp. 3426–3437. DOI: 10.1109/TIP.
2016.2571062.

[35] S. Li et al. “An Efficient Iterative Cerebral Perfusion CT Reconstruction via Low-Rank Tensor Decompo-
sition With Spatial–Temporal Total Variation Regularization”. In: IEEE Transactions on Medical Imaging
38.2 (2019), pp. 360–370. DOI: 10.1109/TMI.2018.2865198.

[36] A. Spantini, A. Solonen, T. Cui, J. Martin, L. Tenorio, and Y. Marzouk. Optimal low-rank approximations
of Bayesian linear inverse problems. 2015.

[37] J. Assländer, M. A. Cloos, F. Knoll, D. K. Sodickson, J. Hennig, and R. Lattanzi. “Low rank alternating
direction method of multipliers reconstruction for MR fingerprinting”. In: Magnetic Resonance in
Medicine 79.1 (Mar. 2017), pp. 83–96. DOI: 10.1002/mrm.26639.

[38] J. Liu, Y. Sun, X. Xu, and U. S. Kamilov. Image Restoration using Total Variation Regularized Deep
Image Prior. 2018.

[39] Z. Li, X. Xu, J. Hu, J. Fessler, and Y. Dewaraja. “Reducing SPECT acquisition time by predicting missing
projections with single-scan self-supervised coordinate-based learning”. In: Journal of Nuclear Medicine
64.supplement 1 (2023), P1014–P1014.

[40] J. Hu, B. T.-W. Lin, J. H. Vega, and N. R.-L. Tsiang. “Predictive Models of Driver Deceleration and
Acceleration Responses to Lead Vehicle Cutting In and Out”. In: Transportation Research Record 2677.5
(2023), pp. 92–102. DOI: 10.1177/03611981221128277.

[41] X. Xu, W. Gan, S. V. V. N. Kothapalli, D. A. Yablonskiy, and U. S. Kamilov. CoRRECT: A Deep
Unfolding Framework for Motion-Corrected Quantitative R2* Mapping. 2022.

[42] X. Xu, J. Liu, Y. Sun, B. Wohlberg, and U. S. Kamilov. “Boosting the Performance of Plug-and-Play Priors
via Denoiser Scaling”. In: 54th Asilomar Conf. on Signals, Systems, and Computers. 2020, pp. 1305–1312.
DOI: 10.1109/IEEECONF51394.2020.9443410.

[43] Y. Sun, Z. Wu, X. Xu, B. E. Wohlberg, and U. Kamilov. “Scalable Plug-and-Play ADMM with Conver-
gence Guarantees”. In: IEEE Transactions on Computational Imaging 7 (July 2021). DOI: 10.1109/
TCI.2021.3094062.

[44] X. Xu, Y. Sun, J. Liu, B. Wohlberg, and U. S. Kamilov. “Provable Convergence of Plug-and-Play
Priors With MMSE Denoisers”. In: IEEE Signal Processing Letters 27 (2020), pp. 1280–1284. DOI:
10.1109/lsp.2020.3006390.

[45] J. Liu, X. Xu, W. Gan, S. Shoushtari, and U. Kamilov. “Online Deep Equilibrium Learning for Reg-
ularization by Denoising”. In: Advances in Neural Information Processing Systems. Ed. by A. H. Oh,
A. Agarwal, D. Belgrave, and K. Cho. 2022.

[46] Y. Hu, J. Liu, X. Xu, and U. S. Kamilov. Monotonically Convergent Regularization by Denoising. 2022.
[47] J. Liu, Y. Sun, W. Gan, X. Xu, B. Wohlberg, and U. S. Kamilov. “Stochastic Deep Unfolding for

Imaging Inverse Problems”. In: ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP). 2021, pp. 1395–1399. DOI: 10.1109/ICASSP39728.2021.
9414332.

[48] P. Cascarano, A. Benfenati, U. S. Kamilov, and X. Xu. Constrained Regularization by Denoising with
Automatic Parameter Selection. 2024.

