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Abstract
Purpose This study addresses the challenge of extended SPECT imaging duration 
under low-count conditions, as encountered in Lu-177 SPECT imaging, by developing 
a self-supervised learning approach to synthesize skipped SPECT projection views, thus 
shortening scan times in clinical settings.

Methods We developed SpeRF, a SPECT reconstruction pipeline that integrates 
synthesized and measured projections, using a self-supervised coordinate-based 
learning framework inspired by Neural Radiance Fields (NeRF). For each single scan, 
SpeRF independently trains a multi-layer perceptron (MLP) to estimate skipped SPECT 
projection views. SpeRF was tested with various down-sampling factors (DFs = 2, 4, 8) 
on both Lu-177 phantom SPECT/CT measurements and clinical SPECT/CT datasets, 
from 11 patients undergoing [177Lu]Lu-DOTATATE and 6 patients undergoing [177Lu]
Lu-PSMA-617 radiopharmaceutical therapy. Performance was evaluated both in 
projection space and by comparing reconstructed images using (1) all measured views 
(“Full”), (2) down-sampled measured views only (“Partial”), and partially measured views 
combined with skipped views (3) generated by linear interpolation (“LinInt”) and (4) 
synthesized by our method (“SpeRF”).

Results SpeRF projections demonstrated lower Normalized Root Mean Squared 
Difference (NRMSD) compared to the measured projections, than LinInt projections. 
Across various DFs, the NRMSD for SpeRF projections averaged 7% vs. 10% in phantom 
studies, 18% vs. 26% in DOTATATE patient studies, and 20% vs. 21% in PSMA-617 
patient studies, compared to LinInt projections. For SPECT reconstructions, DF = 4 is 
recommended as the best trade-off between acquisition time and image quality. At 
DF = 4, in terms of Contrast-to-Noise Ratio relative to Full, SpeRF outperformed LinInt 
and Partial: (1) DOTATATE: 88% vs. 69% vs. 69% for lesions and 88% vs. 73% vs. 67% 
for kidney, (2) PSMA-617: 78% vs. 71% vs. 69% for lesions and 78% vs. 57% vs. 67% for 
organs, including kidneys, lacrimal glands, parotid glands, and submandibular glands. 
SpeRF slightly underestimated count recovery relative to Full, compared to Partial but 
still outperformed LinInt: (1) DOTATATE: 98% vs. 100% vs. 88% for lesions and 98% vs. 
100% vs. 94% for kidney, (2) PSMA-617: 98% vs. 101% vs. 94% for lesions and 96% vs. 
101% vs. 78% for organs.
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  Introduction
SPECT/CT imaging has had many advances [1]; however, one continuing limitation is 
that SPECT acquisition is slow, especially under the low-count conditions encountered 
when imaging therapy radionuclides, such as Y-90, Ac-225, Ra-223, and Lu-177. These 
radionuclides are chosen for the therapeutic properties of their alpha and beta emis-
sions, hence do not have ideal properties for gamma-camera imaging. For example, the 
photon/gamma-ray yield is relatively low, leading to low count conditions. Nevertheless, 
it is very desirable to perform both therapy and imaging with the same radionuclide, 
even in very low-count applications.

With Lu-177 where the 208 keV gamma-ray emission probability is only 10%, it can 
take 15–30  min per bed (~ 40  cm axial) for SPECT on standard gamma-camera sys-
tems following radiopharmaceutical therapies (RPTs) such as [177Lu]Lu-DOTATATE 
and [177Lu]Lu-prostate-specific membrane antigen (PSMA-617) [2]. For RPTs involv-
ing alpha-emitters, such as [225Ac]Ac-PSMA-I&T, acquisition times of up to 1 h have 
been proposed [3]. This is because both the administered activities and the gamma-ray 
yields are very low. SPECT under low-count conditions is particularly challenging when 
multiple beds are needed to encompass critical organs and metastases throughout the 
body. For example, in [177Lu]Lu-PSMA-617 therapy for metastatic castration-resistant 
prostate cancer (mCRPC), SPECT imaging may require up to 3 bed positions to include 
all critical organs such as lacrimal glands, salivary glands, bone marrow, and kidneys, as 
well as lesions that can be found throughout the body [4, 5]. Multi-bed position SPECT 
imaging demands a significant amount of camera time, which can not only lead to 
patient discomfort, but can also increase motion artifacts. Additionally, in many facili-
ties, camera availability can be limited.

