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Test-Time Adaptation Improves Inverse Problem
Solving With Patch-Based Diffusion Models

Jason Hu
Jeftrey A. Fessler

Abstract—Diffusion models have achieved excellent success in
solving inverse problems due to their ability to learn strong image
priors, but existing approaches require a large training dataset of
images that should come from the same distribution as the test
dataset. In practice, the size of the available training dataset can
range from nonexistent to very large. In some cases, conventional
diffusion model training from limited data can lead to poor re-
construction results due to poorly learned priors. One potential
improvement is to start with a diffusion model trained from avail-
able training data having a possibly mismatched distribution, and
then refine the network at reconstruction time to account for the
distribution mismatch. In this work, we investigate the effect of
this network refining process on diffusion models trained from
varying degrees of out-of-distribution data. Specifically, we use a
self-supervised loss to adapt the learned diffusion network to the
testing data while helping the network output maintain consistency
with the measurements. We show that, both theoretically and ex-
perimentally, test-time adaptation of a patch-based diffusion prior
leads to higher quality reconstructions than test-time refinement of
traditional whole-image diffusion models. Extensive experiments
show that across a wide range of inverse problems, test-time adap-
tation significantly improves image reconstruction quality when
there are significant domain shifts between training and testing dis-
tributions. Interestingly, even for the in-distribution case, test-time
adaptation also significantly improves reconstruction quality.

Index Terms—Deep learning,
processing, inverse problems.

diffusion models, image

I. INTRODUCTION

N IMAGING, inverse problems are important and consist of
I reconstructing an image & from a measurementy = A(x) +
€. Here, Arepresents a forward operator and e represents random
unknown noise. By Bayes’ rule, log p(z|y) is proportional to
log p(x) + log p(y|x), so obtaining a good prior p(x) is crucial
for recovering  when y contains far less information than x.
Diffusion models obtain state-of-the-art results for learning a
strong prior and sampli ng from it, so competitive results can be
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obtained when using them to solve inverse problems [1], [2],
(31, [4], [5], [6].

However, these diffusion inverse solvers (DIS) require well-
trained diffusion models, which in turn require large amounts
of clean training data [7], [8]. It may be infeasible to collect
large training data sets in many applications such as medical
imaging [1], [9], [10], black hole imaging [11], [12], and phase
retrieval [6], [13]. For example, in practical applications such
as dynamic CT reconstruction [14] and single photon emis-
sion CT [15], obtaining high quality measurements, which can
lead to reconstructions closely approximating the ground truth,
can be slow or potentially harmful to patients, so only very
small datasets of clean images are available. Moreover, for very
challenging inverse problems such as black hole imaging [11]
and Fresnel phase retrieval [16], no ground truth images are
known, so one must obtain a reconstruction from only a single
measurement y. In these practical applications with extremely
limited or even nonexistent available data (measurement-only),
it can be difficult or even impossible to train a diffusion model
to approximate the underlying distribution well. Therefore, it is
desirable to develop a method that can be applied regardless
of dataset limitations. In this paper, we investigate applying
a self-supervised loss at reconstruction time that allows the
network to be adapted to the test data. Specifically, we investigate
three different settings with various data availability ranging
from nonexistent, limited, and abundant training data: (1) the
dataless setting in which no training data is available and we are
only given measurement y, (2) the small dataset setting in which
we are only given a small number of samples x that belong to the
same distribution as the test dataset, (3) and the in-distribution
setting in which we have sufficient training data of the same
distribution as the test dataset. Our goal is to develop methods
that can be used to adapt the trained model to testing data in
these settings with varying training data availability. Recently,
some previous works have aimed to address these problems by
demonstrating that diffusion models have a stronger generaliza-
tion ability than other deep learning methods [10], and that slight
distribution mismatches between the training data and test data
may not significantly degrade the reconstructed image quality.
However, in cases of particularly sparse or noisy measurements,
as well as when the test data is severely out of distribution (OOD)
with a significant domain shift, an improper choice of training
data leads to an incorrect prior that causes substantial image
degradation and hallucinations [11], [17]. To address these chal-
lenges in the dataless setting, recent works first train a network
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on a large sample of synthetic data that may differ greatly from
the test data. Then, at reconstruction time, the trained diffusion
network is updated based on the measurement y [17], [18].
This adaptation aims to shift the underlying prior learned by the
network towards the appropriate prior corresponding to the test
data distribution. However, with the large number of network
parameters, a parameter-sensitive network adaptation approach
is required at test time to avoid overfitting to the measurement.
Furthermore, these methods have not been tested in the small
dataset setting, and in the in-distribution setting, excessive net-
work refining yields inconsistent improvement and degradation
in the reconstructed image [17], [18]. Patch-based diffusion
models have shown success both for image generation [19], [20]
and for inverse problem solving [21]. In particular, the method
of [21] involves training networks that take in only patches of
images at training and reconstruction time, learning priors of
the entire images from only image patches based on positional
encoding. In cases of limited training data, [21] shows that
patch-based diffusion models outperform whole image models
for solving certain inverse problems. These works motivate our
key insight that patch-based diffusion priors potentially obtain
stronger generalizability than whole-image diffusion priors for
both the dataless setting and the small dataset setting, given
a severe lack of data. Inspired by this, we propose to use
patch-based diffusion models to tackle the challenges arising
from data limitations and mismatched distributions in a unified
way. We first develop a test-time adaptation method to take a
network trained on patches from a mismatched distribution and
adapt it on the fly at reconstruction time. We then show that
this method can improve image quality consistently in all three
settings with varying data availability ranging from abundant,
to limited and nonexistent.

In summary, our contributions are as follows:

® We integrate the patch-based diffusion model with the deep
image prior (DIP) framework to take a network trained on a
mismatched distribution and adapt it at reconstruction time
towards the test-time distribution using a self-supervised
loss.

¢ Experimentally, we find this approach of test-time diffusion
adaptation leads to improved image quality both in terms of
quantitative and qualitative metrics, outperforming using
whole-image diffusion models under the same setting. In
particular, even when the diffusion model was trained
in-distribution, test-time adaptation offers an additional
improvement.

e Theoretically, we show that in certain cases, using the
self-supervised loss with a patch-based prior leads to a
beneficial form of data augmentation compared to whole-
image diffusion prior, providing further justification for the
superior generalizability of adapting the patch-based prior.

