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ABSTRACT wavelets via the Radon transform [7], computational elec-

The FFT is used widely in signal processing for effizomagnetics [8-12], and FIR filter desigag, [13-15]

. ) . .~ Such problems require aonuniform Fourier transform
cient computation of the Fourier transform (FT) of finite: : . .
: : 16], yet one would like to retain the computational advan-
length signals over a set of uniformly-spaced frequen

. . . . gges of fast algorithms like the FFT, rather than resorting
locations. However, in many applications, one requir

es : .
. C N 0 brute-force evaluation of the nonuniform FT.
nonuniform sampling in the frequency domaire. a o K hi bl . d by i .
nonuniform FT Several papers have described fast % ur }[/'vor on this pro em“\/llvsls motlvate t'y |te1r;;1t|\2/g
proximations for the nonuniform FT based on interp nagnetic resonance image (MRI) reconstruction [17-20],

lating an oversampled FET. This paper presents an ﬁ.pd by iterative tomographic image reconstruction meth-

terpolation method for the nonuniform FT that is opti(_)ds where reprojection is based on the Fourier slice theo-

mal in the min-max sense of minimizing the worst-cage " [21-28]. These problems relate closely to the prob-

approximation error over all signals of unit norm. Th m of reconstructing a band-limited signal from nonuni-

proposed method easily generalizes to multidimensio _8fm_samp'es-, Strohme_r argued compellmgly_for us-
signals. Numerical results show that the min-max ae_’lg tnggnome_tnc polynom_|a|3 .(com.plex exponentials) for
proach provides substantially lower approximation erro Qlte-dlmensmnal approximations in such problems [29],

than conventional interpolation methods. The min-ma@?d p_roposed to use an iterative conjugate gradient recon-
criterion is also useful for optimizing the parameters alructlon method with the NUFFT approach of [30] at its

interpolation kernels such as the Kaiser-Bessel functiorc®'®: The min-max NUFFT approach presented here fits

Keywords: Nonuniform FET, discrete Fourier trans-m that framework but provides higher accuracy. We ex-

; ) . : lore these applications in more detail elsewhere [20, 28]
form, min-max interpolation, tomography, magnetic res- : S

. ) S and focus here on the broadly-applicable general princi-
onance imaging, gridding.

ples.

In the signal processing literature, many papers have
discussed frequency warping approaches for filter design

The fast Fourier transform (FFT) is used ubiquitously, 14, 15, 31] and image compression [32, 33]. Warping
in signal processing applications where uniformly-spacegethods apply only to special patterns of frequency loca-
samples in the frequency domain are needed. The FFTtigns, so are insufficiently general for most applications.
quires onlyO(N log N') operations for aiV-point signal, | the scientific computing literature, several recent pa-
whereas direct evaluation of the discrete Fouriertransfoggrs have described methods for approximating the 1D
requiresO(NN?) operations. However, a variety of applinonuniform FT by interpolating an oversampled FFT, be-
cations require nonuniform sampling in the frequency d@Tnning with [34] and including [8, 10, 30,35-41]. Related
main, as has been recognized for at least 30 years [1]. E¥ethods were known in astrophysics even earlier [42].
amples include radar imaging [2-6], computing orientesl,ch methods are often called the nonuniform FFT, or

*This work was supported in part by NIH grant CA-60711, NSII:\IUFFT' Most of these algorithms have been presented

grant BES-9982349, the UM Center for Biomedical Engineering RENIY for 1D signals, and many involve seemingly arbitrary
search, and the Whitaker Foundation. choices for interpolation functions. This paper starts from
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first principles to derive a min-max approach to the iref {x,, }:
terpolation problem. We find the fixed-width interpolator

that minimizes the worst-case approximation error over all ik
signals of unit norm. (Like all NUFFT methods, the user Y+ = Z Snln€ , k=0....K-1 (3
can tradeoff computation time and accuracy.) This method n=0

gengrallz_es naturally to multld_lmensmr_lal signals §uch \%erey 2 97 /K is the fundamental frequency of the-
the imaging problems that motivated this work. This wor, oint DFT. The nonzera,’s are algorithm design vari-

was inspired by the paper of Nguyen and Liu [40]. Wepjes that have been called “scaling factors” [40]. We call

compare our approach to theirs in detail in Section IV-C, _ (s1,...,sy) thescaling vector The purpose of is
This work is in the spirit of min-max approaches fof, artially pre-compensate for imperfections in the subse-

other signal processing problems, such as bandlimited sigant frequency-domain interpolation. This first step re-

nal interpolation [43-49] and filter design [S0, 51]. quiresO(K log N)) operations if implemented efficiently
Section Il derives the min-max NUFFT method. Segyg gescribed in Section 111-D.

