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ABSTRACT

The FFT is used widely in signal processing for effi-
cient computation of the Fourier transform (FT) of finite-
length signals over a set of uniformly-spaced frequency
locations. However, in many applications, one requires
nonuniform sampling in the frequency domain,i.e., a
nonuniform FT. Several papers have described fast ap-
proximations for the nonuniform FT based on interpo-
lating an oversampled FFT. This paper presents an in-
terpolation method for the nonuniform FT that is opti-
mal in the min-max sense of minimizing the worst-case
approximation error over all signals of unit norm. The
proposed method easily generalizes to multidimensional
signals. Numerical results show that the min-max ap-
proach provides substantially lower approximation errors
than conventional interpolation methods. The min-max
criterion is also useful for optimizing the parameters of
interpolation kernels such as the Kaiser-Bessel function.

Keywords: Nonuniform FFT, discrete Fourier trans-
form, min-max interpolation, tomography, magnetic res-
onance imaging, gridding.

I. INTRODUCTION

The fast Fourier transform (FFT) is used ubiquitously
in signal processing applications where uniformly-spaced
samples in the frequency domain are needed. The FFT re-
quires onlyO(N logN) operations for anN -point signal,
whereas direct evaluation of the discrete Fourier transform
requiresO(N2) operations. However, a variety of appli-
cations require nonuniform sampling in the frequency do-
main, as has been recognized for at least 30 years [1]. Ex-
amples include radar imaging [2–6], computing oriented
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wavelets via the Radon transform [7], computational elec-
tromagnetics [8–12], and FIR filter design,e.g., [13–15].
Such problems require anonuniform Fourier transform
[16], yet one would like to retain the computational advan-
tages of fast algorithms like the FFT, rather than resorting
to brute-force evaluation of the nonuniform FT.

Our work on this problem was motivated by iterative
magnetic resonance image (MRI) reconstruction [17–20],
and by iterative tomographic image reconstruction meth-
ods where reprojection is based on the Fourier slice theo-
rem [21–28]. These problems relate closely to the prob-
lem of reconstructing a band-limited signal from nonuni-
form samples. Strohmer argued compellingly for us-
ing trigonometric polynomials (complex exponentials) for
finite-dimensional approximations in such problems [29],
and proposed to use an iterative conjugate gradient recon-
struction method with the NUFFT approach of [30] at its
core. The min-max NUFFT approach presented here fits
in that framework but provides higher accuracy. We ex-
plore these applications in more detail elsewhere [20, 28]
and focus here on the broadly-applicable general princi-
ples.

In the signal processing literature, many papers have
discussed frequency warping approaches for filter design
[1, 14, 15, 31] and image compression [32, 33]. Warping
methods apply only to special patterns of frequency loca-
tions, so are insufficiently general for most applications.

In the scientific computing literature, several recent pa-
pers have described methods for approximating the 1D
nonuniform FT by interpolating an oversampled FFT, be-
ginning with [34] and including [8,10,30,35–41]. Related
methods were known in astrophysics even earlier [42].
Such methods are often called the nonuniform FFT, or
NUFFT. Most of these algorithms have been presented
only for 1D signals, and many involve seemingly arbitrary
choices for interpolation functions. This paper starts from
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first principles to derive a min-max approach to the in-
terpolation problem. We find the fixed-width interpolator
that minimizes the worst-case approximation error over all
signals of unit norm. (Like all NUFFT methods, the user
can tradeoff computation time and accuracy.) This method
generalizes naturally to multidimensional signals such as
the imaging problems that motivated this work. This work
was inspired by the paper of Nguyen and Liu [40]. We
compare our approach to theirs in detail in Section IV-C.

This work is in the spirit of min-max approaches for
other signal processing problems, such as bandlimited sig-
nal interpolation [43–49] and filter design [50,51].

Section II derives the min-max NUFFT method. Sec-
tion III describes extensions including multidimensional
signals. Section IV analyzes the approximation error of
the min-max method. Section V compares the min-max
method to conventional methods. Section VI gives a prac-
tical 2D NUFFT example.

II. T HEORY: 1D CASE

For simplicity, we first describe our min-max approach
in the 1D case. The basic idea is to first compute an over-
sampled FFT of the given signal, and then interpolate op-
timally onto the desired nonuniform frequency locations
using small local neighborhoods in the frequency domain.

A. Problem statement

We are given equally-spaced signal samplesxn, forn =
0, . . . ,N − 1, with corresponding FT

X(ω) =

N−1∑
n=0

xne
−ıωn. (1)

We wish to compute the FT at a collection of (nonuni-
formly spaced) frequency locations{ωm}:

Xm , X(ωm) =
N−1∑
n=0

xne
−ıωmn, m = 1, . . . ,M. (2)

The symbol “,” denotes “defined to be.” Theωm’s can
be arbitrary real numbers. This form has been called
the nonuniform discrete Fourier transform (NDFT) [52,
p. 194]. Directly evaluating (2) would requireO(MN)
operations, which would be undesirably slow. Fast com-
putation of (2) is called the NUFFT. This is “Problem 2”
in the nomenclature of [34, 40]. Sections III-F and III-G
discuss alternative problems.

The first step of most NUFFT algorithms is to choose a
convenientK ≥ N and compute a weightedK-point FFT

of {xn}:

Yk =
N−1∑
n=0

snxne
−ıγkn, k = 0, . . . ,K − 1, (3)

whereγ , 2π/K is the fundamental frequency of theK-
point DFT. The nonzerosn’s are algorithm design vari-
ables that have been called “scaling factors” [40]. We call
s = (s1, . . . , sN ) thescaling vector. The purpose ofs is
to partially pre-compensate for imperfections in the subse-
quent frequency-domain interpolation. This first step re-
quiresO(K logN) operations if implemented efficiently
as described in Section III-D.

The second step of most NUFFT methods is to approx-
imate eachXm by interpolating theYk’s using some of
the neighbors ofωm in the DFT frequency setΩK ,

{γk : k = 0, . . . ,K − 1} . Linear interpolators have the
following general form:

X̂(ωm) =

K−1∑
k=0

v?mkYk = 〈Y , vm〉, m = 1, . . . ,M,

(4)
where thevmk ’s denote interpolation coefficients, “?” de-
notes complex conjugate, andvm , (vm1, . . . , vmK).
The design problem is choosing the scaling vectors and
the interpolators{vm}.

Given theYk’s, an ideal linear “interpolator” could first
recoverx = (x0, . . . , xN−1) by computing the inverse
FFT from (3) and then computing explicitly the desired
FT valuesX(ωm) using (2). Specifically, fors = 1:

X(ω) =
N−1∑
n=0

xne
−ıωn =

N−1∑
n=0

[
1

K

K−1∑
k=0

Yke
ıγkn

]
e−ıωn

=

K−1∑
k=0

YkI(ω/γ − k) ,

where the ideal interpolator kernel is:

I(κ) , e−ıγκη0
N

K
δN (κ), (5)

whereη0 , (N − 1)/2 and whereδN (·) denotes the fol-
lowing Dirichlet-like “periodic sinc” function:

δN (κ) ,
1

N

N−1∑
n=0

e±ıγκ(n−η0)

=



sin(πκN/K)

N sin(πκ/K)
, κ/K /∈ Z

1, κ/K ∈ Z.
(6)
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Oversampling is of no benefit to this ideal interpolator.
Applying this ideal interpolator would requireO(MK)
operations and would use allMK of thevmk ’s in (4), so
is impractical.

