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Abstract—Phase retrieval (PR) is a crucial problem in many
imaging applications. This study focuses on holographic phase
retrieval in situations where the measurements are degraded by
a combination of Poisson and Gaussian noise, as commonly occurs
in optical imaging systems. We propose a new algorithm called
“AWFS” that uses accelerated Wirtinger flow (AWF) with a learned
score function as a generative prior. Specifically, we formulate the
PR problem as an optimization problem that incorporates both
data fidelity and regularization terms. We calculate the gradient of
the log-likelihood function for PR and determine its corresponding
Lipschitz constant. Additionally, we introduce a generative prior in
our regularization framework by using score matching to capture
information about the gradient of image prior distributions. We
provide theoretical analysis that establishes a critical-point conver-
gence guarantee for one version of the proposed algorithm. The re-
sults of our simulation experiments on three different datasets show
the following. 1) By using the PG likelihood model, a practical ver-
sion of the proposed algorithm improves reconstruction compared
to algorithms based solely on Gaussian or Poisson likelihoods.
2) The proposed score-based image prior method leads to better
reconstruction quality than a method based on denoising diffusion
probabilistic model (DDPM), as well as a plug-and-play alternating
direction method of multipliers (PnP-ADMM) and regularization
by denoising (RED).

Index Terms—Phase retrieval, poisson-Gaussian noise, score-
based diffusion models, wirtinger flow.

I. INTRODUCTION

PHASE retrieval (PR) is a nonlinear inverse problem, where
the goal is to recover a signal from the (square of)

magnitude-only measurements that are corrupted by noise [2].
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This problem has applications in astronomy [3], X-ray crys-
tallography [4], optical imaging [5], Fourier ptychography [6],
[7], [8], [9] and coherent diffractive imaging (CDI) [10]. For
example, in holographic CDI, a coherent beam source illumi-
nates a sample of interest and a reference. When the beam
hits the sample, it generates secondary electromagnetic waves
that propagate until they reach a detector. By measuring the
photon flux, the detector can capture and record a diffraction
pattern. This pattern is roughly proportional to the square of
Fourier transform magnitude of electric field associated with
the illuminated objects [11], [12]. Recovering the structure of
the sample from the diffraction pattern generated by the mix of
sample and reference is a nonlinear inverse problem known as
holographic PR. One approach to this problem is maximum a
posteriori (MAP) estimation:

x̂ = arg max
x∈RN

p(x|y, b̄,A, r)

= arg min
x∈RN

g(x;A,y, b̄, r) + h(x), (1)

where x denotes a real latent image to recover, y is the recorded
measurement vector, b̄ denotes the mean of background mea-
surements, and A ∈ CM×N denotes the system matrix in holo-
graphic PR, where M denotes the number of measurements
and N denotes the dimension of x. The known reference im-
age r provides additional information to reduce the ambiguity
of x̂; using an extended reference is a common technique in
holographic CDI [13], [14]. Following Bayes’ rule, we denote
g(x) = − log p(y,A, r|x) and h(x) = − log p(x) as the data
fidelity term and the regularization term, respectively. For sim-
plicity we assumex is real, so∇g(x)denotes the real component
of the gradient of log-likelihood. Hence, all priors are trained
with real-valued datasets and are applied to the real components
of x as well. The method can be extended to complex images.

In practice, often the measurements y are contaminated by
both Poisson and Gaussian (PG) noise. The Poisson distribution
is due to the light photons and dark current [15]. The Gaussian
statistics stem from Johnson-Nyquist noise (or thermal noise) in
the sensor electronics [16], [17], [18]. The sum of both leads
to measurements with PG noise. Fig. 1 illustrates the PG noise
statistics in the holographic PR. Because the PG likelihood in
(4) is complicated, most previous works [5], [6], [8], [19], [20],
[21], [22], [22], [23], [24], [25], [26], [27], [28], [29], [30], [31],
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Fig. 1. Illustration of Poisson and Gaussian noise statistics in Fourier transform holographic phase retrieval.

[32], [33], [34], [35], [36], [37], [38], [39], [40], [41], [42], [43],
[44], [45], [46] approximate the Poisson noise statistics by the
central limit theorem and work with a Gaussian approximation or
use the Poisson maximum likelihood model but simply disregard
Gaussian readout noise. Other more complicated approximation
methods have also been proposed, such as the shifted Poisson
model [47], the unbiased inverse transformation of a generalized
Anscombe transform [9], [48], and a majorize-minimize algo-
rithm [49]. However, these approximate methods can provide
suboptimal solutions. Apart from the likelihood modeling, the
regularizer h(x) provides prior information about underlying
object characteristics that may aid in resolving ill-posed inverse
problems. Simple choices of h(x) such as total variation (TV)
and higher order generalizations including total generalized
variation (TGV) [50], [51] and the L1-norm of coefficients of
wavelet transform [52] have been studied extensively. More
recently, deep learning (DL)-integrated algorithms for solving
inverse problems in computational imaging have been reported
to be the state-of-the-art [53]. A trained network can serve as
an object prior for regularizing the reconstructed image so it
remains near a learned manifold [54]. Incorporating a trained
denoising network as a regularizer h(·) led to methods such
as plug-and-play (PnP) [55], [56], [57] and regularization by
denoising (RED) [58]. In contrast to training a denoiser using
clean images, there is growing interest in self-supervised image
denoising approaches that do not require clean data as the
training target [59], [60], [61].

In addition to training a denoiser as regularizer, generative
model-based priors have also been proposed [62], [63]. Re-
cently, diffusion models have gained significant traction for
image generation [64], [65], [66], [67]. These probabilistic
image generation models start with a clean image and gradually
increase the level of noise added to the image, resulting in
white Gaussian noise. Then in the reverse process, a neural
network is trained to learn the noise in each step to generate
or sample a clean image as in the original data distribution.
The score-based diffusion models estimate the gradients of
data distribution and can be used as plug-and-play priors for
inverse problems [68] such as image deblurring and MRI and
CT reconstruction [69], [70], [71], [72], [73], [74]. However, the
realm of using score-based models to perform phase retrieval is
relatively unexplored; previous relevant works [68], [75] applied

denoising diffusion probabilistic modeling (DDPM) to PR but
with less realistic system models and under solely Gaussian or
Poisson noise statistics.

In summary, the remainder of the paper is organized as fol-
lows:
� Section II provides an overview of forward and noise

models used for phase retrieval and deep learning reg-
ularizer methods that have been used to solve the PR
problem.

� Section III presents our proposed algorithm known as
accelerated Wirtinger flow with a score-based image prior
(i.e., ∇h(x) in (1)) to address the challenge of holo-
graphic phase retrieval (PR) problem in the presence of
Poisson and Gaussian (PG) noise statistics. Theoretically,
we derive a Lipschitz constant for the holographic PR’s
PG log-likelihood and provide a guarantee that sequences
generated by the proposed algorithm converge to critical
points of the cost function.

� Section IV consists of simulation experiments which
demonstrate that: 1) Algorithms using the PG likelihood
model yield superior reconstructions compared to those
relying solely on either the Poisson or Gaussian likeli-
hood models. 2) With the proposed score-based prior as
regularization, the proposed approach generates higher
quality reconstructions and is more robust to variations of
noise levels (without any parameter tuning) than alternative
state-of-the-art methods.