To overcome these challenges, a shorter acquisition time is preferable by taking either 
fewer projection views or shorter acquisition time per view. These strategies pose addi-
tional challenges due to either the missing (skipped) view angles or the increased image 
noise [6]. Numerous algorithms have been proposed with a focus on enhancing the 
image quality of the reconstructed images from noisy projections [7–14]. As an example, 
Pan et al. introduced a content-attention image restoration approach to recover high-
quality images from low-dose planar bone scans obtained during fast acquisitions [15]. 
In contrast, the approach of synthesizing the missing projections [2, 16] has been rela-
tively unexplored. Most prior studies have employed deep learning techniques to learn 
the relationship between one projection and its neighboring views, often relying on 
ground truth data for training purposes. For instance, Rydén et al. trained a deep convo-
lutional U-Net [17] to generate synthetic intermediate projections [2, 18]. Meanwhile, Li 
et al. introduced a network architecture called LU-Net that integrates Long Short-Term 

Conclusion The proposed method, SpeRF, shows potential for significant reduction in 
acquisition time (up to a factor of 4) while maintaining quantitative accuracy in clinical 
SPECT protocols by allowing for the collection of fewer projections. The self-supervised 
nature of SpeRF, with data processed independently on each patient’s projection data, 
eliminates the need for extensive training datasets. The reduction in acquisition time 
is particularly relevant for imaging under low-count conditions and for protocols that 
require multiple-bed positions such as whole-body imaging.
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Memory network [19] and U-Net to understand the transformation from sparse-view 
projection data to full-view data [20]. Chen et al. presented a cross-domain method 
using SPECT images predicted in the image domain as reference for synthesizing full-
view projections in the sinogram domain [21]. These approaches are reported to be 
effective, but they are all based on supervised learning methods that require hundreds of 
paired data for training. However, in many cases, obtaining enough paired ground truth 
data for training is challenging. This difficulty is especially true in the case of post-ther-
apy imaging for verifying uptake or dosimetry following RPT because such imaging is 
typically not part of routine clinical practice in some countries. On the other hand, self-
supervised learning, which does not require separate training labels and instead learns 
from each scan itself, has the potential to overcome the limitations of supervised learn-
ing in such scenarios.

The aim of this research was to reduce SPECT acquisition time by reducing the 
required number of measured projection views while maintaining image quality by 
incorporating synthetic projections generated by deep neural networks. We imple-
mented a multi-layer perceptron (MLP) and trained it to generate skipped SPECT 
projection views through self-supervised coordinate learning [22]. We evaluated the 
performance of the proposed method both qualitatively and quantitatively in phantom 
studies and in patients imaged after [177Lu]Lu-DOTATATE therapy and [177Lu]Lu-
PSMA-617 therapy.

Materials and methods
Phantom study

We used an elliptical phantom with six hot sphere inserts of volumes 2,4,8,16,30,114mL. 
These ‘hot’ spheres (having the same Lu-177 activity concentration of 0.22 MBq/mL) 
were placed in a ‘warm’ background (0.035 MBq/mL) to achieve a sphere-to-background 
ratio of 6.3:1, which is representative of tumor-to-background ratios encountered in 
patient imaging [23, 24]. The total activity in the phantom at scan time was 356 MBq. 
The sphere volumes of interest (VOIs), corresponding to the physical filling volume, 
were defined on the CT images.

Patient studies

We used retrospective SPECT/CT data from patients who had volunteered for imaging 
under a University of Michigan Institutional Review Board (IRB) approved protocol. This 
included 11 patients imaged after [177Lu]Lu-DOTATATE therapy for neuroendocrine 
tumor (NET) and 6 patients imaged after [177Lu]Lu-PSMA-617 therapy for mCRPC. 
We defined organs of interest (kidneys for DOTATATE therapy, and kidneys, lacrimal 
glands, parotid glands, and submandibular glands for [177Lu]Lu-PSMA-617 therapy) 
using deep learning-based segmentation methods available within MIM Software®. A 
radiologist manually defined the lesions (78 in total, volume ranging from 2 to 250 mL) 
as described previously [24].

SPECT/CT acquisition

All scans were acquired on a Siemens Intevo Bold SPECT/CT with a 5/8’’ crystal 
equipped with medium-energy low penetration (MELP) collimators. Acquisition param-
eters included 120 views, with 60 views per head, a 20% photopeak window centered at 
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208 keV, and two adjacent scatter windows of 10% width each. The phantom study used 
a prolonged acquisition of 196 s/view to achieve a count level which is representative of 
patient imaging after the administration of [177Lu]Lu-DOTATATE. The patient images 
were acquired under the standard protocols used in our clinic. [177Lu]Lu-DOTATATE 
SPECT images were acquired for a single bed position at day 2 or day 4 after the cycle 
1 administration of 7.4 GBq using an acquisition time of 25 s per view (total scan time 
of 25 min). The [177Lu]Lu-PSMA-617 SPECT images were acquired with two bed posi-
tions at day 2 or day 3 after the cycle 1 administration of 7.4 GBq with an acquisition 
time of 17 s per view per bed (total scan time of 34 min). The projection view matrix 
size was 128 × 128, with a pixel size of 4.8 × 4.8 mm. The CT images, with a matrix size of 
512 × 512 and a pixel size of 0.98 × 0.98 mm, were acquired in low-dose mode (120 kVp; 
15–80 mAs) under free-breathing conditions. The slice thickness was 3 mm for [177Lu]
Lu-DOTATATE patients and 1.5 mm for [177Lu]Lu-PSMA-617 patients.

Self-supervised coordinate learning

Given the limited amount of data, we focused on a self-supervised learning approach, 
namely SpeRF, rather than supervised methods for this study. Our method is inspired by 
the neural radiance field (NeRF) approach that maps 3D spatial coordinates to radiance 
values using a neural network [25]. Similarly, we developed a coordinate-based MLP 
with 12 hidden layers and 256 neurons per layer to synthesize skipped projection views 
in SPECT imaging.

