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ABSTRACT 
A new image reconstruction method to correct for the effects of magnetic field 

inhomogeneity in non-Cartesian sampled magnetic resonance imaging (MRI) is proposed.  The 
conjugate phase reconstruction method, which corrects for phase accumulation due to applied 
gradients and magnetic field inhomogeneity, has been commonly used for this case.  This can 
lead to incomplete correction, in part, due to the presence of gradients in the field inhomogeneity 
function.  Based on local distortions to the k-space trajectory from these gradients, a spatially 
variant sample density compensation function is introduced as part of the conjugate phase 
reconstruction.  This method was applied to both simulated and experimental spiral imaging data 
and shown to produce more accurate image reconstructions.  Two approaches for fast 
implementation that allow the use of fast Fourier transforms are also described.  The proposed 
method is shown to produce fast and accurate image reconstructions for spiral sampled MRI. 
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I. INTRODUCTION 

Image reconstruction in conventional MRI is usually performed via an inverse Fourier 
transform of samples acquired in k-space (Fourier domain).  This can be accomplished using a 
simple discrete Fourier transform if the samples lie on a Cartesian grid and if the underlying 
static magnetic fields are essentially uniform across space.  This work examines image 
reconstruction for the case where these conditions do not hold.  The conventional approach for 
image reconstruction of non-Cartesian sampled MRI is the conjugate phase reconstruction 
method, as originally proposed by Macovski [1].  This was extended in [2, 3] to include 
correction for magnetic field inhomogeneities and explicit expressions for sample density 
correction.  Image reconstruction without compensation for the density variation can result in a 
severely degraded point spread function.  Determination of the density compensation term has 
been an active topic for investigation with analytical [2, 4, 5] and numerical approaches [6, 7].  
Common to all of these approaches is that the density compensation function depends only on 
the time or k-space location allowing this correction to be implemented by a simple scaling of 
the acquired data.  Over the years, there has been substantial progress in developing 
computationally efficient approaches to the conjugate phase reconstruction, for example 
convolution gridding interpolation [8, 9] to map the samples to a Cartesian grid, thus allowing 
the use of the fast Fourier transform (FFT) for Fourier inversion.  Noll et al. [10, 11] have 
demonstrated fast algorithms for implementation of the conjugate phase reconstruction that 
combine with time or frequency approximations to the inhomogeneity-related phase 
accumulation terms.  For Cartesian sampled MRI like spin-warp imaging or echo-planar imaging 
(EPI), sample density correction is generally not necessary and magnetic field inhomogeneities 
can lead to geometric and intensity distortions.  There is an extensive body of literature on 
correction of these distortions; one of the more common approaches is the pixel shift method [12, 
13].   

The conjugate phase (CP) reconstruction and most of the spin-warp and EPI correction 
methods assume the integrity of the k-space trajectory.  That is, images are reconstructed based 
on the assumption that the underlying static magnetic fields do not affect the k-space sample 
locations.  However, any smoothly varying inhomogeneity function will have in-plane gradients 
that vary spatially.  This results in a distorted k-space trajectory, which also varies spatially.  In 
other words, each point in space has its own k-space trajectory and this needs to be accounted for 
in the image reconstruction.   The concept of local k-space has been proposed previously in 
several imaging application including echo-planar imaging [14] and spiral imaging [15, 16].  
These works noted changes in sensitivity, apparent echo time, and signal loss resulting from in-
plane gradients. 

In this work, we observe that the spatially variant distortions in k-space trajectory change 
the overall pattern of the acquisition of spatial frequency information and also the density of 
samples within that pattern.  This causes both shape and intensity distortions to the point-spread 
function, which can lead to blurring or intensity variations in the resultant images.  We propose a 
modification to the conjugate phase reconstruction in which the density compensation function 
depends on both time and space for objects with spatially variant magnetic field inhomogeneity.  
This approach is shown to correct for these distortions to the point-spread function.  We also 
demonstrate that the same concept can be used to explain and correct for intensity variations in 
EPI and spin-warp imaging.  Finally, we investigate rapid algorithms to implement or closely 
approximate the spatially variant conjugate phase reconstruction. 
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II. THEORY 
This theory section starts with an analysis of the effects of in-plane gradients in one-

dimension (1D).  The results here are directly applicable to distortions and their correction in EPI 
and spin-warp imaging.  Next, we derive the conjugate phase (CP) reconstruction method for 2D 
spiral imaging with explicit expressions for the density compensation function (DCF).  
Following that, we analyze linear and local gradients that distort the k-space trajectory and 
modify the DCF.  The net result is a modified CP reconstruction with spatially variant DCF.  
Finally, we introduce a fast approximation to the proposed method. 
A. Conjugate Phase Reconstruction in 1D with Inhomogeneity 

We first examine a 1D frequency encoding pulse sequence with a constant gradient G.  

For Gg
π
γ
2

= , the gradient in units of frequency/distance (e.g. Hz/cm) and ∆f, the 

inhomogeneity function, the signal equation is 
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We now define a coordinate transformation operator: 
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typical value of g for an EPI pulse sequence is 100 Hz/cm and in the experimental data below, 
the peak derivative is ± 50 Hz/cm, so the condition is often valid in practice.  Note that the 
inverse transformation may be numerically unstable when the peak derivative is close in 
magnitude to the peak gradient values.   

Making a substitution of variables for dx  and using dxgxfdxd )/)('1( ∆+= , we rewrite the 
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where gtgdtk
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)( τ  is the k-space location, and dm  and dM  are the distorted object and its 

Fourier transform.  A standard Fourier reconstruction yields: 
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which is the original object with both a coordinate (geometric) distortion ][1 xS −  and an intensity 

distortion ( ) 11 /])[('1
−−∆+ gxSf .   