� Section IV and Section V consist of a discussion and
conclusion about the results, comparisons with existing
approaches, and limitations of our approach along with
future work.

II. BACKGROUND AND RELATED WORK

This section reviews technical background for phase retrieval
(PR) and summarizes previous works and their limitations.

A. Forward Models for PR

Many previous works [19], [20], [21], [22], [23], [27], [28],
[29], [31], [32], [34], [45], [49], [75], [76] modeled the sys-
tem matrix A in (1) as i.i.d. random Gaussian or randomly
masked Fourier transform; these assumptions simplify the PR
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problem and lead to elegant mathematical derivations (e.g.,
spectral initialization [33], [77]), but they are less related to
optical imaging systems used in practical PR [78]. Practical
PR involves canonical Fourier transform-based system matrices
such as Fresnel (near-field) PR [79], [80], holographic PR [81],
ptychographic PR [82], [83] and Fraunhofer (far-field) PR [78],
[84]. The canonical Fourier transform-based PR probem is more
difficult as it introduces more ambiguities, such as translation
and conjugate flipping. Some previous works also remove the
square of the Fourier transform magnitude (see (3)) [32], [34],
[45], [75]. However, this square of magnitude indicates the
amount of wavelength-weighted power emitted by a light source
per unit area, so its removal reduces the physics realism of a
model.

B. Noise Models for PR

Gaussian PR: For methods that assume the elements of
y follow independent Gaussian distributions y ∼ N (|Ax|2 +
b̄,Σ), where Σ = σ2I , the data fidelity term g(x) in (1) be-
comes gGau(x) � ‖y − b̄− |Ax|2‖22. To solve the correspond-
ing MAP optimization problem, a popular method is Wirtinger
flow (WF) [21], [22], [23], [33] using the Wirtinger gradient:
∇gGau(x) = 4A′ diag{|Ax|2 − y + b̄}Ax. To determine an
appropriate step size for the Wirtinger gradient, one can use its
Lipschitz constant or methods such as empirical trial and error,
backtracking line search, or observed Fisher information [42].
To further accelerate WF, one can use Nesterov’s momentum
methods [85] or optimized gradient methods [86], leading to the
accelerated Wirtinger flow (AWF) [8], [87], [88], [89] that is
commonly used in solving PR problems. Apart from WF, other
methods such as matrix-lifting [5], [19], [20], error reduction
(ER) [25], hybrid input-output (HIO) [90], majorize-minimize
(MM) [24] and alternating direction method of multipliers
(ADMM) [30] have also been proposed.

However, in the Holographic PR case, due to the Fourier
transform, the components of |Ax|2 vary greatly in magnitude,
and in particular, the low frequency components associated with
the DC term of x is much larger than the other components,
making this a poor approximation. Algorithms based on such
assumption will lead to a low frequency-only reconstruction (see
Supplement). Instead, when we initialize the algorithm using
the reconstruction from the spectral initialization x0, we may
estimate Σ = Diag(

√
|Ax0|2 + b), where the square root is

taken element-wise. Using this approach, the log-likelihood of
the Gaussian only model can be computed readily and applied
in conjunction with the accelerated score based method.

Following [91], [92], we also took the square root of the
measurement and then assumed the resulting noise model to be
Gaussian to compute the log likelihood as a comparison method.
However, the results show that the reconstructed images using
the amplitude loss function are much noisier than the other three
methods and the quantitative metrics are also worse. This is due
to the mismatch between the noise model used in reconstruc-
tion and the measurements noise simulation that is otherwise
based on the intensity model. Another inconsistency arises when
we need to compute the square root, as we have to truncate

Algorithm 1: Phase Retrieval Via Wirtinger Flow.
Require: Measurement y, system matrix A, initialization of

image x0, regularizer h(·).
for k = 1 : K do

if Gaussian noise model is used then
Compute ∇gGau(xk) = 4A′ diag{|Axk|2 − y + b̄}
Axk.

else if Poisson noise model is used then
Compute ∇gPois(xk) = 2Axk � (1− y � (|Axk|2
+ b̄)).

end if
Compute gradient of the regularizer ∇h(xk).
Compute step size μk.
Set xk+1 = xk − μk(∇g(xk) +∇h(xk)).

end for
Return xK

any negative measurements resulting from the Gaussian noise.
Section IV shows a comparison between these models. Poisson
PR. The Poisson ML model assumes y ∼ Poisson(|Ax|2 + b̄),
so that g(x) in (1) has the form: gPois(x) � 1′(|Ax|2 + b̄)−
y′ log(|Ax|2 + b̄). Similar to the Gaussian case, one can also
apply WF [76] with ∇gPois(x) = 2Ax� (1− y � (|Ax|2 +
b̄)), where � and � denote element-wise multiplication and
division, respectively.

Algorithm 1 summarizes the conventional WF approaches for
PR. The Gaussian and Poisson models are both suboptimal for
practical scenarios where the measurements are corrupted by
PG noise.

C. Regularizers for PR

Non-DL Methods: Traditionally, total variation (TV) has been
used a regularizer in PR [46]. This regularizer has a denoising
effect on the image while preserving sharp boundaries. Simi-
larly, wavelet based methods [52] transform the image to the
wavelet domain where it becomes simpler to denoise the image
without distorting its main features. More recently, plug and play
methods involve alternating between using a denoiser to denoise
the image and a data fidelity update step to ensure that the image
conforms with the measurement. Block matching 3D (BM3D)
is a fast and effective general purpose denoising algorithm, so
its use in PR has been studied [93].

PnP and RED: Both PnP and RED are widely adopted in a va-
riety of inverse problems [94], [95], [96], [97], [98], [99], [100].
For example, Wei et al. developed a policy network to automat-
ically search for the best tuning parameters in PnP frameworks,
which can be effectively learned with mixed model-free and
model-based deep reinforcement learning [98]. By implicitly
representing the prior h(·) in (1) by an image denoiser, plug-
and-play (PnP) methods [101], [102] were proposed to allow the
integration of physical measurement models and powerful DL-
based denoisers as image priors [57]. The model-agnostic nature
of the denoiser allows PnP methods to be applied to multiple
imaging problems using a single DL denoiser by changing only
the imaging model. Regularization by denoising (RED) [103],
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[104] is an algorithm closely related to PnP that uses a denoising
engine in defining the regularization of the inverse problems. For
PR problems, many PnP methods were proposed [91], [92], [93],
[105], [106]. For instance, Metzler et al. proposed to leverage
the regularization-by-denoising framework and a convolutional
neural network as a PnP denoiser [91]; Wang et al. combined
iterative methods from PR with RED, pointing to the direction of
hybrid methods that integrate learned PnP priors in conventional
algorithms. The effectiveness of PnP inspired this study of using
a generative PnP image prior using score matching to address
the PR problem.