Network framework and workflow

The core of our method is a coordinate-based MLP that operates on 5-dimensional 
input coordinates for each pixel in the SPECT projection views (Fig. 1). These coor-
dinates include: (1) pixel positions (x, y), (2) the sine and cosine of the view angle 
(sinθ , cosθ ), and (3) the radial position r, which accounts for noncircular orbits. The 
MLP processes each 5D coordinate independently, predicting a single scalar projection 
count for that pixel. While the input coordinate set for all projection views are concep-
tually of size nx× ny× nθ ×5, the network operates efficiently by iterating over indi-
vidual 5D inputs, producing outputs of size nx× ny× nθ ×1. Here, nx and ny  represent 
the projection matrix dimensions, and nθ  denotes number of projection view angles, 
which correspond to the measured angles during training and the skipped angles during 
inference.

During training, the MLP learns to map the input training coordinate sets to the mea-
sured projection counts. To ensure patient-specific learning, separate MLPs are trained 
for each patient using their available measured projections. Additionally, for each 
patient, we train two independent MLPs: one for the main acquisition window and the 
other for the sum of the two scatter windows.

In the inference phase, the trained MLP is provided with the query coordinate sets 
corresponding to the skipped projection angles. The network predicts the projection 
counts for each pixel at these missing angles, enabling the synthesis of skipped projec-
tions. This coordinate-based design provides the flexibility to accommodate various 
down-sampling factors (DFs). For example, with 30 measured views and 90 synthesized 
views, SpeRF achieves a 75% reduction in scan time (DF = 4) while maintaining the same 
network architecture and hyperparameters across different DFs.



Page 5 of 16Li et al. EJNMMI Physics           (2025) 12:47 

Rescale trick

To enhance the representation of the continuous measurement field, we applied the 
‘rescale trick’, i.e., upscaling the original 128 × 128 projection images to 256 × 256 using 
nearest neighbor interpolation during the input stage. During training, the measured 
projection counts at 256 × 256 resolution serve as the target. After inference, the syn-
thesized 256 × 256 projections are downscaled back to 128 × 128 using the same nearest 
neighbor interpolation method to align with the original resolution for reconstruction. 
Nearest neighbor interpolation duplicates the closest pixel value into the upscaled grid, 
preserving the original pixel intensities. After inference, the results are downscaled back 
to 128 × 128 by selecting (adhered to a pre-defined rule) one pixel per 2 × 2 block. This 
strategy maintains the pixel intensity distribution while allowing the network to operate 
on a finer spatial grid. Although no new information is introduced, the higher resolution 
helps the network approximate a smoother and more continuous measurement field, 
capturing essential sharp edges and variations of projection images.

Training and optimization

For each scan, we optimized the MLP weights by minimizing the Huber loss function, 
defined as

Fig. 1 Overview of SpeRF pipeline. The top panel (light purple) illustrates the training phase, where a coordinate-
based MLP processes training coordinate sets consisting of x, y coordinates, radial position r, and trigonometric 
features sinθ  and cosθ  derived from the view angle θ . The MLP predicts projection counts at the correspond-
ing coordinates, which are compared to true projection counts using the Huber Loss function for backpropaga-
tion. The bottom panel (blue) shows the inference phase, where the trained MLP processes query coordinate sets 
corresponding to skipped projection angles. This allows the model to interpolate or predict projection counts at 
unseen angles that were not part of the training data. SpeRF is a patient-specific method, where a separate MLP 
is trained and used for each patient’s dataset to account for individual imaging characteristics and variations. The 
same MLP architecture is used in both phases, but training is performed on known projections, while inference 
generates skipped projections
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Lδ (a) =
{ 1

2 a2

δ • (|a| − 1
2 δ )

for |a| < δ
otherwise

Here, a represents the difference between the MLP-predicted projection count and the 
measured projection count at a corresponding coordinate, and δ  is a hyperparameter 
that controls the transition between the squared loss and the absolute loss. The Huber 
loss is particularly suited for this task because it is robust to outliers, which are com-
mon in noisy measurements. It combines aspects of two common loss functions: for 
smaller errors ( |a| < δ ), it behaves like Mean Squared Error (MSE) providing strong 
learning signals due to its differentiability; for larger discrepancies ( |a| ≥ δ ), it behaves 
like Mean Absolute Error (MAE), making it less sensitive to outliers, as demonstrated in 
[26]. We empirically set δ = 1 in our implementation.

To optimize the MLP, we minimized the Huber loss function using the Adam opti-
mizer [27] with an initial learning rate of 0.001. A reduce-on-plateau scheduler was 
applied to dynamically lower the learning rate when the validation loss plateaued. For 
each scan, we randomly selected 20% of the pixel coordinates and their correspond-
ing projection counts from the available measured projection views as validation data. 
The final patient-specific model was selected based on the lowest validation loss over 
200 training epochs. We used a batch size of 10,000 coordinates sampled from the 
256 × 256 × nbed × nθ  input space. During inference, skipped projections were syn-
thesized in approximately 40 s per view on a system equipped with a single RTX 4090 
GPU, 64 GB of DDR5 memory, and a 24-core Intel i9-13900KF CPU. The implementa-
tion of our method, including training and testing virtual patient phantom images, is 
publicly available in PyTorch at:  h t t p s : / / g i t h u b . c o m / Z o n g y u L i - u m i c h /     .  