tion 11l describes extensions including multidimensional The second step of most NUFFT methods is to approx-

signals. Section IV analyzes the approximation error gfate eachx,, by interpolating theY}'s using some of
the min-max method. Section V compares the min-M@e neighbors ofy,, in the DFT frequency sefQx 2
method to conventional methods. Section VI gives a PraCyr . k=0,...,K — 1}. Linear interpolators have the

N-1

tical 2D NUFFT example. following general form:
[I. THEORY: 1D CASE K—-1
N B . B B
For simplicity, we first describe our min-max approach X(wm) = kz_: VY = (Y, o), m=1,..., M,
in the 1D case. The basic idea is to first compute an over- = )

sampled FFT of the given signal, and then interpolate opnere thew,,;’s denote interpolation coefficients;™de-
timally onto the desired nonuniform frequency locationgotes complex conjugate, ang, 2 (Vs - - - s V).

using small local neighborhoods in the frequency domaifiye design problem is choosing the scaling vestand
the interpolatorgv,,, }.

A. Problem statement Given theY}’s, an ideal linear “interpolator” could first

We are given equally-spaced signal samplgsforn = recoverxz = (xzo,...,xn—1) by computing the inverse
0,...,N — 1, with corresponding FT FFT from (3) and then computing explicitly the desired
FT valuesX (wy,) using (2). Specifically, fos = 1:
N-1
X(w) = Z Tpe e, (1) N-1 N-1T o K-
_ —wWwn __ ykn —wn
n=0 X(w) = z_;)wne —z_;) [? ;Yke"’ e
We wish to compute the FT at a collection of (nonuni- K1
formly spaced) frequency locatiogs,, }: = Yil(w/y — k),
k=0
N-1
X 2 X(wn) = Z Tpe " m=1,...,M. (2) where the ideal interpolator kernel is:
n=0
N
I(k) & e %0 _§n(k), 5
The symbol £” denotes “defined to be.” The,,’s can (x) K ~ (k) ©)

be arbitrary real numbers. This form has been called A

the nonuniform discrete Fourier transform (NDFT) [52",Vhe_3re770_:_ (N — 1)(‘2 and yvhe'ra%fv(-) denotes the fol-

p. 194]. Directly evaluating (2) would requi@(MN) lowing Dirichlet-like “periodic sinc” function:

operations, which would be undesirably slow. Fast com- N_1

putation of (2) is called the NUFFT. This is “Problem 2" on(k) & 1 Z etyr(n—mo)

in the nomenclature of [34, 40]. Sections IlI-F and IlI-G N "0

discuss alternative problems. sin(rkN/K)
The first step of most NUFFT algorithms is to choose a = N sin(rr/K)’ /K ¢ L

convenientk’ > N and compute a weighteld-point FFT 1, k/K € 7.

(6)
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Oversampling is of no benefit to this ideal interpolatohaving unit norm. Hypothetically this could yield shift-
Applying this ideal interpolator would requir@(M K) variant interpolation since each desired frequency location
operations and would use df K of the v,,,;;’'s in (4), so w,, may have its own set of interpolation coefficients.

is impractical. Both the scaling vectas and the interpolator§u(wy, ) }

To contain computational requirements, most NUFFare design variables, so ideally we would optimize simul-
methods constrain eaal, to have at most’ nonzero el- taneously over both sets using the following criterion:
ements corresponding to tblenearest neighbors to,, in .
the setC2c. With this practical restriction, the interpola- Jnin max u(gien@ -, [ X(w) — X(w)]- (10)
tion step require® (M J) operations, wherd < K.