Score Function and Diffusion Models: Let pθ(x) denote a
model for the prior distribution of the latent image x; the score
function is then defined as1sθ(x) = ∇x log pθ(x). Consider a
sequence of positive noise scales (for white GaussianN (0, σ2

k)):
σ1 > σ2 > · · · > σK , with σK being small enough so that noise
of this level does not visibly affect the image, and σ1 depending
on the application. Score matching can be used to train a noise
conditional score network (NCSN) [64], [107] as follows:

θ̂ = arg minθ

K∑
k=1

Ex,x̃

[(
sθ(x, σk)−

x− x̃

σ2
k

)2
]
,

where x ∼ p(x), x̃ ∼ x+N (0, σ2
kI). (2)

With enough data, the neural network sθ(x, σ) is expected
to learn the distribution pσ(x) =

∫
p(x)pσ(x̃|x)dx where

pσ(x̃|x) = N (x, σ2I). To sample from the prior, the method
of Langevin dynamics is often used [64].

To leverage diffusion models for solving inverse problems,
previous methods generally recast the reconstruction problem
as a conditional generation or sampling problem [67], [68],
[74], [75], [108], [109]. This involves relying on the capacity
of diffusion models to produce high-quality images while com-
plying with data-fidelity constraints. However, in applications
where data collection is costly, i.e., with a limited amount of
training data, it is often challenging to train a diffusion model that
can generate high-quality images even in an unconditional way.
Under these conditions, we found that the score function learned
during training diffusion models can serve as an effective image
prior (as demonstrated in Section IV), that can capture certain
data characteristics when trained for the denoising prediction in
the reverse process of the diffusion model. Similar to previous
works [68] that used the score function as a PnP prior, here
we also incorporate the score function as a regularization in
the optimization objective for solving the PR problem. We
believe this is a more efficient scheme for incorporating diffusion
priors, especially for applications with a limited amount of
training data. Most closely related to this work, [75] applied
the DDPM method [65] to a PR problem with Poisson noise.
Ref. [67] shows that, under the general framework of score-
based generative model with stochastic differential equations,
using the score matching method (which is the backbone of
our AWFS method) to perform unconditional sampling has
the same training objective as the DDPM method. For solving

1This definition differs from the score function in statistics where the gradient
is taken w.r.t. θ of log pθ(x).

inverse problems, reconstructing the image can be interpreted as
maximizing the posterior probability. Under this interpretation,
the score matching approach can then be used in conjunction
with the proposed acceleration method to perform accelerated
gradient descent, greatly reducing the number of steps needed in
the WF algorithm. However, the DDPM method does not allow a
similar method of acceleration, as its sampling process involves
computing linear combinations of the current noisy image and
the noise estimate from the neural network.

Thus, to address the phase retrieval challenge with PG noise
using the DDPM method, one would have to either: decrease
the number of sampling steps without any other alterations to
the algorithm, resulting in poorer image quality; or substitute
the PG likelihood with a simpler but less precise Poisson or
Gaussian likelihood. With score-based models, we can integrate
Nesterov’s acceleration to enhance algorithm efficiency while
maintaining the use of the PG likelihood.

D. Limitations of Previous Works

One main motivation of this work originates from limitations
from previous works. Many of them used the unregularized
Gaussian, Poisson, and PG methods. For these methods, the
objective function simply seeks to maximize the measurement
log likelihood. When the measurements are very noisy, the
optimal value of the objective function will be attained by
a very noisy image. Without regularization, a method cannot
enforce any expected image properties. Adding regularizers
such as total variation can reduce the level of noise present
in the reconstructed image, while not heavily blurring sharp
boundaries, but is suboptimal to use when the latent image is
not piece-wise uniform. Higher order TV and total generalized
variation (TGV) can help to mitigate this problem, but they have
higher computation complexity and there is still a tradeoff in
the reconstructed image between sharp boundaries and overall
smoothness that is unavoidable when not using data driven
methods. Instead, DL-based plug-and-play methods are popular
to handle the limitations of hand-crafted regularizers, but the
noise level of the image will change throughout the iterative
process and is unknown. In contrast, the method of training
diffusion models to learn the score function of the underlying
image distributions (independent of the sensor) is less sensitive
to the noise levels and use it as a generative prior in the iterative
reconstruction process is relatively unexplored for PR.

III. PROPOSED METHODS

A. Poisson-Gaussian Log-Likelihood for PR

Based on the physical model as demonstrated in Fig. 1, we
model the system matrix A by the (oversampled and scaled)
discrete Fourier transform applied to a concatenation of the sam-
ple x, a blank image (representing the holographic separation
condition [39]) and a known reference image r, so thaty follows
the Poisson plus Gaussian distribution:

y ∼ N (Poisson
(
|A(x)|2 + b̄

)
, σ2I),

A(x) � αF{[x,0, r]}. (3)
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Here σ2 denotes the variance of Gaussian noise, and α de-
notes a scaling factor (quantum efficiency, conversion gain,
etc.) after applying the Fourier transform. Plugging the negative
log-likelihood of (3) into (1) leads to

gPG(x) =

M∑
i=1

gi(x),

gi(x) � − log

⎛
⎜⎝ ∞∑

n=0

e−(|a
′
ix|2+b̄i) ·

(
|a′

ix|2 + b̄i
)n

n!

· e
−
(

(yi−n)2√
2σ

)

√
2πσ2

⎞
⎟⎠ . (4)

Here a′
i denotes the ith row of A (since A is linear). We opt to

use WF for estimatingx because it is commonly used in practice
due to its simplicity and efficiency [33]. The WF algorithm is
based on the gradient of (4):

∇gPG(x) = 2A′ diag{φi(|a′
ix|2+; yi)}Ax,

φ(u; v) � 1− s(u, v − 1)

s(u, v)
, s(a, b) �

∞∑
n=0

an

n!
e
−
(

b−n√
2σ

)2

.

(5)

Lemma 1: The function φ(u) is Lipschitz differentiable and the
Lipschitz constant for its derivative φ̇(u) is:

max{|φ̈(u)|} � μ =
(
1− e−1/σ2

)
e

2ymax−1

σ2 ,

where ymax � max
i∈{1,...,M}

yi. (6)

The proof of Lemma 1 is given in [110].
To facilitate choosing step sizes, the following Theorem pro-

vides a Lipschitz constant for the gradient of the log-likelihood
(4).

Theorem 1: Assume |xj | is bounded above by C for each j,
a Lipschitz constant of ∇gPG(x) is

L(∇gPG) � 4C2‖A‖22 ‖A‖2∞
(
1− e−

1
σ2

)
e

2ymax−1

σ2

+ 2‖A‖22
∣∣∣1− C2 ‖A‖2∞

(
1− e−

1
σ2

)
e

2ymax−1

σ2

∣∣∣, (7)

where ymax � ‖y‖∞.
Proof: Let gPG(x) denote a function that maps a vector x ∈

RN to a scalar; it is the sum of each gi(x) � φi(|a′
ix|2+; yi)

over i = 1, . . . ,M . Let g(x) denote a function that maps a
vector x ∈ RN to the measurement space RM ; it is the concate-
nation of each gi(x). So ∇gPG(x) ∈ RN , ∇2gPG(x) ∈ RN×N ,
and ∇g(x) ∈ RM×N .

