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Manifold Regularizer for High-Resolution fMRI
Joint Reconstruction and Dynamic Quantification
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Abstract— Oscillating Steady-State Imaging (OSSI) is a
recently developed fMRI acquisition method that can pro-
vide 2 to 3 times higher SNR than standard fMRI approaches.
However, because the OSSI signal exhibits a nonlinear
oscillation pattern, one must acquire and combine nc (e.g.,
10) OSSI images to get an image that is free of oscillation
for fMRI, and fully sampled acquisitions would compromise
temporal resolution. To improve temporal resolution and
accurately model the nonlinearity of OSSI signals, instead
of using subspace models that are not well suited for
the data, we build the MR physics for OSSI signal gen-
eration as a regularizer for the undersampled reconstruc-
tion. Our proposed physics-based manifold model turns
the disadvantages of OSSI acquisition into advantages and
enables joint reconstruction and quantification. OSSI man-
ifold model (OSSIMM) outperforms subspace models and
reconstructs high-resolution fMRI images with a factor of
12 acceleration and without spatial or temporal smoothing.
Furthermore, OSSIMM can dynamically quantify important
physics parameters, including R∗

2 maps, with a temporal
resolution of 150 ms.

Index Terms— Manifold model, high-resolution fMRI,
quantitative MRI, R∗

2, oscillating steady-state imaging
(OSSI), joint reconstruction and quantification.

I. INTRODUCTION

FUNCTIONAL magnetic resonance imaging (fMRI) is an
important tool for brain research and diagnosis. In its

most common form, it detects functional activation by acquir-
ing a time-series of MR images with blood-oxygen-level-
dependent (BOLD) contrast [1]. However, the BOLD effect
has a relatively low signal-to-noise ratio (SNR) [2], and
the SNR further decreases with improved spatial resolution.
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Because the functional units (cortical columns) of the brain
are on the order of 1 mm, high resolution with high SNR
is critical for some fMRI experiments. This paper focuses
on Oscillating Steady-State Imaging (OSSI), a recent fMRI
acquisition approach that provides higher SNR signals than
standard gradient-echo (GRE) imaging [3].

Oscillating Steady-State Imaging (OSSI) establishes a new
steady state by combining balanced gradients as in balanced
steady-state free precession [4] and quadratic RF phase pro-
gression as in RF-spoiled GRE [5]. This steady-state signal
combines the high SNR feature of the balanced steady state
and the T ∗

2 contrast of GRE imaging, and presents 2 to 3 times
higher SNR than standard GRE fMRI [3], [6]. However,
the SNR advantage of OSSI comes at a price of spatial
and temporal resolutions. OSSI applies a quadratic RF phase
cycling φ(n) = πn2/nc, where n is the RF index and a
typical cycle length is nc = 10. The corresponding OSSI
signal oscillates with a periodicity of nc · TR, and OSSI
images exhibit a periodic oscillation pattern as shown in Fig. 1.
Therefore, every OSSI image is acquired with a different RF
phase across the period, and one must acquire nc images and
combine them to eliminate oscillations for each fMRI image in
a regular fMRI time course. Acquiring nc times more images
compromises temporal resolution, and the short TR necessary
for OSSI acquisition can limit single-shot spatial resolution.

To improve the spatial-temporal resolution, we previously
used a patch-tensor low-rank model for the sparsely under-
sampled reconstruction [6]. While low-rank regularization fits
data to linear subspaces, previous works [6], [7] show that
OSSI images across the period of nc·TR are not very low-rank,
because the oscillation patterns in OSSI images are nonlinear
and cannot be accurately modeled by linear subspace models.
Instead of imposing subspace models [8] such as low-rankness
and/or sparsity that may or may not suit the data, this paper
proposes a nonlinear dimension reduction approach for OSSI
reconstruction that uses a MR physics-based manifold as a
regularizer, inspired by parameter map reconstruction methods
for MR fingerprinting [9], [10].

Manifold learning is a well-established area of research in
machine learning [11]. In MRI, several studies have explored
different manifold modeling and learning approaches. For
example, [12] proposes an unrolled network for accelerated
cardiac MRI imaging that utilizes a low-rank tensor manifold.
[13] exploits image patch similarity with a low-dimensional
patch manifold for sparsely sampled MR image reconstruction.
Furthermore, [14] reconstructs MR fingerprinting images with
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temporal low-rank and spatial regularizations, in addition
to the Bloch manifold regularization. Regarding fMRI, with
the assumption that time-varying functional connectivity data
lie on a low-dimensional manifold, [15] and [16] exploit
manifold learning techniques for task-based functional con-
nectivity analysis. Reference [17] provides multi-modal brain
representations by embedding local image features to a low-
dimensional manifold. Our work appears to be the first to
achieve joint undersampled reconstruction and quantization
in fMRI, enabled by the proposed manifold regularization of
OSSI signals.R1.1

As outlined in Fig. 1, the proposed manifold model focuses
on MR physics for OSSI signal generation. It represents nc
OSSI signal values per voxel by just 3 physical parameters, via
Bloch equations. The nonlinear nature of the Bloch equations
enables nonlinear representations of the data and nonlinear
dimension reduction. We further introduce a near-manifold
regularizer that encourages the reconstructed signal values
to lie near the manifold. Compared to quantitative imaging
methods that strive to constrain the reconstructed images to
exactly match the physics-based representations [9], [10], [18],
[19], the proposed regularizer encourages the images to be
near the manifold while also allowing for potential model
mismatch.