Define the integer offset,, = ko(w,,) as follows: As discussed in Section IV, the outer optimization requires

numerical methods. Thus, we focus next on optimizing
(arg mingez |w — vk|) — % J odd the interpolation coefficients:(w,,) for a fixed scaling

)

ko(w) £ vectors, and address choice sfin Section IV-C.
(max{k € Z : w > vk}) — J J even Mathematically, our min-max criterion is the following:
| . N % min - max X (wn) - X(wa)l (1)
This offset satisfies the following shift property: u(wm)€C! zeCN :|lz|<1
ko(w + 17) = 1 + ko(w) vie 7z, @8 Remarkably, this min-max problem has an analytical so-
’ lution, as derived next.
Let u;(wm), j = 1,...,J, denote theJ possibly nonzero From (9) and (2), we have the following expression for

entries ofv,y,. Then the interpolation formula (4) become#he error:
J R J
X(@m) =Y Yimtity @ @m), ©  1X(@n) = Xl = D Vikyay 0 (@m) = X(wm)|

j=1 =1

(12)
where {-}, denotes the modulé operation (ensuring Using (3) and (12), this error expression becomes
thatX( ) is 2m periodic). To apply this formula, one N1
must choose thg M interpolation coefficient§u; (wy,)} Z“ (wim) [Z sz 0V kmti)n ] ane Wmn
and compute theV/ indices {k,,}. One would like to
choose each interpolation coefficient vecwfw,,) =
(u1(wm); - - -, us(wm)) such thatX (w,,) is an accurate = VN (=, g(wm)), (13)
apprOX|mat|on toX,,, and such thatu(-) is relatively
easy to compute. Dutt and Rokhlin used Gaussian baftereg(-)
kernels for their interpolation method [34]. Tabei and

7j=1 n=0

is an N-vector with elements

J

Ueda also used such kernels in the specific context of di;( )2 g Z iew(kzo(w)-i-j)nu‘(w) _ Lezwn
rect Fourier tomographic reconstruction and included er- " = N ! VN ’
ror analyses [53]. For evelV and oddJ only, Nguyen

and Liu [40] considered interpolation of the form (9) witifor n = 0,..., N — 1. In matrix-vector form:

a choice for they;’s that arises from least-squares approx-

imations of complex exponentials by linear combinations ~ 9(w) = D(w) [S'CA(w)u(w) — b(w)] (14)

of other complex exponentials. We propose next an ex:
plicit min-max criterion for choosing the;’s, with uni-
form treatment of both even and oddand NV using (7).

whereS = diag{s,}, “”” denotes Hermitian transpose,
D(w)isaN x N diagonal matrixC is aN x J matrix,
A(w) is aJ x J diagonal matrix, and(w) is a N-vector

B. Min-max interpolator with respective entries:
We adopt a_m_in-max criterionfor choosing the inter- Dpn(w) = e¥merkol@)(n=mo) (15)
polation coefficients{u;(w,,)}. For each desired fre- Coj = =) /\/N (16)

guency locationw,,, we determine the coefficient vector
u(wy,) € C/ that minimizes thevorst caseapproxima-
tion error betweenX,, and X (w,,) over all signalsz by,

= e Uw—r(ko(w)+i)Ino (17)

3 (w)
(w) = elhlDmml /N (18)
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(We chose these definitions with considerable hindsight@ Efficient computation

simplify subsequent expressions.)
In this form, the min-max problem (11) becomes
min max VN |{x, g(w))] . (29) u(w) = A (w)Tr(w), (25)

u€eC’ zeCV||z||<1

An alternative expression for the interpolator (21) is

By the Cauchy-Schwarz inequality, for a given frequengynere we define
w, the worst-case signal is = g*(w)/|lg(w)]], i.e.,

max - |(z, g(w))| = [g(w)]- T f [c'ss'cT (26)

z:|z)=1 rw) C'Sb(w). (27)

Inserting this case into the min-max criterion (19) and ap-
plying (14) and (15) reduces the min-max problem to the,ryitously, the inverse of thd x J matrix C'SS'C

following (cf [40, eqn. 10]): is independent of frequency sample location so it can be
min VN ||S'CA(w)u(w) —b(w)||.  (20) precomputed.
ueC

To facilitate computingC’SS’C, we expand the,,’s
W = W, IS u(wy,), Where

/ / 1 ~1—1 1 L
u(w) = A'(w)[C'SS'C]C'Sb(w) (21) 5 = Z et Bt n=m0) n=0,...,N—1. (28)
(since A is unitary). This is a general expression for the =T,
min-max interpolator. Due to the shift property (8) and the
definitions ofA(w) andb(w), we see The natural fundamental frequency corresponds te-