[49] A. H. Al-Shabili, X. Xu, I. Selesnick, and U. S. Kamilov. Bregman Plug-and-Play Priors. 2022.
[50] K. H. Jin, M. T. McCann, E. Froustey, and M. Unser. “Deep convolutional neural network for inverse

problems in imaging”. In: IEEE Transactions on Image Processing 26.9 (2017), pp. 4509–4522.
[51] A. Lahiri, G. Maliakal, M. L. Klasky, J. A. Fessler, and S. Ravishankar. “Sparse-view cone beam CT

reconstruction using data-consistent supervised and adversarial learning from scarce training data”. In:
IEEE Transactions on Computational Imaging 9 (2023), pp. 13–28.

[52] M. Sonogashira, M. Shonai, and M. Iiyama. “High-Resolution Bathymetry by Deep-Learning-Based
Image Superresolution”. In: PloS One 15.7 (2020), e0235487–e0235487. DOI: 10.1371/journal.
pone.0235487.

[53] E. Whang, D. McAllister, A. Reddy, A. Kohli, and L. Waller. “SeidelNet: An Aberration-Informed Deep
Learning Model for Spatially Varying Deblurring”. In: SPIE. Vol. 12438. 2023, 124380Y–124380Y–6.
DOI: 10.1117/12.2650416.

[54] M. Delbracio and P. Milanfar. Inversion by Direct Iteration: An Alternative to Denoising Diffusion for
Image Restoration. 2024.

[55] G.-H. Liu, A. Vahdat, D.-A. Huang, E. A. Theodorou, W. Nie, and A. Anandkumar. I2SB: Image-to-Image
Schrödinger Bridge. 2023.

12

https://doi.org/10.1002/cpa.20042
https://doi.org/10.1109/TIP.2016.2571062
https://doi.org/10.1109/TIP.2016.2571062
https://doi.org/10.1109/TMI.2018.2865198
https://doi.org/10.1002/mrm.26639
https://doi.org/10.1177/03611981221128277
https://doi.org/10.1109/IEEECONF51394.2020.9443410
https://doi.org/10.1109/TCI.2021.3094062
https://doi.org/10.1109/TCI.2021.3094062
https://doi.org/10.1109/lsp.2020.3006390
https://doi.org/10.1109/ICASSP39728.2021.9414332
https://doi.org/10.1109/ICASSP39728.2021.9414332
https://doi.org/10.1371/journal.pone.0235487
https://doi.org/10.1371/journal.pone.0235487
https://doi.org/10.1117/12.2650416

[56] H. Chung, J. Kim, and J. C. Ye. Direct Diffusion Bridge using Data Consistency for Inverse Problems.
2023.

[57] G. Cardoso, Y. J. E. Idrissi, S. L. Corff, and E. Moulines. Monte Carlo guided Diffusion for Bayesian
linear inverse problems. 2023.

[58] H. Chung, B. Sim, D. Ryu, and J. C. Ye. “Improving Diffusion Models for Inverse Problems using
Manifold Constraints”. In: Advances in Neural Information Processing Systems. Vol. 35. 2022, pp. 25683–
25696.

[59] B. Efron. “Tweedie’s formula and selection bias”. In: Journal of the American Statistical Association
106.496 (2011), pp. 1602–1614.

[60] C. H. McCollough et al. “Results of the 2016 Low Dose CT Grand Challenge”. English (US). In: Medical
physics 44.10 (Oct. 2017), e339–e352. DOI: 10.1002/mp.12345.

[61] Z. Liu, P. Luo, X. Wang, and X. Tang. “Deep Learning Face Attributes in the Wild”. In: Proceedings of
International Conference on Computer Vision (ICCV). Dec. 2015.

[62] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli. “Image quality assessment: From error visibility
to structural similarity”. In: IEEE Transactions on Image Processing 13.4 (Apr. 2004), pp. 600–612.

[63] O. D. Team. ODL: Operator Discretization Library. https://odlgroup.github.io/odl/
guide/geometry_guide.html. Accessed: April 2024. 2022.

[64] T. Hong, L. Hernandez-Garcia, and J. A. Fessler. “A Complex Quasi-Newton Proximal Method for Image
Reconstruction in Compressed Sensing MRI”. In: IEEE Transactions on Computational Imaging 10
(2024), pp. 372–384. DOI: 10.1109/tci.2024.3369404.

[65] O. Ronneberger, P. Fischer, and T. Brox. “U-Net: Convolutional Networks for Biomedical Image Seg-
mentation”. In: ArXiv abs/1505.04597 (2015).