To contain computational requirements, most NUFFT
methods constrain eachvm to have at mostJ nonzero el-
ements corresponding to theJ nearest neighbors toωm in
the setΩK . With this practical restriction, the interpola-
tion step requiresO(MJ) operations, whereJ � K.

Define the integer offsetkm = k0(ωm) as follows:

k0(ω) ,



(argmink∈Z|ω − γk|)−

J + 1

2
, J odd

(max {k ∈ Z : ω ≥ γk})−
J

2
, J even.

(7)
This offset satisfies the following shift property:

k0(ω + lγ) = l + k0(ω), ∀l ∈ Z. (8)

Let uj(ωm), j = 1, . . . , J , denote theJ possibly nonzero
entries ofvm. Then the interpolation formula (4) becomes

X̂(ωm) =

J∑
j=1

Y{km+j}K u
?
j(ωm), (9)

where{·}K denotes the modulo-K operation (ensuring
that X̂(ω) is 2π periodic). To apply this formula, one
must choose theJM interpolation coefficients{uj(ωm)},
and compute theM indices {km}. One would like to
choose each interpolation coefficient vectoru(ωm) =
(u1(ωm), . . . , uJ(ωm)) such thatX̂(ωm) is an accurate
approximation toXm, and such thatu(·) is relatively
easy to compute. Dutt and Rokhlin used Gaussian bell
kernels for their interpolation method [34]. Tabei and
Ueda also used such kernels in the specific context of di-
rect Fourier tomographic reconstruction and included er-
ror analyses [53]. For evenN and oddJ only, Nguyen
and Liu [40] considered interpolation of the form (9) with
a choice for theuj ’s that arises from least-squares approx-
imations of complex exponentials by linear combinations
of other complex exponentials. We propose next an ex-
plicit min-max criterion for choosing theuj ’s, with uni-
form treatment of both even and oddJ andN using (7).

B. Min-max interpolator

We adopt amin-max criterionfor choosing the inter-
polation coefficients{uj(ωm)}. For each desired fre-
quency locationωm, we determine the coefficient vector
u(ωm) ∈ C J that minimizes theworst caseapproxima-
tion error betweenXm and X̂(ωm) over all signalsx

having unit norm. Hypothetically this could yield shift-
variant interpolation since each desired frequency location
ωm may have its own set ofJ interpolation coefficients.

Both the scaling vectors and the interpolators{u(ωm)}
are design variables, so ideally we would optimize simul-
taneously over both sets using the following criterion:

min
s∈CN

max
ω

min
u(ω)∈CJ

max
x∈CN : ‖x‖≤1

|X̂(ω)−X(ω)|. (10)

As discussed in Section IV, the outer optimization requires
numerical methods. Thus, we focus next on optimizing
the interpolation coefficientsu(ωm) for a fixed scaling
vectors, and address choice ofs in Section IV-C.

Mathematically, our min-max criterion is the following:

min
u(ωm)∈CJ

max
x∈CN : ‖x‖≤1

|X̂(ωm)−X(ωm)|. (11)

Remarkably, this min-max problem has an analytical so-
lution, as derived next.

From (9) and (2), we have the following expression for
the error:

|X̂(ωm)−Xm| =

∣∣∣∣∣∣
J∑
j=1

Y{km+j}Ku
?
j(ωm)−X(ωm)

∣∣∣∣∣∣ .
(12)

Using (3) and (12), this error expression becomes

J∑
j=1

u?j(ωm)

[
N−1∑
n=0

snxne
−ıγ(km+j)n

]
−
N−1∑
n=0

xne
−ıωmn

=
√
N 〈x, g(ωm)〉, (13)

whereg(·) is anN -vector with elements

gn(ω) , s?n


 J∑
j=1

1
√
N
eıγ(k0(ω)+j)nuj(ω)


− 1

√
N
eıωn,

for n = 0, . . . ,N − 1. In matrix-vector form:

g(ω) =D(ω)
[
S′CΛ(ω)u(ω) − b(ω)

]
, (14)

whereS = diag{sn} , “ ′” denotes Hermitian transpose,
D(ω) is aN ×N diagonal matrix,C is aN × J matrix,
Λ(ω) is aJ × J diagonal matrix, andb(ω) is aN -vector
with respective entries:

Dnn(ω) = eıωη0eıγk0(ω)(n−η0) (15)

Cnj = eıγj(n−η0)/
√
N (16)

Λjj(ω) = e−ı[ω−γ(k0(ω)+j)]η0 (17)

bn(ω) = eı(ω−γk0(ω))(n−η0)/
√
N. (18)
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(We chose these definitions with considerable hindsight to
simplify subsequent expressions.)

In this form, the min-max problem (11) becomes

min
u∈CJ

max
x∈CN :‖x‖≤1

√
N |〈x, g(ω)〉| . (19)

By the Cauchy-Schwarz inequality, for a given frequency
ω, the worst-case signal isx = g?(ω)/‖g(ω)‖, i.e.,

max
x : ‖x‖=1

|〈x, g(ω)〉| = ‖g(ω)‖ .

Inserting this case into the min-max criterion (19) and ap-
plying (14) and (15) reduces the min-max problem to the
following (cf [40, eqn. 10]):

min
u∈CJ

√
N
∥∥S′CΛ(ω)u(ω) − b(ω)∥∥ . (20)

The minimizer of this ordinary least-squares problem for
ω = ωm is u(ωm), where

u(ω) = Λ′(ω)[C′SS′C]−1C′Sb(ω) (21)

(sinceΛ is unitary). This is a general expression for the
min-max interpolator. Due to the shift property (8) and the
definitions ofΛ(ω) andb(ω), we see

uj(ω + γl) = uj(ω), ∀l ∈ Z, (22)

so the min-max interpolator isγ-periodic and “shift invari-
ant” in the sense appropriate for periodic interpolators.

To apply the min-max interpolator (21), we must com-
pute the interpolation coefficientsu(ω) for each frequency
locationωm of interest. One method for computing (21)
would be to use the following QR decomposition:

S′C = QR, (23)

whereQ ∈ C N×J is a matrix with orthogonal columns,
andR is an upper triangular invertible matrix. SinceS′C
is independent of frequency location, we could precom-
pute its QR decomposition and then precompute the ma-
trix productR−1Q′. We could then compute the interpo-
lation coefficients by substituting (23) into (21) yielding

u(ω) = Λ′(ω)(R−1Q′)b(ω). (24)

After precomputingR−1Q′, this approach would require
2NJ operations per frequency location. These operations
are independent ofx, so this approach may be reasonable
when one needs apply repeated NUFFT operations for the
same set of frequency locations. (This mode is discussed
further below.) However, the next subsection shows that if
we use anL-term Fourier series for thesn’s, then we can
reduce precomputation toO((L + 1 + J)J) operations
per frequency location. UsuallyL + 1 + J � N so the
savings can be significant for smallL. However, very high
accuracy computations may require largeL, in which case
the above QR approach may be preferable.

