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Abstract—This paper derives and analyzes the uniform
Cramér–Rao Lower Bound (UCRLB) for the phase retrieval
problem, and then compares the bias-variance trade-offs of
several phase retrieval algorithms (e.g., Wirtinger flow (WF),
Gerchberg-Saxton (GS), phaselift, majorize-minimize (MM), al-
ternating direction method of multipliers (ADMM)) that were
derived from maximum likelihood (ML) estimates where the
measurements follow independent Gaussian distribution. We also
consider regularizers that exploit assumed properties of the latent
signal, e.g., �2 norm and �1 norm (approximated by the Huber
function) that corresponds to the sparsity of finite differences
(anisotropic total variation (TV)) or of the detail coefficients
of a discrete wavelet transform. Simulation results show that
the classical CRLB fails to lower-bound the variances of phase
retrieval algorithms, whereas the UCRLB provides a variance
lower-bound. Simulation results also show that the regularized
algorithms that better approximate the properties of the true
signal have better bias-variance trade-offs (when compared to
UCRLB).

Index Terms—Uniform Cramér–Rao Lower Bound, phase
retrieval, inverse problem.

I. INTRODUCTION

It is well known that the variance of any unbiased esti-

mator is bounded by the Cramér–Rao Lower Bound (CRLB).

However, many estimators, e.g., derived from regularized max-

imum likelihood (maximum a posteriori in Bayesian setting)

are typically biased. Hence their variance cannot be bounded

by the classical CRLB. Hero et al. [1] proposed the uniform

CRLB (UCRLB), which is a bound on the smallest attainable

variance that can be achieved using any estimator with bias

gradient of which norm is bounded by a constant. This

paper analyzes the UCRLB for the challenging phase retrieval

problem.

Phase retrieval refers to the problem of recovering a signal

or image from intensity (or magnitude)-only measurements

[2, 3]. It is inherently ill-posed since many signals share

the same magnitude spectrum. Mathematically, consider a

length-N signal x reconstructed from M squared-magnitude

measurements y based on the maximum likelihood (ML)

estimate:

x̂ = argmin
x∈RN

f(x), f(x) � 1

2σ2

M∑
i=1

(
yi −

∣∣a′
ix
∣∣2)2

, (1)

where a′
i ∈ C

N denotes the ith row of the system matrix A ∈
C

M×N , i = 1, . . . ,M . For simplicity, this paper assumes the

noise samples are i.i.d. Gaussian distributed with zero mean

and known standard deviation σ.

To solve (1), many algorithms have been proposed, such as

Wirtinger Flow (WF) [4] and its variants [5–7] that descend

the cost function with a (projected/thresholded/truncated)

Wirtinger gradient using an appropriate step size [8], where

the Wirtinger gradient is defined as

∇f(x) =
2

σ2
real

{
A′ diag{|Ax|2 − y}Ax

}
, (2)

where diag{·} denotes a diagonal matrix constructed by a

vector. Another famous method is “matrix lifting” [3, 4, 9] that

constructs a rank-one matrix X = xx′ so that it converts the

original problem to a semi-definite programming (SDP) after

relaxing the rank-one constraint. To monotonically descend the

cost function (1), one method is majorizer-minimize (MM) that

iteratively construct a majorizer and minimize the surrogate

function [10, 11]. An alternative to (1) (aka intensity model)

is the magnitude model that works with the square root of y.

For example, [12] proposes an algorithm known as Gerchberg

Saxton (GS) that introduces a new variable to represent the

phase and alternatively update the two variables; [13] uses

alternating direction methods of multipliers (ADMM) with

variables representing the magnitude and the phase of the

signal. Other methods such as Gauss-Newton methods [14]

and iterative soft-thresholding with exact line search algorithm

(STELA) have also been proposed to solve (1).