[66] J. L. Rumberger, X. Yu, P. Hirsch, M. Dohmen, V. E. Guarino, A. Mokarian, L. Mais, J. Funke, and
D. Kainmueller. How Shift Equivariance Impacts Metric Learning for Instance Segmentation. 2021.

[67] J. Gu, S. Zhai, Y. Zhang, J. M. Susskind, and N. Jaitly. “Matryoshka diffusion models”. In: Proc. Intl.
Conf. on Learning Representations. 2024.

[68] Y. He, S. Yang, H. Chen, X. Cun, M. Xia, Y. Zhang, X. Wang, R. He, Q. Chen, and Y. Shan. “ScaleCrafter:
tuning-free higher-resolution visual generation with diffusion models”. In: Proc. Intl. Conf. on Learning
Representations. 2024.

[69] H. Chung, B. Sim, and J. C. Ye. Come-Closer-Diffuse-Faster: Accelerating Conditional Diffusion Models
for Inverse Problems through Stochastic Contraction. 2022.

[70] J. Besag. “Spatial Interaction and the Statistical Analysis of Lattice Systems”. In: Journal of the Royal
Statistical Society 36.2 (1974), pp. 192–236.

13

https://doi.org/10.1002/mp.12345
https://odlgroup.github.io/odl/guide/geometry_guide.html
https://odlgroup.github.io/odl/guide/geometry_guide.html
https://doi.org/10.1109/tci.2024.3369404

A Appendix / supplemental material

This is the appendix for the paper “Learning Image Priors through Patch-based Diffusion Models for
Solving Inverse Problems,” presented at NeurIPS 2024.

A.1 Additional inverse problem solving experiments

Figures A.1, A.2, A.3, and A.4 show additional inverse problem solving results.

Fig. A.1 shows additional example slices for CT reconstruction from 20 views.

Fig. A.2 shows additional example slices for CT reconstruction from 8 views.

Fig. A.3 shows additional examples of image deblurring of face images.

Fig. A.4 shows additional examples of superresolution of face images.

14

1

0

Ground truthADMM-TV Whole image PaDISFBP

Figure A.1: Additional results of 20 view CT reconstruction for 7 different test slices.

15

1

0

Ground truthADMM-TV Whole image PaDISFBP

Figure A.2: Additional results of 8 view CT reconstruction for 7 different test slices.

16

Measurement ADMM-TV Whole image PaDIS Ground truth

Figure A.3: Additional results of deblurring with Gaussian noise (σ = 0.01).

17

Measurement ADMM-TV Whole image PaDIS Ground truth

Figure A.4: Additional results of superresolution with Gaussian noise (σ = 0.01).

18

A.2 Ablation studies

We performed four ablation studies to evaluate the impact of different parameters on the performance
of our proposed method. Similar to Table 1, we ran the experiments on all the images in the test
dataset and computed the average metric. Section A.3 shows visualizations of these studies.

Effect of patch size. We investigated the effect of the patch size P used at reconstruction time for
the 20-view CT reconstruction problem. We continued to augment the training with smaller patch
sizes when possible so as to be consistent with the main experiments (patch size of 56 but also trained
with patch sizes of 32 and 16), while using the same neural network architecture. Different amounts
of zero padding were needed for each of the experiments per (3). App. A.4 provides the full details.
At reconstruction time, the same patch size was used throughout the entire algorithm. Using a “patch
size” of 256 corresponds to training a diffusion model on the whole image (without zero padding).

Table 4 shows that careful selection of the patch size is required to obtain the best results for a given
training set size. If the patch size is too small, the network has trouble capturing global information
across the image. Although the positional information helps in this regard, there may be some
inconsistencies between patches, so the learned image prior is suboptimal although the patch priors
may be learned well. At the other extreme, very large patch sizes and the whole image diffusion
model require more memory to train and run. The image quality drops in this case as limited training
data prevents the network from learning the patch prior well.