By the chain rule, the Hessian of gPG is

∇2gPG(x) = 2A′ (diag{Ax}∇g(x) + diag{g(x)}A) . (8)

Assume |xj | ≤ C for each j. Then it follows that
‖diag{Ax}‖2 ≤ C‖A‖∞ by the construction of matrix-vector
multiplication, leading to a Lipschitz constant for ∇gPG(x):

L(∇gPG) = 2C‖A‖2 ‖A‖∞ ‖∇g(x)‖2

+ 2‖A‖22 ‖diag{g(x)}‖2. (9)

Here L(∇gPG) denotes a Lipschitz constant for ∇gPG, not nec-
essarily the best one. To compute ‖∇g(x)‖2, we substitute the
Lipschitz constant of φ̇(u) into (5) and apply Lemma 1, leading
to

‖∇g(x)‖2 ≤ 2C‖A‖2‖A‖∞
(
1− e−

1
σ2

)
e

2ymax−1

σ2 . (10)

To compute ‖diag{g(x)}‖2, let

t ∈ [b,max
i

{|a′
ix|2}+ b] ⊆ T � [b, C2‖A‖2∞ + b]. (11)

From the fact that φ̇(t) ≤ 1 by its construction, one can show:

‖diag{g(x)}‖2 = ‖g(x)‖∞ ≤ max
t∈T

{|φ̇(t)|}

≤
∣∣∣1− C2‖A‖2∞ max{|φ̈(t)|}

∣∣∣.
(12)

Combining (9), (10) and (12) completes the proof of Theo-
rem 1. �

Theorem 1 extends [110] by considering a a nonlinear trans-
formation (Ax → |Ax|2) and a different system matrix A. In
the practical implementation we approximate (4), with a finite
sum following [110]:

s(a, b) ≈
n+∑
n=0

an

n!
e
−
(

b−n√
2σ

)2

, n+ = �n∗ + δσ�, (13)

with n∗ given by

n∗ = σW
( a

σ2
eb/σ

2
)

≈ σ

(
b

σ2
log

( a

σ2

)
− log

(
b

σ2
log

( a

σ2

)))

=
b

σ
log

( a

σ2

)
− σ log

(
b

σ2
log

( a

σ2

))
, (14)

where W(·) denotes the Lambert function. The accuracy of
this approximation is controlled by δ. Reference [110] pro-
vides a comprehensive analysis on the maximum error value
of the truncated sum (13), finding that the infinite sum is
well-approximated by taking a manageable number of terms. In
particular, we found that for our problem specifications, taking
100 terms was sufficient to ensure an approximation with error
less than 0.1 percent.

B. Accelerated Wirtinger Flow With Score-Based Image Prior

For accelerating the WF algorithm, we followed the imple-
mentation of [111] as its convergence guarantee was proved.
Assuming that the true score function can be learned properly,
when we have a trained score function sθ(x,σ) by applying
(2), the gradient descent algorithm for MAP estimation (1) has
the form: xt+1 = xt − μ(∇g(xt) + sθ(xt, σk)). Algorithm 2
summarizes our proposed AWFS algorithm. (Supplement shows
the vanilla version without acceleration.) Similar to Langevin
dynamics, we choose σk to be a descending sequence of noise
levels. In practice, we generally use each noise level a fixed
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Algorithm 2: Proposed AWFS Method for PR: Accelerated
WF with Score-based Image Prior.
Require: Measurement y, system matrix A, momentum

factor η0 = 1, step size factor β, truncation operator
PC(·) → [0, C]; initial image x0, initial auxiliary
variables z0 = w0 = v0 = x0, initialize
σ1 > σ2 > · · · > σK .

for k = 1 : K do
for t = 1 : T do

Set step size μ = βσ2
k.

Set Δzt,k =
ηt−1,k

ηt,k
(zt,k − xt,k).

Set Δxt,k =
ηt−1,k−1

ηt,k
(xt,k − xt−1,k).

Set wt,k = PC(xt,k +Δzt,k +Δxt,k).
Compute sθ(xt,k, σk) and sθ(wt,k, σk).
Set zt+1,k = wt,k − μ(∇gPG(wt,k) + sθ(wt,k, σk)).
Set vt+1,k = xt,k − μ(∇gPG(xt,k) + sθ(xt,k, σk)).

Set ηt+1,k = 1
2 (1 +

√
1 + 4η2t,k).

Choose weight factor γt,k (see Theorem 2).
Set xt+1,k = PC(γt,kzt+1,k + (1− γt,k)vt+1,k).

end for
end for
Return xT,K .

number of times, with geometrically spaced noise levels be-
tween some lower and upper bound. The step size factor β in
Algorithm 2 can be selected empirically, but we show that the
Lipschitz constant of the gradient∇gPG(xt) + sθ(xt, σk) exists
as demonstrated in Theorem 2 (see proof in Supplement); hence
with sufficiently small step size β, the sequence generated by
Algorithm 2 will converge to a critical point of the posterior
distribution in (1).

We assume that the data allows the neural network to learn
the score function well, i.e., sθ(x, σ) ≈ ∇ log(pσ(x)), where
pσ(x) = p(x)�N (0, σ2), where � denotes (circular) convo-
lution. Supplement shows that ∇ log(pσ(x)) is Lipschitz con-
tinuous on [−C,C]N . Using pσ(x), we define the smoothed
posterior as

pσ(x|A,y, b̄, r) ∝ p(y|A,x, b̄, r)pσ(x). (15)

Theorem 2: For a smooth density function pσk
(x) that

has finite expectation with σk > 0, the Lipschitz constant of
∇gPG(xt,k) + sθ(xt,k, σk) exists when each element in xt,k

satisfies 0 ≤ |xj | ≤ C for each j. Furthermore, if the weighting
factor γt,k is set to 0 if pσk

(vt+1|y,A, b) ≤ pσk
(zt+1|y,A, b)

and 1 otherwise, then with sufficiently smallβ, the inner iteration
sequence {xt,k}Tt=1 generated by Algorithm 2 is bounded, and
any accumulation point of that sequence as t → ∞ is a critical
point of the smoothed posterior distribution pσk

(x|y,A, b̄, r)
in (15).

Sketch of Proof: By Lipschitz continuity of log(pσ(x)), and
from the design of Algorithm 2, xt,k and wt,k are both bounded
between [−C,C] for all t, k, so the Lipschitz constant L∗ of
∇gPG(·) + sθ(·) exists. With the stepsize μ satisfying 0 < μ <

1
L∗ , and the weighting factor γt,k ∈ {0, 1} being chosen accord-
ing to the higher posterior probability between pσk

(z|A,y, b̄, r)
and pσk

(v|A,y, b̄, r) (see [111]), we satisfy all conditions
in Theorem 1 of [111], which establishes the critical-point
convergence of the sequence xt,k generated by Algorithm 2
for any σk, k = 1, . . . ,K. Hence the sequence xt,k generated
by Algorithm 2 converges as t → ∞ to a critical-point of the
posterior pσk

(x|A,y, b̄, r) for any σk. Supplement shows the
full proof of Theorem 2.