Therest of the paper is organized as follows. Section Il reviews

the literature of diffusion models, methods of using them to solve
inverse problems, and self-supervised methods. Section III de-
tails the training and reconstruction method with our patch-based
diffusion prior and the main test-time adaptation algorithm, as
well as theoretical analysis of the method. Section III reports

experiments that empirically verify the efficacy of the proposed
methods. Section V concludes the paper.

II. BACKGROUND AND RELATED WORK

Diffusion models and inverse problems: In a general frame-
work, diffusion models involve the forward stochastic differen-
tial equation (SDE)

dx; = —%t) xy dt + /B(t) dwy, (D

wheret € [0,T], x; € R?, and () is the noise variance sched-
ule of the random process dw(t). This process adds noise to
a clean image and ends with an image indistinguishable from
Gaussian noise [7]. Thus, the distribution of x is the training
data distribution and the distribution of @7 is (approximately) a
standard Gaussian. Then the reverse SDE has the form [22]:

da; = <—ﬂg)wt — B(t)Va, logpt(:ct)> dt + +/B(t) dw,.
@)
Score-based diffusion models involve training a neural network
to learn the score function V, log p; (), from which one can
start with noise and run the reverse SDE to obtain samples from
the learned data distribution.
When solving inverse problems, the goal is to sample from
the posterior distribution p(x¢|y), so the reverse SDE becomes

= (2507, i (eily) ) /G dw
3

Unfortunately, the term log p; (x:|y) is difficult to compute from
the unconditional score V, log p:(x:) alone. To address this
problem, previous works [23], [24], [25], [26] among others pro-
posed directly learning this conditional score V, log p:(x:|y)
instead. In particular, [23] and [24] propose initializing the
reverse SDE with the degraded image and then using a diffusion
bridge to arrive at the clean data distribution. On the other
hand, [25] and [26] still initialize with pure noise, but use the
conditional diffusion model to implicitly enforce consistency
with the measurement y. These methods require paired data
(z, y) between the image domain and measurement domain for
training. Hence, the learned conditional score function is suitable
only for the particular inverse problem for which it was trained,
limiting its flexibility.

For greater generalizability, it is desirable to apply the uncon-
ditional score V5, log p;(x:) to be able to solve a wide variety
of inverse problems. Thus, many works have been proposed to
approximate the conditional score in terms of the unconditional
one [2], [4], [27], [28]. These methods generally involve al-
ternating between updating the image using the trained score
network and updating the image to be consistent with the mea-
surement [9]. These two steps are generally detached, so many
choices of sampling methods and SDE solvers are possible for
the former step while changing the method by which data fidelity
is enforced. For example, [29] uses Langevin dynamics with a
simple gradient descent step toward the measurement. Recogniz-
ing that the image lies on a noisy data manifold (as opposed to the
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clean data manifold) during intermediate timesteps, [2] improves
on this method by performing gradient descent with respect to
the expectation of the clean image at each iteration. As these
methods require a large number of iterations, DDIM [30] was
developed as an acceleration method that relies on estimating
the clean image at each iteration to guide the noisy image
toward the clean image manifold. Building off this method, [4]
and [28] rely on hard constraint enforcement via projection onto
the manifold where data consistency is satisfied while using
DDIM as the sampling method, greatly reducing the number of
sampling steps needed when solving inverse problems. Finally,
conjugate gradient descent has proven to be useful for enforcing
data fidelity when used in conjunction with DDIM when the
measurements are assumed to be compressed but noiseless [27],
[31].

However, even when the number of sampling steps is large,
these methods all struggle to truly sample from the posterior, as
they all rely on approximations to the posterior distribution at
intermediate timesteps. More recently, [32] proposed a method
using resampling and Monte Carlo methods to estimate the
posterior distribution at each timestep, which was theoretically
shown to sample from the posterior distribution when the num-
ber of particles is large. Finally, [33] unified various diffusion
inverse solvers (DIS) into two categories: the first consists of
direct approximations to p:(y|x:), and the second consists of
first approximating E[xo|x:, y] (typically through an optimiza-
tion problem balancing the prior and measurement) and then
applying Tweedie’s formula [34] to obtain

V logpr(@ify) = SolZeyl T 4)
Oi
where o0 is the noise level of x;. All of these methods require a
large quantity of clean training data that should come from the
distribution p(x) whose score is to be learned, which may not
be available in practice.

Methods without clean training data: When no in-distribution
data is available, one approach is to use traditional methods
that do not require any training data, such as total variation
(TV) [35] or wavelet transform [36] regularizers that encourage
image sparsity. More recently, plug and play (PnP) methods
have risen in popularity [37], [38], [39], [40]; these methods use
a denoiser to solve general inverse problems. Although these
methods often use a trained denoiser, [41] found that using an
off-the-shelf denoiser such as block matching 3D [42] can yield
competitive results. Nevertheless, with the rise of deep learning
in image processing applications including denoising, methods
that harness the power of these learning based models attract
more attention.

The deep image prior (DIP) is an extensively studied self-
supervised method that is popular without requiring training
data, and the reconstruction is from a single measurement y.
This method consists of training a network fg using the loss
function

L(0) = ly — A(fo(2)]13, =~ N(0,1), Q)

so that fg(z) produces the reconstruction. Although the neural
network acts as an implicit regularizer whose output tends to
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lie in the manifold of clean images, DIP is prone to overfitting
especially with noisy measurements [43]. Various methods have
been proposed involving early stopping, regularization, and
network initialization [44], [45], [46]. Nevertheless, the method
is very sensitive to the parameter selection and implementation,
which can take a long time to train [45].

Most DIS methods learn a prior from a large collection of
clean in-distribution training images, but recently [17] and [18]
proposed self-supervised diffusion model methods that are based
off the DIP framework. These methods involve alternating
between the usual reverse diffusion update step to gradually
denoise the image and a network refining step that updates the
score network parameters via the loss function

L() = |ly — A(CG(aop:(x+:0)))I3 (©)

where conjugate gradient (CG) descent is used to enforce data
fidelity. This CG step consists of solving an optimization of the
form

. 1 .
arg ming |1y — A(@)[} + Zlle —@oel3. @

where +y is a trade-off parameter controlling the strength of the
prior versus the measurement. Crucially, these methods intro-
duce an additional LoRA module [47] to the network and the
original network parameters are frozen when backpropagating
the loss, which helps to avoid overfitting the whole-image model.
Nevertheless, many technical tricks are required [18] involving
noisy initializations and early stopping to obtain good results and
avoid artifacts. Our patch-based model avoids this overfitting
issue.