In fMRI, R′
2 = 1/T ′

2 relates to susceptibility properties of
blood and captures BOLD changes [20]. The R2 relaxation
with R2 = 1/T2 describes the irreversible MR signal decay
and is tissue dependent. f0 denotes off-resonance frequency
due to B0 field inhomogeneity. The BOLD response that
arises from neural activity can be expressed as the convolution
of hemodynamic response function (HRF) and the stimulus
function (or task waveform) [21].

Changes in R′
2 or R∗

2 , where R∗
2 = R2 + R′

2, depend on
neural activity, so one can use dynamic quantification of R′

2
or R∗

2 to monitor brain activity. Furthermore, because R∗
2 is

sensitive to iron concentration, quantifying R∗
2 is important

in clinical protocols for state changes of diseases such as
Alzheimer’s or Parkinson’s disease [22]. However, standard
T ∗

2 -weighted magnitude images only assess relative signal
changes due to BOLD effects and are not quantitative in
terms of BOLD-dependent parameters like T ∗

2 or T ′
2 [23], [24],

[25]. By constructing a T ′
2 driven physics manifold based on

BOLD-induced intravoxel dephasing, our work demonstrates
the utility of the OSSI manifold model for dynamic quantifi-
cation of T ∗

2 or R∗
2 .

This paper shows that the proposed physics-based mani-
fold and near-manifold regularizer can jointly optimize OSSI
images and quantitative maps. The manifold model enables
high-resolution OSSI fMRI with 12-fold acquisition accelera-
tion, outperforms low-rank regularization with more functional
activation, and provides quantitative and dynamic assessment
of tissue R∗

2 maps and off-resonance f0, with a temporal
resolution of 150 ms.

II. OSSI MANIFOLD MODEL (OSSIMM)
OSSI signals oscillate with a periodicity of ncTR, and the

OSSI fMRI time course contains nc images for every image

in a regular fMRI time series. We refer to the fast acquisition
dimension of size nc as “fast time” and the regular fMRI time
dimension as “slow time” as presented in Fig. 1. OSSI fast
time signals can have different shapes and change nonlinearly
with respect to MR physics parameters, as illustrated in
Figs. 1 and 2. To accurately model the nonlinear oscillations,
we propose a MR-physics based manifold model for the
undersampled reconstruction.

A. Physics-Based Manifold

In OSSI, the steady-state transverse magnetization of one
isocromat at observation time t for all nc fast time points is

m0 φ(t; T1, T2, f0),

where m0 ∈ C is the equilibrium magnetization, φ(·) ∈ Cnc

represents MR physics that is described and calculated by
steady-state Bloch equations, T1 and T2 are tissue relaxation
times, and f0 denotes central off-resonance frequency from
B0 field inhomogeneity.

We model the T ′
2-weighted OSSI signal in a voxel with an

intra-voxel spreading of off-resonance frequencies f as:

m08(t; T ′
2, f0; T1, T2)

≜
∫

∞

−∞

m0φ(t; T1, T2, f0 + f ) p( f ; T ′
2) d f .

The T ′
2 exponential decay corresponds to a Cauchy distribution

for f with a probability density function (PDF) p( f ) =

γ /π(γ 2
+ f 2), and scale parameter γ = 1/(2πT ′

2).
The isocromat signal at time t > 0 exhibits T2 decay and

increased off-resonance dephasing due to field inhomogeneity
and BOLD-related field changes:

m0φ(t; T1, T2, f0)

= m0φ(t = 0; T1, T2, f0) e−t/T2 e−ı2π f0t ,

where t = 0 denotes the time right after the excitation.
As OSSI TR is relatively short (e.g., TR = 15 ms),

we neglect the intravoxel dephasing during the readout and
approximate the signal at 0 ≤ t ≤ TR with the signal at the
echo time TE. The T ′

2-weighted signal becomes

m08(t; T ′
2, f0; T1, T2)

≈

∫
∞

−∞

m0φ(TE; T1, T2, f0 + f )

e−TE/T2 e−ı2π( f0+ f )TE p( f ; T ′
2) d f . (1)

T1 has a signal scaling effect that can be absorbed in m0 as
illustrated in Fig. 2. Furthermore we drop the notation on t =

TE hereafter. Accordingly, T ′
2-weighted OSSI fast time signals

lie on (or near) the physics-based manifold:

{m08(T ′
2, f0; T2) ∈ Cnc : m0 ∈ C, T2, T ′

2, f0 ∈ R}, (2)

The manifold maps a limited number of physics parameters
to the nc-dimensional oscillating signals via MR physics.
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Fig. 1. OSSI oscillation pattern (top left); every set of nc OSSI “fast time” images are combined for each “slow time” image in an fMRI time series.
As illustrated in the diagram (bottom panel), instead of using linear subspace models that might not be a good fit for the data, our proposed manifold
model uses the MR physics for the signal generation as a regularizer for the undersampled reconstruction. The undersampled variable-density spiral
k-space trajectory is compared to a fully sampled spiral trajectory (top right).