C. Efficient computation

An alternative expression for the interpolator (21) is

u(ω) = Λ′(ω)Tr(ω), (25)

where we define

T , [C′SS′C]−1 (26)

r(ω) , C′Sb(ω). (27)

Fortuitously, the inverse of theJ × J matrix C′SS′C
is independent of frequency sample location so it can be
precomputed.

To facilitate computingC′SS′C, we expand thesn’s
in terms of a (usually truncated) Fourier series:

sn =
L∑

t=−L

αte
ıγβt(n−η0), n = 0, . . . ,N − 1. (28)

The natural fundamental frequency corresponds toβ =
K/N , but we consider the general form above since or-
thogonality is not required here andβ can be a design pa-
rameter. We assume that theα’s are Hermitian symmetric,
i.e., α−t = α?t . We represent the coefficients by the vec-
tor α , (α0, α1, . . . , αL). As one special case of (28),
the “cosine” scaling factors considered in [40] correspond
to β = 1/2 andα = (0, 1/2). For β ≤ K/N , there
is no loss of generality in using the expansion (28). This
expansion generalizes significantly the choices of scaling
factors considered by Nguyen and Liu in [40], and can
improve accuracy significantly as shown in Section IV-C.
Nguyen and Liu referred to matrices of the formC′C as
(K/N,N, J − 1) regular Fourier matrices[40].

Combining (28) and (26) with (16) yields

[
C′SS′C

]
l,j
=

N−1∑
n=0

C?nlsns
?
nCnj

=
1

N

N−1∑
n=0

L∑
t=−L

L∑
s=−L

αtα
?
se
ıγ(j−l+β(t−s))(n−η0)

=
L∑

t=−L

L∑
s=−L

αtα
?
sδN (j − l + β(t− s)) , (29)

for l, j = 1, . . . , J , whereδN (·) was defined in (6).
The following properties ofT are useful. From (26),T

is Hermitian, and from (29),T is Toeplitz. In the usual
case where theα’s are real,T is a real matrix. IfK = N

andS = I, thenT−1 = C′C = I.
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Conveniently, in this min-max framework the matrix-
vector product definingr(ω) in (27) also simplifies:

rj(ω) =

N−1∑
n=0

C?njsnbn(ω)

=
L∑

t=−L

αt
1

N

N−1∑
n=0

eıγ[ω/γ−k0(ω)−j+βt](n−η0)

=
L∑

t=−L

αtδN (ω/γ − k0(ω)− j + βt) , (30)

for j = 1, . . . , J . This is a Dirichlet-like function of the
distances between the desired frequency location and the
nearest points in the setΩK .

In the usual case where theα’s are real, the vectorr(ω)
is real. So the only complex component of the min-max
interpolatoru(ω) in (25) is the complex phases inΛ(ω).
By (17), these phases coincide with the linear phase of the
ideal interpolator (5).

To summarize, we compute the min-max interpolation
coefficients in (25) for eachωm using the analytical results
(29) and (30). SinceC′SS′C is only J × J , whereJ is
usually less than 10, we always precomputeT in (26) prior
to all other calculations.

As described next, there are a few natural methods for
using the above formulas, depending on one’s tradeoff be-
tween memory and computation.

D. Precomputed mode

In problems like iterative image reconstruction, one
must compute the NUFFT (2) several times for the same
set of frequencies{ωm}, but for different signalsx. In
such cases, it is preferable toprecomputeand store allJM
of the interpolation coefficientsuj(ωm), if sufficient fast
memory is available, and then apply (9) directly to com-
pute the NUFFT as needed.

Precomputing eachu(ωm) using (25) requires only
O(J(L + 1 + J)) operations. A key property of (29) and
(30) is that they collapse the summations overn into the
easily-computed functionδN , thereby significantly reduc-
ing the precomputation operations.

After precomputing eachu(ωm), every subsequent
NUFFT interpolation step (9) requires onlyO(JM) op-
erations. Excluding the precomputation, the overall op-
eration count per NUFFT isO(K logN) + O(JM). An
accuracy-computation time tradeoff is available through
the choices for the oversampling factorK/N and the
neighborhood sizeJ . Typically we useK ≈ 2N , L ≤ 13,
J ≤ 10, andM ≈ N , so the overall computational

requirements are akin to an FFT but with a larger con-
stant. The larger constant is an unavoidable consequence
of needing accurate nonuniform frequency samples!

E. Reduced memory mode

In unusual cases where storing allJM coefficients is
infeasible, one can evaluate eachu(ωm) as needed using
(25), (30) and the precomputedT in (26). In this mode
the operation count for the NUFFT interpolation step in-
creases toO(J(L + 1 + J)M), but the storage require-
ments for the interpolator decrease toJ2.

Alternatively, one could decrease the interpolation op-
eration count to roughly2JM by finely tabulatingTr(ω)
over a uniform grid (cf Fig. 1) and using table lookup with
polynomial interpolation to determine theuj(ωm)’s “on
the fly.” This approach reduces both storage and interpo-
lation operations, but presumably decreases accuracy.

Table 1 summarizes these various modes.

F. “Large” N interpolator

The dependence of the interpolator on the signal-length
N can be inconvenient since it would seem to necessitate
designing a new interpolator for each signal length of in-
terest. To simplify the design, we consider hereafter cases
whereN is “large.” These are of course the cases where
fast algorithms are particularly desirable.

Definingµ , K/N , from (6) one easily sees that

lim
N→∞

δN (t) = sinc(t/µ) ,

where sinc(t) , sin(πt)/(πt). So for largeN , T ≈ T̃
where

[T̃−1]l,j ,

L∑
t=−L

L∑
s=−L

αtα
?
s sinc

(
j − l + β(t− s)

µ

)
.

(31)
Similarly, r(ω) ≈ r̃(ω) where

r̃j(ω) ,

L∑
t=−L

αt sinc

(
ω/γ − k0(ω)− j + βt

µ

)
. (32)

Combining these with (25), the interpolator we consider
hereafter is

ũ(ω) , Λ′(ω)T̃ r̃(ω). (33)

From (29) and (30), the maximum argument ofδN is
2(J + βL) and typically is less than 30. From (6), as long
as this argument is much smaller thanK, the sinc approx-
imation will be very accurate. For example, even forN

as small as 32, the sinc andδN differ by less than 1% for
arguments less than 30. Thus, focusing on the sinc-based
interpolator (33) is very reasonable.
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Method Precomputation Interpolation Storage Accuracy

QR precomputed J2NM JM JM very high
Tr precomputed J(L+ 1 + J)M JM JM high
Tr partial 0 J(L+ 1 + J)M J2 high
Table / linear interp. (table size) 2JM (table size) medium high

Table 1: Compute operations and interpolator storage requirements for various modes, disregarding small factors inde-
pendent ofM .