Diffusion model fine-tuning: In the small dataset setting,
various fine-tuning methods exist to shift the underlying prior
learned by a score network away from a mismatched distribution
and toward a target distribution. Given a pretrained diffusion net-
work on a mismatched distribution, [48], [49], and [50] among
others have studied ways to fine-tune the network to the desired
dataset. These methods generally involve freezing certain layers
of the original network, appending extra modules that contain
relatively few weights, or modifying the loss function to cap-
ture details that differ greatly between distributions. However,
these methods usually still require thousands of images from
the desired distribution and focus on image generation. When
solving inverse problems, the reconstructed image should be
consistent with the measurement y, reducing the number of
degrees of the freedom for the image compared to generation,
so with proper fine-tuning the data requirement should be lower.
Furthermore, even after fine-tuning, the network’s underlying
distribution may still contain some inconsistencies with the test
distribution, leading to artifacts in the reconstructed image.

In summary, numerous methods have been developed for
solving inverse problems using well-trained diffusion models
that require large training datasets. Different methods also exist
to adapt diffusion models to a new distribution under settings
of limited or no data, but they vary based on data availability.
Section III develops a method that can be applied regardless of
the problem setting.
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Fig. 1. Schematic for zero padding and partitioning image into patches. Each
index 7 represents one of P2 possible ways to choose a patch offset tuple.

III. PROPOSED METHODS

This section extends the patch-based diffusion model frame-
work of [21] so that it can be applied with the self-supervised
loss for test-time adaptation.

A. Patch-Based Prior

We first zero pad the N x N image by an amount P on each
side and model the resulting padded image x. When choosing the
ith patch offset tuple (01,07) € {0,..., P — 1}? in Fig. 1, we
partition & into many square patches and one bordering region
consisting of all zeros. Since k = N/P patches are needed in
one direction to perfectly cover the image, our model for the
data distribution has the form

P (k+1)?
p(x) = 7 Hpi,B(SUi,B) H Pir(Tir),s 3)
i=1 r=1

where x; g represents the bordering region of x that depends on
the specific value of 4, p; p is the probability distribution of that
region, x; , is the rth P x P patch when using the partitioning
scheme corresponding to the value of ¢, p; - is the probability
distribution of that region, and Z is a normalizing factor. This
model uses many possible tilings of the image, eliminating
boundary artifacts that would occur if only one tiling was used.

For training, we use a neural network Dg(x, 0¢) that accepts
anoisy image x (or a patch of that image) and the noise level o;.
For each patch, we define the x positional array as the 2D array
consisting of the x positions of each pixel of the image, scaled
between -1 and 1, and the y positional array is similarly defined
for the y positions. To allow the network to learn different patch
distributions at different locations in the image, we extract the
corresponding patches of these positional arrays and concatenate
them along the channel dimension of the noisy image patch and
treat the entire array as the network input. Since we are using
a patch-based prior, we perform denoising score matching on
patches of an image instead of the whole image. Hence, the

training loss is given by

arg mingEyy/(0,1)Earp(a)EBen (0,021 | Do (@ + €, 1) — |3,

©)
where here © ~ p(«) represents a patch drawn from a sample of
the training dataset, oy is a predetermined noise schedule, and
U denotes the uniform distribution. See [21] and Appendix A-C
for more details about the patch-based training process.

B. Diffusion Self-Supervision

We first review how to apply the self-supervised loss in con-
junction with diffusion models. For each specific measurement
vy, the original DIP framework optimizes the network parameters
6 via the self-supervised loss (5) from the predicted recon-
structed image. Diffusion models provide a prediction of the
reconstructed image at each timestep: namely, the expectation
of the clean image E[x|x;] is approximated by the denoiser
Dg(x;) via Tweedie’s formula. Then the expectation condi-
tioned on the measurement E[x |z, y] can be obtained through
one of many methods of enforcing the data fidelity constraint.
That conditional expectation should be used in test-time adap-
tation of diffusion models.

We begin with the unconditional expectation by leveraging the
patch-based prior. Following (8), we apply Tweedie’s formula
to express the denoiser of « solely in terms of denoisers of the
patches of . Because the outermost product is computationally
very expensive, in practice we approximate Dg () using only a
single randomly selected value of offset index ¢ for each denoiser
evaluation:

(k+1)?
Do(z) ~ Dip(xin)+ > Dip(@ir).

r=1

(10)

By definition, D; p(x; ) =0 and we compute each
D; ,(x;,) with the network. Note that (10) provides an un-
conditional estimate of the clean image; to obtain an approx-
imate conditional estimate Dg(x;|y) of the clean image, we
run C iterations of the conjugate gradient descent algorithm
for minimizing || Ax — y||2, initialized with the unconditional
estimate [27].

The image that is being reconstructed might not come from
the distribution of the training images. Hence, the estimate
Dg(x;|y) may be far from the true denoised image. Thus, we use
y to update the parameters of the network such that Dg(x|y)
becomes more consistent with the measurement:

0eargmingHyfADg(wt\y)H%‘ (11

Previously, additional LoRA parameters [47] were used as
an injection to the network to leave the original parameters
unchanged during this process [17], [18]. However, the effect of
using different ranks for LoRA versus other methods of network
fine-tuning on DIS has not been studied extensively, so we opt
to update all the weights of the network in this step. Appendix
A-A shows results from using the LoRA module.

Crucially, iterative usage of CG for computing the condi-
tional denoiser allows for simple and efficient backpropagation
through this loss function, a task that would be much more
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Algorithm 1: Test-Time Adapted Diffusion Inverse Solver.
Require:o; < 02 < ... <o0p,e>0,P,C,y, K
Initialize  ~ N (0,021)
fort =T :1do

if t mod K = 0 then
Compute Dg(x;) using (10) with
arandom index ¢
Run C iterations of CG initialized
with Dg(x;) to obtain Dg(x;|y)
Define L(0) = [y — ADo(x1[y) 3
Update 0 by backpropagating L(0)
end if
Sample z ~ N (0, 021)
Setay = € 07}
Compute D () using (10) with a
random index ¢
Run C iterations of CG for (7)
initialized with D(x;)
Sets; = (D — x;)/o?
Setx; jtox, + Fs + /az
end for

computationally challenging if another DIS such as [2] or [4]
were used. Furthermore, because the number of diffusion steps
is large and the change in x; is small between consecutive
timesteps, we apply this network refining step only for certain
iterations of the diffusion process, reducing the computational
burden.