Table 4: Effect of patch size P on
CT reconstruction

P PSNR↑ SSIM ↑
8 32.57 0.844

16 32.57 0.829
32 32.72 0.853
56 33.57 0.854
96 33.36 0.854

256 32.84 0.835

Table 5: Dataset size effect on CT reconstruction

Dataset Patches Whole image
size PSNR↑ SSIM ↑ PSNR↑ SSIM ↑
144 32.28 0.841 29.12 0.804
288 32.43 0.837 31.09 0.829
576 33.03 0.846 31.81 0.835
1152 33.01 0.849 31.36 0.834
2304 33.57 0.854 32.84 0.835

Effect of training dataset size. A key motivation of this work is large-scale inverse problems
having limited training data. To investigate the effects of using small datasets on our proposed method,
compared to standard whole image models, we trained networks on random subsets of the CT dataset.
Table 5 summarizes the results. Crucially, although the reconstruction quality tends to drop as the
dataset size decreased for both the patch-based model and the whole image model, the drop is much
more sharp and noticeable for the whole image model, particularly when the dataset is very small.
This behavior is consistent with the observations of previous works where large datasets consisting of
many thousands of images were used to train traditional diffusion models from scratch.

Effect of positional encoding. High quality image generation via patch-based models that lack
positional encoding information would be impossible, as no global information about the image
could be learned at all. We demonstrate that positional information is also crucial for solving inverse
problems with patch-based models. We examined the results of performing CT reconstruction for
trained networks without positional encoding as an input compared to networks with positional
encoding. According to [69], when solving inverse problems in some settings, it can be beneficial to
initialize the image with some baseline image instead of with pure noise (as is traditionally done). To
allow the network that did not learn positional information to possibly use a better initialization with
patches roughly in the correct positions, we also ran experiments by initializing with the baseline.
Table 6 shows that in both cases, the network completely failed to learn the patch-based prior and the
reconstructed results were very low quality. Hence, positional information is crucial to learning the
whole image prior well.

Sampling methods. One benefit of our proposed method is it provides a black box image prior
for the entire image that can be computed purely through neural network operations on image

19

patches. We demonstrate the versatility of this method by pairing a variety of different sampling
and inverse problem solving algorithms with our patch-based image prior, along with comparisons
with a whole-image prior. The implemented sampling methods include Langevin dynamics [1]
with a gradient descent term for enforcing data fidelity step and the predictor-corrector method for
solving SDEs [19]. Since we observed better stability and results with Langevin dynamics, we
also combined this sampling method with nullspace methods that rely on hard constraints [7] and
DPS [5]. To use the same neural network checkpoint across these implementations, we used the
variance exploding SDE [2] method as the backbone for both training and reconstruction. DPS [5] and
DDNM [7] were originally implemented with networks trained under the VP-SDE framework; here,
we implemented those methods with the VE-SDE framework. Table 7 shows that generally, VE-DPS
performed the best and that the patch-based method consistently outperformed the whole image
method. However, the patch-based method still obtained reasonable results for all the implemented
methods, showing that the learned image prior is indeed flexible enough to be paired with a variety of
sampling algorithms. App. A.4 provides more details about the implemented algorithms.

Table 6: Positional encoding effect
for CT reconstruction

PSNR↑ SSIM ↑
no position enc. 23.25 0.459
no position+init 24.51 0.518

with position 33.57 0.854

Table 7: Dataset size effect on CT reconstruction

Method Patch-based Whole image

Metric PSNR↑ SSIM ↑ PSNR↑ SSIM ↑
Langevin dynamics 33.03 0.846 30.92 0.813
Predictor-corrector 32.35 0.820 18.95 0.149

VE-DDNM 31.98 0.861 29.49 0.830
VE-DPS 33.57 0.854 32.84 0.835

20

A.3 Ablation study images

Figure A.5 shows the results of applying PaDIS to two example test images with different patch
sizes. The main results, i.e., those shown in Table 1, used P = 56. For some of the other patch sizes,
some artifacts can be seen in the images. Namely, the smooth parts of the image become riddled
with "fake" features for small patch sizes and some of the sharp features become more blurred. The
fake features in the right half of the image in the top row are especially apparent when applying the
whole-image model. The runtime for different patch sizes were fairly similar, with P = 8 taking
notably longer than the others due to the large number of patches required. The image size for these
experiments was small enough so that the score function of all the patches could be computed in
parallel; however, for larger scale problems such as high resolution 2D images or 3D images, large
patch sizes become infeasible due to memory constraints.

Figure A.5: Results of PaDIS for 20 view CT reconstruction with different sized patches.