G. Effective interpolation kernel

Most interpolation methodsstart with a specific func-
tional form for the kernel, such as a Gaussian bell or B-
spline. In contrast, we have started with only the min-max
criterion and no other constraints except using theJ near-
est neighbors. Consider the case of uniform scaling fac-
tors (sn = 1, soL = 0 andα0 = 1). To visualize the
min-max interpolator (33), we can varyω/γ over the in-
terval [−J/2, J/2] and evaluatẽT r̃(ω) using (33), yield-
ing real functions such as those shown in Fig. 1 and Fig. 2
for the casesJ = 6 andJ = 7 respectively, usingµ = 2.
The figures also show (part of) a sinc interpolator (cf. (5))
for comparison. For evenJ , the min-max interpolator is
not differentiable at integer arguments. For oddJ , the
min-max interpolator has discontinuities at the midpoints
between DFT samples since the neighborhood changes at
that point (cf (7)). These properties depart significantly
from classical interpolators but they need not be surprising
since regularity was not part of the min-max formulation.
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Equivalent interpolator for J=6, K/N=2

Min−max
Sinc

Figure 1: Illustration of the min-max interpolator corre-
sponding to (33) forJ = 6, N = 128, K/N = 2, and
uniform scaling factors.

Although we have not attempted to prove this analyti-
cally, we have found empirically that the interpolation co-

−3 −2 −1 0 1 2 3
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1

ω / γ
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Equivalent interpolator for J=7, K/N=2

Min−max
Sinc

Figure 2: Illustration of the min-max interpolator corre-
sponding to (33) forJ = 7, N = 128, K/N = 2, and
uniform scaling factors.

efficient vectorũ(ω) seems to satisfy the property that∑J
j=1 ũj is close to unity (particularly asJ increases).

This is an expected property of interpolators, but our for-
mulation did not enforce this constrainta priori. Interest-
ingly, it seems to have arisen naturally from the min-max
framework. With uniform scaling factors (s = 1), the
kernel also satisfies the property that it is unity atω = 0
and zero at each otherγk. This expected property follows
directly from the min-max formulation.

III. E XTENSIONS AND VARIATIONS

This section describes some extensions to the min-max
NUFFT developed above.

A. Multidimensional NUFFT

The extension of the min-max method to two dimen-
sions and higher is conceptually very straightforward. In
2D, we oversample the 2D FFT in both directions, and
precompute and store the min-max interpolator for each
desired frequency location using the nearestJ ×J sample
locations. The storage requirements areO(J2M) if the
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interpolation coefficients are precomputed. Precomputing
the interpolator involves simple Kronecker products of the
the 1D interpolators. Specifically, for a 2D image, if we
use aJ1 × J2 neighborhood, with oversampling factors
µ1 = K1/N1 andµ2 = K1/N2 in the two dimensions re-
spectively, then the matrix̃T in (31) becomes a Kronecker
product (denoted “⊗”):

T̃2D = T̃1D(J2, µ2)⊗ T̃1D(J1, µ1), (34)

as does the vector̃r in (32):

r̃2D = r̃1D(J2, µ2)⊗ r̃1D(J1, µ1). (35)

Subroutines for Matlab are freely available online1.

B. Shifted signals

Applications often need a “shifted” version of (1):

N−1∑
n=0

xne
−ı(n−τ)ω = eıωτ

N−1∑
n=0

xne
−ınω. (36)

Incorporating theeıωτ phase term into the precomputed in-
terpolation coefficients̃uj(ω) induces this shift efficiently.

C. Adaptive neighborhoods

In the approach described above, the same numberJ of
neighboring DFT samples is used for each frequency lo-
cationωm of interest. This simplifies implementation, but
is suboptimal in terms of both memory and computation.
Some of theωm’s are likely to fall very close to the DFT
samples in the setΩK , and for those locations a smaller
value ofJ may suffice (depending onα, see Fig. 6). An
interesting extension would be to specify a maximum er-
ror tolerance, and then for eachωm use the smallestJm
that guarantees that error tolerance, assuming that one has
made a reasonable choice forK/N .

In higher dimensions, one could consider using non-
square neighborhoods,e.g., approximate balls.

D. Reduced FFT

Since (3) corresponds to an oversampled FFT, when
K/N is an integer, one can evaluate (3) by combining
K/N invocations of anN -point FFT routine, reducing the
operation count for (3) fromO(K logK) toO(K logN).
As a concrete example, ifK/N = 2 then

Yk =

{ ∑N−1
n=0 (snxn) e

−ı 2π
N
n( k2 ), k even∑N−1

n=0 (snxne
−ıγn) e−ı

2π
N
n(k−12 ), k odd.

(37)
1http://www.eecs.umich.edu/ ∼fessler

One can evaluate each of these two expressions using an
N -point FFT. In general, one needsK/N FFTs, where
the modulation needed for them’th FFT is e−ıγmn, m =
0, . . . ,K/N − 1.

E. Adjoint operator

Since the NUFFT method described above is a linear
operator, it corresponds implicitly to someM × N ma-
trix, sayG. In other words, we can express (9) and (3)
in matrix-vector form asX̂ = Gx whereG = VWS,
whereS was defined below (14),W is theK × N over-
sampled DFT matrix with elementswkn = e−ıγkn, andV
is the (sparse)M ×K interpolation matrix with elements
vmk. (This matrix representation is for analysis only, not
for implementation.) For iterative image reconstruction al-
gorithms, one also needs theadjoint of the NUFFT opera-
tor, i.e., one must perform matrix-vector multiplications of
the formG′ỹ for some vector̃y ∈ C

M . SinceG itself is
too large to store in the imaging problems of interest, and
since direct matrix-vector multiplication would be compu-
tationally inefficient, we must evaluateG′ỹ = S′W ′V ′ỹ

by “reversing” (not inverting!) the algorithm steps de-
scribed in Section II.

The adjoint corresponding to (4),i.e., theV ′ term, is

X̃k =

M∑
m=1

vmkỹm.

(This step is akin to “gridding.”) When the (sparse) inter-
polation matrix is precomputed and stored, this interpo-
lation step requiresO(JM) operations. For (3),i.e., for
W ′, the adjoint is

x̃n =

K−1∑
k=0

X̃ke
ı2πkn/K , n = 0, . . . ,N − 1,

which is theK-point inverse DFT ofX̃k scaled byK,
discarding all but the firstN signal values. This step re-
quiresO(K logK) operations. One can reduce this to
O(K logN) by using the adjoint of the reduced FFT (37).
The final step, forS′, is to scale each̃xn by s?n.

F. Nonuniform inverse FFT

By duality, i.e., by changing the sign in the exponent of
(1), one could apply the min-max approach to cases where
one has uniformly-spaced frequency samples and wants
to evaluate the inverse FT on a nonuniform set of spatial
locations. GivenXk, k = 0, . . . ,K − 1 corresponding to
frequencies{γk}, we can compute

x(tn) =

K−1∑
k=0

Xke
ıγktn , n = 1, . . . ,N (38)
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using the same type of approach with min-max interpo-
lation. This is again “Problem 2” in the terminology of
[34,40].

G. Inverse NUFFT

The formulation (2) is called “Problem 2” in the termi-
nology of [34, 40]. We view the imaging problems that
motivated this work as being theinverseof (2). For ex-
ample, in magnetic resonance imaging with non-Cartesian
k-space trajectories, we are given nonuniform samples
in the spatial-frequency domain, and want to reconstruct
uniformly-spaced object samples. In other words, the
X(ωm)’s are given and we must find thexn’s. One
can formulate such applications asinverse problemsin a
maximum-likelihood or penalized-likelihood framework,
e.g., [54]. For example, a least-squares formulation would
be

x̂ = argmin
x
‖X −Gx‖ ,

whereG was defined in Section III-E. Lee and Yagle an-
alyze the conditioning of such problems [55]. Lacking an
efficient method for solving this inverse problem directly
(for largeN ), one applies iterative algorithms. These it-
erative algorithms require repeated calculation of the “for-
ward problem” (from object space to frequency space, and
the adjoint thereof) [18–20, 28, 56]. Those forward prob-
lems are exactly of the “Problem 2” type addressed in this
paper, so the methods herein enable fast and accurate iter-
ative solutions to “inverse NUFFT” problems.