After this step, we apply the refined network to compute a new
estimate of the score of x; and then use it to update ;. Similar
to the network refining step, we use the stochastic version of the
denoiser given by (10) rather than the full version. Ref. [21]
showed that for patch-based priors, Langevin dynamics [29]
worked particularly well as a sampling algorithm, so we used
it here in conjunction with CG steps to enforce data fidelity.
Algorithm 1 summarizes the entire test-time adapted method
for solving inverse problems.

IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, VOL. 11, 2025

1200
PnP-ADMM

Whole image

Patches+SS Ground truth
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Dataless setting: Results of 60 view CT reconstruction using self supervised (SS) loss. The display uses modified HU units to show more contrast between

C. Patch-Based Training

In the small dataset and in-distribution settings, we are
provided clean training images that can be used to train the
patch-based network. In the small dataset setting, the dataset
is too small to directly train a diffusion model from scratch,
so we initialize the training process with a checkpoint trained
on a different large dataset and then fine-tune this checkpoint
on the small dataset. Works such as [48] and [49] found that
this fine-tuning process allows diffusion models to be trained
with a much smaller dataset than would otherwise be required.
On the other hand, for the in-distribution setting, we initialize
the weights of the network randomly and train on the large
in-distribution dataset. Ref. [19] found that training with varying
patch sizes improved image generation performance compared
to fixing the patch size to that used during inference. Here, we
also applied a varying patch size scheme during fine-tuning as
a method of data augmentation. We used the UNet architecture
in [8] that can accept images of different sizes. Hence, the loss
becomes

arg mingEyy/(0,7)Earpy (@) Ben (0,02 1) | Do (®+€, 00) — |3,
(12)
where @ ~ pgy(x) represents drawing a patch of random size
and location from an image belonging to the fine-tuning dataset.
Appendix A-C provides full details of the training process.

D. Theoretical Analysis

This section provides a rough sketch of why Algorithm 1
should work better for the patch-based model compared to a
whole-image model. Firstly, rewrite (10) as follows:

D(x) =Y G.Do(Gcx,c), (13)

where c denotes the patch location, G denotes a patch extracting
operator that extracts the patch corresponding to location ¢ from
the whole image x. Thus G', is an operator that takes a patch
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TABLE I
COMPARISON OF QUANTITATIVE RESULTS ON FOUR DIFFERENT INVERSE PROBLEMS IN THE DATALESS SETTING WITH THE SELF-SUPERVISED LOSS (SS)

Method CT, 20 Views CT, 60 Views Deblurring Superresolution
PSNR?T SSIM1 | PSNRT SSIM?T | PSNRT SSIMT | PSNRT  SSIM*
Baseline 24.93 0.613 | 30.15 0.784 | 23.93 0.666 | 25.42 0.724
ADMM-TV 26.81 0.750 | 31.14 0.862 | 27.58 0.773 | 25.22 0.729
PnP-ADMM [57] | 30.20 0.838 | 36.75 0.932 | 28.98 0.815 | 27.29 0.796
PnP-RED [58] 27.12 0.682 | 32.68 0.876 | 28.37 0.793 | 27.73 0.809
Whole image 28.11 0.800 | 33.10 0911 | 25.85 0.742 | 25.65 0.742
Patches [21] 27.44 0.719 | 33.97 0.934 | 26.77 0.782 | 26.12 0.759
Whole+SS [17] 33.19 0.861 | 40.47 0.957 | 29.50 0.831 | 27.07 0.701
Patches+SS (Ours) | 33.77 0.874 | 41.45 0.969 | 30.34 0.860 | 28.10 0.827

Results are averages across all images in the test dataset. Best results for practical use are in bold.

and returns a whole image with the corresponding patch filled

in (and the rest of the entries are zeros). Note that c is input to

the patch-based network Dg through positional encoding.
Now we analyze (11) using this framework. The loss function

for self-supervision is given by:

2

L() = Hy — A G.Dg(G.z,cly) (14)

2

For inverse problems such as superresolution and CT recon-
struction, A is a wide matrix that has full row rank. Hence, even
when the measurement y is noisy, there exists some xy with
y = Axg. Then we have

2

L) = HA(aco " GLDp(Gu ) as)
c 2
2
L(6) < ||A|3|jwo — > G.Do(Gew, cly) (16)
c 2
2
= A3} G.Gwo — > G.Do(Gex, cly)||
C c 2
17)

where in the last step, we have used the fact that at each diffusion
iteration, the patches are nonoverlapping. Thus,

2

L(6) < || All3 (18)

> G.(Gexo — Do(Gez, cly))

2

Now we have a sum of the form ||z1 + ... + 2, |3, which [3]
showed to be upper bounded by K (||z1]|2 + . .. + ||z,[|3) fora
fixed constant K. Applying this inequality and absorbing || A||3
into the constant, we have

L(0) <K |GL(Gewo — Do(Gem, cly))5  (19)

=K |Gexo — Do(Gox, cly)|l3 (20)

A similar derivation for the whole image model shows that the
loss in that case is bounded by

L.,(0) < K|zo — Do(z|y)|3- Q1)

Table S.5 shows that performance is improved by using more
backpropagation iterations for the loss function; hence, although
in practice we only perform a fixed number of iterations for
speed, optimally we should aim to reduce the loss L(8) to zero.
Observe that (20) has the same form as the loss that would be
used for refining the network with a whole image model (21).
However, now instead of a loss of a single image, we now have
individual losses of many patches of an image. For example,
the experiments of Table I used 25 patches to tile each image for
each diffusion iteration, so we had 25 losses. This method of data
augmentation helps explain why the patch-based model obtains
better performance than the whole-image model when perform-
ing test-time adaptation. We additionally note that although the
positional encoding input into the network is different for each
patch, the network does not separately learn a distribution for
each position, as the weights are shared across these different
positions. This is analogous to the analysis of [51], where a single
diffusion model was trained on the 1000 classes of ImageNet
with the class label of the image being included as an additional
input to the network. Since each class only had around 1000
images, it would have been very difficult to train a diffusion
model on only one of the classes, but by training across all the
classes at once, a much better network can be trained.

IV. EXPERIMENTS

This section reports empirical results on sparse-view CT
reconstruction, image deblurring, and image super-resolution.
For each computational imaging application, we illustrate the
benefits of using the self supervised (SS) loss in all three of the
settings described in the introduction: dataless (zero-shot SS),
small dataset (fine tuning followed by SS), and in-distribution
(where one might expect SS to be counter-productive).