Theorem 2 states that at each iteration, we should choose
γt,k ∈ {0, 1} according to the higher posterior probability to
ensure convergence. However, we found empirically that setting
γt,k = 0.5 also led to convergent sequences (see Fig. 9), so we
use this practical version for all the results in Section IV. An
alternative to our score-based image prior approach would be
to alternate data fidelity updates with the sampling step of a
diffusion model based on the denoising diffusion probabilistic
models (DDPM) framework [75]. Here, we implement and
present the results of a slightly altered version (details shown in
the Supplement). There are two main changes for this version:
first, we initialize with the result of a baseline reconstruction
method (in this case, the unregularized Poisson method), rather
than pure noise; second, we use the PG likelihood to enforce
data fidelity as opposed to the Gaussian likelihood. The former
change enables the latter change to be feasible, as it reduces the
required number of sampling steps by a factor of 30, allowing
for the expensive computation of the PG likelihood each step.

IV. EXPERIMENT

A. Experiment Settings

Data: We tested all algorithms on three datasets:
162 histopathology images related to breast cancer [112]
(train/val/test is 122/20/20); 920 images from CelebA
dataset [113] (train/val/test is 800/100/20); and 720 images from
a homemade CT-density dataset (train/val/test is 600/100/20).
The CT-density dataset was generated from single-photon
emission computerized tomography (SPECT)/CT images for
Yttrium-90 radionuclide therapy after applying the CT-to-
density calibration curve [114]. Although the size of training
datasets are relatively small compared to typical datasets such
as ImageNet or LSUN [65], [67] that have millions of images,
we do not require the score functions to learn image priors strong
enough to generate realistic images from white Gaussian noise;
rather, it suffices for the priors to be able to denoise moderately
noisy images.

System Model. The system matrix is based on the discrete
Fourier transform of the concatenation of the true image x,
a blank image 0 and a reference image r with scaling and
oversampling. We set the scaling factor α to be in the range
[0.02, 0.035] so that the average counts per pixel range from 6
to 25; the oversampled ratio is set to 2. We set r to be a binary
random image similar to what was used in [39]. The standard
deviation of the Gaussian read noise added to the measurements
y was set as σ ∈ [0.5, 1.5].

Algorithms: For unregularized algorithms, we implemented
Gaussian WF [33], Poisson WF [81] and Poisson-Gaussian
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Fig. 2. Reconstructed images by unregularized methods (Gaussian, Gaussian-Amplitude, Poisson and Poisson-Gaussian) on Histopathology dataset [112], celebA
dataset [113] and CT-density dataset. The bottom left/right subfigures correspond to the zoomed in area and the error map for each image. We used α = 0.035 and
σ = 1.

Fig. 3. Reconstructed images on dataset [112]. The bottom left/right subfigures correspond to the zoomed in area and the error map for each image. We used
α = 0.02 and σ = 1.
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Fig. 4. Reconstructed images on celebA dataset [113]. The bottom left/right subfigures correspond to the zoomed in area and the error map for each image. We
used α = 0.035 and σ = 1.

Fig. 5. Reconstructed images on CT-density dataset. The bottom left/right subfigures correspond to the zoomed in area and the error map for each image. We
used α = 0.035 and σ = 1.

WF. For regularized algorithms, we implemented smoothed
total variation (TV) based on the Huber function [115, p. 184]
and PnP/RED methods with the DnCNN denoiser [116]: PnP-
ADMM [101], PnP-PGM [102], and RED-SD [58]. We also im-
plemented the RED-SD algorithm with “Noise2Self” zero-shot
image denoising network [60] (RED-SD-SELF). For diffusion
models, we implemented DOLPH [75] and our proposed AWFS.
Supplement shows the implementation details of each algorithm.
We used spectral initialization [77] for the Gaussian PR and
Poisson PR methods; we then used the output results from
Poisson PR to initialize other algorithms. We ran all algorithms
until the normalized root mean squared error (NRMSE) between

consecutive iterations differed by less than 0.01 percent or
reached the maximum number of iterations (e.g., 50).

To evaluate the robustness and limitation of these algorithms,
we first tuned the parameters for each algorithm at the noise level
whenα = 0.030 andσ = 1, and then held them fixed throughout
all experiments (Tables I, II, Figs. 7 and 8). In practice the ground
truths are unknown, so oracle tuning of test datasets is infeasible
(though some form of cross validation may be possible). Though
the numbers reported could fluctuate after careful refinement,
e.g., by performing grid search on tuning parameters, such
techniques would potentially impede the algorithm’s practical
use.
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Fig. 6. Reconstructed images by Gaussian, Poisson and Poisson-Gaussian log-likelihood model with AWFS image prior. Tested on Histopathology dataset [112],
celebA dataset [113] and CT-density dataset. The bottom left/right subfigures correspond to the zoomed in area and the error map for each image. α and σ were
set to 0.025 and 1, respectively.

TABLE I
SSIM AND NRMSE FOR POISSON AND POISSON-GAUSSIAN LIKELIHOODS
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TABLE II
SSIM AND NRMSE USING POISSON GAUSSIAN LIKELIHOOD WITH DIFFERENT REGULARIZATION/IMAGE PRIOR APPROACHES

Network Training: For PnP denoising networks, we trained
all denoisers on different noise levels σ ∈ {9, 11, 13, 15} and
found that σ = 15 worked the best on our data. We also used the
denoiser scaling technique from [117] to dynamically adjust the
performance of all PnP methods. To perform score matching,
we applied 20 geometrically spaced noise levels between 0.005
and 0.1 on each of the training images. All networks were
implemented in PyTorch and trained on an NVIDIA Quadro
RTX 5000 GPU using the ADAM optimizer [118] for 1000
epochs with the best one being selected based on the mean
squared error (MSE) validation loss.

B. Results

We compared all implemented algorithms both qualitatively,
by visualizing the reconstructed images and residual errors, and
quantitatively, by computing the NRMSE and structural similar-
ity index measure (SSIM) [119]. Due to the global phase ambi-
guity, i.e., all the algorithms can recover the signal only to within
a constant phase shift due to the loss of global phase information,
we corrected the phase of x̂ by x̂corrected � sign(〈x̂,xtrue〉)x̂.

Fig. 2 shows experiments of running unregularized methods
based on different noise models on the histopathology, CelebA,
and CT density datasets. For comparison, we ran the unregular-
ized methods with a Gaussian only noise model, Poisson only,
and PG noise model.

Figs. 3, 4, and 5 visualize reconstructed images generated
by algorithms mentioned in the previous section. The WF with
PG likelihood outperforms WF with Poisson likelihood with a
consistently higher SSIM and lower NRMSE. Of the regularized
algorithms with PG likelihood, our proposed AWFS had less vi-
sual noise and achieved greater detail recovery compared to other
methods, as evidenced by the zoomed-in area in these figures.
Fig. 6 shows that for a variety of datasets, when combined with
the AWFS method, while the Poisson only and Gaussian only
models lead to reasonable reconstructions, the PG noise model
leads to the highest quality image. For all three datasets shown,
when used in conjunction with our AWFS method, including
both Poisson and Gaussian likelihoods results in the highest

quality reconstruction both in terms of quantitative metrics as
well as visually. Thus, although the score function provides a
useful prior for recovering an image when the measurement is
very noisy, a proper noise model is also crucial to a high quality
reconstruction.