Figure A.6 shows the results of applying our proposed method and the whole image diffusion
model to 20-view CT reconstruction for varying sizes of the training dataset. The image quality for
PaDIS remains visually consistent as the size of the training dataset shrinks, as each image contains
thousands of patches which helps avoid overfitting and memorization. However, the drop in quality
for the whole image model is much more visible: in particular, the sharp features of the image are
lost and the image becomes blurry. Hence, for applications where data is even more limited, such as
medical imaging, our method can potentially have a greater benefit.

Figure A.6: Results for 20 view CT reconstruction with different dataset sizes. Top row shows recon
performed by PaDIS; bottom row shows recon performed with the whole-image model.

21

Figure A.7 demonstrates the importance of adding positional encoding information into the patch-
based network on two different images. When positional information is not included, the network
simply learns a mixture of all patches, resulting in a very blurry image with many artifacts resulting
from the data fidelity term. Even when a better initialization of the image is provided, the same
blurriness remains.

Figure A.7: Results of PaDIS for 20 view CT reconstruction for different positional encoding
methods.

22

Figure A.8 shows the results of using our proposed method compared with the whole-image diffusion
model with different sampling and inverse problem solving algorithms. The predictor-corrector
algorithm fails completely when using the whole-image model, indicating that this model could not
be well-trained in this limited data setting. Quantitatively, DPS performs the best for PaDIS; visually,
all of the methods obtain reasonable results, although some more minor artifacts are present in the
first four methods. Nevertheless, this shows that the patch-based prior is flexible and can be used
with a variety of existing algorithms.

Figure A.8: Results of PaDIS for 20 view CT reconstruction using different sampling and inverse
problem solving algorithms. Top row is with PaDIS and bottom row is with the whole-image model.

A.4 Experiment parameters

We trained the patch-based networks and whole-image networks following [14]. Since images were
scaled between 0 and 1, we chose a maximum noise level of σ = 40 and a minimum noise level of
σ = 0.002. We used the same UNet architecture for all the patch-based networks consisting of a
base channel multiplier size of 128 and 1, 2, 2, and 2 channels per resolution for the four layers. We
also used dropout connections with a probability of 0.05 and exponential moving average for weight
decay with a half life of 500K patches to avoid overfitting. Finally, the learning rate was chosen to
be 2 · 10−4 and the batch size for the main patch size was 128, although batch sizes of 256 and 512
were used for the two smaller patch sizes. The entire model had around 60 million weights. For the
whole image model, we kept all the parameters the same, but increased the number of channels per
resolution in the fourth layer to 4 so that the model had around 110 million weights. The batch size
in this case was 8.

For image generation and solving inverse problems, we used a geometrically spaced descending noise
level that was fine tuned to optimize the performance for each type of problem. We used the same set
of parameters for the patch-based model and whole image model, as follows:

• CT with 20 views: σmax = 10, σmin = 0.002

• CT with 8 views: σmax = 10, σmin = 0.003

• Deblurring: σmax = 40, σmin = 0.005

• Superresolution: σmax = 40, σmin = 0.01.

The ADMM-TV method for linear inverse problems consists of solving the optimization problem

argmaxx

1

2
∥y −Ax∥22 + λTV(x), (A.1)

where TV(x) represents the L1 norm total variation of x, and the problem is solved with the
alternating direction method of multipliers. For CT reconstruction, deblurring, and superresolution,
we chose λ to be 0.001, 0.002, and 0.006 respectively.

23

Ablation study details. For each patch size, we trained with the main patch size along with smaller
patches whenever possible. However, since we did not modify the network architecture, and the
architecture consists of downsampling the image 3 times by a factor of 2, it was necessary for the
input dimension to be a multiple of 8. Furthermore, we followed a patch scheduling method similar
to that of the main experiments unless otherwise noted. Finally, to avoid excessive zero padding, for
larger patch sizes, we used patch sizes that were smaller than the next power of 2 such that the main
image could still be fully covered by the same number of patches. The details are as follows.

• P = 8: This was trained only with this patch size as no smaller sizes could be used.
• P = 16: Trained with patch sizes of 8 and 16 with probabilities of 0.3 and 0.7 respectively.
• P = 32: Trained with patch sizes of 8, 16, and 32 with probabilities of 0.2, 0.3, and 0.5

respectively.
• P = 56: Trained with patch sizes of 16, 32, and 56 with probabilities of 0.2, 0.3, and 0.5

respectively. Zero padding width was set to 5 · 56− 256 = 24.
• P = 96: Trained with patch sizes of 32, 64, and 96 with probabilities of 0.2, 0.3, and 0.5

respectively. Zero padding width was set to 3 · 96− 256 = 32.