From this equation, we can easily see that the desired image can be obtained by spatial 
shifts [12, 13] and correcting for intensity variations.  To determine m(x0), we merely need to 
look in the distorted image, m̂ , at location ][ 0xSx =  and then adjust the image intensity.  

We now examine the CP reconstruction in this context.  For this approach, we define 
( ))(' xfg ∆+  as a “local sample density” correction term that varies as a function of space rather 
than the usual case where it varies as a function of k or time.  The CP reconstruction is then:  

 ( ) ( )∫ +∆∆+= dttgxxfitsxfgxmcp ])([2exp)()(')(ˆ π . (5) 

By substituting gttk =)( , dtgdk  =  and ))(()( tkMts d= , this expression can be written as: 
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In 1D, the CP reconstruction can be thought of as a Fourier domain interpolation equivalent to 
the pixel shift method.  Note that for these implementations, both the pixel shift method and 
conjugate phase reconstruction method require the undistorted field map and its derivative.  
There are other pixel shift methods that use distorted field maps [17] and other reconstruction 
approaches, such as the simulated phase evolution rewinding (SPHERE) method [18], that use 
distorted field maps and do not require its derivative.   
B. Image Reconstruction for 2D Spiral Imaging  

The method developed in Section D, below, is applicable to a variety of trajectories; 
however, for concreteness we focus on the CP method and the density compensation function 
(DCF) for spiral imaging.  In 2D, the signal equation without magnetic field inhomogeneity is: 

 
,))((

))(2exp()()(

tM

dtimts

k

xxkx

=

⋅−= ∫ ∫ π
 (7) 

where k(t) is the spiral k-space trajectory.  We parameterize k(t) in a manner similar to radial k-
space imaging, that is, as a function of time and an idealized continuum of starting phase 
angles, φ, which can represent shot number.  For this case, the CP method [2, 5] is: 
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where 
),(

),(
φt
kk yx

∂

∂
 is the determinant of the Jacobian of the transformation from (t,φ) to (kx,ky).  

Hoge et al. [5] noted that this Jacobian, which matches the areas of integration in the two 
coordinate systems, is a sample density compensation function (DCF).  If the Jacobian is non-
singular, then )()(ˆ xx mm = . 

The determinant of the Jacobian of this transformation is: 
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where Gg
π
γ
2

=  is the gradient in Hz/cm.  This expression contains includes a) the outward 

velocity of the k-trajectory, ))()(cos()( ttt kgg ∠−∠ , times b) the k-space radius, )(tk .  Hoge et 
al. [5] postulated that these two terms represent a) speed away from origin and b) the |ρ| 
weighting terms appropriate for radial sampling strategies (e.g. projection imaging).  For the 
special case of an Archimedean spiral, the expressions in (9) can also be shown to be equivalent 
to another DCF derived by Meyer et al. [4] (contrary to an assertion in [5]).  For the 
Archimedean spiral parameterized as 

 )))((exp()()()()( φϕϕ +=+= titAtiktkt yxk , (10) 

where ϕ(t) is the angular position vs. time function and )2/( FOVNA s ⋅= π  where sN  is the 
number of shots, the DCF simplifies to Meyer’s expression:  

 ))()(sin()()( tttAtD kgg ∠−∠= . (11) 
This expression is often better behaved numerically, particularly for large k-space values.  In 
many spiral trajectories, the sample density approaches a constant for large |k| values and (9) 
relies on approximate cancellation of large |k| and a small outward velocity, which is very 
sensitive to numerical errors in calculating the latter.  The expression in (9), however, is valid for 
non-Archimedean spirals such as variable density spirals. 
C. Image Reconstruction for 2D Spiral Imaging for Linearly Distorted Trajectories 

As a prelude to the shift variant case, in this section, we modify the DCF to accommodate 
a spiral trajectory distorted by a linear gradient.  Irarrazabal, et al. [19] proposed an image 
reconstruction approach where the inhomogeneity function can be approximated by an offset 
frequency and a constant background gradient,  

 xgx ⋅+∆=∆ bff 0)(  (12) 
where  
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Combining this gradient with the applied gradient yields a distorted k-space trajectory:  
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and the signal equation is: 
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The Jacobian determinant for the transformation from (t,φ) to (kx0,ky0) is: 
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Here, the outward velocity term is modified by the background gradient.  The second half of this 
expression is analogous to the ( ))(' xfg ∆+  density correction term in the 1D case.  When the 
background gradient is in the same direction of the k-space location, the gradient pushes the 
trajectories farther apart, requiring an increase in the sample density correction in an amount 
proportional to |gb|.  The CP method is possible if the Jacobian determinant is positive, so we 
require that  
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i.e., the outward velocity of the k-space trajectory must be larger than the background gradient.   
An alternate expression for the Jacobian determinant is 
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Using the Jacobian determinant corrects for variations in sample density due to the background 
gradients, whereas Irarrazabal, et al. [19] used a post-gridding density compensation approach.  
Figure 1 shows a standard k-space trajectory and its density compensation function (DCF) as 
well as two distorted trajectories and their DCF’s. 