For quantitative evaluations, Table I illustrates the effect of
using our proposed PG likelihood as compared to the simpler
Poisson likelihoods. We did not run the Gaussian likelihood with
DOLPH or AWFS due to the abysmal performance with this
likelihood. In all cases, usage of the PG likelihood results in im-
proved image quality in terms of both metrics. Table II consists
of experiments using the PG likelihood and shows the efficacy
of the proposed AWFS method over other methods. In partic-
ular, our AWFS had superior quantitative performance over all
other compared methods on the histopathology and CT-density
datasets; in contrast, the PnP-Prox showed the lowest NRMSE
on celebA dataset. This is likely due to higher randomness in
celebrity faces because the effectiveness of generative models
can vary depending on the dataset used. Thus, when provided
with a small amount of training data with high randomness,
image denoising models (DnCNN) may be more effective than
generative models.

We also tested the robustness of the leading algorithms in
Table II, by varying both scaling factor α and STD of Gaus-
sian noise σ. Figs. 7 and 8 illustate results, where our AWFS
algorithm had the highest SSIM and lowest NRMSE. In Fig. 8,
AWFS demonstrated minimal variations in SSIM and NRMSE
metrics than DOLPH as evidenced by the smaller discrepancies
in SSIM (0.17vs. 0.23) and NRMSE (12.6% vs. 18.2%) when
σ varies from 0.75 to 1.5. Fig. 9 compares the convergence rate
of AWF vs. WF for the Poisson and PG likelihood, respectively.
Under a variety of noise levels, AWF consistently converged
faster than WF in terms of number of iterations.

It is a known property of diffusion models that they can
produce images with hallucinated features if the measurements
are insufficiently informative. In the case of low-count phase
retrieval with serious corruptions of both Poisson and Gaus-
sian noise, as is investigated here, the measurement is highly
corrupted and contains magnitude-only measurements of the
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Fig. 7. Comparison of SSIM and NRMSE varying scaling factor α ∈ [0.02, 0.035] and STD of Gaussian noise σ ∈ [0.25, 1.5] defined in (3).

Fig. 8. Reconstructed images by DOLPH [75] and our proposed AWFS method under different σ values, for α = 0.02.

original signal. Thus, it may be difficult for the diffusion models
to avoid some otherwise realistic hallucinations if the data con-
sistency is not strong enough to guide the model away from such
hallucinations. On the other hand, if the measurements are less
corrupted, then the data consistency should be strong enough
to avoid such hallucinations. Fig. 10 provides examples of this
for the CT image dataset via a comparison of the reconstruction
quality of the AWFS method over a range of count levels. With
the lowest scaling factor, e.g.,α = 0.02, the measurements were
seriously corrupted with noise, and the method may hallucinate
some features. However, at higher count level, e.g., α = 0.05,
there is enough information in the measurement to enforce
consistency and avoid noticeable hallucinations. We performed

the same experiment twice with different noisy initializations
and all other parameters held equal to demonstrate robustness
of the method under different initializations.

V. DISCUSSION

PR has a long-standing history in the field of signal processing
and imaging. Pioneering works such as the error reduction
(ER) and hybrid input-output (HIO) algorithms by Gerchberg
Saxton [25] and Fienup [90] have been proposed to address this
problem. These iterative algorithms involve constraints imposed
on evaluations between the image domain and frequency do-
main. However, these methods have limitations in terms of the
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Fig. 9. Comparing AWF vs. WF with NRMSE vs. number of iterations under different noise levels. The curves and shadows represent the mean and standard
deviation, respectively.

Fig. 10. Reconstructed images by the unregularized Poisson method (the second column) as well as with the AWFS method for different scaling factors α (third
to fifth columns). The top and bottom rows show reconstructions from different measurement realizations.
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quality of reconstructed images and their convergence remains
uncertain [120]. Another approach to solving PR problems is
through compressed sensing and optimization techniques like
Wirtinger flow (WF) [33], matrix lifting [5], [19], [20], MM [24]
and ADMM [30]. This paper focuses on the WF algorithm due to
being straightforward to incorporate with the DL regularizer for
the image prior. The likelihood modelling of the noise statistics
existing in the measurement is also critical. Previous studies
have primarily focused on modelling either Gaussian or Poisson
likelihood only, but in practical scenarios, both types of noise are
often encountered. Therefore, this paper contributes to a more
practical perspective of addressing the holographic PR problem
by using a PG likelihood and incorporating state-of-the-art deep
learning image priors. In the case where the measurement is
contaminated with Poisson and Gaussian noise, the speedup in
reconstruction is crucial, as the bottleneck of our algorithm is in
computing the PG likelihood. Additionally, though it is viable to
perform a large number of neural network evaluations to perform
image reconstruction, it is unrealistic to compute a similarly
large number of PG likelihoods. Thus, we perform acceleration
in WF algorithm following [111], which guarantees convergence
to a critical point for the Holographic PR problems.

In our evaluation of three datasets, we consistently observed
that the use of PG likelihood yielded superior performance com-
pared to using either Poisson or Gaussian likelihood alone, as
expected. Additionally, the results obtained from the CT-density
dataset were generally of lower quality than those from the other
two datasets. This can be attributed to lower average counts per
pixel (many zero pixels near the image borders). Using a DL
image prior can be considered from two perspectives: training a
denoiser or training to learn the density distribution of images.
In our work, we applied both approaches and observed that the
effectiveness of these methods differed depending on the dataset
tested. Specifically, in the Histopathology dataset [112] and the
CT-density dataset, where the images share similar structures,
the generative models performs better even when trained with
limited data. In the case of the CelebA dataset [113], which
includes a wide variety of celebrity faces, generative models
did not exhibit as strong performance as denoiser methods
when trained on limited data. This is likely due to the fact that
generating high-quality images is generally more challenging
than removing noise from existing images and may necessitate
a larger training dataset. The effectiveness of accelerated WF
compared to vanilla WF is due to the non-convexity of the PR
problem. Although recent advances in geometric landscape anal-
ysis of PR can guarantee that all local minimizers are global even
with random initialization [121], in practice the measurements
are contaminated by noise so that many more measurements
are required for the cost function to have a benign geometric
landscape.

Despite the promising results achieved with our proposed
AWFS approach, there are several limitations of our work. First,
the approximate calculation of the infinite sum in (4) is accurate
but computationally expensive. Future work should seek ways to
accelerate this calculation while maintaining accuracy. Second,
we did not implement and test the accelerated WF applied
on the diffusion posterior sampling (DPS) method [109], for

which the network is fine-tuned from a pretrained state-of-the-art
diffusion model. This approach has the potential to advance
current methods in PR problem and we will investigate it in
the future. Another limitation of the proposed method is that
it has been demonstrated on measurements that are based on
simulations. To further demonstrate the efficacy of the method
in a real-world setting, future work should consist of evaluating
the accuracy of the methods when run on real measurement
data. Finally, our experiments are limited to real-valued im-
ages, however, our method can be extended to handle complex-
values images by splitting real and imaginary components into
separate reconstruction routines with different pretrained neural
networks [78]. Addressing these limitations will be the future
direction of this work.