A.5 Comparison algorithms

This section provides pseudocode for the implemented alternative sampling algorithms whose results
are shown in Table 7. Here, for brevity, we show the versions using the whole-image diffusion model;
the versions with our proposed method are readily implemented by computing s = s(x, σi) through
the procedure illustrated in Alg. 1.

Algorithm A.1 Image Recon via Langevin Dynamics

Require: σ1 < σ2 < . . . < σT , ϵ > 0, ζi > 0, y
Initialize x ∼ N (0, σ2

T I)
for i = T : 1 do

Sample z ∼ N (0, σ2
i I)

Set αi = ϵ · σ2
i

Apply neural network to get D = Dθ(x, σi)
Set s = (D − x)/σ2

i

Set x to x+ ζiAT (y −A(x))
Set x to x+ αi

2 s+
√
αiz

end for
Return x.

Algorithm A.2 Image Recon via Predictor-Corrector Sampling

Require: σ1 < σ2 < . . . < σT , ϵ > 0, ζi > 0, r,y
Initialize x ∼ N (0, σ2

T I)
for i = T : 1 do

Set x to x+ (σ2
i+1 − σ2

i)sθ(x, σi+1)

Set x to x+ ζiAT (y −A(x))
Sample z ∼ N (0, I)

Set x to x+
√

σ2
i+1 − σ2

i z

Sample z ∼ N (0, I)

Set ϵi = 2r ∥z∥2

∥sθ(x,σi)∥2

Set s = sθ(x, σi)
Set x to x+ ϵis+

√
2ϵiz

Set x to x+ ζiAT (y −A(x))
end for

Return x.

In all cases, we used the same noise schedule as the main 20 view CT reconstruction experiment. For
Langevin dynamics and DDNM, we set ϵ = 1; the final results were not sensitive with respect to this

24

Algorithm A.3 DDNM

Require: σ1 < σ2 < . . . < σT , ϵ > 0, ζi > 0, y
Initialize x ∼ N (0, σ2

T I)
for i = T : 1 do

Sample z ∼ N (0, σ2
i I)

Set αi = ϵ · σ2
i

Apply neural network to get D = Dθ(x, σi)
Set D = A†y +D −A†A(D)
Set s = (D − x)/σ2

i
Set x to x+ αi

2 s+
√
αiz

end for
Return x.

parameter. For Langevin dynamics and predictor-corrector sampling, we took ζi = 0.3/∥y−A(x)∥2,
similar to the step size selection of DPS. Following the work of [19], we chose r = 0.16 for PC-
sampling. The same parameters were used for the patch-based and whole image methods.

Table 8 shows the average runtimes of each of the implemented methods when averaged across the
test dataset for 20 view CT reconstruction.

Table 8: Average runtimes of different methods across images in the test dataset for 20 view CT
recon.

Method Runtime (s) ↓
Baseline 0.1

ADMM-TV 1
PnP-ADMM 8

PnP-RED 22
Whole image diffusion 172

Langevin dynamics 98
Predictor-corrector 189

VE-DDNM 105
PaDIS (VE-DPS) 195

25

A.6 Markov random field interpretation

Markov random fields (MRF) are a tool used to represent certain image distributions and are par-
ticularly applicable to patch-based diffusion models. Describing the connection between MRF and
this work requires some notation: let x = {xs : s ∈ S} denote the random field, where the index S
denotes the sites. The neighborhood system N is defined as N = {Ns : s ∈ S}. A model for x ∈ X
is a MRF on S with respect to the neighborhood system N if

p(xs|xS−{s}) = p(xs|xNs
), ∀x ∈ X , ∀s ∈ S. (A.2)

Therefore, the distribution of each site (normally chosen to be a pixel) conditioned on the rest of the
pixels depends only on the neighboring pixels.