The proposed CP image reconstruction method for this case will be: 
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If the condition (17) is satisfied, this is an exact reconstruction.  The last expression in (19) looks 
exactly like the CP reconstruction with off-resonance corrections, except that the DCF, )(' tD , is 
different.   
D. Image Reconstruction for 2D Spiral Imaging for Spatially Varying Inhomogeneity 

We now extend the above analysis to allow for a spatially variant off-resonance function 
)(xf∆  with a non-constant background gradient: 
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We propose that the CP reconstruction with spatially variant density compensation be: 
 φππ dtdtDtitfitsm ),())(2exp())(2exp()()(ˆ xxkxx ∫∫ ⋅∆=  (21) 

where ),( tD x  is a spatially variant DCF based on the Jacobian determinant, for example, 
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Here, D(t) is the standard density correction term and Db(x,t) is the sample density adjustment 
due to the background gradients.  The criteria for the non-negativity of the Jacobian determinant 
is now 
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for all t and x.  It is possible that this condition may not be satisfied only for particular points in 
space and particular samples in time.  One strategy for addressing this situation is to set the DCF 
equal to zero for these combinations of spatial locations and k-space samples, resulting in these 
samples being excluded from the image reconstruction. 

Another interpretation of the condition in (23) is that when a point is reconstructed at a 
location x0, no other voxel locations will blur onto that location.  In 1D imaging with a constant 
gradient, the off-resonance induced spatial shift is gxf /)(∆ .  In this case, we argue that the 
distorted PSF will not shift from x to x0 if the frequency difference between these points divided 
by the gradient is less than the difference between spatial locations of these points (e.g. 

0
/)()( 0 xxgxfxf −<∆−∆ ).  In spiral imaging, the gradient vector points in all directions and 

the shift/blur from the smallest gradient will dominate.  The smallest gradient is the outwards 
(radial) gradient, and thus we argue that the criterion for which the center of the point spread 
function (PSF) will not blur from x to x0 is 
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for all x.  Thus,  
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which is the same condition as (23).  This is a formal description of smoothness necessary for the 
CP reconstruction, which has been described heuristically by Schomberg [20]. 
E. Fast Algorithms 

The image reconstruction method in (21) cannot be implemented directly using gridding 
and FFT’s [8, 9].  In Noll, et al. [10, 11], fast algorithms were proposed based on segmentation 
of the off-resonance term, ))(2exp( tfi x∆π , along either the time or frequency dimensions.  
These approaches implement the standard CP reconstruction that uses only the spatially invariant 
density compensation term, D(t): 

  φππ dtdtDtitfitsm )())(2exp())(2exp()()(ˆ ∫∫ ⋅∆= xkxx  (26) 
We briefly summarize the time-segmented approach, in which (26) can be approximated as: 
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where L and τ are the number and spacing of time segments, respectively.  The terms in the 
square brackets approximate the complex exponential in time and )(⋅a  can be thought of as an 
interpolation kernel that interpolates between samples of the exponential at times lτ.  This 
equation can be rewritten as: 
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where the terms in the square brackets represent the reconstruction of the signal )()( τltats − . 
This expression can now be implemented rapidly using gridding and FFT’s.  Accordingly, this 
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conjugate phase reconstruction can be implemented with L FFT’s and the accuracy of the 
reconstruction is controlled by the number of segments, L.  Sutton, et al. [21], derive optimal 
interpolation kernels and also evaluate error vs. number of segments for a variety of different 
field maps. 

Unfortunately, the temporal-spatial variability of the Db(x,t) term in (21) prevents the 
direct use of this fast algorithm.  Brute force implementation would require approximately O(N 4) 
operations, where N is the image matrix size along one-dimension.  By comparison, the time- or 
frequency-segmented reconstruction [10, 11] requires approximately O(L N 2 logN) operations.  
This difference can be substantial, particularly for large images like N = 256, where the 
difference in reconstruction time is approximately 3 orders of magnitude (e.g. several seconds vs. 
1 hour). 

We propose two methods for rapid implementation of (21).  For the first method, we start 
by rewriting (22) as 

 )()()()()(),( tkgtkgtDtD yybxxb xxx ++=  (29) 
which can be implemented rapidly as the weighted sum of three time-segmented gridding 
reconstructions, for example,  
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In essence, the reconstruction takes the result of the reconstruction with the invariant density 
compensation (the first line of (30)) and adds to it the corrections for the x and y background 
gradients (the 2nd and 3rd lines, respectively).  One issue for this density compensation term is 
how to handle the situation where the maximum background gradient condition is violated.  
When this occurs, the Jacobian determinant becomes negative and in general, one would set 
Db(x,t) to zero to eliminate particular data samples from the image reconstruction for particular 
locations in space.  This can be done for the O(N 4) reconstruction, but cannot be done for the fast 
algorithm described here.  In practice, we have found that the differences between these two 
approaches are imperceptible as they affect only a small number of k-space samples for a small 
number of points in space.  This reconstruction can therefore be implemented as O(3LN 2 logN), 
achieving substantial computational savings. 

A second approximation to the reconstruction in (21) is suitable for use in gradient echo 
(GRE) imaging.  In GRE, a background gradient leads to a shifted k-space trajectory and thus, 
there is different sample density for the origin in k-space (unless the background gradient is so 
large that the origin is not acquired at all).  Here, a simple correction is to adjust the intensity of 
the reconstructed values from a standard density compensated reconstruction by a multiplicative 
correction factor.  To do this, the DCF is evaluated at a single time point 
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that is, the time τ where the shifted k-space trajectory crosses the origin.  At this time point, gb 
and k point in either the same or opposite directions for typical spiral-in [22] and spiral-out 
trajectories acquisitions, respectively.  Thus, the cosine term in (22) is 1 or –1, respectively, and 
the correction term is 
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(+ and – for the spiral-in and spiral-out trajectories, respectively).  This is illustrated graphically 
in Figure 2 for a spiral-out acquisition with a TE = 20 ms and a background gradient of 25 
Hz/cm.  Observe that the k-space trajectory is shifted towards positive kx positions and the point 
where the trajectory crosses the origin in k-space is sampled with higher density.  The spatially 
variant DCF is reduced relative to the invariant DCF and the intensity correction factor, C, is the 
ratio of these values.  This correction, therefore, will reduce the intensity variations and allow the 
use of a fast reconstruction, but this does not correct for distortion in the PSF.  In this approach, 
the conjugate phase reconstruction with inhomogeneity correction is modified with a point-by-
point correction factor, C(x,y).  This reconstruction can be implemented as O(LN 2 logN) and also 
achieves a substantial computational savings over the reconstruction in (21). 