VI. CONCLUSION

We proposed a novel algorithm based on Accelerated
Wirtinger Flow and Score-based image prior (AWFS) for
Poisson-Gaussian holographic phase retrieval. Simulation ex-
periments demonstrate that the proposed AWFS method pro-
duced the best reconstruction quality both qualitatively and
quantitatively and was more robust to various noise levels,
compared to other state-of-the-art methods. Furthermore, we
proved that our proposed algorithm has a critical-point con-
vergence guarantee. Therefore, after the method is extended
to accommodate complex-valued images, it should have much
promise for real-world PR applications.
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SUPPLEMENT

This is the supplement for the paper “Accelerated Wirtinger Flow with Score-based Image Priors for Holographic Phase
Retrieval in Poisson-Gaussian Noise Conditions” by Z. Li, J. Hu, X. Xu, L. Shen and J. A. Fessler.

A. Reconstruction results of WF-Gaussian

Fig. S.1 shows the reconstruction results using the WF-Gaussian method that assumes the variance of all measurements are
the same, i.e., y = N (|Ax|2+b,Σ), where Σ = cI . The data was simulated using the PG model, as described in Section III.

We tried both a line search method and the Fisher information approach for computing the step size, but neither resulted in a
successful image recovery.

Ground truth

Gaussian

Ground truth

Gaussian

Ground truth

Gaussian

Fig. S.1: Reconstructed images using WF-Gaussian assuming the variance of all measurements are the same.
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B. Proof of Theorem 2

It was already shown that ∇gPG is Lipschitz continuous, so the remaining problem is to find a Lipschitz constant for s(x, σ).
We assume that the data allows the neural network to learn the score function well, i.e., pσ(x) = p(x)⊛N (0, σ2), where ⊛
denotes (circular) convolution. We start with some well-known lemmas whose proofs can be readily found in [1]. We include
the proofs for completeness.

Lemma 2.1: The Fourier transform (and inverse transform) of an absolutely integrable function is continuous (Exercise 2.2.6
in [1]).
Proof of Lemma 2.1: Let f be absolutely integrable and let f̃ be its Fourier transform. We have

|f̃(w + h)− f̃(w)| =
∣∣∣∣∫ f(x)(e−2πjx(w+h) − e−2πjwx) dx

∣∣∣∣ ≤ ∫
|f(x)||e2πjxh − 1|dx

≤ max(|e2πjxh − 1|)
∫

|f(x)|dx ≤ 2

∫
|f(x)|dx. (S.1)

Using absolute integrability of f , we see |f̃(w + h)− f̃(w)| tends to 0 as h tends to 0, so f̃ is uniformly continuous, which
also implies it is continuous.

The proof of the inverse transform follows similarly.

Lemma 2.2: Suppose a sequence of functions fi : R → R converges in L1 to some function f , and that each fi is absolutely
integrable. Then f is also absolutely integrable.
Proof: L1 consists of absolutely integrable functions and it is a Banach space so it is complete and hence closed. Thus, if
fi are a sequence in L1 then they are absolutely integrable. If this sequence converges, the limit must be in L1 because it is
closed. This shows that f is absolutely integrable.

Proposition 2.1: The derivative of log(pσ(x)) is bounded on the interval [−C,C].
Proof: We start by dropping constant factors and using derivative of a convolution, we have

d

dx
(log(p(x)⊛N (0, σ2))) ∼ F−1(ıxF(p(x)) · F(N (0, σ2)))

p(x)⊛N (0, σ2)
∼ F−1(xe−x2 · F(p(x)))

p(x)⊛N (0, σ2)
(S.2)

where F denotes Fourier transform. The denominator is continuous and since x lies in a closed interval by assumption, has a
lower bound M > 0 by the extreme value theorem. We next consider the numerator.
By [2, pp. 65], a sequence of Gaussian mixture models (GMMs) can be used to approximate any smooth probability distribution
in L2 convergence. Furthermore, L2 convergence implies L1 convergence. Hence, consider a sequence of GMMs fi that
converge in L1 to p(x). By linearity of Fourier transform, F(fi(x)) must be a linear combination of terms of the form
e−(x−µi)

2/ci for some ci. Thus, the numerator xe−x2 ·F(fi(x)) is a finite linear combination of terms of the form xe−(x−µi)
2/ci ,

each of which are absolutely integrable. Therefore, we have a sequence of functions, each of which are absolutely integrable,
that converge in L1 to xe−x2 ·F(p(x)), so by Lemma 2.2, this is also absolutely integrable. By Lemma 2.1, the inverse Fourier
transform of this is continuous. Finally, again by the extreme value theorem and using the boundedness of x, the numerator
is bounded above by some M ′ > 0. Hence, the entire expression (S.2) is bounded above by M ′/M .

Lemma 2.4: Suppose we have an everywhere twice differentiable function of two variables f(x, y) : R2 → R. Then
∂2

∂x∂y log f(x, y) is bounded if the following three conditions are met:

1) ∂2

∂x∂yf(x, y) is bounded.
2) f itself is bounded below by a positive number and also bounded above.
3) ∇f is bounded.

Proof: Suppose we have f(x, y) satisfying those three conditions. We compute the second partial derivative of its log:

∂

∂x
log f(x, y) =

∂
∂xf(x, y)

f(x, y)
. (S.3)

and
∂2

∂x∂y
log f(x, y) =

( ∂2

∂x∂yf(x, y))f(x, y)− ( ∂
∂xf(x, y))(

∂
∂yf(x, y))

f(x, y)2
. (S.4)

From the second condition, the denominator is bounded below by a positive number, so it suffices to consider the boundedness



3

of the numerator. The first term of the numerator is a product of two quantities, the first of which is bounded by the first
condition and the second of which is bounded by the second condition. The second term of the numerator is also a product
of two quantities, both of which are bounded by the third condition. Thus, this shows ∂2

∂x∂y log f(x, y) is bounded.

Proposition 2.2: The gradient of log(pσ(x)) is Lipschitz continuous on [−C,C]N .
Proof: By renaming the variables, and redefining f(x, y) = p(x, y, · · · ), we may consider the boundedness of
∂2

∂x∂y

(
log f(x, y)⊛N (0, σ2I)

)
on [−C,C]2. To apply Lemma 2.4 to remove the log, we need to verify the three conditions.

Define g(x, y) = f(x, y)⊛N (0, σ2I). The second condition is readily verified to be true: By assumption, x and y take values
on a closed interval, thus by the extreme value theorem, so does g(x, y). Further, g is a convolution of positive numbers and
so the output is always positive, hence, the lower bound of this closed interval is a positive number, verifying this condition.

For the third condition, we need to consider boundedness of ∂
∂xf(x, y)⊛N (0, σ2I). This is nearly identical to Proposition 2.2,

with the only difference being we have some general function in terms of only x f(x, y) instead of a probability distribution
p(x). The proof of that lemma is readily adapted for this case with the only condition needing verification being the absolute
integrability over x of f(x, y). In fact, this is clear because f is always positive; hence, integrating over f with respect to x
must yield a finite number as integrating a second time over y yields 1.

It thus suffices to consider boundedness of h(x, y) = ∂2

∂x∂y

(
f(x, y)⊛N (0, σ2I)

)
. It is assumed that f is smooth and the

convolution of smooth functions is smooth, which implies f(x, y) ⊛N (0, σ2I) is smooth. Hence h is differentiable, so it is
continuous. Once again by the EVT, as x and y take values on a closed interval, h must be bounded. By Lemma 2.4, the
entries of the Hessian of the score function are bounded. Therefore, a Lipschitz constant of sθ(x) exists.