SPECT reconstruction

The ordered-subset expectation-maximization (OS-EM) algorithm [28] is commonly 
used to reconstruct 3D SPECT images. In this study we performed OS-EM SPECT 
reconstructions ([177Lu]Lu-DOTATATE matrix size: 128 × 128 × 81 and 2-bed [177Lu]
Lu-PSMA-617 matrix size: 128 × 128 × 158, both with voxel size in mm: 4.8 × 4.8 × 4.8) 
with 6 subsets and 16 iterations using an in-house open-sourced toolbox, benchmarked 
on CPU with multi-threading and verified by Monte Carlo simulation [29]. No post-pro-
cessing filter was applied. Scatter correction was applied using a triple energy window 
method, and attenuation correction was based on the standard CT-to-density calibra-
tion curve. The point spread function for depth-dependent collimator-detector response 
modeling was simulated with Monte Carlo [30] using a point source in air and fitted 
with Gaussian curves.

Evaluation

SPECT image quality was evaluated for four distinct data processing pipelines: (1) “Full”: 
OS-EM reconstruction using all 120 measured projections. (2) “Partial”: OS-EM recon-
struction using a certain DF of the measured projections. (3) “LinInt”: a certain DF of 
projections were measured, and the remaining projections were generated through lin-
ear interpolation, followed by OS-EM. (4) “SpeRF”: a certain DF of projections were 
measured, and the remaining were MLP-predicted synthetic projections, followed by 
OS-EM.

https://github.com/ZongyuLi-umich/
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Our evaluation was structured into three aspects: Synthesized Projections, Phantom 
Reconstructions, and Patient Reconstructions, each with different metrics. When com-
paring synthesized projections (from SpeRF and LinInt) against measured projections 
for both phantom and patient studies, we used the Normalized Root Mean Squared Dif-
ference (NRMSD) defined as:

NRMSD =

√
1

np

∑ np

j=1(x̂j − xj)2

√
1

np

∑ np

j=1x2
j

,

where np is the total number of voxels within the VOI, including lesions and relevant 
organs. Subscript j, i.e., xj , denotes the jth voxel in the image. The reference image and 
the reconstructed image are denoted by x and x̂, respectively.

When evaluating reconstructions in phantom studies, we calculated the noise level 
and the Activity Recovery (AR) to assess how well the reconstruction matched the true 
activity map. The background (BKG) was defined as the union of six uniform “warm” 
regions, ensuring no overlap with the hot sphere VOIs. The noise level was computed as 
the standard deviation of voxel activity within this BKG, denoted as STDBKG. The AR 
is defined as:

AR =
mean(recon_activityVOI)
mean(true_activityVOI)

.

When evaluating reconstructions in patient studies, we defined relative measures, 
including Relative Count Recovery (RCR) and Relative Contrast-to-Noise Ratio (RCNR), 
in comparison to the Full recon. Here, the BKG was chosen as a homogeneous region 
within the lung. The RCNR and RCR are defined as:

CNR =
mean(recon_countVOI) − mean(recon_countBKG)

STDBKG

RCNR =
CNRsparse_view recon

CNRFull_recon
× 100%

RCR =
mean(sparse_view_recon_countVOI)

mean(Full_recon_countVOI)
× 100%,

Results
Synthesized projections

Table  1 compares the performance of linearly interpolated projections against SpeRF 
projections, summarizing the NRMSD values across various DFs for phantom studies 
and patient studies. The results consistently demonstrate that the SpeRF projections 
outperform LinInt projections, exhibiting lower NRMSD values in both phantom and 
patient studies.

Visually, SpeRF projections appear smoother than their measured counterparts. Fig-
ure 2 displays the measured (Fig. 2a) and synthesized projections (Fig. 2b and c) for a 
representative [177Lu]Lu-PSMA-617 patient. Close examination of the intensity pro-
files across the lacrimals reveals notable differences: the SpeRF projection exhibits two 
peaks (corresponding to high uptake in left and right lacrimals as expected with [177Lu]
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Lu-PSMA-617), more closely aligning with the pattern observed in the measured projec-
tion, while the LinInt projection presents four peaks due to angular interpolation.

Phantom reconstruction results

Consider the DF = 4 scenario as an illustrative case. Figure  3 compares four data pro-
cessing pipelines (Full, SpeRF, LinInt, Partial) with the true activity map. Although each 
pipeline exhibits structural similarities with the true activity, the Partial recon is notice-
ably noisier than its counterparts. Quantitative comparisons, presented in Fig.  4, plot 
noise to mean activity recovery (average across all six hot spheres) curves at DF = 2, 4 
and 8, where the SpeRF recon outperforms both the Partial recon and LinInt recon by 
most closely paralleling the Full recon through OS-EM iterations. Note that even for the 
Full recon, AR is degraded (AR < 1) due to the partial volume effects [31]. Supplementary 
Fig. 1 provides individual noise to activity recovery curves for each hot sphere.