III. METHODS 
A. Simulation Study 

To evaluate the effectiveness of the proposed spatially variant density compensation, we 
performed two simulation studies.  In the first, a circular object of radius 2 cm was simulated for 
no background gradient and for a constant background gradient of gx = 25 Hz/cm.  The object 
was reconstructed using the conjugate phase reconstruction using DCF functions )(tD , )(' tD , 
and using the post-reconstruction intensity compensation.  We also simulated the effects of errors 
in the inhomogeneity function used for image reconstruction, including errors in f∆  and in the 
parallel (gx) and orthogonal (gy) gradient terms. 
In the second simulation study, spiral data were simulated using a high-resolution simulation 
model of the human head.  This model was derived from imaging data acquired on a 3.0 T GE 
Signa scanner using a 3D acquisition using two different echo times (spoiled GRE pulse, TE = 9 
and 10 ms, TR = 33, Flip angle = 25, FOV = 16.5 x 22 cm, matrix = 192 x 256, slice thickness = 
1 mm, and 128 slices).  Images were reconstructed off-line preserving the phase information, and 
the magnetic field (resonant frequency) map was determined from the phase difference [23] 
using ∆ω(x,y) = ∆φ(x,y)/∆TE.  The selection of ∆TE = 1 ms prevented 2π phase jumps in the 
phase maps.  Fat suppression was used to eliminate jumps in the frequency map associated with 
water/fat boundaries.  To reduce noise in the frequency map, we filtered ∆ω(x,y,z) by smoothing 
this map with a 3D Gaussian kernel with width σ = 3.2*(pixel size).  To estimate a smooth field 
map for the slice of interest, we used the conjugate gradient algorithm to minimize a quadratic 
cost function consisting of a weighted norm term (based on the magnitude image) and a 
quadratic roughness penalty.  This particular smoothing approach was chosen because it 
smoothly extends the field map over gaps in the image and into the background.  The simulated 
signal samples were calculated using 

)))(,(exp())()((2exp(),()(
,

TEtyxiytkxtkiyxmtss n
yx

nynxnn +∆−+−== ∑ ωπ  (31) 

where m(x,y) is the high-resolution imaging data set (from TE = 9 ms) and tn is the time relative 
to the echo time associated with sample sn (e.g. for the spiral-in trajectory, where samples occur 
before the TE, tn will be negative).  The magnetization image, m(x,y) was thresholded to 
eliminate background noise from the simulation.  T2 decay was not included in the simulation. 

The simulated spiral acquisitions used a field of view of 22 cm and covered a k-space 
area of diameter 64 using 4617 data samples.  The simulated sample period was 4 µs for a total 
readout duration of 18.46 ms.  The outward velocity d|k|/dt varied from 341 Hz/cm to 53 Hz/cm.  
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The spiral-out (forward) data used a simulated TE = 20 ms and spiral-in (reverse) used a 
simulated TE = 30 ms.  The following reconstruction methods were performed for both 
simulated spiral-out and spiral-in acquisitions:   

a. the direct Fourier reconstruction in (8) without inhomogeneity correction, 
b. the CP reconstruction in (19) using only the spatially invariant DCF term, D(t), 

implemented with the fast time-segmented approximation, 
c. the CP reconstruction in (21) using the combined spatially variant DCF, D(x,t), 

implemented using a brute force summation, 
d. the fast approximation to c. described in (30), again implemented with the fast time-

segmented approximation, 
e. the reconstruction of part b. using spatially invariant DCF with the post-reconstruction 

intensity correction of (32), 
f. the SPHERE method [18], and 
g. the iterative conjugate gradient [21] using a small number of iterations. 

The fast time-segmented gridding approximation to the CP reconstruction used gridding with 
interpolation kernels of width 4 Cartesian samples to map the samples to a two-times 
oversampled Cartesian grid, and used L = 5 time segments with min-max optimized temporal 
interpolators of Sutton et al. [21].  In addition to differences resulting from fast implementation 
of the conjugate phase reconstruction, c. and d. also differ in the handling of the case of a 
negative Jacobian determinant.  For the approach in c., samples where the Jacobian is negative 
are excluded from the reconstruction whereas in d., they are included using the negative 
weighting.  For reconstruction methods c., d., and e., the gradients necessary for spatially variant 
image reconstructions were calculated from the inhomogeneity map using 3x3 and 5x5 
derivative kernels, the latter being less sensitive to noise in the field map.   

In addition to variants of the CP reconstruction, for comparison, we have also 
implemented two other approaches to correct for magnetic field inhomogeneity.  The first of 
these, the SPHERE method [18], takes the distorted image and field map and creates a synthetic 
k-space data set using the negative inhomogeneity function.  This synthetic data set is then 
reconstructed to produce a corrected image.  The main idea is to exactly undo phase effects from 
magnetic field inhomogeneity and requires that the field maps lie in the same frame as the 
distorted image.  For some applications this is a potential advantage, but for our simulations the 
distorted field maps were generated from two simulated images with different echo times and 
then smoothed using a 3x3 kernel to remove small ripples in the calculated map.  Fast time-
segmented approaches are possible, though they there were not used in this implementation.   