Experimental setup: For the CT experiments, we used the
AAPM 2016 CT challenge data from [52]. We applied the same
data processing methods as in [21] with the exception that we
used all the XY (transaxial) slices of size 256 x 256 from the 9
training volumes to train the in distribution networks, yielding
a total of 5936 slices. For the deblurring and superresolution
experiments, we used the CelebA-HQ dataset [53] with each
image having size 256 x 256. The test data was a randomly
selected subset of 10 of the images not used for training. In all
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cases, we report the average metrics across the test images: peak
SNR (PSNR) in dB, and structural similarity metric (SSIM) [54].

In the dataless and small dataset settings, since there is insuf-
ficient data from the test distribution to train the diffusion model
well, we first trained the network using generated synthetic data.
This data consisted of phantom images consisting of randomly
placed ellipses of different shapes and sizes. See Fig. S.7 for
examples. These phantoms can be generated on the fly in large
quantities. We used networks trained on grayscale phantoms for
the CT experiments and networks trained on RGB phantoms
for the deblurring and superresolution experiments. Appendix
A-B contains precise specifications of the phantoms. Then in
the small dataset setting, we fine-tuned the network (originally
trained on the phantom images) on the small dataset. The small
dataset consisted of 10 images randomly selected from the
in-distribution training set; we also ran ablation studies using
different quantities of in-distribution data in Appendix A-A. In
contrast, for the in-distribution setting, there was sufficient data
to directly train a diffusion model on the in-distribution data, so
we initialized the network weights randomly and trained only
on the in-distribution dataset.

We trained the patch-based networks with 64 x 64 patches
and used a zero padding value of 64, so that 5 patches in both
directions were used to cover the target image. We used the net-
work architecture in [55] for both the patch-based networks and
whole-image networks. All networks were trained on PyTorch
using the Adam optimizer with 2 A40 GPUs.

Diffusion test-time adaptation: To evaluate the effectiveness
of test-time adaptation, we applied Algorithm 1 to solve each of
the inverse problems. For the forward and backward projectors
in CT reconstruction, we used the implementation provided
by the ODL [56]. We performed two sparse-view CT (SVCT)
experiments: one using 20 projection views, and one using
60 projection views. Both of these used a parallel-beam for-
ward projector where the detector size was 512 pixels. For
the deblurring experiments, we used a uniform blur kernel
of size 9 x 9 and added white Gaussian noise with o = 0.01

IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, VOL. 11, 2025

PnP-ADMM Whole image

Patches+SS Ground truth

Y
5

Dataless setting: Results of deblurring using test-time adaptation via the self supervised (SS) loss and several comparison methods.

where the clean image was scaled between 0 and 1. For the
superresolution experiments, we used a scaling factor of 4 with
downsampling by averaging and added white Gaussian noise
with o = 0.01.

For the comparison methods, we ran experiments that di-
rectly used the diffusion model without test-time adaptation.
In particular, we used the network trained only on phantoms for
the dataless setting, the fine-tuned network in the small dataset
setting, and the in-distribution network in the last setting. We
used the same sampling algorithm (Langevin dynamics) and
inverse problem solving method (conjugate gradient descent)
as Algorithm 1, but removed the test-time adaptation step. Ad-
ditionally, for these diffusion model methods, we implemented
both the patch-based version as well as the whole-image version.
The whole-image networks were trained with the loss function
in (9) and used the same network architecture as the patch-based
models, but the input of the network was the entire image and
did not contain positional encoding information.

We also compared with more traditional methods: applying
a simple baseline, reconstructing via the total variation regu-
larizer (ADMM-TV), and two plug and play (PnP) methods:
PnP-ADMM [57] and PnP-RED [58]. For CT, the baseline was
obtained by applying the filtered back-projection method to
the measurement y. For deblurring, the baseline was simply
equal to the blurred image y. For superresolution, the base-
line was obtained by upsampling the low resolution image y
using nearest-neighbor interpolation. The implementation of
ADMM-TV is in [59]. Finally, since we assume we do not have
access to a large sample of clean training data, we used the
off-the-shelf denoiser BM3D [42]. Appendix A-C contains the
values of all the parameters of the algorithms. Tables I, III, and
IV show the main results for the dataless, small dataset, and
in-distribution settings, respectively. In the latter two settings,
we chose to redisplay only the results of the best baseline out of
the baseline, ADMM-TYV, PnP-ADMM, and PnP-RED shown in
Table I and labeled that row “Best baseline.” Particularly for the
dataless setting, applying the test-time adaptation method yields
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TABLE II
RESULTS OF INVERSE PROBLEM SOLVING IN DATALESS SETTING FOR
512 x 512 IMAGES

Method CT, 60 views Deblur
PSNR7T SSIM 1 | PSNRT SSIM 1
Baseline 28.33 0.700 24.11 0.649
ADMM-TV | 29.36 0.788 28.14 0.760
PnP-ADMM | 37.48 0.910 29.77 0.812
Patch, naive | 29.32 0.793 26.58 0.749
Patch, SS 37.82 0.919 30.35 0.825

much higher quantitative results when averaged across the test
dataset than simply using the pretrained diffusion model in all
the inverse problems. However, we observe that even when the
pretrained diffusion model was trained on the large in-
distribution dataset, including the test-time adaptation step still
resulted in further improvement in image quality. Thus, in
contrast with many other self-supervised methods such as DIP,
our method can avoid overfitting to the measurement and even
benefit from test-time refinement. Appendix A-A further an-
alyzes overfitting and shows that by increasing the number

Results of deblurring on 512 x 512 images in dataless setting.

of network refining iterations done per diffusion iteration, the
image quality does not drop, indicating that overfitting is
avoided. We further note that in all three settings, when using
the self-supervised loss, the patch-based prior outperformed
the whole image prior, which is consistent with our theoretical
analysis of Algorithm 1. Lastly, Fig. 2 shows that some artifacts
appear in the whole-image SS method that are absent in our
patch SS method.

We also ran ablation studies to examine the effect of various
parameters on the proposed method. [17] and [18] used the
LoRA module for solving single-measurement inverse prob-
lems with diffusion models. We tested this method for CT
reconstruction and deblurring with different rank adjustments
and found this method to be inferior to modifying the weights
of the entire network. We also ran experiments using networks
with different numbers of weights. Appendix A-A shows the
results of these experiments.