B. Near-Manifold Regularization

The physics-based manifold models the generation of MR
signals, enables nonlinear dimension reduction, and can facil-
itate image reconstruction from undersampled k-space data.
Because the physics parameters are location dependent, and
because OSSI signal values change drastically with varying
parameters as shown in Fig. 2, we model the fast time signals
in a voxel-by-voxel manner. Furthermore, to account for poten-
tial mismatches due to model simplifications and nonidealities
in experiments (e.g., flip angle inhomogeneity), we propose
a near-manifold regularizer that encourages the signal values
in each voxel to be close to the manifold estimates but not
necessarily exactly the same.

The proposed physics manifold model based image recon-
struction problem uses the following optimization formulation:

X̂ = arg min
X

1
2
∥A(X) − y∥2

2 + β

N∑
n=1

R (X[n, :]) ,

R(v) = min
m0,T ′

2, f0
∥v − m08(T ′

2, f0; T2)∥
2
2, (3)

where X ∈ CN×nc denotes nc fast time images to be
reconstructed. The vectorized spatial dimension N denotes
the number of voxels. A(·) is a linear operator consisting
of coil sensitivities and the non-uniform Fourier transform
including undersampling, y represents sparsely sampled k-
space measurements. β is the regularization parameter. v ∈

Cnc is a vector of fast time signal values for each voxel in X ,
m08(T ′

2, f0; T2) ∈ Cnc denotes the manifold estimates. The
regularizer minimizes the Euclidean distance between v and
m08(T ′

2, f0; T2). T1 and T2 are not directly estimated by the

model. Section III describes the choices of baseline T2 values
for T ∗

2 estimation.
Note that with a large enough regularization parameter β,

the proposed model would be similar to other quantification
works that apply an equality constraint to enforce the images
to lie exactly on the manifold. The voxel-wise parametric
regularizer R(v) not only performs regularization for the
ill-posed reconstruction problem, but also involves parameter
estimation and can provide quantitative maps for T ′

2 and f0.

C. Optimization Algorithm
To solve (3), we alternate between a regularization update

and a data fidelity update for the reconstruction. The min-
imization of the voxel-wise parametric regularizer w.r.t.
m0, T ′

2, f0 for each voxel is a non-convex and nonlinear least-
square problem that we solve using the variable projection
(VARPRO) method [26], [27]. Let θ = [T ′

2, f0] denote the
two nonlinear tissue parameters; the calculation of θ using
VARPRO simplifies to

θ̂ = arg max
θ

∣∣v′8(θ)
∣∣2

∥8(θ)∥2
2

, (4)

where v = X[:, n] ∈ Cnc . Instead of solving (4) for the explicit
and sophisticated 8(θ), we construct a dictionary consisting
of discrete 8(θ) realizations with varying θ parameters using
Bloch simulations, and then perform grid search to find θ̂ for
which 8(θ̂) best matches v according to (4).

Updating m0 is a least-squares problem with closed-from
solution:

m̂0 =
(8(θ̂))′v

∥8(θ̂)∥2
2

. (5)
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Fig. 2. Normalized OSSI fast time signal magnitude for one isochromat.
The change of T1 only scales OSSI signal values, and the OSSI signal at
different T1s are on top of each other (top panel), while different T2 and f0
values lead to different nonlinear oscillations. We further simulated wider
ranges of T2 values and observed that for larger T2 values (above about
150 ms), the T2 effect of the OSSI signal is closer to a scaling effect.

We parallelize the regularization update across all voxels.
The update step for X involves a quadratic regularized least-

squares problem that we solve using the conjugate gradient
method as implemented in the Michigan Image Reconstruction
Toolbox [28]. This data fidelity update is easily parallelized
across fast time images to speed up the fMRI time series
reconstruction.

D. Comparison Method
We compare the manifold approach to a low-rank recon-

struction approach that models the fast time signals using lin-
ear subspaces. The cost function for this low-rank comparison
method is

X̂ = arg min
X

1
2∥A(X) − y∥2

2 + α∥X∥∗ (6)

where X ∈ CN×nc represents all nc fast time images, and
α is the regularization parameter. Because the composite cost
function (6) is convex, nonsmooth, and has a convenient prox-
imal mapping, we solve the optimization problem using the
proximal optimized gradient method (POGM) with adaptive
restart [29], [30], [31], [32].

III. SIMULATION INVESTIGATIONS

We generated OSSI signals via Bloch simulation using
pulse-sequence parameters that matched the actual data acqui-
sition. We used TR = 15 ms, TE = 2.7 ms (spiral-out
trajectory), RF excitation pulse length = 1.6 ms, quadratic
RF phase cycling with 8(n) = πn2/nc for nth TR, nc = 10,
and flip angle = 10◦ [3].