The second non-CP approach is the iterative conjugate gradient approach of Sutton et al. 
[21].  This approach also simulates the raw data from an estimated object, but using the 
undistorted field map (rather than the negative and distorted maps in SPHERE).  Conceptually, 
this can be seen as simulating the physics of the MRI acquisition and then differences between 
the measured and simulated raw data drives updates to the estimated image.  This approach is 
particularly interesting since the first iteration is the same as the CP reconstruction [21, 24] if the 
image is initialized to zeros and the data are weighted by the DCF.  The DCF weighting, 
however, is statistically suboptimal, so we follow the approach suggested in [21] by using the 
DCF weighting for only the first iteration and uniform data weighting for all subsequent 
iterations.  The iterative reconstruction method was implemented using the fast time-segmented 
approximations.  With this implementation, two iterations of the iterative reconstruction will use 
approximately the same number of computations as the reconstruction in d.  Ten iterations were 
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performed, and the images were analyzed after each iteration.  The regularization parameter for 
this work was set to a value of 4, which produced a PSF with a full-width half maximum of 1.15 
pixels for both spiral-in and spiral-out. 

All images from the different reconstruction methods were compared to a “gold standard” 
reference image using a normalized root of mean squared error (NRMSE), where the errors were 
normalized by the RMS value of the reference image.  The reference image was created by 
simulating raw data and reconstructing the same head slice with a standard Fourier 
reconstruction, but with the inhomogeneity term, ∆ω, set equal to zero.   

The sensitivity of each reconstruction method to noise in the field map as well as noise in 
the raw data was also tested.  To evaluate the effect of noise in the field map, 20 realizations of 
white Gaussian noise with standard deviations varying from 0 to 5 Hz were added to the field 
map used in the reconstruction.  For cases where a gradient must be calculated, we also used the 
noisy field maps.  The NRMSE was calculated with respect to the no noise case for each 
reconstruction and plotted vs. standard deviation.  This was examined for non-linear behavior 
and the slope of the NRMSE vs. standard deviation line was determined.  To evaluate the effect 
of noise in the raw data, 20 realizations of bi-variate white Gaussian noise were added to the 
simulated raw data with standard deviations that were selected to produce signal-to-noise ratios 
that varied from 0 to approximately 10.  Again, the NRMSE vs. standard deviation plots were 
examined for non-linear behavior and the slopes of these lines were calculated.  
B. Experimental Study 

Spiral data were acquired on a human volunteer subject using a single-shot, gradient echo 
spiral-out acquisition with parameters TR = 3000 ms, TE = 15 ms, flip angle = 90 degrees, field 
of view = 22 cm, slice thickness = 3 mm, k-space diameter 64, and 3769 samples with 5 us 
sampling for a total readout duration of 18.85 ms.  To have a reference image with very little 
image distortion, an image was acquired using the same pulse sequence parameters, but using an 
8-shot acquisition with 495 samples (2.48 ms readout).  Field maps were derived using the phase 
difference method [23] and acquisitions using TE = 17.5 ms.  For the CP and iterative 
reconstructions, the 8-shot data were used to derived the field map and were smoothed using the 
conjugate gradient algorithm with quadratic cost function as previously described.  The gradients 
necessary for spatially variant image reconstructions were calculated from the inhomogeneity 
map using 3x3 Sobel derivative kernels.  For the SPHERE reconstruction, a single-shot 
acquisition was used for the field map and it was smoothed using a 3x3 kernel.  We applied the 
same reconstruction approaches as in the simulation study.   

IV. RESULTS 
A. Simulation Study 

Figure 3 shows simulation results for the circular object with the spiral-out acquisition.  
The reconstruction using the spatially variant DCF most closely matches the amplitude of the 
original object (given the limited spatial frequency) while the spatially invariant DCF 
overestimates the object amplitude.  When the post-reconstruction intensity correction of (32) is 
applied, the spatially invariant DCF produces a response very similar to that of the spatially 
variant DCF, though the spatially variant DCF appears to have a sharper transition.  Results were 
similar for the spiral-in acquisition (not shown) except that the spatially invariant DCF prior to 
intensity correction underestimated the object intensity.  Figure 3 also shows the effect of errors 
in the inhomogeneity function used for reconstruction.  The largest effect come from errors in the 
parallel (gx) gradient terms which results in an approximate scaling of the stimulated object due 
to over- or under-correction of the sample density effects.  Errors in the orthogonal (gy) gradient 
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terms seemed to have no effect on the reconstructed object while errors in f∆  induced blurring 
of the object, as expected.  

Reconstruction results for the simulated head are given in Figure 4 for an axial slice 
approximately 2 cm above the sphenoid nasal sinus.  Figure 4(a) contains the reference spiral 
image for the object reconstructed with no magnetic field inhomogeneity.  Figure 4(b) contains 
the magnetic field map used to generate the simulated data.  This map and Figure 4(c), the 
gradient map, were used in the reconstruction process.  Figure 4(d-k) show the eight 
reconstructed images for the spiral-out data and 4(l-s) show the results for the spiral-in data.  
Only the results for the fast implementation of the spatially variant DCF (method d.) are given as 
they are visually indistinguishable (normalized RMS difference of ~0.1%) from the slower 
implementation (method c.).  Amongst CP reconstruction methods, the use of the spatially 
variant DCF and the post-reconstruction intensity correction clearly produce images that are 
closest to the reference image.  The image from the SPHERE method and iterative reconstruction 
also produced images that are very close to the ideal reference image.  Table 1 contains the 
normalized RMS errors for all reconstruction methods.  For the spiral-out data, the iterative 
method has the lowest NRMSE and the for the spiral-in data, the spatially variant CP 
reconstruction had the lowest NRMSE.   