In yet another family of problems, one would like to
compute an expression of the form∑

l

Fle
ıωlt (39)

where thet’s of interest are uniformly spaced but the given
ωl’s are not. This is called “Problem 1” in [34, 40]. It
has been called “the Fourier transform of nonuniformly
spaced data,” although it differs from the usual Fourier
transforms considered in signal processing. One can use
NUFFT methods to compute accurate approximations to
(39) [34, 40]. Such methods are known as “gridding” in
the imaging literature,e.g., [25]. The interpolator pro-
posed in this papermaybe useful for (39), but here we
have been unable to formulate any claim of optimality. In
the context of imaging problems known to us, we believe
that iterative inverse NUFFT approaches will improve im-
age quality relative to formulations of the form (39), albeit
at the expense of greater computation. Nevertheless, there
may be other applications where “Problem 1” is the nat-
ural formulation, and for these problems we recommend
the general guidelines provided in reviews like [41].

IV. ERROR ANALYSIS

Combining (21) and (20) and simplifying yields the fol-
lowing expression for the worst-case error at frequencyω:

Eexact(ω)√
N

=
∥∥S′C[C′SS′C]−1C′Sb(ω)− b(ω)∥∥

=
∥∥(I −QQ′)b(ω)∥∥ , (40)

whereQ was defined in (23). The errorboundsgiven in
NUFFT papers are often described as pessimistic. In con-
trast, theexactworst-case error given by (40) is achiev-
able. Of course, the unit-norm signal that achieves this
worst-case error may not be representative of many prob-
lems of interest, so the “typical” performance may appear
better than (40).

Alternatively, combining (25) and (20) yields:

Eexact(ω)√
N

=
∥∥S′CΛ(ω)[Λ′(ω)Tr(ω)]− b(ω)∥∥

=
√
1− r′(ω)Tr(ω). (41)

WhenJ < 10 − K/N , the simpler form (41) is usually
adequate. For largerJ the subtraction within the square
root is numerically imprecise so we revert to (40).

To simplify analysis for modest values ofJ , one can use
the “largeN ” approximations (31) and (32) and normal-
ize out the

√
N dependence. Specifically, the following

approximation is usually very accurate:

Eexact(ω)√
N

≈ E(ω) ,
√
1− r̃′(ω)T̃ r̃(ω). (42)

We focus on this normalized errorE(·) hereafter when
J < 10−K/N .

Due to the shift-invariance property (22), the errorE(ω)
is periodic with periodγ. One can also show thatE(ω) has
a local extremum whenω is midway between the nearest
two DFT samples{γk}. Themaximumerror

Emax , max
ω
E(ω) (43)

usually occurs either at the midpoint between DFT sam-
ples, or at the DFT samples themselves. (See Fig. 6 below
for examples.) Unfortunately this does not always hold, so
we apply numerical methods to evaluate (43). We begin
with the simplest case: uniform scaling factors (s = 1).

A. Uniform scaling factors

Fig. 3 plotsEmax for a variety of choices of neighbor-
hood sizeJ and oversampling factorK/N for uniform
scaling factors (s = 1). As expected, increasingJ or
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K/N reduces the error, with diminishing returns asK/N
increases. By examining many such curves, we fit the fol-
lowing empirical formula for the error:

Emax ≈ 0.75 exp(−J [0.29 + 1.03 log(K/N)]) . (44)

This might serve as a guide for choosingJ andK/N .
To create Fig. 3, we used (40) because for large values

of J andK/N , the matrixC′C becomes very poorly con-
ditioned and (41) becomes numerically inaccurate. Using
a truncated SVD to compute the pseudo-inverse ofC′C

did not seem to help.
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Figure 3: Maximum errorEmax of min-max interpolator
with uniform scaling vector (s = 1), for various neigh-
borhood sizesJ and oversampling factorsK/N .

B. Multidimensional case

Using (34) and (35), the 2D error has the form

E2D =

√
1− r̃′2DT̃2Dr̃2D

=

√
1− r̃′2T̃2r̃2r̃

′
1T̃1r1

=
√
1− (1− E22 )(1− E

2
1 ) ≤

√
E21 + E

2
2 ,

whereE1 andE2 denote the 1D errors in (42). This gives
an upper bound on the potential accuracy “penalty” in 2D
relative to 1D. It also suggests that tensor products of good
1D min-max interpolators should work well in higher di-
mensions, so we can focus the efforts in optimizingα and
β on the 1D case.

C. Choice of scaling factors

Both r̃ and T̃ in the error expression (42) depend on
the choice of scaling vectors as seen in (31) and (32). Re-
turning to (10), ideally we would like to choose the scaling

factors using the following criterion:

min
s∈CN

max
ω
E(ω).

Unfortunately, an analytical solution to this optimization
problem has proven elusive. For the ideal interpolator (5),
uniform scaling factors are optimal. (In fact thesn’s are
irrelevant.) Intuition suggests that for good interpolators,
thesn’s should be fairly smooth, so a low-order expansion
in (28) should be adequate. (This is consistent with the
smooth choices that have been used in the literature,e.g.,
[34,37,40].) Using the series expansion (28) and denoting
the dependence ofEmax on the Fourier series coefficients
α and onβ, for a givenL, we would like to solve

min
α,β
Emax(α, β).

Lacking an analytical solution, we have explored this
minimization numerically using brute-force global search
for small values ofL, by searching jointly overβ andα =
(1, α1, . . . , αL). For example, for the caseL = 1, J = 6,
andK/N = 2, we searched jointly overβ andα1 in α =
(1, α1). The bestβ was 0.19, and Fig. 4 plotsEmax versus
α1 for thatβ. The minimizer isα1 = −0.46, rather than 0,
so clearly uniform scaling factors are suboptimal. Because
the minimum in Fig. 4 is sharp, this minimization required
a fine search, so such extra effort is warranted only when
one needs many NUFFTs for the sameJ andK/N . We
also investigated complex values forα1 and found that the
minimizer was always a real-valuedα1.

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1

10
−4

10
−3

10
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1

E
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Error for J=6, K/N=2, β=0.19

E
max

E(0)
E(γ/2)

Figure 4: Maximum errorEmax as a function ofα1 for
L = 1 andα0 = 1. Since the minimum is not atα1 = 0,
uniform scaling factors are suboptimal.

For L = 2, J = 6, andK/N = 2, we numerically
minimizedEmax((1, α1, α2), β) overα1, α2, β. The min-
imizer wasα = (1,−0.57, 0.14) andβ = 0.43. Fig. 5
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showsEmax((1,−0.57, α2), 0.43) versusα2. Again, in the
neighborhood of the minimum,Emax can be fairly sensi-
tive toα.
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Error for J=6, K/N=2, α
1
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E
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E(γ/2)

Figure 5: Maximum errorEmax as a function ofα2 for
L = 2 andα0 = 1.

Table 2 summarizes the optimizedα’s andβ’s for these
and other cases.