Moreover, the noise level in all sparse-view reconstructions increases as the DF 
becomes larger. But the SpeRF recon consistently achieves highest activity recoveries for 
all six lesions at the same noise level. When DF = 8, as evident in Fig. 4(c), the Partial 
recon attained higher activity recovery for small lesions, at the expense of substantially 
increased noise level, while the SpeRF recon remains superior for larger lesions. For all 
sizes of lesions and DFs, the SpeRF recon matched the activity recovery of the LinInt 
recon while maintaining a significantly lower noise level.

Table 1 NRMSD comparisons between sperf projections and LinInt projections, relative to 
measured projections, across different down-sampling factors (DFs) for Phantom study and patient 
studies (values are average across 11 [177Lu]Lu-DOTATATE studies and 6 [177Lu]Lu-PSMA-617 
studies)

Phantom Study Patient Study

DOTATATE PSMA-617

SpeRF LinInt SpeRF LinInt SpeRF LinInt
DF = 2 5.9% 9.0% 16.9% 23.4% 17.5% 24.6%
DF = 4 6.2% 9.5% 17.5% 25.5% 18.4% 27.4%
DF = 8 7.5% 11.1% 18.8% 30.4% 23.7% 34.1%

Fig. 2 Comparison of measured and synthesized projections for a patient after [177Lu]Lu-PSMA-617 therapy. Fig. 
(a), (b), and (c) show measured projection, LinInt projection (generated through linear interpolation), and SpeRF 
projection, respectively. The images and profile comparison across lacrimal glands show two hot spots/peaks in 
the SpeRF projection (green line) corresponding to left and right lacrimals, closely resembling the profile of the 
measured projection (red line), whereas the corresponding LinInt projection profile shows 4 peaks due to distor-
tions caused by angular interpolation
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Patient reconstruction results

Figure 5 shows the coronal Maximum Intensity Projections (MIPs) of an example patient 
image after [177Lu]Lu-DOTATATE (Fig. 5 left) and [177Lu]Lu-PSMA-617 (Fig. 5 right) 
therapy, respectively, derived from four different data processing pipelines at vari-
ous DFs. In both the [177Lu]Lu-DOTATATE and [177Lu]Lu-PSMA-617 studies, the 
LinInt recons exhibit noticeable artifacts due to distortions caused by angular interpola-
tion, more pronounced at higher DFs. This effect is particularly evident in the [177Lu]
Lu-PSMA-617 study for organs like the lacrimal, parotid, and submandibular glands at 
DF = 4 and 8, substantially affecting the structural clarity of the SPECT images. Partial 
recons became noisier with increasing DFs, making it challenging to distinguish small 
hot spots from the background. However, SpeRF recon maintains an image quality 
closer to Full recon.

The RCR and RCNR results are presented in Tables  2, 3, 4 and 5 and visualized in 
Fig. 6. For RCR, Partial recon consistently achieves the highest values, closely matching 
the Full recon (100%). SpeRF recon slightly underestimates RCR compared to Partial but 

Fig. 4 Noise to mean activity recovery (AR) curves averaged across six sphere volumes for DFs = 2, 4, and 8 are 
shown in subplots (a), (b), and (c), respectively. When DF = 2 and 4, SpeRF recon consistently outperforms both 
LinInt and Partial recon, achieving noise-to-AR performance that most closely aligns with Full recon across OS-EM 
iterations. When DF = 8, Partial recon exhibits significantly increased noise level, while both SpeRF and LinInt suffer 
from reduced sphere AR

 

Fig. 3 Visual comparison of Full recon, SpeRF recon, LinInt recon and Partial recon, against phantom true activity, 
for DF = 4. All reconstructed images and true activity maps are in the same color scale. Error maps present pixel 
value differences between reconstructed images and true activity

 



Page 10 of 16Li et al. EJNMMI Physics           (2025) 12:47 

Table 2 Average relative count recovery (RCR) values of the SpeRF recon, the LinInt recon, and the 
Partial recon across all eleven [177Lu]Lu-DOTATATE patient studies, benchmarked against the Full 
recon, whose RCR is standardized at 100%

DF = 2 DF = 4 DF = 8
SpeRF 
Recon

LinInt 
Recon

Partial 
Recon

SpeRF 
Recon

LinInt 
Recon

Partial 
Recon

SpeRF 
Recon

LinInt 
Recon

Par-
tial 
Recon

Lesion 100.6% 97.7% 100.1% 98.3% 87.5% 100.3% 90.3% 71.6% 98.8%
Kidney 103.9% 100.5% 100.8% 97.7% 94.2% 99.5% 93.0% 83.7% 99.0%

Table 3 Average RCR values of the SpeRF recon, the LinInt recon, and the Partial recon across 
all six [177Lu]Lu-PSMA-617 patient studies, benchmarked against the Full recon, whose RCR is 
standardized at 100%