Figure 5 contains a comparison of the pixel values between the spatially invariant and 
variant DCF’s.  The post-reconstruction intensity correction values are also shown in this figure 
as a solid line.  These plots demonstrate that post-reconstruction intensity correction produces 
images that are similar to those produced by the full spatially variant DCF.  This also shows that 
for gradient echo imaging, a substantial amount of the correction imparted by the variant DCF is 
an intensity correction.   

The noise sensitivity of each of the reconstruction methods is also included in Table 1.  
All of the reconstruction methods produced images with noise measures that varied 
approximately linearly with respect to noise level in the field map or raw data.  The standard CP 
reconstruction (method b.) is least sensitive to noise in the field map and the CP reconstruction 
with spatially variant DCF is substantially more sensitive, but this sensitivity can be reduced 
through the use of larger gradient estimators that employ more averaging.  With respect to noise 
in the raw data, none of the reconstruction methods show any noise amplification relative to the 
standard Fourier reconstruction.  The CP reconstruction with post-reconstruction intensity 
correction has somewhat reduced noise, most likely from the multiplicative intensity reduction 
necessary for the spiral-out case. 

The computational demands of the different CP reconstruction methods depend upon the 
exact implementation.  The fast implementation we have used requires pre-calculation of 
interpolation coefficients for the gridding step and optimization of the temporal interpolators.  
On an 800 MHz Intel Pentium processor, this pre-calculation requires 13.6 seconds and if an 
approximate or generic field map is used [21] most of these calculations can performed off-line.  
The additional reconstruction time for each image was 0.6, 1.7, and 0.7 seconds for methods b., 
d., and e., respectively.  These times are for L = 5 time-segments, and time can be further 
reduced by reducing the number of time segments, however this increases error.  The normalized 
RMS difference between the fast and slow implementation was about 1.6%, 0.5% and 0.1% for L 
= 3, 4, and 5 segments, respectively.  The slow implementation (method c.) of the spatially 
variant reconstruction requires calculation of a large matrix that implements the density 
compensation and conjugate phase reconstruction (42.1 seconds) and a matrix multiplication 
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with the raw data (1.0 seconds).  Unlike, the fast implementation, the matrix is field map specific 
and would need to be recalculated for every slice.  
B. Experimental Data 

Reconstruction results for the experimental spiral data are given in Figure 6 for an 
oblique axial slice approximately 2 cm above the sphenoid sinus.  Figure 6(a) contains the 8-shot 
data, which serves as a reference image, Figure 6(b-c) shows the magnetic field and gradient 
maps used in the reconstruction process, and Figure 6(d-k) shows images reconstructed by the 
various approaches. These results demonstrate that the CP reconstruction with a spatially variant 
DCF as well as with intensity correction can produce images that closely approximate the 
undistorted image acquired using an 8-shot acquisition. 

V. DISCUSSION AND CONCLUSIONS 
Most image reconstruction in MRI is based on Fourier inversion of k-space data, where 

k-space is defined from the gradient waveforms.  The concept of k-space, however, assumes that 
the underlying magnetic field is perfectly uniform.  When this is not the case, it is appropriate to 
consider modifications to the k-space formulation that may lead to a modified Fourier inversion 
approach or alternatively, to consider entirely new reconstruction approaches based on modeling 
the MR physics.  In this paper, we consider the former by performing a Taylor series expansion 
of the underlying magnetic field around every point in the object.  Keeping only the first two 
terms produces a signal equation with an effective k-space trajectory that is distorted and is space 
variant.  Reconstruction from this distorted trajectory requires modification of the sample density 
compensation function to a form that is also space variant.  Each point in space has its own 
effective k-space trajectory and thus, its own sample density compensation.   

In both simulation and experimental data, we demonstrate the effect of distortions to k-
space caused by the gradient term from magnetic field inhomogeneity.  In spiral imaging, these 
distortions can lead to changes in intensity and distortions to the point spread function.  A 
significant portion of the image distortions can be removed by the proposed image reconstruction 
that uses a spatially variant DCF.  In the simulations, however, we found that this method does 
not lead exactly to the reconstructed image produced by simulation without magnetic field 
inhomogeneity for two reasons.  First, the k-space region acquired is not exactly the same as that 
acquired for the homogeneous case.  For example, in Figure 2(left), we see a k-space trajectory 
for a particular point in space that is shifted from the ideal trajectory in Figure 1.  The spiral-in 
case produces results that are much closer to the homogeneous magnetic field case because the 
k-space area for the distorted trajectory is more similar to the ideal trajectory.  The second reason 
that the reconstruction is not perfect is that the smoothly varying condition of (23) may be 
violated for some points, in which case the Jacobian determinant is negative and the Fourier 
inversion has singularities.   

Our derivation of the spatially variant DCF is based on the Jacobian determinant and 
modifications thereof.  For sample values where this determinant is zero, the trajectories cross on 
top of themselves and the DCF is set to zero.  It may, however, be advantageous to keep these 
samples because they can improve the estimated image in locations with large background 
gradients.  Keeping these sample values, however, may require the use of other approaches for 
the calculation of DCF.  Numerical approaches [6, 7] can accommodate self crossing trajectories 
gracefully.  In addition to spiral acquisitions, these approaches would also be very useful for 
trajectories that intentionally have self crossings, for example, rosette trajectories[25].  In this 
case, we are aware of no simple formulae to adjust the DCF for distortions to local k-space.  
While highly attractive for these cases, the numerical approaches for DCF calculation may be 
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computationally impractical since each image voxel will require a new execution of the DCF 
calculation procedure. 