Fig. 6 compares the accuracy of these optimized min-
max interpolators to uniform scaling factors and to the co-
sine scaling factors emphasized in [40]. As acknowledged
by Nguyen and Liu, ‘the cosine scaling factors ... are by no
mean[s] the “best” ones,’ a point that Fig. 6 confirms. We
found in many such experiments (for a variety ofJ ’s and
K/N ’s) that uniform scaling factors yielded consistently
lower errors than cosine scaling factors2.

The shapes of the curves in Fig. 6 are noteworthy. Uni-
form scaling factors yield zero error at the DFT samples,
and peak error at the midpoints. In contrast, optimized
scaling factors tend to balance the error at the DFT sam-
ples and at the midpoints. We expect that the latter prop-
erty will be preferable in practice, since the desired fre-
quency locations often have essentially random locations
so there is little reason to “favor” the DFT sample loca-
tions.

The interpolators shown in Fig. 1 and Fig. 2 were for
uniform scaling factors. Fig. 7 shows the effective interpo-
lators for the optimizedα’s described above forL = 1, 2.
The optimized interpolators (L = 1, 2) have lower side-
lobes than the uniform case (L = 0) and are not unity at
zero nor zero at other DFT samples.

Our emphasis here has been on worst-case error, and
the error values given in Fig. 3 differ from those reported

2There is an error in the second to last equation on p. 292 of [40]
regarding uniform scaling factors.
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Figure 6: Worst-case errorE(ω) for various scaling vec-
torsα. The “cosine” scaling factors are inferior to uniform
scaling factors. Optimizingα significantly reduces error.
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Figure 7: Effective min-max interpolator forJ = 6 and
K/N = 2 for optimizedα andβ.
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L J β α Emax

0 6 0 (1) (uniform) 2·10−3

0 6 1/2 (0 1/2) (cosine) 6·10−3

1 6 0.19 (1 -0.46) 5·10−4

2 2 0.34 (1 -0.2 -0.04) 5·10−2

2 4 0.56 (1 -0.47 0.085) 1·10−3

2 6 0.43 (1 -0.57 0.14) 1·10−4

2 8 0.47 (1 -0.54 0.16) 2·10−5

2 10 0.43 (1 -0.57 0.185) 6·10−7

3 4 0.6339 (1 -0.5319 0.1522 -0.0199) 3·10−4

3 6 0.2254 (1 -0.6903 0.2138 -0.0191) 1·10−4

Table 2: Coefficients in (28) of conventional and numerically optimized scaling factors forK/N = 2.

in [40]. This “discrepancy” has two explanations. Firstly,
we consider “Problem 2” in (2), whereas the figures in [40]
are for “Problem 1.” These problems may have differ-
ent error properties. Secondly, the errors reported in [40]
and related papers are for particular experiments involv-
ing pseudo-random data and sample locations; the char-
acteristics of such data may differ considerably from the
“worst-case” signalx considered in the analysis here. Ap-
parently one must be cautious about generalizing accura-
cies reported in particular experiments.

V. CONVENTIONAL INTERPOLATORS

The preceding error analysis was for min-max interpo-
lation. To enable comparisons, this section analyzes the
worst-case error of conventional shift-invariant interpola-
tion.

Letψ(·) denote a finite-support interpolation kernel sat-
isfying ψ(κ) = 0 for |κ| > J/2. AssumeK > J . Con-
ventional interpolation has the following form:

X̂(ω) =
K−1∑
k=0

Ykψ̃(ω/γ − k), (45)

whereYk was defined in (3), and̃ψ denotes theK-periodic
and phase-modulated (cf. (5)) version ofψ:

ψ̃(κ) ,
∞∑
l=−∞

e−ıγ(κ−lK)η0ψ(κ − lK).

A. Min-max error analysis

Mimicking (13), the error for interpolator (45) is

|X̂(ω)−X(ω)| =
√
N
∣∣〈x, S′q(ω)− b(ω)〉∣∣ ,

whereS = diag{sn}, b(ω) is defined as in (18), and

qn(ω) ,
1
√
N

K−1∑
k=0

eıγknψ̃?(ω/γ − k) .

Akin to (19), the worst-case unit-norm signal isx =
(S′q − b)/ ‖S′q − b‖ , so the worst-case error for fre-
quencyω, normalized by1/

√
N , is

E(s, ω) =
∥∥S′q(ω)− b(ω)∥∥ . (46)

Expanding, an alternate expression is

E2(s, ω) =
1

N

N−1∑
n=0

∣∣∣s?n√Nqn(ω)− eıωn∣∣∣2

=
1

N

N−1∑
n=0

|snzn(ω/γ) − 1|
2 (47)

where

zn(ρ) , e
ıργn
√
Nq?n(ργ) =

K−1∑
k=0

eıγ(ρ−k)nψ̃(ρ− k) .

(48)
Sincezn(ρ) has period unity,E(·) is γ-periodic. Thus we
focus onω = ργ for ρ ∈ [0, 1), for which

zn(ρ) =
K−1∑
k=0

eıγ(ρ−k)nψ̃(ρ− k)

=

J/2∑
j=−J/2+1

eıγ(ρ−j)(n−η0)ψ(ρ− j) .

For oddJ the summation limits are−J−12 to J−12 .
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For a given interpolation kernelψ, ideally we would
like to choose the scaling factorss to minimize themaxi-
mumerror via the following min-max criterion:

min
s∈CN

max
ω
E(s, ω).

This maximization overω seems intractable. One prac-
tical “do no harm” approach would be to minimize the
worst-case errorat the DFT frequency locations:

min
s∈CN

max
ω∈ΩK

E(s, ω). (49)

Considering (47), the solution to (49) is simply

sn =
1

zn(0)
=

1∑J/2−1
k=−J/2 e

ıγk(n−η0)ψ(k)
. (50)

If the kernelψ(·) satisfied the classical interpolation prop-
ertiesψ(0) = 1 andψ(k) = 0 for k 6= 0, then (50) would
reduce to uniform scaling factors (s = 1).

One calculates the worst-case error of conventional in-
terpolators of the form (45) by substituting (50) into (47).
Since (47) approaches a finite limit asN → ∞, we again
focus on this “largeN ” approximation.

With the choice (50),E(ω) = 0 for all ω ∈ ΩK , and we
have observed empirically that the maximum error occurs
at the midpoints between the DFT frequenciesΩK as ex-
pected. We conjecture that ifψ(·) is Hermitian symmetric
about zero, thenE(ω) has a stationary point atω = γ/2
for the choice (50). Lacking a proof, we compute numeri-
cally the maximum errorEmax = maxω E(s, ω).

B. Aliasing error analysis

The error formula (47) is convenient for computation,
but seems to provide little insight. Here we summarize
an alternate form for the error that is somewhat more in-
tuitive, following related analyses of “gridding” methods,
e.g., [25,41].

Sinceψ̃ isK-periodic, it has a Fourier series expansion
of the form

ψ̃(κ) =
∞∑

n=−∞

cn
K
e−ıγnκ

(assuming sufficient regularity), where thecn’s are sam-
ples of the inverse Fourier transform ofψ:

cn ,

∫ J/2
−J/2

ψ̃(κ)eıγnκ dκ =

∫ J/2
−J/2

ψ(κ)eıγ(n−η0)κ dκ.