A. OSSI Signals
The OSSI signal vector in Cnc for one isocromat is deter-

mined by physics parameters T1, T2, and f0. Fig. 2 presents

example OSSI isocromat signals (normalized by the maximum
magnitude) with varying physics parameters selected based
on gray matter relaxation parameters: T1 = 1400 ms, T2 =

92.6 ms [33]. To approximate (1), we simulated T ′
2-weighted

OSSI signal in a voxel using a Riemann sum of numerous
OSSI isocromat signals at different off-resonance frequencies.
Specifically, we calculated a weighted sum of OSSI signals
from 4000 isocromats at off-resonance frequency f0 + f ,
where f uniformly ranged from -200 Hz to 200 Hz, and the
weighting function was the PDF of the Cauchy distribution.

We further simulated a fMRI time course for one voxel with
time-varying T ′

2 values. The T ′
2 waveform is the convolution of

the canonical HRF [34] and the fMRI task waveform. Because
fMRI percent signal change 1% ≈ 1R′

2 ·TEeff [35] and OSSI
TEeff = 17.5 ms [3], we set 1T ′

2 = 15.4 ms to produce a
typical percent signal change of 2%. The baseline T ′

2 is set
to 108.7 ms based on a typical brain T ∗

2 of 50 ms at T2 =

92.6 ms. The fMRI time course is also affected by scanner
drift and respiration induced f0 changes. We simulated f0 with
a linearly increasing scanner drift of about 1 Hz per minute
and a sinusoidal waveform (magnitude of 0.5 Hz and period
of 4.2 s) to model the respiratory changes. We also added
complex Gaussian random noise for a typical temporal SNR
(tSNR) value of 38 dB.

B. Dictionary Selection
We solve (4) using a signal dictionary, where each dictio-

nary atom is a point on the OSSI manifold. Because T2, T ′
2, and

f0 affect OSSI signals in different ways while T1 has a scaling
effect, we constructed a 4D dictionary by varying T2, T ′

2, f0,
for T1 = 1400 ms. The T2 grids were in the 40 to 150 ms
range with a 1 ms spacing [36]. The T ′

2 grids were calculated
by uniformly sampling R∗

2 from 12 to 38 Hz [37] with a step
size of 0.1 Hz and a fixed T2 of 92.6 ms. We set central
off-resonance frequency f0 to [-33.3,33.3] Hz with a 0.22 Hz
spacing, because OSSI signals are periodic with off-resonance
frequency period = 1/TR = 66.7 Hz [3]. The 4D dictionary
with axes [T2, T ′

2, f0, nc] has size 111 × 261 × 200 × 10.
Generating the dictionary (a 1-time step) took about 7 days
using Matlab with an Intel Xeon workstation with 40 CPU
cores.

We reconstructed the functional signal and physics param-
eters from the simulated noisy fMRI time courses using
the near-manifold regularizer in (3) and the 4D dictionary.
The reconstructions were performed by (a) simultaneously
estimating T2 and T ′

2 using the 4D dictionary, (b) assuming
T ′

2 is fixed and estimating T2 using the 3D subset of the 4D
dictionary based on the assumed T ′

2 value, (c) estimating T ′
2

with the actual T2 value and the corresponding 3D dictionary,
(d) assuming T2 is fixed and estimating T ′

2 with a biased
T2 value and the corresponding 3D dictionary.

As shown in Fig. 3, because of the strong coupling between
T2 and T ′

2 values, it is infeasible to simultaneously estimate
T2 and T ′

2 (see Fig. 3a). Changes in T2 or T ′
2 parameters are

indistinguishable because OSSI signal shape is likely deter-
mined by the amount of signal that persists at the subsequent
RF pulses, and T2 and T ′

2 contribute a similar exponential
decay to the persisting signals. Using a biased T ′

2 value for
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Fig. 3. Quantification results for a simulated OSSI fMRI voxel using the manifold model with 4 different choices of the manifold. The unis for T̂2, T̂ ′

2
and T̂ ∗

2 are all ms, and the units for f̂0 are Hz. The estimates are in blue and ground truth values are in red. Because T2 and T ′

2 effects on OSSI
signals are correlated (a), and a T2 manifold does not adequately capture BOLD-induced T ′

2 changes (b), we use a T ′

2 driven physics manifold for
quantification. We can estimate T ∗

2 and T ′

2 using known T2 values (c), or use a biased guess of T2 to quantify T ∗

2 (d).

T2 estimation (Fig. 3b) or a biased T2 value for dynamic
T ′

2 estimation (Fig. 3d) results in noticeable bias, whereas
Fig. 3c presents accurate T̂ ′

2 when the ground truth T2 is
provided. However, all the different estimation approaches lead
to relatively good T ∗

2 estimates. The coefficient of variation of
|m0| estimates in Figs. 3c and 3d is 0.013, and is 0.015 and
0.014 in Figs. 3a and 3b, respectively.