By the Hammersley-Clifford theorem [70], such a MRF satisfying p(x) > 0 everywhere can also be
rewritten as p(x) = 1

Z e−U(x), where Z is a normalizing constant. In this case U(x) is called the
energy function and has the form U(x) =

∑
c∈C Vc(x), which is a sum of clique potentials Vc(x)

over all all possible cliques. Thus, the score function for a MRF model is:

s(x) = ∇ log p(x) = −∇U(x) = −
∑
c

∇Vc(x). (A.3)

If we let the neighborhood system be the patches of the image, then Vc corresponds to the clique
potential for the cth patch of an image, and −∇Vc(x) denotes the score function of that patch.
Denoting by Gc the wide binary matrix that extracts the pixels corresponding to the cth patch from
the whole image, we define Vc(x) = V (Gcx, c

∗), where c∗ denotes the positional encoding method
used for the cth patch, and now we simply have one (patch) clique function V . Finally, the overall
score function under this model becomes

s(x) =
∑
c

G′
csV (Gcx, c

∗), (A.4)

where sV (v, c∗) ≜ −∇vV (v, c∗) is the shared score function of each of the patches with a positional
encoding input.

In this work, we approximate sV with a neural network parameterized by θ, and we use denoising
score matching to train the network via the loss function

L(θ) = Et∼U(0,T)Ex∼p(x)Eϵ∼N (0,σ2
t I)

∥sθ(x+ ϵ, σt) + ϵ/σ2
t ∥22 (A.5)

= Et∼U(0,T)Ex∼p(x)Eϵ∼N (0,σ2
t I)

∥∥∥∥∥∑
c

G′
csV (Gcx, c

∗; θ) + ϵ/σ2
t

∥∥∥∥∥
2

2

. (A.6)

This derivation makes no assumptions on the patches; in particular, this method to train the score
function would still hold if the patches overlapped for each iteration. However, such overlap would
make it costly to train the network, as the loss function would need to be propagated through the
sum over all patches every training iteration. We circumvent this problem by using non-overlapping
patches (within a given reconstruction iteration; i.e., our approach only uses patches that “overlap”
only across different iterations). For non-overlapping patches, the sum can be rewritten as follows:

L(θ) = Et∼U(0,T)Ex∼p(x)Eϵ∼N (0,σ2
t I)

∥∥∥∥∥∑
c

G′
csV (Gcx, c

∗; θ) +G′
cGcϵ/σ

2
t

∥∥∥∥∥
2

2

(A.7)

= Et∼U(0,T)Ex∼p(x)Eϵ∼N (0,σ2
t I)

Erandom c∥sV (Gcx, c
∗; θ) +Gcϵ/σ

2
t ∥22. (A.8)

This loss function is much easier to compute, as we can now randomly select patches and perform
denoising score matching on the individual patches, as opposed to considering the entire image at
once, and is equivalent to (A.5).

26

A.7 Acceleration methods

Although diffusion models are capable of generating high quality images, the iterative generative
process typically requiring around 1000 neural function evaluations (NFEs) [2, 3] is a major disadvan-
tage. In recent years, significant work has been done to improve sampling speed of diffusion models
[14, 30, 31]. To reuse the same trained network, one can first derive an algebraic relationship between
the score function s(x, σ) (readily computed using the denoiser network D(x, σ) trained via (5)) and
the residual function ϵ(x, t) which is approximated with a neural network in papers such as [3]. The
score matching network sθ(x, θ) learns to map x+ σϵ to x, whereas the residual network learns to
map xt =

√
αtx0 +

√
1− αtϵ to ϵ where ϵ ∼ N (0, I). Hence, we may input xt√

αt
= x0 +

√
1−αt√
αt

ϵ

as the noisy image into the denoising score matching network so that the correct output becomes
x0. Then the corresponding noise level is σt =

√
1−αt√
αt

. Finally, the outputs of the network must be
scaled via sθ(x) = −ϵ(x)/σ. Thus, by using this transformation, the network trained via (5) may
also be applied to sampling algorithms requiring ϵθ.

Using these ideas, we implemented the EDM sampler, a second-order solver for SDEs, according to
[14], which can produce high fidelity images in 18 iterations (equating to 36 NFEs as each iteration
requires two NFEs). We also implemented DDIM [30] using 50 sampling steps. Figure A.9 shows
the results of using these methods with the proposed patch-based prior along with Langevin dynamics
with 300 NFEs. The EDM sampler produces images that have clear boundary artifacts and the images
from the DDIM method also have some discontinuous parts. This behavior is due to the stochastic
method of computing the patch-based prior: according to Algorithm 1, we randomly choose integers
i and j with which to partition the zero padded image and compute the score function according to
this partition. Hence, accelerated sampling algorithms that attempt to remove large amounts of noise
at each step tend to fare worse at removing boundary artifacts. This limitation of our method makes it
difficult to run accelerated sampling algorithms, so is a direction for future research.