Substituting into (45):

X̂(ω) =

K−1∑
k=0

Yk

[
∞∑

n=−∞

cn
K
e−ıγn(ω/γ−k)

]

=

∞∑
n=−∞

cne
−ıωn

[
1

K

K−1∑
k=0

Yke
ıγnk

]

=
∞∑

n=−∞

cne
−ıωnx{n}Ks{n}K

=

N−1∑
n=0

xnsncne
−ıωn

+

N−1∑
n=0

xn


sn∑

l 6=0

cn+lKe
−ıω(n+lK)


 .(51)

Viewed in this form, the natural choice for the scaling fac-
torssn is the following (assuming thesecn’s are nonzero):

sn =
1

cn
=

1∫ J/2
−J/2 ψ(κ)e

ıγ(n−η0)κ dκ
, (52)

for n = 0, . . . ,N − 1. For this choice, the error is:

|X̂(ω)−X(ω)| =
N−1∑
n=0

xn

[∑
l 6=0 cn+lKe

−ıω(n+lK)

cn

]

≤ ‖x‖1 max
n∈{0,...,N−1}

∑
l 6=0 |cn+lK |

|cn|
.

For this error to be small, we want to chooseψ such
that the Fourier series coefficientscn are small forn /∈
{0, . . . ,N − 1}. Sinceψ has finite support[−J/2, J/2],
thecn’s cannot all be zero, so one must chooseψ consid-
ering the usual time-frequency tradeoffs.

C. Comparisons of min-max to conventional

The purpose of the preceding analysis was to enable
a fair comparison of the min-max interpolator (33) with
conventional interpolators (45) while using good scaling
factors for the latter. The following subsections report
comparisons with Dirichlet, Gaussian bell, and Kaiser-
Bessel interpolators.

C.1 Apodized Dirichlet

The apparent similarity in Fig. 1 between the min-max
interpolator and the (truncated) ideal Dirichlet interpo-
lator (5) raises the question of how well a simple trun-
cated Dirichlet interpolator would perform. Using (43)
and (47), Fig. 8 compares the maximum error for the min-
max interpolator and for the truncated Dirichlet interpola-

tor I(ω) rect
(
ω
γJ

)
, for K/N = 2, where rect(·) is unity

on (−1/2, 1/2) and zero otherwise. Fig. 8 also shows the
cos3-tapered Dirichlet interpolator proposed in [57, 58].
Both uniform scaling factors and numerically optimized
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α’s were used for the min-max case. Min-max interpo-
lation can yield much less error than truncated or tapered
Dirichlet interpolation. The seemingly minor differences
in Fig. 1 can strongly affect maximum error!
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Figure 8: Maximum errorEmax of truncated Dirichlet in-
terpolator, ofcos3-tapered Dirichlet interpolator, of linear
interpolator (J = 2), and of min-max interpolator for var-
ious neighborhood sizesJ , and for oversampling factor
K/N = 2. Despite similarities in Fig. 1, the min-max ap-
proach significantly reduces error relative to a truncated or
tapered Dirichlet.

C.2 Truncated Gaussian bell

Many NUFFT papers have focused on truncated Gaus-
sian bell interpolation using

ψ(κ) = e−(κ/σ)
2/2 rect

(
κ

γJ

)
.

For fair comparisons, for eachJ we optimized the Gaus-
sian bell width parameterσ using (47) by exhaustive
search. We investigated both (50) and (52) as the scal-
ing factors, and found the latter to provide 10-45% lower
maximum error, so we focused on (52). Empirically the
min-max width agreed closely with the approximation:
σ ≈ 0.31 ∗ J0.52.

Fig. 9 compares the worst-case error of min-max inter-
polation and optimized Gaussian bell interpolation. Er-
rors for the min-max method are shown for both uniform
scaling factors and least-squares fit scaling factors as de-
scribed next.

Choosing the scaling vector by exhaustive minimiza-
tion of Emax becomes more tedious asL increases, and

the presence of sharp local minima (cf. Fig. 5) is a chal-
lenge for local descent methods. We found the following
approach to be a useful alternative. After optimizing the
width σ for the Gaussian bell interpolator, we compute its
scaling factors using (52). Then we use ordinary least-
squares linear regression withL ≈ 6 in (28) to find aα
for (28) that closely matches the optimized Gaussian bell
scaling factors. Then we use thatα in (43) to compute
the error of this “optimized” min-max interpolator. An
example is shown in Fig. 9. This approach reduces the
nonlinear part of the search from anL-dimension search
overα to a 1D search over the Gaussian bell width. Again
this process is practical only when one plans to perform
many NUFFTs for the sameJ andK/N . (Clearly analyt-
ical optimization ofs for the min-max approach would be
preferable.)
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Figure 9: Maximum errorEmax of min-max interpolators
and truncated Gaussian bell interpolator vs neighborhood
sizeJ for oversampling factorK/N = 2. For eachJ ,
the Gaussian bell widthσ was optimized numerically by
exhaustive search to minimize worst-case error. Three
choices of scaling factors (sn’s) for the min-max method
are shown: uniform, numerically optimized, and LS fit of
(28) to optimized Gaussian bellsn’s given by (50).

Fig. 9 illustrates several important points. Firstly, the
min-max interpolator with simple uniform scaling factors
has comparable error to the exhaustively-optimized Gaus-
sian bell interpolator. Secondly, optimizing the scaling
factors very significantly reduces the min-max interpola-
tion error, outperforming both the Gaussian bell interpo-
lator and the min-max interpolator with uniform scaling
factors. Thirdly, forJ ≤ 6, exhaustive optimization ofα
with L = 2 yields comparable maximum error to the sim-
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pler least-squares fit (usingL = 6) to the optimized Gaus-
sian bell scaling factors (50), so the latter approach may
be preferable in the practical use of the min-max method.
However, even better results would be obtained if there
were a practical method for optimizingα for L > 2.

C.3 Kaiser Bessel
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Figure 10: Maximum errorEmax of Kaiser-Bessel inter-
polator versus orderm for α = 2.34J . Surprisingly, the
minimum is nearm = 0.
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Figure 11: Maximum errorEmax of Kaiser-Bessel interpo-
lator versus width parameterα for m = 0.

An alternative to the Gaussian bell interpolator is the
generalized Kaiser-Bessel function [59,60]:

ψ(κ) = fmJ (κ)
Im(αfJ(κ))

Im(α)
,

whereIm denotes the modified Bessel function of order
m, and

fJ(κ) ,



√
1−

(
κ

J/2

)2
, |κ| < J/2

0, otherwise.
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Figure 12: Maximum errorEmax of min-max interpo-
lators, truncated Gaussian bell interpolator (with numer-
ically optimized width), and Kaiser-Bessel interpolator
(with numerically optimized shape), vs neighborhood size
J for oversampling factorK/N = 2. Three choices of
scaling factors (sn’s) for the min-max method are shown:
uniform, numerically optimized forL = 2, and LS fit of
(28) to optimized Kaiser-Besselsn’s given by (50).
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Figure 13: Optimized Kaiser-Bessel (m = 0, α = 2.34J)
and Gaussian bell (σ = 1.04) interpolation kernels for
J = 10.