DF = 2 DF = 4 DF = 8
SpeRF 
Recon

LinInt 
Recon

Partial 
Recon

SpeRF 
Recon

LinInt 
Recon

Partial 
Recon

SpeRF 
Recon

LinInt 
Recon

Partial 
Recon

Lesion 101.1% 99.9% 100.9% 98.4% 93.7% 100.5% 95.6% 92.2% 104.5%
All Organ ROIs 99.9% 93.8% 99.9% 96.1% 78.1% 101.1% 87.3% 58.8% 97.8%
Kidney 100.5% 99.1% 99.6% 98.3% 95.9% 102.1% 92.4% 83.0% 98.1%
Lacrimal 99.4% 79.6% 99.8% 95.5% 41.8% 103.5% 79.6% 21.4% 94.9%
Parotid 100.2% 98.4% 100.2% 97.1% 87.5% 99.7% 93.9% 65.6% 100.0%
Submandibular 99.6% 98.1% 100.2% 93.6% 87.3% 99.1% 83.3% 65.4% 98.2%

Fig. 5 Coronal Maximum Intensity Projections of SPECT reconstructions for [177Lu]Lu-DOTATATE (left panel) and 
[177Lu]Lu-PSMA-617 (right panel) patient studies are presented side by side, using four data processing pipelines 
(columns) and three DFs (rows). Colored boxes highlighted regions with apparent distinctions, which are zoomed 
in for closer inspection. Gamma correction, a non-linear adjustment of displayed pixel intensities, is applied to all 
images to enhance contrast and emphasize reconstruction artifacts. In both panels, blurring artifacts in the LinInt 
recon and noise in the Partial recon become increasingly prominent, especially obvious at higher DFs. SpeRF 
recon, however, maintains image quality closer to Full recon
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remains close to Full recon and consistently outperforms LinInt recon. For example, in 
the [177Lu]Lu-DOTATATE study at DF = 4 (Table 2), SpeRF recon achieves RCR values 
of ~ 98.3% for lesions, compared to ~ 100.3% for Partial recon and ~ 87.5% for LinInt 
recon. Similarly, in the [177Lu]Lu-PSMA-617 study at DF = 4 (Table  3), SpeRF recon 
achieves ~ 98.4% RCR for lesions, slightly lower than Partial recon (~ 100.5%) but sig-
nificantly better than LinInt recon (~ 93.7%). For RCNR, SpeRF recon demonstrates a 
consistent advantage across all DFs, particularly at DF = 4, where it achieves the best bal-
ance of RCR and RCNR. In the [177Lu]Lu-DOTATATE study at DF = 4 (Table 4), SpeRF 
recon achieves ~ 87.9% RCNR for lesions, outperforming both LinInt recon (~ 68.7%) 
and Partial recon (~ 68.7%). A similar trend is observed in the [177Lu]Lu-PSMA-617 
study (Table 5), where SpeRF recon achieves ~ 78.4% RCNR for lesions at DF = 4, com-
pared to ~ 70.7% for LinInt recon and ~ 68.5% for Partial recon. At higher DFs, such as 
DF = 8, SpeRF recon continues to outperform the other methods in RCNR, although the 
RCR decreases more significantly. These results indicate that SpeRF recon maintains 
high activity recovery while providing additional advantages in RCNR.

Overall, DF = 4 provides the best trade-off for SpeRF recon, offering high RCR (within 
~ 2-3% of Full recon) and the highest RCNR across all VOIs. While Partial recon achieves 
slightly higher RCR values, SpeRF recon delivers superior RCNR, particularly in small 
or challenging regions such as the lacrimal glands (~ 0.4 mL), where LinInt recon often 
fails. These results highlight the potential of SpeRF recon as a robust method for reduc-
ing scan time while preserving image quality and clinical usability.

Discussion
The field of machine learning, particularly deep learning (DL), is rapidly advancing. 
However, DL applications in SPECT imaging remain limited, partly due to challenges 
such as limited availability of training data. Supervised DL methods, like 3D U-Net, have 

Table 4 Average relative contrast-to-noise ratio (RCNR) values of the SpeRF recon, the LinInt recon, 
and the Partial recon across all eleven [177Lu]Lu-DOTATATE patient studies, benchmarked against 
the Full recon, whose RCNR is standardized at 100%

DF = 2 DF = 4 DF = 8
SpeRF 
Recon

LinInt 
Recon

Partial 
Recon

SpeRF 
Recon

LinInt 
Recon

Partial 
Recon

SpeRF 
Recon

LinInt 
Recon

Par-
tial 
Recon

Lesion 88.6% 82.5% 82.7% 87.9% 68.7% 68.7% 73.5% 43.9% 48.2%
Kidney 92.6% 85.8% 84.5% 88.0% 73.1% 67.0% 76.5% 51.3% 48.8%

Table 5 Average RCNR values of the SpeRF recon, the LinInt recon, and the Partial recon across 
all six [177Lu]Lu-PSMA-617 patient studies, benchmarked against the Full recon, whose RCNR is 
standardized at 100%