The initial motivation of using patch-based diffusion models
was partially to solve high resolution imaging problems [21]. To
show that our method scales to larger images, we ran experiments
on 60 view CT reconstruction and deblurring with 512 x 512
images in the dataless setting. For the CT experiments, we still
used the AAPM dataset [52] processed in the same way as for
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TABLE III
COMPARISON OF RESULTS FOR USING SELE-SUPERVISED (SS) DIFFUSION MODELS IN SMALL DATASET SETTING

Method CT, 20 Views CT, 60 Views Deblurring Superresolution
PSNRT SSIMT | PSNRT SSIM?T | PSNRT SSIMT | PSNRT  SSIMf
Best baseline 30.20 0.838 | 36.75 0.932 | 28.98 0.815 | 27.73 0.809
Whole image 33.09 0.875 | 40.54 0964 | 2841 0.812 |27.29 0.775
Patches 33.44 0.875 |41.21 0.965 | 29.25 0.840 | 28.10 0.827
Whole image+SS | 34.57 0.881 |41.34 0.962 | 30.16 0.852 | 27.72 0.814
Patches+SS 36.43 0914 | 4242 0.971 | 30.56 0.867 | 28.60 0.834

The diffusion model is first trained on ellipse phantoms and then fine-tuned with the small dataset. Best results are in bold.

TABLE IV
COMPARISON OF RESULTS FOR USING DIFFUSION MODELS TRAINED ON THOUSANDS OF IN-DISTRIBUTION IMAGES TO SOLVE INVERSE PROBLEMS

Method CT, 20 Views CT, 60 Views Deblurring Superresolution
PSNR7T SSIM?T | PSNRT SSIM?T | PSNRT SSIMT | PSNRT  SSIM®
Best baseline 30.20 0.838 | 36.75 0.932 | 2898 0.815 |27.73 0.809
Whole image 33.99 0.886 | 41.67 0.969 | 29.87 0.851 | 28.33 0.801
Patches 34.02 0.889 | 41.70 0.967 | 30.12 0.865 | 28.49 0.835
Whole image+SS | 35.38 0.897 | 41.68 0.966 | 30.31 0.854 | 27.96 0.797
Patches+SS 36.82 0.923 | 42.33 0.970 | 30.78 0.875 | 28.72 0.842

Best results are in bold. Self-supervised refinement of network weights is beneficial even in this setting.

Effect of overfitting on small dataset
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Fig. 6. Comparison of PSNR between patch-based model and whole-image
model for overfitting in small dataset setting.

Table I, but kept the slices in their original size of 512 x 512.
For deblurring, we used the FFHQ dataset [60] which contains
images of size 512 x 512. We scaled each of the RGB channels
tobetween 0 and 1. We used a uniform blur kernel of size 17 x 17
and added noise with 0 = 0.01. We used the same patch-based
networks trained for Table I as initializations for these out of
distribution experiments. Since the patch size at reconstruction
time was kept to be 64 x 64 as before, we used 9 patches in both
directions (for 81 total) to tile each image. Table II shows results
of these experiments, where our method obtained the highest
quality reconstruction. Although the improvement is modest,
note that we trained the patch-based model on phantoms images
of size 256 x 256, which is extremely far out of distribution
from the test dataset.

Small dataset fine-tuning: We further examined the effects
of fine-tuning the networks using the small dataset with the
patch-based model and the whole image model. Figs. 6 and

Effect of overfitting on small dataset
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0.96 -

0.95 A

0.93 1

0.92 A

—e— Patches

091] ® —#— Whole image
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Fine-tune time (hr)

Fig. 7. Comparison of SSIM between patch-based model and whole-image
model for overfitting in small dataset setting.

7 further investigate the effect of overfitting. For different
amounts of training time using the small in-distribution dataset,
we ran the reconstruction algorithm for 60-view CT. While
the whole-image model exhibited substantial image degradation
when the network was fine-tuned for too long, the patch-based
model retained relatively stable performance throughout the en-
tire training process. This illustrates that whole-image diffusion
models exhibits severe overfitting problems when only a small
amount of training data is unavailable, similar to the original
DIP method. Furthermore, patch-based diffusion models assist
greatly with this problem and the results are evident for solving
inverse problems.

To look at the priors learned by the different models from
fine-tuning, we unconditionally generated images from the
checkpoints obtained by fine-tuning on the 10 image CT dataset.
Fig. 9 shows a subset of the generated images where we used
the checkpoints obtained after 4 hours of training. The top two
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Best baseline Patches

Whole image

Fig. 8.

Fig. 9.
bottom two rows were generated with the patch-based model.

rows consist of images generated by the whole-image model
and the bottom two rows consist of images generated by the
patch diffusion model. To emphasize the memorization point,
we grouped together similar looking images in the top two
rows: it can be seen that the images in each group look virtually
identical, despite the fact that the pure white noise initializations
for each sample was different. On the other hand, while the
samples generated by the patch diffusion model also show some

Whole+SS

989

Patches+SS Ground truth

1200

Small dataset setting: Results of inverse problem solving. Top row is 60 view CT recon, middle row is deblurring, and bottom row is superresolution.

a1

Unconditional generation of CT images from networks fine-tuned in the small dataset setting. Top two rows were generated with the whole image model;

unrealistic features, they all show some distinct features, which
implies that this model has much better generalization ability.
Finally, to demonstrate that our method also works well even
when the mismatched distribution is closer to the true distribu-
tion, we also ran an experiment where the networks were initially
trained on the LIDC-IDRI dataset of CT scans [61]. We extracted
10000 2D slices from the 3D volumes and rescaled all the images
so that the pixel values were between 0 and 1. We then ran
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TABLE V
CT RECONSTRUCTION RESULTS WHERE THE INITIAL CHECKPOINT WAS
TRAINED ON LIDC DATASET AND REFINED ON THE FLY WITH THE AAPM

MEASUREMENT
Dataset CT, 20 views CT, 60 views
size PSNRT SSIM 1 | PSNRT SSIM 1
Whole image 33.04 0.874 | 4043 0.949
Patches 33.88 0.886 40.96 0.955
Whole image+SS 35.01 0.894 41.95 0.967
Patches+SS (Ours) | 36.34 0918 42.32 0.972

Algorithm 1 to perform CT reconstruction where the test dataset
was the same as the one used in Table I. Table V shows the results
of this experiment. Our method achieved better quantitative
results than the whole-image method and even outperformed the
reconstructions using the in distribution network but without any
test-time adaptation.