Because m0 and T ∗
2 estimates are more accurate in Figs. 3c

and 3d, we propose to use assumed T2 values or to measure
accurate baseline T2 maps to use for dynamic T ∗

2 quantifi-
cation. The latter approach also provides T ′

2 estimates. We

extended the simulation and estimation in Fig. 3d with wider
ranges of fixed wrong T2 values, and found that the T ∗

2
estimation remains accurate over a broad range of biased
T2 values. For example, for a ground truth T2 of 92.6 ms,
the RMSE of estimated T ∗

2 is less than 2 ms with a biased
T2 ranging from 67 ms to 120 ms (approximately 1 ms of the
2 ms RMSE is dictated by the noise floor of the noisy fMRI
signal). Moreover, this observation remains valid for different
ground truth T2 values. R1.4

Notably, the quality of the combined functional signals is
insensitive to the choice of manifold for reconstruction.
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IV. EXPERIMENTS

We collected ACR [38] resolution phantom data and human
fMRI data to evaluate the potential of the manifold model
for joint reconstruction and quantification. All the data were
acquired with a 3T GE MR750 scanner (GE Healthcare,
Waukesha, WI) and a 32-channel head coil (Nova Medical,
Wilmington, MA).

A. Data Acquisition

OSSI acquisition parameters were the same as in Simulation
Investigations with 10 s discarded data points to ensure the
steady state. We selected a 2D oblique slice passing through
the visual cortex with FOV = 220 × 220 × 2.5 mm3, matrix
size = 168 × 168 × 1, and spatial resolution = 1.3 × 1.3 ×

2.5 mm3. For OSSI, we acquired both “mostly sampled” data
(for retrospective undersampling) and prospectively under-
sampled data. The sampling trajectories were undersampled
veriable density (VD) spirals as in Fig. 1 with golden-angle
based rotations between fast and slow time frames. We create
VD spirals by following the principles outlined in [39] and
[40]. We uniformly sample the k-space center, and linearly
reduce the sampling density as the spirals extend towards the
outer part of k-space. More details for implementation can
be found in [6]. The “mostly sampled” data used number
of interleaves ni = 9 VD spirals with approximately a
1.5 undersampling factor, and temporal resolution = 1.35 s =

TR · nc · ni . The retrospective undersampling used the first
interleave out of 9 for each time frame of the “mostly sampled”
data. The prospective undersampling used ni = 1 with
temporal resolution = 150 ms = TR · nc Both retrospective
and prospective undersampling provided 12× acceleration.

For quantification evaluation, we acquired multi-echo GRE
images to get standard estimates of f0 and R∗

2 values. GRE
images were collected with a spin-warp sequence with TR =

100 ms, Ernst flip angle = 16◦, and different TEs = 5.9,
13, 26, and 40 ms. R∗

2 maps were estimated based on the
exponential decay of T ∗

2 . The field map f0 was estimated using
fully sampled GRE images at TE = 30 and 32 ms [41]. For the
phantom data, we additionally acquired spin-echo images with
a spin-warp sequence at TR = 400 ms and different TEs =

20, 40, 60, and 80 ms to get T̂2 maps.
For coil sensitivity map calculation, we collected spin-warp

images and used ESPIRiT [42], [43] after compressing the
32-channel coil images to 16 virtual coils using PCA [44]. The
coil images were 2-norm combined for brain region extraction
using the Brain Extraction Tool [45].

For human data, the functional task was a left vs. right
reversing-checkerboard visual stimulus with 10 s rest followed
by 5 cycles of left or right stimulus (20 s L/20 s R × 5 cycles).
The 10 s resting-state data ensured the oscillating steady state
and were discarded. The number of time frames (both fast
time nc and slow time) was 1490 for “mostly sampled” data
and was 13340 for prospectively undersampled data.

B. Performance Evaluation

Every non-overlapping set of nc = 10 fast time images
were reconstructed and 2-norm combined for fMRI analysis.

To avoid modeling error from the HRF of the initial rest
period, the data for the first 40 s task block were discarded. The
data were detrended using the first 4 discrete cosine transform
basis functions to reduce effects of scanner drift.

We evaluated the functional performance of OSSIMM
and comparison approaches using activation maps and tSNR
maps. The backgrounds of activation maps were the mean
of time-series of images. The activated regions of activation
maps were determined by correlation coefficients above a
0.45 threshold. The correlation coefficients were generated by
correlating the reference waveform (task and HRF related)
with the fMRI time course for each voxel. For each voxel,
dividing the mean of the time course by the standard deviation
of the time course residual (mean and task removed) provided
the tSNR map. We further calculated numbers of activated
voxels at the bottom third of the brain (where the visual cortex
is located) and the average tSNR values within the brain (after
skull stripping).