Proof of Theorem 2: By Proposition 2.2, and from the design of Algorithm 2 (see main text), xt,k and wt,k are both bounded
between [0, C] for all t, k, so the Lipschitz constant L∗ of ∇gPG(·)+sθ(·) exists. With the step size µ satisfying 0 < µ < 1

L∗ ,
and the weighting factor γ ∈ {0, 1} being chosen according to whichever higher posterior probability between pσk

(z|A,y, b̄, r)
and pσk

(v|A,y, b̄, r) (where pσk
(x|y,A, b̄, r) ∝ p(y|A,x, b̄, r)pσk

(x)), then we satisfy all conditions in Theorem 1 of [3],
which establishes the critical-point convergence of the inner iteration sequence xt,k in Algorithm 2 (see main text) for the
posterior distribution pσk

(x|A,y, b̄, r). Similar convergence analysis can be found in [4].



4

Algorithm S.1 Poisson-Gaussian phase retrieval via WFSD.

Require: Measurement y, system matrix A, step size factor ϵ, truncation operator PC(·) → [0, C]; initial image x0, initialize
σ1 > σ2 > · · · > σK .
for k = 1 : K do

for t = 1 : T do
Set step size µ = ϵσ2

k.
Compute sθ(xt,k, σk).
Set xt+1,k = PC (xt,k − µ (∇gPG(xt,k) + sθ(xt,k, σk))).

end for
end for
Return xT,K .

C. Algorithm Implementation

Wirtinger Flow. WF is a popular algorithm for phase retrieval. It first computes the Wirtinger gradient (an ascent direction)
and then applies gradient descent. Perhaps the most critical step is to find an appropriate step size. In this work, we used
backtracking line search for Gaussian WF, and the observed Fisher information [5] for Poisson WF and for Poisson-Gaussian
WF. To further accelerate the computation (and avoid floating point overflow) of ∇gPG, we observed it was effective to use
the gradient of Poisson PR for large yi, e.g., yi ≥ 100. We used this “trick" in our experiments; additionally, one can also use
“defocus" to deal with large yi [6]. By replacing ∇h(x) in Algorithm 1 (see main text) with the trained score function sθ,
one can derive the vanilla gradient-descent version (Algorithm S.1) of the AWFSD algorithm.

PnP-ADMM. The plug-and-play ADMM first derives a Lagrangian using variable splitting and then applies alternating
minimization [7]. In this work, let u = x, and the Lagrangian is

L(x,u,η; ρ) = gPG(|Au|2 + b) +R(x) +
ρ

2

(
∥x− u+ η∥22 − ∥η∥22

)
. (S.5)

Fig. S.2: The architecture of the adopted DnCNN network [8].

DOLPH. Algorithm A.2 shows our implementation of DOLPH, which is based on the DDPM model [9] that first gradually
adds Gaussian noise to data according to a variance schedule β1, · · · , βT so that q(xt|xt−1) = N (xt;

√
1− βtxt−1, βtI).

Using the notation αt = 1− βt and αt =
∏t

s=1 αs, we have

q(xt|x0) = N (xt;
√
αtx0, (1− αt)I). (S.6)

It can be shown [9] that the appropriate loss function to use is

L(θ) = Et,x0,ϵ

[
∥ϵ− ϵθ(

√
αtx0 +

√
1− αtϵ, t)∥2

]
, (S.7)

where ϵ is selected from N (0, I). The sampling and reconstruction algorithm requires the addition of noise each step as shown
in the following algorithm. Experimentally, however, we found that setting σt = 0 results in higher quality reconstructed
images. Furthermore, we choose T = 100, β1 = 10−4, and βT = 0.3. For the theory to hold, xT should be indistinguishable
from white Gaussian noise, which is readily verified to be true for these parameters. Finally, the stepsize µk of the gradient
descent step can be chosen according to the Lipschitz constant of the Poisson-Gaussian likelihood to ensure convergence, or
empirically, as is done in the experiments.

Algorithm S.3 summarizes the PnP-ADMM algorithm for phase retrieval. In this work, we trained the denoiser hθ using the
network DnCNN [8]. As shown in Fig. S.2, the architecture of DnCNN consists of convolution (Conv), Rectified Linear Unit
(ReLU), and batch normalization(BN). The network was trained with residual learning where the output is the noise residual
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and the clean image was obtained by subtracting the noisy output. We trained all denoisers for 400 epochs with image patches
of size 40× 40 on each given dataset.

Algorithm S.2 DOLPH [10].

Require: Measurement y, system matrix A, initialization of image xT , pre-trained DDPM model sθ, and T .
for t = T : 1 do

Set zt ∼ N (0, I) if t > 1 and zt = 0 otherwise.
Set xt−1 = 1√

αt

(
xt − 1−αt√

1−αt
sθ(xt, t)

)
+ σtzt.

Determine step size µ.
Set xt−1 = xt−1 − µ∇gPG(xt−1).

end for
Return x1.

Algorithm S.3 Poisson-Gaussian phase retrieval via PnP-ADMM

Require: Measurement y, system matrix A, initialization of image x0, initialization of auxilary variable u0 = x0, initialization
of dual variable η0 = 0, pre-trained denoiser hθ, Lagrangian penalty parameter ρ.
for k = 1 : K do

for t = 1 : T do
Compute step size µt,k.
Set ut+1,k = ut,k − µt,k (∇gPG(uk,t) + ρ(ut,k − xk − ηk)).

end for
Set xk+1 = hθ(xk).
Set ηk+1 = ηk + xk+1 − uk+1.

end for
Return xK .

PnP-PGM. Similar to PnP-ADMM, one can also derive a proximal gradient method as shown in Algorithm S.4. Here we
assume the denoising of hθ is a proximal operation.

Algorithm S.4 Poisson-Gaussian phase retrieval via PnP-PGM

Require: Measurement y, system matrix A, initialization of image x0, pre-trained denoiser hθ, averaging factor β.
for k = 1 : K do

Compute step size µk.
Set x̃k = xk − µk∇gPG(xk).
Set x̄k = hθ(x̃k).
Set xk+1 = (1− β)x̃k + βx̄k.

end for
Return xK .

SD-RED. Regularization by denoising (RED) is an alternative to PnP methods that is based on an explicit image-adaptive
regularization functional: 1

2x
′ (x− hθ(x)). This regularizer reflects the cross-correlation between the image and its denoising

residual [11].

Algorithm S.5 summarizes the RED approach for phase retrieval.

Algorithm S.5 Poisson-Gaussian phase retrieval via RED

Require: Measurement y, system matrix A, initialization of image x0, pre-trained denoiser hθ, regularization factor β.
for k = 1 : K do

Compute stepsize µk.
Set xk+1 = xk − µk (∇gPG(xk) + β(xk − hθ(xk))).

end for
Return xK .

SD-RED-SELF. Other than supervised denoising approaches, we also implemented a self-supervised denoising method known
as “noise2self" [12], which designed a neural network to be J -invariant so that the self-supervised loss can be represented as
the sum of supervised loss and the variance of noise. The “SD-RED-SELF" algorithm refers to training hθ in Algorithm S.5
in such self-supervised fashion on each test data.
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