In addition to application of the spatially variant DCF, we examined an alternate method 
for correcting for the effects of locally distorted k-space trajectories.  In this method, we applied 
an intensity correction to the images reconstructed using a spatially invariant DCF.  The intensity 
correction is based on the relative density of samples when the true origin of k-space is acquired. 
This is done for every point in space to create an intensity correction mask.  This approach 
produces results that are very similar to the full spatially variant DCF, as demonstrated by Figure 
4.  Figure 5 further demonstrates that the corrections resulting from the two approaches are very 
similar, but that differences remain.  These differences are likely due to changes in the point 
spread function (PSF) that result from the density compensation for all parts of k-space rather 
than just the compensation at the origin.  For spin-echo imaging, the origin is sampled with 
roughly the same density irrespective of background gradients (see top of Figure 1, for example).  
In this case, the spatially variant DCF will still improve the PSF, but the post-reconstruction 
intensity correction will have no effect. 

We have proposed two approaches for rapid implementation of this reconstruction.  The 
first approach implements the full spatially variant DCF using three image reconstructions and 
the second does a single reconstruction using a spatially invariant DCF followed by a point-by-
point intensity correction.  Both approaches use the conjugate phase reconstruction with a time-
segmented approximation to the phase accumulation due to off-resonance effects [10, 11].  They 
also use gridding [8, 9] with FFT’s for fast Fourier inversion.  The gridding reconstruction with 
appropriate selection of convolution kernels [9] can produce images with extremely small 
difference relative to the discrete Fourier summation (NRMSEs of less than 10-5).  In addition, 
the interpolation kernels used to approximate the accumulation of off-resonance phase can be 
minimized through the use of optimized temporal interpolators, such as the min-max interpolator 
of Sutton et al. [21].  Both rapid methods required approximately O(LN 2 logN) operations where 
N is the image dimension and L is the number of time or frequency segments and led to 
substantial reductions in computation time.  The fast approach for the spatially variant DCF 
(method d.) was very close to the slower implementation with a normalized RMS difference 
about 0.1%.  This difference included errors resulting from both errors in the fast approximation 
and differences in how a negative Jacobian determinant was handled. 

One apparent disadvantage of the proposed methods is the sensitivity to noise and/or 
errors in the field and gradient maps.  The results in Figure 3 show that the errors or noise in the 
gradient component parallel to the true background gradient have predominantly a scaling effect 
on the image, whereas the errors in the orthogonal direction have negligible effects.  Errors in the 
field map can lead to additional blurring of the image in a manner similar to the standard CP 
reconstruction.  Table 1 shows that the while the proposed methods do not amplify additive noise 
in the raw data, they can be quite sensitive to noise in the field map.  The relative insensitivity of 
the standard CP reconstruction to field map errors together with the reduction in noise sensitivity 
through the use of a larger kernel for estimating gradients imply that the noise sensitivity is 
dominated by noise in the gradient maps.  In practice, noise in the field maps and gradient maps 
can be controlled by smoothing the field map and through the use of larger kernels for 
calculation of gradients.  Furthermore, our noise analysis shows that post-reconstruction intensity 
correction is somewhat more sensitive to gradient noise than the reconstruction with the spatially 
variant DCF.  This approach uses the estimated gradient to determine the time of the crossing of 
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the k-space origin in (31) and then uses it again in the determination of the correction factor, 
resulting in an amplification of the noise relative to the full the spatially variant DCF method.   

Our proposed method corrects for the effects of local gradients by adjusting for sample 
density variations in a local k-space representation.  There are other approaches that can address 
the distortions to k-space without explicit calculation of gradient maps and we have tested two of 
these in the current work.  Both of these approaches rely on modeling the signal equation physics 
(e.g. equation (15)) with the negative (SPHERE method) or positive (iterative method) field map.  
Unlike the inverse solution, this equation does not depend on the assumption of a uniform 
underlying magnetic field.  The SPHERE method [18]uses the field map in an attempt to create 
undistorted k-space data from a distorted image, and the iterative method [21] attempts to find 
the image that best matches the acquired data using a cost function.  Our simulation data 
summaries in Figure 4 and Table 1 show that both of these approaches are effective in reducing 
both image distortions from field inhomogeneity and intensity variations that result from sample 
density variations, resulting in reconstruction errors that are similar to those found with spatially 
variant CP reconstruction (in some cases better and in other cases worse).  The SPHERE method 
can also be implemented a computationally efficient manner and can use a distorted field map, 
but in our implementation was more sensitive to noise in the field map than the CP 
reconstructions.  As previously mentioned, with appropriate data weighting, one iteration of the 
conjugate gradient method is equivalent to the CP reconstruction [21, 24], which does correct for 
most spatial distortions, but additional iterations (between 3 and 10) were required to eliminate 
in the intensity variation from the sample density variations.  The iterative approach also has fast 
implementations [21] but with larger numbers of iterations, it is still slower than the proposed 
approach.  The iterative approach could, of course, be initialized with the new CP method and 
could further reduce the number of iterations.  Unlike the CP and SPHERE methods, the iterative 
reconstruction approach also does require a smoothly varying field, such as the condition in (23).  
Finally, the iterative approach also showed some increase in sensitivity to noise in the field map 
for larger numbers of iterations. 