There have been several studies involving the classical

CRLB for phase retrieval in the literature [13, 15, 16]. Balan et
al. [16] derived and analyzed the CRLB for two different types

of phase retrieval problems. Qian et al. [15] proposed a novel

method known as feasible point pursuit (FPP) that is based

on quadratically constrained quadratic programming (QCQP)

and is measured against the classical CRLB. However, we

argue that the classical CRLB may have limited applicability

because it is unknown whether an estimator determined by an

iterative phase retrieval algorithm is unbiased or not, especially

for those with tuning parameters or regularizers. Instead, the

UCRLB should be used to evaluate these algorithms, as will

be presented next.
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II. METHODS

A. Uniform CRLB

As discussed in Section I, a limitation of the classical CRLB

analysis is that unbiased estimation is often impractical. The

uniform CRLB is applicable for biased estimation [1]. For

simplicity, this paper considers the scalar UCRLB, which is

the smallest attainable variance of a single element of the true

signal. Following Theorem 1 in [1], the scalar UCRLB can be

written as

Var(x̂j) ≥ Bγ � (ej + vγ)
′F+(ej + vγ), (3)

vγ � −(γC + F+)−1F+ej ,

F � 4

σ2
GG′, G � real{A′ diag{|Ax|}} ,

where F+ denotes the Moore–Penrose inverse of F , C is a

positive definite matrix, and ej is a unit vector whose the jth

element is 1. The scalar UCRLB can be represented by a set

of points
(‖vγ‖C ,

√
Bγ

)
with varying γ and an appropriate

choice of C. This paper used C = I for simplicity (so

‖vγ‖C = ‖vγ‖2).

With the UCRLB, the limiting variance of an estimator

becomes a function of the norm of bias gradient, where

empirically we approximate the bias gradient by [1]:

∇b(x̂) � ∇x (E[x̂]− x)

≈ 1

L− 1

L∑
l=1

(
x̂(yl)− x̂

)
(−∇f(x;yl))

′ − I, (4)

where L denotes the number of realizations of y, I denotes

an identity matrix, and x̂(yl) denotes the estimator based on

yl. x̂ denotes the sample mean of x̂(yl) shown as follows

x̂ � 1

L

L∑
l=1

x̂(yl). (5)

Next, we define the norm of bias gradient for the jth element

in ∇b(x̂) by ‖δ(x̂j)‖C with

δ(x̂j) � ∇b(x̂)′ej . (6)

Then, we estimate the variance of x̂j (the jth element in x̂)

by the sample variance

Var(x̂j) ≈ e′j

(
1

L− 1

L∑
l=1

(
x̂(yl)− x̂

) (
x̂(yl)− x̂

)′)
ej .

(7)

Finally we compare the point
(
‖δ(x̂j)‖C ,

√
Var(x̂j)

)
with

the UCRLB, i.e., the set of points
(‖vγ‖C ,

√
Bγ

)
as we vary

γ, to illustrate the bias-variance trade-off of the corresponding

estimator.

B. Wirtinger Flow

To descend the cost function (1), one method is Wirtinger

flow (WF) with Fisher information for step size [8]. Let

subscript k denote the kth iteration. The WF update is:

xk+1 = xk − μk∇f(xk), (8)

where

μk � σ2‖∇f(xk)‖22
4‖ diag{|Axk|}dk‖22

, dk � A∇f(xk). (9)

To further potentially improve the reconstruction quality,

one can impose a regularization term in (1) so that the cost

function becomes

Φ(x) � f(x) + βR(x), (10)

where β denotes the regularization strength.

A simple choice of R(x) is ‖x‖22, which leads to the

following iteration update:

xk+1 = xk − μ̃k∇Φ(xk), ∇Φ(xk) � ∇f(xk) + 2βxk,

μ̃k � σ2‖∇Φ(xk)‖22
4∇Φ(xk)′ (A′ diag{|Axk|2}A+ 2βI)∇Φ(xk)

.

(11)

Another possible choice of regularizer is based on the as-

sumption that Tx is approximately sparse, e.g., ‖Tx‖1, for a

K ×N matrix T . However, the �1 norm is not differentiable

everywhere, so here we use the Huber function to approximate

the �1 norm, so that R(x) has the form

R(x) = 1′h·(Tx;α) = min
z

1

2
‖Tx− z‖22 + α‖z‖1,

h(t;α) =

{
1
2 |t|2, |t| < α,
α|t| − 1

2α
2, otherwise,

(12)

where f· means element-wise application as in the Julia

language. Then we majorize the Huber function h(t) using

quadratic polynomials with the optimal curvature using the

ratio ḣ(z)/z [17, p. 184], leading to iteration of the form

xk+1 = xk − μ̃k∇Φ(xk),

μ̃k � σ2‖∇Φ(xk)‖22
4∇Φ(xk)′ (A′ diag{|Axk|2}A+ βT ′DT )∇Φ(xk)

,

∇Φ(xk) � ∇f(xk) + βT ′ḣ·(Tx;α),

D � diag{min·(α � |Txk|, 1)}. (13)

Here we overload the notation μ̃k and ∇Φ(xk). � denotes

element-wise division and ḣ(·) denotes the derivative of h(·).