V. CONCLUSION

This paper presented a method of using patch-based diffusion
models with test-time adaptation to solve inverse problems when
the data distribution might be mismatched from the trained
network. In particular, we conducted experiments in setting
when no datais available, when a small dataset of training images
is available, and when a large in-distribution dataset is available.
In all the settings, applying the self-supervised loss improved
image quality, even for a well-trained network. Furthermore,
the patch-based method outperformed whole-image methods
in a variety of inverse problems and we provided theoretical
justifications to explain this improvement. In the future, more
work could be done on using acceleration methods for faster
reconstruction, exploring other less computationally expensive
methods of fine-tuning the network geared toward inverse prob-
lem solving, and methods of refining the prior when a set of
measurements are available [62]. Limitations of the work include
a slow runtime for the test-time adapted algorithm and a lack of
theoretical guarantees for dataset size requirements. Providing
uncertainty quantification is also an open problem for such
self-supervised methods.
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SUPPLEMENT

Test-Time Adaptation Improves Inverse Problem Solving with Patch-Based Diffusion Models

A. Ablation studies

We performed four ablation studies to evaluate the impact of various parameters on the proposed methods. Similar to the main
text, all quantitative results are averaged across the test dataset.

Low-rank adaptation. To avoid overfitting to the measurement when using the self-supervised loss, [17] proposed using a
low-rank adaptation to the weights of the neural network, reducing the number of weights that are adjusted during reconstruction
by a factor of around 100. Here we investigate the effect of using different ranks of adaptations on two inverse problems:
60 view CT reconstruction and deblurring. Consistent with [17] and [18], we only used the LoRA module for attention and
convolution layers. We also allowed the biases of the network to be changed.

Tables S.1 and S.2 show the quantitative results of these experiments, where a rank of “full” represents fine-tuning all the weights
of the network. In all cases, using LoRA for this fine-tuning process resulted in worse reconstructions than simply fine-tuning
the entire network. The visual results are especially apparent in Figure S.2: the reconstructed image became oversmoothed when
using LoRA and artifacts became present when using the whole-image model. This is likely due to the large distribution shift
between the initial distribution of images and target distribution of faces: the low-rank adaptation of the mismatched network
is not sufficient to represent the new distribution and thus the self-supervised loss function results in smoothed images.

TABLE S.1: Performance of 60 view CT recon using self-supervised network refining with LoRA module. Best results are in
bold.

Rank Parameters (%) Patches Whole image
PSNRT SSIM 1 | PSNRT SSIM 1t

2 1.1 40.37 0.963 39.25 0.952

4 2.0 40.32 0.963 39.10 0.951

8 3.8 40.33 0.963 39.18 0.951

16 7.2 40.32 0.963 39.33 0.953

Full 100 4145 0.966 40.47 0.957

TABLE S.2: Performance of deblurring using self-supervised network refining with LoRA module. Best results are in bold.

Rank Parameters (%) Patches Whole image
PSNR?T SSIM 1 | PSNRT SSIM 1t

2 1.1 29.31 0.830 29.19 0.811

4 2.0 29.31 0.829 29.35 0.817

8 3.8 29.38 0.831 29.19 0.810

16 7.2 29.31 0.830 29.33 0.815

Full 100 30.34 0.860 29.50 0.831

Effect of network size. When applying the self-supervised loss, another potential method to avoid overfitting is to use a
smaller network. We trained networks with differing numbers of base channels (but no other modifications) on the ellipse
phantom dataset and then used Algorithm 1 to perform 60-view CT reconstruction with test-time adaptation. Table S.3 shows
the quantitative results of this experiment. For both the patch-based model and the whole image model, the network with 128
base channels obtained the best result, so we used this network architecture for all the main experiments. Figure S.3 again
shows evidence of overfitting in the form of artifacts in the otherwise smooth regions of the organs when using the network
with 256 base channels. These artifacts are less obvious in the patch-based model.

Fine-tuning with a larger dataset. To examine the effect of fine-tuning the networks on differing sizes of in-distribution
datasets, we started with the same checkpoint trained on ellipses and fine-tuned them using various sizes of datasets consisting
of CT images. Each small dataset consisted of randomly selected images from the entire 5000 image AAPM dataset. Next we
used these checkpoints to perform 60 view CT reconstruction (without the self supervised loss). Table S.4 shows the results
of these experiments, where we also included the results of using the in-distribution network trained on the entire 5000 image
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Fig. S.1: Results of using LoRA module for 60 view CT reconstruction in a single measurement setting. All weights refers to
adjusting all the weights of the network at reconstruction time.
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Fig. S.2: Results of using LoRA module for deblurring in a single measurement setting. All weights refers to adjusting all the
weights of the network at reconstruction time.
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Fig. S.3: Results of 60 view CT recon using networks with different numbers of parameters in the single-measurement setting.
The top numbers show the number of total parameters in the network.
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TABLE S.3: Performance of 60 view CT recon using test-time adaptation with networks of different sizes. Best results are in
bold.

Base Parameters Patches Whole image
Channels (Millions) | PSNRT SSIM 1 | PSNRT SSIM 1
32 34 39.73 0.958 39.69 0.957
64 14 40.37 0.961 40.07 0.958
128 60 41.45 0.966 | 40.47 0.957
256 217 40.29 0.959 39.28 0.954

dataset. This shows that for a wide range of different fine-tuning dataset sizes our proposed method obtained better metrics
than the whole-image model.

We emphasize the difference between the results of [21], which showed that patch-based models outperform whole image
models in cases of limited data, and the results here. Since the networks in [21] were trained from scratch, more data was
required: the smallest datasets used in [21] contained 144 images. In constrast, we are able to fine-tune networks in our work
using only 10 images. Consequently, the training time is also much lower for our work: Figure 6 shows that we fine-tuned
a patch-based model in only about 2 hours, whereas [21] required 12-24 hours to train the patch-based models from scratch.
Thus, our results complement the work of [21] by showing that, compared to whole-image models, patch-based diffusion
models easier to train from scratch in settings of limited data, and they are also easier to fine-tune when data is very limited.

TABLE S.4: Performance of fine-tuning on 60 view CT using checkpoints fine-tuned from different dataset sizes. Best results
are in bold.

Dataset Patches Whole image
size | PSNRT SSIM 1 | PSNRT SSIM 1

3 40.93 0.964 40.45 0.964
10 41.21 0.965 40.54 0.964
30 41.31 0.966 40.66 0.967
100 41.46 0.967 40.96 0.968
5000*% | 41.70 0.967 41.67 0.969
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Fig. S.4: Results of 60 view CT recon in the small dataset setting where the size of the small dataset is varied.