Figure A.9: Generation of CT images with various acceleration algorithms. Top row shows generation
with the EDM sampler [14], middle row uses DDIM [30], bottom row is our proposed method.

27

A.8 Additional figures

Figure A.10 shows the visual results of the extra inverse problems in Table 2.

1200

800

Figure A.10: Results of extra inverse problem experiments. From top to bottom: 60 view CT, fan
beam CT, heavy deblurring. From left to right: baseline, ADMM-TV, whole image diffusion, PaDIS,
ground truth.

To further explore the different methods of assembling patches to form the whole image, we looked
at unconditionally generated CT images according to the methods of [23] and [66]. Unlike with our
proposed method, for these two methods, the patch locations are fixed throughout all of the timesteps.
Furthermore, overlapping patches must be used to avoid boundary artifacts. The main difference is
the way in which the methods handle the overlapping pixels: [66] overrides the overlapped areas
with the new patch update while [23] averages over the overlapped area. We use the same network
checkpoint trained on CT images as the main experiments and a patch size of 56 with overlap of
8 for the experiments. Figure A.11 shows the generated images: while both methods are able to
avoid boundary artifacts, the overall structure of the generations are of lower quality than the images
generated by our proposed method (see Table 4). This suggests that our proposed method most
effectively combines the patch priors to form a prior for the entire image.

Figure A.11: Unconditionally generated CT images using patch stitching [66] for the top row and
patch averaging [23] for the bottom row. Compare this to the images generated by our proposed
method in Figure 4.

28

Figures A.12 and A.13 show the PSNR of each individual image in the test dataset when using
the whole-image model versus our proposed method. The plots show that our method exhibited
reasonably consistent performance improvements over the test dataset.

Figure A.12: Comparison between PSNR of deblurring between whole-image model and proposed
method for each image in the test dataset.

Figure A.13: Comparison between PSNR of superresolution between whole-image model and
proposed method for each image in the test dataset.

29

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction contain claims that are expounded upon in the
remainder of the paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The conclusion briefly states a couple of the limitations of the work. The
appendix (and in particular section A.7) delves into these limitations more.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

30

Answer: [Yes]
Justification: The assumptions that are made throughout Section 3 are clearly stated. The
paper does not contain any theorems, but Section A.6 provides a theoretical explanation for
some of the algorithms used in the paper.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The pseudocode for the algorithms as well as hyperparameter selection and
datasets used are completely outlined in the main body and appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

31

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We have made the code used to reproduce the main experimental results
available and the link is provided in the abstract.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: All details of the experiments have been provided in Section 4 and A.4.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: We did not provide error bars for the main results because the results consist of
an average across many different images with varying quantitative metrics, so the uncertainty
would not be meaningful. It would be computationally expensive to run the algorithms for
the same images multiple times to obtain uncertainty measurements.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

32

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The compute resources and runtime for the experiments are specified in the
paper.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have read the Code of Ethics and checked that the research conducted in
the paper conforms to it.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss the societal benefits (reduced CT dose) and risks (hallucinations
and disinformation) in the Conclusion section.

Guidelines:

33

https://neurips.cc/public/EthicsGuidelines

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]

Justification: The models used in the paper can generate images, but the datasets used have
been checked to be safe. Since the models can only generate images similar to the datasets
on which they have been trained, the images that can be generated should also conform to
this safety.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have cited all works and datasets that this paper uses.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.

34

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper describes the data and methods used, but we have not had the time
to curate the code and data into a shared repo.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

35

paperswithcode.com/datasets

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

36

	Introduction
	Background and Related Work
	Methods
	Patch-wise training
	Sampling and reconstruction

	Experiments
	Conclusion
	Appendix / supplemental material
	Additional inverse problem solving experiments
	Ablation studies
	Ablation study images
	Experiment parameters
	Comparison algorithms
	Markov random field interpretation
	Acceleration methods
	Additional figures