C. Gerchberg Saxton (GS)

The GS algorithm introduces a variable θ to represent the

phase, leading to the following optimization problem:

x̂, θ̂ = argmin
x∈CN , θ∈CN

‖Ax− diag{√y}θ‖22,

subject to |θi| = 1, i = 1, ..., N. (14)

The resulting GS iteration update is

θk+1 = sign(Axk),

xk+1 = (A′A)
−1

A′ diag{√y}θk+1. (15)

If calculating the inverse of (A′A) is expensive, one can run

several iterations of a gradient descent method like conjugate

gradient.
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D. PhaseLift

The PhaseLift algorithm reformulates (1) as

X̂ = argmin
X�0

1

2
‖A(X)− y‖22 + β‖X‖∗, (16)

where A is a linear operator that maps from N×N Hermitian

matrices to R
M :

A(X) =
[|a′

1x|2, ..., |a′
ix|2, ..., |a′

Mx|2]′ . (17)

We used a fast adaptive shrinkage/thresholding algorithm

(FASTA) [18] to solve (16).

E. Majorize-minimize (MM)

An MM method known as “PRIME” [10] has the following

iteration update:

Wk = xkx
′
k +

1

D
A′ diag{y − |Axk|2}A,

xk+1 =
√

λmax(Wk)umax(Wk), (18)

where λmax and umax denote the largest eigenvalue (in

magnitude) and the corresponding eigenvector. D is a constant

that needs to be no smaller than λmax(BB′), where B is

defined as

B �
[
vec (a1a

′
1) , ..., vec (aMa′

M )
] ∈ C

N2×M . (19)

The most straightforward way would be to first construct BB′

or B′B and then perform power iteration. But constructing

BB′ is computationally expensive and very memory hungry.

Hence, we developed an upper bound on λmax(B
′B) that can

be computed efficiently. Rewrite B as

B = CP , C � A′ ⊗AT , (20)

where ⊗ denotes Kronecker product. P ∈ R
M2×M is a

concatenation of unit vectors ej ∈ R
M2

, where j = 1, (M +
1)+1, 2(M +1)+1, ..., (M −1)(M +1)+1, so P ′P = IM .

Let v denote a unit-norm eigenvector corresponding to the

largest eigenvalue of B′B, so that

λmax(B
′B) = v′B′Bv = v′P ′C ′CPv = ṽ′C ′Cṽ, (21)

where ṽ = Pv. Because ṽ′ṽ = v′P ′Pv = 1, then by the

spectral theorem,

ṽ′C ′Cṽ = ‖Cṽ‖22 ≤ ‖C‖22 = λmax(C
′C). (22)

Using the property of Kronecker product, it follows that

λmax(B
′B) ≤ λmax(C

′C) = λ2
max(A

′A). (23)

To compensate for outliers, reference [11] used an �1 norm for

the data-fit term also with �1 norm regularizer that assumes the

true signal is sparse, leading to the following cost function:

M∑
i=1

∣∣∣yi − ∣∣a′
ix
∣∣2∣∣∣+ β‖x‖1. (24)

They then construct a convex but non-smooth majorizer and

minimize the surrogate iteratively.

F. Alternating direction method of multipliers (ADMM)

Reference [19] proposed to use ADMM with variable

splitting a′
ix = uie

ıωi to represent the magnitude and phase

separately, which leads to easy least-squares variable update.

III. EXPERIMENT

A. Compared algorithms

For unregularized algorithms, we compared WF, GS,

phaselift with variant β for the nuclear norm, PRIME and

ADMM with variant augmented Lagrangian penalty parame-

ter. For regularized algorithms, we compared WF with �2 norm

regularizer and �1 norm approximated by the Huber function

h·(Tx;α). We set T to be the total variation (TV) matrix

or the detailed coefficients of orthogonal discrete wavelet

transform (ODWT).