In conclusion, we have developed a new CP method to reconstruct images corrected for 
the effects of magnetic field inhomogeneity.  Our approach is based on the idea that gradients in 
the magnetic field inhomogeneity function can lead to spatially varying distortions in an 
effective k-space trajectory.  Since these distortions lead to altered sampling patterns, they 
require different density compensation functions for every point in space.  We have developed 
specific formulae for the spatially variant compensation for use in spiral MRI and have described 
fast implementations of this reconstruction that allow the use of FFT’s.   We have applied the CP 
reconstruction with a spatially variant compensation function to simulated and experimental 
spiral data and this has resulted in substantially more accurate image reconstructions than the 
standard CP reconstruction. 
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FIGURE CAPTIONS 

Figure 1. Top row: Central portion of a spiral k-space trajectory with no background 
gradient and with background gradients of 25 and 100 Hz/cm.  Bottom row: The corresponding 
density compensation functions (DCF), D(t), for these three cases.  For the 100 Hz/cm case, the 
Jacobian determinant is negative for some time points (when the trajectory crosses over itself).   

Figure 2.  Left: The central portion of a spiral-out k-space trajectory with a background 
gradient of 25 Hz/cm and a gradient echo TE = 20 ms.  The origin of k-space is denoted by ⊗ .  
Right: The spatially invariant and variant DCF’s for this trajectory with values at the time 
corresponding to crossing of the k-space origin denoted by ⊗ .   

Figure 3.  Upper left: Profiles along x direction for the reconstruction of a simulated 
circular object of radius 2 pixels for no background gradient and for an x direction background 
gradient of 25 Hz/cm and a gradient echo with TE = 20 ms.  The spatially invariant DCF 
produces overestimated the image intensity.  Upper right: Comparison of response of spatially 
variant DCF to the invariant DCF response with intensity scaled by the ratio of DCF values in 
Figure 2.  Lower left: Effect of error in estimated x gradient.  Lower right: Effect of error in the 
estimated y gradient and magnetic field strength. 

Figure 4. Simulation of a spiral acquisition for case of homogeneous field in (a).  (b) 
contains the corresponding magnetic field map (in Hz, the corresponding range in ppm is -0.8 to 
0.4) and (c) contains the absolute value of the gradient (in Hz/cm).  (d-k) are spiral-out results 
and (l-s) are spiral-in results with the following image reconstruction approaches: (d,l) 
reconstructions with no inhomogeneity correction, (e,m) the conjugate phase reconstruction with 
the standard DCF, (f,n) the conjugate phase reconstruction with spatially variant DCF, (g,o) 
reconstructions for (e,m) modified by the post-reconstruction intensity correction, (h,p) SPHERE 
reconstruction, (i-k, q-s) iterative reconstruction with 2, 4 and 10 iterations, respectively. 

Figure 5.  Comparison of the post-reconstruction intensity correction of Equation (32) to 
corrections provided by full spatially variant DCF for both spiral-out (left) and spiral-in (right) 
images.  Solid line represents the post-reconstruction intensity correction factor while dots 
represent the ratio of pixel intensities for Figure 4(f)/4(e) and 4(n)/4(m), respectively.  For 
gradient echo imaging, there is a reasonably close relationship between these two correction 
approaches.   

Figure 6. Experimental results for the slice shown in (a), which as acquired using an 8 
shot acquisition.  (b) contains the corresponding magnetic field map (in Hz, corresponding range 
in ppm is -0.6 to 0.3 ppm) and (c) contains the absolute value of the gradient (in Hz/cm) of (b).  
(d-k) are images reconstructed with the following image reconstruction approaches: (d) 



 18 

reconstructions with no inhomogeneity correction, (e) the conjugate phase reconstruction with 
the invariant density compensation function (DCF), (f) the conjugate phase reconstruction with 
spatially variant DCF, (g) reconstructions of (e) modified by the post-reconstruction intensity 
correction, (h) SPHERE reconstruction, (i-k) iterative reconstruction with 2, 4 and 10 iterations, 
respectively 
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TABLES 

 
Table 1: Comparison of reconstruction methods for simulated data:  

Reconstruction errors and noise sensitivity. 
 
 
Reconstruction 
Method 

Spiral-Out 
Simulation 
(no noise) 
% NRMSE 

Spiral-In 
Simulation 
(no noise) 
% NRMSE 

Spiral-Out 
Simulation 

 Noise in field map 
(% NRMSE/Hz) 

Spiral-Out 
Simulation 

 Noise in data 
(% NRMSE/unit 

noise) 
No Correction (a.) 18.4 16.0 0 1.04 
CP with Invariant 
DCF (b.) 

16.9 10.9 0.9 1.04 

Slow CP with  
Variant DCF (c.) 

7.6 3.2 4.1a / 1.6b 1.05 

Fast CP with  
Variant DCF (d.) 

7.6 3.2 4.1a / 1.6b 1.05 

CP with Intensity 
Correction (e.) 

9.1 4.4 10.5a / 3.1b 0.92 

SPHERE (f.)  7.3 5.5 4.4 0.99 
Iterative (g.) –  
2 Iterations 

9.6 8.9 1.2 1.01 

Iterative (g.) –  
3 Iterations 

7.7 7.3 1.4 1.01 

Iterative (g.) –  
4 Iterations 

6.6 5.4 1.7 1.00 

Iterative (g.) –  
5 Iterations 

6.4 4.4 2.1 1.00 

Iterative (g.) –  
10 Iterations 

6.3 3.7 2.4 1.04 

a3x3 and b5x5 kernels for gradient calculation 
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