For quantification, parameter estimations at regions with
little or no signal are masked out. Specifically, we generated
a mask with the first-echo GRE image (TE = 5.9 ms and
after skull stripping) for signals larger than 10% of the signal
magnitude and GRE R̂∗

2 < 50 Hz. Regions with GRE R̂∗
2 >

50 Hz are concentrated at the edge of the brain and are
considered outliers. The quantitative accuracy of OSSI R̂∗

2 was
evaluated by RMSE with multi-echo GRE R̂∗

2 as the standard.
Because OSSI f̂0 estimates are in the range of [−33.3,
33.3] Hz, we mapped the GRE f̂0 to the same range for
comparison.

V. RECONSTRUCTION, QUANTIFICATION, AND RESULTS

The proposed OSSIMM method jointly reconstructed
high-resolution images and quantitative maps using the near-
manifold regularizer. For both phantom and human exper-
iments, we used the physics manifold with a fixed T2 =

100 ms unless otherwise specified. After reconstructing fast
time images with mostly sampled data (OSSI-Mostly), or other
models such as low-rank (OSSI-LR) and regularized cgSENSE
with a spatial edge-preserving regularizer (OSSI-cgSENSE),
we further estimated their parameter maps via dictionary fitting
using the same manifold as in OSSIMM.

A. Implementation Details
We selected the regularization parameters based on the

spectral norm σ(A′A), calculated with a power iteration.
We set the regularization parameter β in (3) to be a fraction
of σ(A′A) such that the condition number

(
σ(A′A) + β

)
/β

of the cost function was about 10 to 20 and the performance
of functional maps is maximized. For example, we selected
the fraction to be around 0.05 to 0.1 for all the datasets. We
selected α in (6) such that the matrix rank of X̂ was ≈ 4
(α ≈ 2 σ(A′A)) for most fast-time image sets and to maximize
the functional performance.

In OSSIMM, we used 4 iterations of alternating mini-
mization, and 2 iterations of conjugate gradient for the data
fidelity update. We used 15 iterations of POGM for the LR
reconstruction and 19 iterations of conjugate gradient for
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Fig. 4. Phantom quantification of m0, f0, and R∗

2 from mostly sampled and retrospectively undersampled reconstruction using different models with
comparison to multi-echo GRE. The quantification for OSSI-LR and OSSI-cgSENSE uses the proposed manifold. The m̂0 estimates are on arbitrary
scales. The GRE R̂∗

2 map is used as the standard for difference map calculation. The R̂∗

2 maps and R̂∗

2 difference maps use the same color scale.
The 2D histogram (bottom left) compares OSSIMM and GRE R̂∗

2 within the 12-38 Hz range. OSSI R̂∗

2 and GRE R̂∗

2 demonstrates similar contrasts.

TABLE I
PHANTOM QUANTIFICATION COMPARISON OF OSSI R̂

∗

2 TO GRE WITH

OR WITHOUT A KNOWN T̂2 MAP

cgSENSE reconstruction of undersampled and mostly sampled
data. We generated data-shared images as initialization for the
undersampled reconstructions by using the sampling incoher-
ence between fast and slow time [6] and combining k-space
data of every 10 slow time points. We found empirically that
this natural initialization worked better than the zero-filled
reconstruction and performed well for the non-convex opti-
mization of the manifold model.R1.2

B. Results
For the phantom study, Fig. 4 presents OSSI quantification

results with a fixed T2 of 100 ms. OSSIMM quantifies parame-
ters from retrospectively undersampled data, outperforms other
reconstruction methods with less residual in the different map,

and yields similar maps as mostly sampled reconstruction
and multi-echo GRE. The 2D histogram demonstrates a close
to a linear relationship between OSSI and GRE R̂∗

2 values.
As summarized in Table I, OSSIMM led to smaller RMSE
than other methods, and OSSIMM with a known T̂2 map
produced similar results as OSSIMM with a fixed T2 value.
As demonstrated by RMSE values with additional masking in
Table I, OSSIMM and OSSI-Mostly R̂∗

2 RMSE improved by
0.5-1 Hz when a GRE 12 < R̂∗

2 < 38 mask (within OSSIMM
R∗

2 dictionary range) is applied.
Figure 5 compares retrospectively undersampled recon-

structions to the mostly sampled reference. OSSIMM recon-
struction preserved high-resolution structures in oscillatory
fast time images and combined images, and led to lower
residuals in the difference map than LR and cgSENSE
approaches.

Figure 6 presents prospectively undersampled reconstruc-
tions (temporal resolution = 150 ms) using OSSIMM, LR,
and cgSENSE. OSSIMM had an activation map with more
activated voxels, a time course with higher SNR, and a sharper
tSNR map than other methods. The background images of the
activation maps are the mean of fMRI time series using differ-
ent reconstruction models. OSSIMM provided higher quality
background than other methods and cgSENSE performed
the worst. The functional maps from the mostly sampled
reconstruction (from a different scan with a different temporal
resolution = 1.35 s) are included in the last panel of Fig. 6
for reference.

Authorized licensed use limited to: University of Michigan Library. Downloaded on August 03,2024 at 14:07:22 UTC from IEEE Xplore.  Restrictions apply. 