Backpropagation iterations for the self-supervised loss. In the single measurement setting, the self-supervised loss is crucial
to ensuring that the OOD network output is consistent with the measurement. Backpropagation through the network is necessary
to minimize this loss, but too much network refining during this step could lead to overfitting to the measurement and image
degradation. We ran experiments examining the effect of the number of backpropagation iterations during each step for the
patch-based model and the whole image model. Figures S.5 and S.6 show that in both cases, performance generally improved
when increasing the number of backpropagation iterations and overfitting is avoided. Additionally, the patch-based model
always outperformed the whole image model and exhibited more improvement as the number of backpropagation iterations



increased. For our main experiments, we used 5 iterations as the improved performance became marginal compared to the
extra runtime.
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Fig. S.5: Comparison of PSNR between patch-based Fig. S.6: Comparison of SSIM between patch-based
model and whole-image model for number of network model and whole-image model for number of network
refining iterations in single measurement setting. refining iterations in single measurement setting.

TABLE S.5: Performance of Algorithm 1 for 60 view CT reconstruction in single measurement setting with different numbers
of backpropagation iterations. Best results are in bold.

Backprop Patches Whole image
iterations | PSNRT SSIM 1 | PSNRT SSIM 1
0 33.97 0.934 33.10 00911
1 40.35 0.964 39.81 0.958
2 40.96 0966 | 40.45 0.961
5 41.45 0.966 | 40.47 0.957
10 41.65 0968 | 40.54  0.958
20 4192 0970 | 40.71 0.959
50 42.18 0971 40.90  0.961

B. Phantom dataset details

We used two phantom datasets of 10000 images each: one consisting of grayscale phantoms and the other consisting of colored
phantoms. The grayscale phantoms consisted of 20 ellipses with a random center within the image, each with minor and major
axis having length equal to a random number chosen between 2 and 20 percent of the width of the image. The grayscale
value of each ellipse was randomly chosen between 0.1 and 0.5; if two or more ellipses overlapped, the grayscale values were
summed for the overlapped area with all values exceeding 1 set to 1. Finally, all ellipses were set to a random angle of rotation.
The colored phantoms were generated in the same way, except the RGB values for each ellipse were set independently and
then multiplied by 255 at the end. Figure S.7 shows some of the sample phantoms.

C. Experiment parameters

We applied the framework of [55] to train the patch-based networks and whole image networks. Since images were scaled
between 0 and 1 for both grayscale images and RGB channels, we chose a maximum noise level of ¢ = 40 and a minimum
noise level of o = 0.002 for training. We used the same UNet architecture for all the networks consisting of a base channel
multiplier size of 128 and 2, 2, and 2 channels per resolution for the three layers. We also used dropout connections with a
probability of 0.05 and exponential moving average for weight decay with a half life of 500K images to avoid overfitting.

The learning rate was chosen to be 2-10~* when training networks from scratch and was 1-10~* for the fine-tuning experiments.
For the patch-based networks, the batch size for the main patch size (64 x 64) was 128, although batch sizes of 256 and 512



(a) Six grayscale phantoms (b) Six colored phantoms

Fig. S.7: Six sample grayscale phantoms and colored phantoms used to train the mismatched distribution diffusion models

were used for the two smaller patch sizes of 32 x 32 and 16 x 16. The probabilities of using these three patch sizes were
0.5,0.3, and 0.2 respectively. For the whole image model, we kept all the parameters the same, but used a batch size of 8.

For image generation and inverse problem solving, we used a geometrically spaced descending noise level that was fine tuned
to optimize the performance for each type of problem. We used the same set of parameters for the patch-based model and
whole image model. The values without the self-supervised loss are as follows:

e CT with 20 and 60 views: oax = 10, 0min = 0.005
o Deblurring: op,,x = 40, o0pmin = 0.005
o Superresolution: opax = 40, 0min = 0.01.

The values with the self-supervised loss are as follows:

e CT with 20 and 60 views: omax = 10, 0min = 0.01
e Deblurring: oax = 1, opin = 0.01
o Superresolution: oax = 1, opin = 0.01.

Finally, for generating the CT images we used omax = 40, 0min = 0.005.

When running Algorithm 1, we set K = 10 for all experiments and M = 5 for CT reconstruction and M = 1 for deblurring
and superresolution. We ran 5 iterations of network backpropagation with a learning rate of 107°. When using the LoRA
module as in the ablation studies (see Tables S.2 and S.1), we ran 10 iterations of network backpropagation with a learning
rate of 1073,

The ADMM-TV method for linear inverse problems consists of solving the optimization problem
1
argmaxm§\\y—A;cH§+ATV(x), (S.1)

where TV () represents the L1 norm total variation of vz, and the problem is solved with the alternating direction method of
multipliers. For CT reconstruction, deblurring, and superresolution, we chose A to be 0.001,0.002, and 0.006 respectively.

The PnP-ADMM method consists of solving the intermediate optimization problem

argmax,, f () + (p/2)|lx — (z — u)|3, (52)

where p is a constant. The values for p we used for CT reconstruction, deblurring, and superresolution were 0.05, 0.1, and
0.1 respectively. We used BM3D as the denoiser with a parameter representing the noise level: this parameter was set to 0.02
for 60 view CT and 0.05 for the other inverse problems. A maximum of 50 iterations of conjugate gradient descent was run
per outer loop. The entire algorithm was run for 100 outer iterations at maximum and the PSNR was observed to decrease by
less than 0.005dB per iteration by the end.



The PnP-RED method consists of the update step
z—x+pu(Vf—ANx— D(z))), (8.3)

where D(x) represents a denoiser. The stepsize p was set to 0.01 for the CT experiments and 1 for deblurring and
superresolution. We set A to 0.01 for the CT experiments and 0.2 for deblurring and superresolution. Finally, the denoiser was
kept the same as the PnP-ADMM experiments with the same denoising strength.

Table S.6 shows the average runtimes of each of the implemented methods when averaged across the test dataset for 60 view
CT reconstruction.

TABLE S.6: Average runtimes of different methods across images in the test dataset for 60 view CT recon.

Method Runtime (s) |
Baseline 0.1
ADMM-TV 1
PnP-ADMM 73
PnP-RED 121
Whole diffusion 112
Whole SS 248
Whole LoRA 329
Patch diffusion 123
Patch SS 289

Patch LoRA 377
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