DF = 2 DF = 4 DF = 8
SpeRF 
Recon

LinInt 
Recon

Partial 
Recon

SpeRF 
Recon

LinInt 
Recon

Partial 
Recon

SpeRF 
Recon

LinInt 
Recon

Par-
tial 
Recon

Lesion 83.8% 79.8% 80.7% 78.4% 70.7% 68.5% 65.7% 55.7% 54.9%
All Organ ROIs 84.7% 75.7% 80.9% 78.4% 56.9% 67.3% 63.2% 31.0% 50.8%
Kidney 84.8% 79.9% 80.3% 80.1% 69.6% 67.6% 65.8% 44.2% 51.3%
Lacrimal 83.6% 63.6% 80.4% 77.5% 29.9% 68.6% 57.2% 10.2% 47.9%
Parotid 84.5% 79.3% 80.9% 79.1% 63.4% 66.0% 67.6% 34.7% 52.0%
Submandibular 85.6% 79.7% 81.8% 77.1% 64.0% 66.9% 62.2% 34.6% 51.7%
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shown promise in predicting missing SPECT projection views, but their reliance on large 
datasets poses a barrier. Although simulated SPECT projection data can be useful for 
training, there is a domain gap between simulated data and real patient data, with dif-
ferences in activity distributions and noise characteristics. This gap can limit the appli-
cability of supervised models trained solely on simulations. In our RPT application, with 
only tens of patient datasets available, obtaining the hundreds or thousands of datasets 
required for supervised methods was impractical. Additionally, variations in camera-
specific parameters, such as gamma-camera crystal thickness and body contour orbits, 
can hinder generalizability. In contrast, self-supervised learning methods derive insights 
directly from the available data, without the need for extensive labeled datasets, making 
them inherently adaptable. This motivated our focus on a self-supervised approach in 
this study.

To evaluate the performance of supervised methods with our limited dataset, we 
implemented a supervised learning approach similar to that introduced in [2]. Spe-
cifically, we used three separate 3D U-Nets to predict the skipped 3/4 of total projec-
tions given the 1/4 measured projections. Each U-Net was trained to predict a subset 

Fig. 6 Box plot visualization of results presented in Tables 2, 3, 4 and 5, showing RCR, i.e., relative count recovery 
(upper panel) and relative CNR (lower panel) for three sparse-view reconstructions: SpeRF recon, Partial recon, 
and LinInt recon. Results are reported for [177Lu]Lu-DOTATATE (left panel) and [177Lu]Lu-PSMA-617 (right panel) 
patient studies across different down-sampling factors (DF = 2, 4, 8). SpeRF recon maintains a balance between 
RCR and RCNR (especially at DF = 4), outperforming LinInt in both metrics and Partial in RCNR. Note that for the 
RCR of lacrimal glands in LinInt recon, a few data points are not visible because they fall below the plotted range
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of skipped projections: the first U-Net targeted projections 2, 6, 10,…, 118; the second 
targeted projections 3, 7, 11,…, 119; and the third targeted projections 4, 8, 12,…, 120. 
We split our dataset of 11 [177Lu]Lu-DOTATATE patients into 4 for training, 2 for val-
idation, and 5 for testing. The results, shown in Table  6, indicate that this supervised 
approach achieved a substantially lower RCR and RCNR compared to SpeRF (Tables 2, 
3, 4 and 5), emphasizing the challenges of applying supervised methods to scenarios 
with restricted data availability.

The extension from NeRF to SpeRF is natural. NeRF was originally designed to render 
photorealistic novel views of scenes with complex geometries and appearances by repre-
senting a scene as a continuous function that outputs radiance in the coordinate space. 
To learn this continuous representation, an MLP is trained with scene coordinates as 
inputs and three-channel RGB colors as the training targets. Similarly, in this work, we 
employed an MLP to learn a continuous representation, but the training targets were 
defined as single-channel SPECT projection counts. This coordinate-based learning 
approach operates directly in the projection domain, making it agnostic to the choice 
of image reconstruction method. It is compatible with a wide range of reconstruction 
techniques, including model-based image reconstruction (MBIR) and plug-and-play 
[32] approaches. MBIR methods typically process a complete set of projection views 
with fewer counts per view, improving image quality and reducing noise by incorporat-
ing regularizers and priors. However, these methods often require careful tuning of reg-
ularization parameters, which can be challenging. In contrast, SpeRF is tuning-free, as 
demonstrated by its robust performance across two distinct therapies with significantly 
different activity distributions in the body.

While SpeRF recon effectively compensates for image quality degradation in sparse 
view acquisitions, several limitations remain. At a DF of 4, SpeRF recon achieved RCNRs 
of ~ 80% or higher for all organs and lesions in patient studies, outperforming other 
sparse view methods (~ 60–70%, Tables 4 and 5). However, at higher DFs, such as DF = 8, 
we observed reduced activity recovery (Tables 2 and 3). This reduction likely stems from 
the neural network’s smoothing tendency in high-noise scenarios, where voxel values 
are averaged due to noise variances. Additionally, the limited training data at high DFs 
impacts the MLP’s ability to capture finer textures in measurement projections, fur-
ther reducing activity recovery for small lesions. A similar reduction in activity/count 
recovery has also been reported in previous studies [2]. Future research could explore 
the integration of variational inference or generative models to mitigate this smoothing 
effect and enhance the fidelity of fine details. Another limitation is the computational 
efficiency of SpeRF, as it currently takes ~ 40 s to synthesize a single projection image on 
our machine (RTX 4090 GPU + 24-core Intel i9-13900KF CPU + 64 GB of DDR5 mem-
ory), making real-time synthesis challenging. Optimizing the implementations, such 