2944 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 43, NO. 8, AUGUST 2024

Fig. 5. Manifold, low-rank, and cgSENSE reconstructions for retrospectively undersampled OSSI data are compared to the mostly sampled
reconstruction. The example fast time images present spatial variation in OSSI. OSSIMM outperforms other approaches with cleaner high-resolution
details and less structure in the difference map.

Figure 7 gives retrospectively undersampled and mostly
sampled OSSI quantification results with comparison to multi-
echo GRE. OSSIMM with 12× undersampling leads to m̂0, f̂0,
and R̂∗

2 estimates that are almost identical to the mostly sam-
pled case and have finer structures than OSSI-LR. OSSIMM
also provides comparable R̂∗

2 maps to GRE and demonstrates
a similar distribution of R̂∗

2 values within the brain as GRE
according to the 2D histogram. Because of field drift and
respiratory changes between different scans, the OSSI-Mostly
and OSSIMM f̂0 maps are close to GRE f̂0 but not exactly
the same.

Figure 8 compares prospectively undersampled quan-
tification results to multi-echo GRE. OSSIMM enables
high-resolution quantification of m0, R∗

2 and f0 with a 150 ms
acquisition, and yields parameter estimates more similar to
GRE than LR and cgSENSE reconstructions.

The parameter maps in Figs. 7 and 8 are from a single set of
nc = 10 fast time images, while OSSIMM jointly reconstructs
undersampled measurements and quantifies physics parameters
for every 10 fast time images of the OSSI fMRI time course.

To demonstrate the dynamic quantification capacity of
OSSIMM, Fig. 9 shows activation maps of m̂0 exp(−R̂∗

2 TEeff)

and R̂∗
2 , and time courses of R̂∗

2 at the activated regions
from prospectively undersampled reconstruction (OSSIMM
and cgSENSE) and quantification. OSSI TEeff ≈ 17.5 ms with
a 2.6 ms actual TE [3].

For OSSIMM, the activation map of m̂0 exp(−R̂∗
2 TEeff)

images well preserves R∗
2 contrast of OSSI and has the same

activated regions as the activation map from 2-norm combined
OSSI images (in Fig. 6). The activation map from R̂∗

2 maps

TABLE II
HUMAN RECONSTRUCTION AND R∗

2 QUANTIFICATION EVALUATION FOR

DIFFERENT SAMPLING PATTERNS AND MODELS

recovers the activation and reduces false positives (negative
activation in the positive activation region and vice versa). The
colors of the activation are the opposite of activation in Fig. 6
due to the negative correlation between m0 exp(−R∗

2 TEeff)

and R∗
2 . The mean R̂∗

2 map (R̂∗
2 ) of the time series, when

compared to GRE, leads to a smaller RMSE value of 4.4 Hz.
The RMSE value = 3.7 Hz with a GRE 12 < R̂∗

2 < 38 Hz
mask.

OSSIMM also provided higher quality dynamic quantifica-
tion results than cgSENSE, with more functional activation
in the activation maps computed from m̂0 exp(−R̂∗

2 TEeff) and
R̂∗

2 , and less noisy time courses of R̂∗
2 in the activated regions

(same region of interest as the time courses in Fig. 6).
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Fig. 6. Functional results for prospectively undersampled data (first 3 rows) with temporal resolution of 150 ms and spatial resolution of 1.3 mm.
The proposed OSSIMM reconstruction provides an activation map with high-resolution background image and larger activated regions, and time
course (reference waveform in red) and temporal SNR map with higher SNR than other methods. As a reference only to demonstrate the expected
regions of activation in the brain for the visual task, the last row provides mostly sampled functional maps from a different scan of the same subject
with a different temporal resolution of 1.35 s and spatial resolution of 1.3 mm.

Table II summarizes quantitative evaluations of different
sampling schemes and reconstruction models. OSSI R̂∗

2 RMSE
values compared to GRE for retrospectively (Fig. 7) and
prospectively (Fig. 8) undersampling are presented. As demon-
strated by RMSE values with additional masking, OSSI RMSE
decrease by about 0.5 Hz with the GRE 12 < R̂∗

2 < 38 mask.
The last two rows of the table correspond to Fig. 6 and
are numbers of activated voxels and average tSNR within
the brain for prospectively undersampled reconstructions. The
proposed OSSIMM jointly reconstructs high-resolution images
with more functional activation and parameter maps with
smaller R̂∗

2 RMSE than other approaches.

VI. DISCUSSION

We propose a novel manifold model OSSIMM that uses MR
physics for the signal generation as the regularizer for image
reconstruction from undersampled k-space data. The proposed

model simultaneously provides high-resolution fMRI images
and quantitative maps of important MRI physics parameters.

The proposed near-manifold regularizer has the advantage
of allowing for potential imperfections of the manifold model.
Instead of requiring the signal values to lie exactly on the
manifold, it provides a balance between fitting the fast-time
images to the noisy k-space data and to the manifold. For
reconstruction, OSSIMM outperforms low-rank and cgSENSE
models by providing more functional activation, without spa-
tial or temporal smoothing.