The width of this function is related to the “shape parame-
ter” α. This function is popular in “gridding” methods for
imaging problems,e.g., [61], but has been largely ignored
in the general NUFFT literature to our knowledge.

Again, for fair comparisons we used (43) and (46) to
optimize both the orderm andα numerically to minimize
the worst-case error. Initially we had planned to usem =
2, since this provides continuity of the kernel and its first
derivative at the endpointsκ = ±J/2. However we found
numerically that the min-max optimal order is nearm =
0. This property is illustrated in Fig. 10. Choosingm = 0
reduces the maximum error by a factor of more than 10
relative to the “conventional”m = 2 choice. Form = 0,
we found that the optimalα was about2.34J for K/N =
2. Fig. 11 shows examples.

For the scaling factors, we compared the “do no harm”
choice (50) to the Fourier choice (52),i.e., sn = Ψ

(n−η0
K

)
where [59]:

Ψ(u) = (1/2)mπd/2(J/2)dαmΛ(z(u))/Im(α),

where d = 1 (for 1D case),ν = d/2 + m, z(u) =√
(πJu)2 − α2, and Λ(z) = (z/2)−νJν(z), whereJν

denotes the Bessel function of the first kind of orderν.
The Fourier choice (52), which is conventional in gridding
methods, yielded about 25-65% lower errors than (50) for
m = 0.

Fig. 12 compares the maximum errors of the (opti-
mized) Kaiser-Bessel interpolator, the (optimized) Gaus-
sian bell interpolator, and a few min-max interpolators.
We investigated three choices of scaling factors: uniform,
the numerically optimized choices forL = 2 shown in Ta-
ble 2, and a third case in which we used the scaling factors
computed by least-squares fit of (28) withL = 13 and
β = 1 to the Kaiser-Bessel scaling factors from (52).

As expected, the min-max interpolator yields lower er-
rors than both the optimized Gaussian bell and the op-
timized Kaiser-Bessel interpolators. For the choices of
scaling factors investigated here (particularly the least-
squares fitting approach), the reduction in error relative to
the Kaiser-Bessel interpolator is 30%-50% forJ ≤ 10. It
is plausible that larger error reductions would be possible
if a practical method for optimizing the scaling parameters
(e.g.,α for largerL) were found. Lacking such a method,
it seems that the Kaiser-Bessel interpolator, with suitably
optimized parameters, represents a very reasonable com-
promise between accuracy and simplicity.

From Fig. 12, one sees thatJ = 9 is sufficient for
single-precision (10−8) accuracy, in the min-max sense.
(Practical problems are usually not worst-case, soJ = 9
is probably overkill.) ForJ = 9 andK/N = 2, using
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Matlab’scputime command we found that the interpola-
tion step (with precomputed coefficients) required roughly
twice the CPU time required by the oversampled FFT step.

Fig. 13 compares the shape of the optimized Kaiser-
Bessel and Gaussian bell interpolation kernels. Superfi-
cially the kernels appear to be very similar. ButJ = 10
can provide errors on the order of10−9 with the Kaiser-
Bessel kernel, so even subtle departures in the kernel
shape may drastically affect the interpolation error.

VI. 2D EXAMPLE

To illustrate the accuracy of the NUFFT method in a
practical context, we considered the classical128 × 128
Shepp-Logan image [62, 63]. We generated 10000 ran-
dom frequency locations (ωm’s) in (−π, π)× (−π, π) and
computed the 2D FTexactly(to within double precision
in Matlab) and with the min-max 2D NUFFT method with
J = 6 andK/N = 2. The relative percent error

maxm |X̂(ωm)−X(ωm)|

maxm |X(ωm)|
× 100%

was less than 0.14% when uniform scaling factors were
used, and less than 0.011% when the optimized scaling
factors forL = 2 in Table 2 were used, and less than
2.1 · 10−4% when the scaling factors were based on least-
squares fits to Kaiser-Bessel scaling factors as described
in Section V-C.3. These orders-of-magnitude error reduc-
tions are consistent with the reductions shown in Fig. 3
and Fig. 12, and confirm that minimizing the worst-case
error can lead to significant error reductions even with
practical signals of interest. The exact FT method required
more than 100 times the CPU time of the NUFFT method
as measured by Matlab’stic/toc functions. For com-
parison, classical bilinear interpolation yields a relative er-
ror of 6.7% for this problem. This large error is why lin-
ear interpolation is insufficiently accurate for tomographic
reprojection by Fourier methods. The NUFFT approach
with optimized min-max interpolation reduces this error
by four orders of magnitude.

VII. D ISCUSSION

This paper has presented a min-max framework for the
interpolation step of NUFFT methods. This criterion leads
to a novel high-accuracy interpolator, and also aids in the
optimization of the shape parameters of conventional in-
terpolators. These optimized interpolators for the NUFFT
have applications in a variety of signal processing and
imaging problems where nonuniform frequency samples
are required.

The min-max formulation provides a natural framework
for optimizing the scaling factors, when expressed using
an appropriate Fourier series. This optimization led to
considerably reduced errors compared to the previously
considered uniform and cosine scaling factors [40]. Opti-
mizing the scaling factors further remains an challenging
open problem; perhaps iterations like those used in grid-
ding [61,64] are required.

Based on the results in Fig. 12, we recommend the
following strategies. In applications where precomput-
ing and storing the interpolation coefficients is practical,
and where multiple NUFFTs of the same size are needed,
such for iterative reconstruction in the imaging problems
that motivated our work, using the proposed min-max ap-
proach with scaling factors fit to the Kaiser-Besselsn’s
provides the highest accuracy of the methods investigated,
and therefore allows reducing the neighborhood sizeJ and
hence minimizing computation per iteration. On the other
hand, if memory constraints preclude storing the interpo-
lation coefficients, then based on Fig. 9 and Fig. 12 we
see that a Gaussian bell or Kaiser-Bessel interpolator, suit-
ably optimized, provides accuracy comparable to the min-
max interpolatorif one is willing to use a modestly larger
neighborhoodJ .

Alternatively, one could finely tabulate any of these in-
terpolators and use table lookup (with polynomial interpo-
lation) to compromise between computation and storage.
The accuracy of such approaches requires investigation.

One remaining open problem is that theJ × J matrix
C′C becomes ill-conditioned asJ increases beyond about
10. Likewise forC′SS′C, at least for the optimized scal-
ing factors. SinceJ is small, we currently use a truncated
SVD type of pseudo-inverse when such ill-conditioning
appears. Perhaps a more sophisticated form of regulariza-
tion of its inverse could further improve accuracy.

Several generalizations of the method are apparent. We
have used the usual Euclidian norm‖x‖ in our min-max
formulation (10). In some applications alternative norms
may be useful. The general theory accommodates any
quadratic norm; however, whether simplifications of the
form (29) and (30) appear may depend on the norm.

Another possible generalization would be to usediffer-
ent scaling factors for the two FFTs in (37). It is unclear
how much, if any, error reduction this generalization could
provide, but the additional computational cost would be
very minimal.

Although detailed analyses of the errors associated with
NUFFT methods for “Problem 1” are available,e.g., [41],
to our knowledge no provably optimal interpolator has
been found for Problem 1, so this remains an interesting
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open problem.
Finally, one could extend the min-max approach to re-

lated transforms such as Hankel and cosine [12,65].
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