Table 6 Average RCR and RCNR values for lesions and kidneys achieved by a supervised learning 
method on our [177Lu]Lu-DOTATATE patient dataset, using three 3D U-Nets. The skipped 3/4 
projections were predicted based on the 1/4 measured projections. Results are evaluated on 5 test 
patients, with 4 patients used for training and 2 for validation. SpeRF recon results are repeated for 
comparison with supervised 3D U-Net method

SpeRF Recon Supervised 3D U-Net
RCR RCNR RCR RCNR

Lesion 98.3% 87.9% 80.4% 57.4%
Kidney 97.7% 88.0% 81.9% 63.5%
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as through a customized CUDA kernel, could significantly accelerate processing and 
address this issue.

Shiri et al. proposed a deep convolutional residual neural network-based approach to 
reduce SPECT acquisition time by predicting full-time and full-view projection images 
from half-time and half-view projection images, respectively, to maintain reconstruc-
tion quality [16]. Similar to [2], training of [16] was conducted in a supervised man-
ner. However, as shown in Table  6, supervised learning methods are less effective 
when only limited data is available. We investigated the effects of reducing the acqui-
sition time per projection view by applying retrospective Bernoulli Thinning (BerTin) 
to full-time projection views. Specifically, let Y ∼ Poisson (µ ) and define Z  such that 
Z|Y = k ∼ Bernoulli(1/DF, k). It follows that Z ∼ Poisson(µ /DF). In BerTin, each 
projection event is independently retained with a probability of 1/DF, resulting in tem-
porally subsampled projection images by a DF [33]. These subsampled projection images 
are then reconstructed using OS-EM. Table 7 presents metrics, including RA and RCNR 
for BerTin recons across all [177Lu]Lu-DOTATATE patients. BerTin achieves results 
comparable to Partial. Both methods maintain high RCR values across all DFs, with 
BerTin achieving ~ 99% or higher for lesions and kidneys even at DF=8. However, RCNR 
values for BerTin decline significantly at higher DFs, similar to Partial. For example, at 
DF=8, BerTin achieves RCNR values of 45.2% for lesions and 49.6% for kidneys, indicat-
ing substantial CNR degradation.

Although our research was initially focused on Lu-177 SPECT imaging, we expect 
that our coordinates learning-based self-supervised method could be adapted for use in 
other low-count applications, where the imaging acquisition could vary between scans 
and a single pre-trained model may not generalize well. This includes pure β--emitters, 
like Y-90, characterized by a low yield of bremsstrahlung photons for SPECT imaging 
[34], and therapies with α-emitters, like Ac-225 that use very low activities [3]. Both 
present inherent low-count imaging challenges that could potentially benefit from our 
approach. Furthermore, SpeRF could benefit diagnostic SPECT imaging by enabling 
administration of lower activities, therefore supporting low-dose SPECT protocols that 
reduce radiation exposure to patients with minimal compromise to image quality.

Conclusion
This study addresses the challenge of extended SPECT imaging durations under low-
count conditions, as encountered in Lu-177 SPECT imaging, by developing a self-super-
vised coordinate learning approach, namely SpeRF, that efficiently synthesizes skipped 
SPECT projection views without separate training data. SpeRF enables a significant 
reduction in SPECT acquisition time by allowing for skipping projection views and using 

Table 7 Average RCR and RCNR values for lesions and kidneys for BerTin recons, which reduces 
acquisition time per projection by retaining projection events with a probability of 1/DF using 
Bernoulli thinning. Results are based on experiments conducted with our [177Lu]Lu-DOTATATE 
dataset across various DFs. SpeRF recon results are repeated for comparison with BerTin recon

DF = 2 DF = 4 DF = 8
SpeRF BerTin SpeRF BerTin SpeRF BerTin

RCR Lesion 100.6% 99.6% 98.3% 99.2% 90.3% 99.1%
Kidney 103.9% 100.0% 97.7% 101.4% 93.0% 104.8%

RCNR Lesion 88.6% 80.1% 87.9% 60.2% 73.5% 45.2%
Kidney 92.6% 80.5% 88.0% 63.2% 76.5% 49.6%
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an MLP to synthesize skipped projections, while preserving image quality, as indicated 
by improved NRMSD in projections and relative CNR in reconstructions compared with 
other methods for sparse acquisitions, though minor underestimation of count recovery 
in patient studies is observed. Unlike supervised deep learning-based approaches, this 
self-supervised method addresses the challenge of limited training data availability com-
monly encountered in clinical settings. The feasibility for reduction in acquisition time 
demonstrated in this work is particularly relevant for imaging under low-count condi-
tions and for protocols that require multiple-bed positions.
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Supplementary Fig. 1. Individual noise-to-activity-recovery curves for six
hot spheres at various down-sampling factors.
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