For quantification, OSSIMM dynamically tracks m0, R∗
2 ,

and f0 changes with a temporal resolution of 150 ms in
our experiments. The OSSIMM estimates m̂0 exp(−R̂∗

2 TEeff)

or R̂∗
2 contain most of the functional information of fMRI

time series, and may be well-suited for examining quantitative
changes in longitudinal studies. Moreover, OSSIMM quantifies
parameters with acquisition time of 150 ms per slice, which
is faster than other quantification methods such as [22]. The
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Fig. 7. Retrospectively undersampled quantifications and comparison
to multi-echo GRE estimates. OSSIMM presents similar results as the
mostly sampled data. R̂∗

2 difference maps (using GRE R̂∗

2 as standard
and of same color scale as R̂∗

2 maps) and 2D histogram of R̂∗

2 values
show that OSSIMM provides comparable quantitative maps to GRE.

manifold model and the near-manifold regularization can be
generalized to other sparsely undersampled datasets for joint
reconstruction and quantification.

The LR model enforces low-rankness on every set of nc fast
time images, causing spatial-temporal smoothing along fast
time. Therefore, the LR reconstructed fast time signal values
are less accurate for parameter quantification (dictionary fitting
with voxel-wise fast time signal values), and the parameter
estimates from LR reconstruction deviate more from the

Fig. 8. Prospectively undersampled quantifications compared to multi-
echo GRE. OSSIMM results in reasonable parameter maps with 1.3 mm
spatial resolution and a 150 ms acquisition time. OSSIMM also outper-
forms low-rank and cgSENSE reconstructions with less residual in the
R̂∗

2 difference map (same color scale as R̂∗

2 maps).

ground truth values than other models. The average tSNR
value from LR reconstruction was 0.1 higher than OSSIMM,
potentially (Table II) due to the spatial-temporal smoothing
effects of the LR model.

There are multiple factors that contribute to slight mis-
matches between OSSI R̂∗

2 and GRE R̂∗
2 . The OSSI and GRE

images were not exactly aligned due to different gradient
delays or the movement of the brain between different scans,
especially around the edge of the brain. It is also possible
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Fig. 9. OSSIMM (top row) and OSSI-cgSENSE (bottom row) activation maps computed from m̂0 and R̂∗

2 with prospective undersampling,
demonstrating the dynamic quantification capacity of OSSIMM. Both time series of m̂0exp( − R̂∗

2 TEeff) (left) and R̂∗

2 (right) almost fully recover

the functional activation. The R̂∗

2 (middle) is the mean of R̂∗

2 time series after skull stripping (without any other mask) and well preserves the R∗

2
contrast.

that through-plane gradients change signals slightly differently
between OSSI and GRE. The OSSIMM implementation could
be improved with a larger dictionary with a larger range of R∗

2
values and finer spacing of the varying physics parameters.

The proposed near-manifold regularizer can accommodate
mismatches due to model simplification and nonidealities
in experiments. We neglected the readout length effect for
simplicity and have not performed field map correction for
human data. The intravoxel dephasing during the readout is
small because the readout length is less than 10 ms. More
accurate models might be helpful for acquisitions with longer
readouts. We simulated and found that the flip angle variation
of about +/−20% of the excitation flip angle affects the OSSI
signal mostly as a scaling factor. Therefore, RF inhomogeneity
and imperfections in excitation profiles can be addressed by
the scaling parameter m0 and the near manifold regularization.
The field map correction improves quantification for phantom
data, but would increase computation for human fMRI time
series. One interesting extension would be to dynamically
quantify f0 and correct for field inhomogeneity using the
time-series of OSSI f̂0 maps. Because OSSI f̂0 maps are in
the range of [−33.3, 33.3] Hz, we could use an initial estimate
of f̂0 from two-echo GRE, and dynamically update the initial
f̂0 based on OSSI f̂0 changes along time as in [25]. Other
nonidealities include non-Lorentzian frequency distribution,
e.g., through-plane inhomogeneity may be closer to a linear
distribution of frequencies, and in-flow effects.

We believe that the reconstruction performance can be
further improved with spatial-temporal modeling of OSSI
fMRI image series. We will combine OSSIMM with the patch-
tensor low-rank model [6] to exploit different aspects of prior
information (linear and nonlinear) and enable more aggressive
undersampling. We will apply the 3D OSSI acquisition in [6],

and extend the OSSIMM dynamic quantification to 3D fMRI
joint reconstruction and quantification.

OSSI can provide similar T ∗
2 -weighting and off-resonance

sensitivity with different combinations of TR, nc, and flip
angle [3]. Therefore, for different temporal resolutions with
short TRs and appropriate nc values, we expect the manifold
model to work well, and the main change would be to con-
struct new dictionaries with a new set of scanning parameters.

VII. CONCLUSION

This paper proposes OSSIMM, a novel reconstruction and
quantification model for nonlinear MR signals. With a factor of
12 undersampling and without spatial or temporal smoothing,
OSSIMM outperforms other reconstruction models with high-
resolution structures and more functional activation. OSSIMM
also provides dynamic R∗

2 maps that are comparable to GRE
R̂∗

2 maps with a 150 ms temporal resolution.
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