B. NRMSE Comparison

We first compared the NRMSE of the estimation results

of different phase retrieval algorithms. We used an empirical

transmission system matrix of size 4096×256 [20, 21], where

the true image size is 16×16 as shown in Fig. 1 (a). We

used spectral initialization [4], i.e., the (real part of) leading

eigenvector of A′ diag{y}A as the initial estimate of x̂.

To handle the phase ambiguity, before computing the bias

gradient, variance and the normalized root mean square error

(NRMSE), we corrected the phase of x̂ by

x̂corrected � sign (〈x̂,x〉) x̂. (25)

The NRMSE is defined as

NRMSE � ‖x̂corrected − x‖2
‖x‖2 . (26)

Fig. 1 compares the reconstruction NRMSE among different

phase retrieval algorithms; WF with TV and ODWT regu-

larizer showed improved accuracy compared to unregularized

algorithms, demonstrating the value of regularization. As reg-

ularized algorithms can yield biased estimates, the next section

examines the bias-variance trade-off.

C. Bias-variance Comparison

We compared the bias-variance trade-off of phase retrieval

algorithms. We used an oversampled random complex Gaus-

sian matrix of size 400 × 16. The true signal was a 1D real

signal shown in Fig. 2. The standard deviation of noise σ
was set to be 1. To reduce the estimation uncertainty for bias-

gradient and variance, we drew L = 10000 realizations of

y. We used �2 norm regularizer and �1 norm approximated

by the Huber function h·(Tx;α). We set T to be the total

variation (TV) matrix or the detailed coefficients of orthogonal

discrete wavelet transform (ODWT), and α was set to be 0.1.

All algorithms were implemented in Julia 1.6.3 (MacOS) and

were ran for 100 iterations.

Fig. 3 shows that although the classical CRLB lower-bounds

the variance of algorithms like PhaseLift and ADMM, it fails

to bound the variance of WF and PRIME. In contrast, vari-

ances of all algorithms were lower-bounded by the UCRLB.
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(a) True image (b) Spectral initialization,
NRMSE=111%

(c) Wirtinger flow,
NRMSE=13.8%

(d) WF ridge,
NRMSE=14.1%

(e) WF TV,
NRMSE=11.1%

(f) WF ODWT,
NRMSE=12.5%

(g) Gerchberg Saxton,
NRMSE=16.7%

(h) PhaseLift,
NRMSE=30.7%

(i) PRIME,
NRMSE=13.5%

(j) ADMM,
NRMSE=16.3%

Fig. 1: NRMSE comparison of images estimated by different phase retrieval algorithms. For visualization purpose, the color

scales of all images were set to [0, 1].

Fig. 2: The true signal used in the bias-variance trade-off

experiment.

For regularized algorithms, we found that WF with �2 norm

regularization (WF-ridge) achieved the lowest variance for

some β [22], but at the cost of the largest bias; WF-TV is

closer to the UCRLB compared to WF-ODWT, presumably

due to the true signal is piece-wise uniform, which better

matches the assumption of TV regularization. This was also

evident in Fig. 4 (a), where we found WF-TV consistently

showed lower NRMSE than WF-ODWT with varied β. In

Fig. 4 (b), we found that for WF-ridge and PhaseLift, the

NRMSE was sensitive to the change of β and a small β might

be more preferable.

IV. DISCUSSION AND CONCLUSION

In this paper, we first derived the uniform CRLB for the

phase retrieval problem, and then compared the bias-variance

trade-off for some commonly used phase retrieval algorithms.

Simulation results showed that the phase retrieval algorithms

Fig. 3: The bias-variance trade-off of the uniform CRLB

and variants of phase retrieval algorithms regarding the first

element in the true signal. For regularized algorithms, we

varied β from 1 to 100 with interval 5.

can be biased so that the classical CRLB can fail to bound

their variances. Simulation results showed that regularizers that

better match the assumed property of the true signal has better

bias-variance trade-offs (when compared to UCRLB).

Future work includes investigating the bias-resolution-

variance trade-off [23], e.g., estimators with the same bias-

gradient norm but with different resolution properties, which

could lead to some counter-intuitive results when applying the

UCRLB in imaging systems like SPECT [24]. Future work

also includes experimenting on more system matrices such

as discrete Fourier transform (DFT), comparing with more
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(a)

(b)

Fig. 4: NRMSE of phase retrieval algorithms with varying

regularization parameter β.

phase retrieval algorithms such as machine learning methods

[25–27], and testing on a wider variety of signal and image

dataset.
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