K/N, but we consider the general form above since or-
(W + 1) = (W), viez, (22) th(/)gonality is not required hgere agidcan be a design pa-
so the min-max interpolator ig-periodic and “shift invari- rameter. We assume that this are Hermitian symmetric,
ant” in the sense appropriate for periodic interpolators. je, o, = oF. We represent the coefficients by the vec-
To apply the min-max interpolator (21), we must compr o 2 (g, 1,...,ar). As one special case of (28),
pute the interpolation coefficients(w) for each frequency the “cosine” scaling factors considered in [40] correspond
locationwy,, of interest. One method for computing (21jo 3 = 1/2 anda = (0,1/2). For3 < K/N, there
would be to use the following QR decomposition: is no loss of generality in using the expansion (28). This
S'C = QR, (23) expansion generalizes significantly the choices of scaling
factors considered by Nguyen and Liu in [40], and can

NXJ . . -
wh;zre_Q eC IS a m?tn)_( wnh_arthogopal SC_OlumnS’improve accuracy significantly as shown in Section IV-C.
andR is an upper triangular invertible matrix. Sin&&C Nguyen and Liu referred to matrices of the fo@iC' as

is independent of frequency location, we could precor?K/N N, J — 1) regular Fourier matriceg40]
pute its QR decomposition and then precompute the ma-~ ./ '

) ) ining (2 2 ith (16) yiel
trix product R Q’. We could then compute the interpo- Combining (28) and (26) with (16) yields
lation coefficients by substituting (23) into (21) yielding

N-1
u(w) = A'(W)(RQ)b(w). 24) [C'SS'C|,; =) ChsnsiCnj

After precomputingR—@Q’, this approach would require No1 Ln_o I

2N J operations per frequency location. These operations _ 1 z z apa eI =l+B(E=s))(n—mo)

are independent a#, so this approach may be reasonable N oy Py — °

when one needs apply repeated NUFFT operations for the L L

same set of frequency locations. (This mode is discussed — Z Z N (G — 1+ B(t — s)), (29)

further below.) However, the next subsection shows that if =L s—1L

we use arnL-term Fourier series for the,’s, then we can

reduce precomputation tO((L + 1 + J)J) operations fori,j =1,...,.J, wherejy(-) was defined in (6).

per frequency location. Usually + 1 + J < N sothe  The following properties of" are useful. From (26)I°
savings can be significant for small However, very high is Hermitian, and from (29)T is Toeplitz. In the usual
accuracy computations may require laigen which case case where the's are real T is a real matrix. IfK = N
the above QR approach may be preferable. andS = I,thenT! =C'C =I.
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Conveniently, in this min-max framework the matrixfequirements are akin to an FFT but with a larger con-
vector product defining (w) in (27) also simplifies: stant. The larger constant is an unavoidable consequence
of needing accurate nonuniform frequency samples!

N-1
ri(w) = Z Cri8nbn(w) E. Reduced memory mode
"‘LO N1 In unusual cases where storing dlM coefficients is
_ z atl Z 1w/ v—ko (@)= j+Bt](n—mo) infeasible, one can evaluate ean_(wm) as neeca!ed using
= N o (25), (30) and the precomputetl in (26). In this mode
7L a the operation count for the NUFFT interpolation step in-

_ . creases t@(J(L + 1 + J)M), but the storage require-
- z cdv(w/y = how) =3 +6t), (0) ments for th(e iEwterpoIator)dec)rease]t%) o

Alternatively, one could decrease the interpolation op-
for j = 1,...,J. This is a Dirichlet-like function of the eration count to roughlg.JM by finely tabulatingl'r (w)
distances between the desired frequency location and ¢iver a uniform grid (cf Fig. 1) and using table lookup with
nearest points in the sBty. polynomial interpolation to determine thg(w,,)’s “on

In the usual case where thés are real, the vectar(w) the fly.” This approach reduces both storage and interpo-
is real. So the only complex component of the min-madation operations, but presumably decreases accuracy.
interpolatoru(w) in (25) is the complex phases Wm(w).  Table 1 summarizes these various modes.
By (17), these phases coincide with the linear phase of the_ o
ideal interpolator (5). F. “Large” N interpolator

To summarize, we compute the min-max interpolation The dependence of the interpolator on the signal-length
coefficients in (25) for each,,, using the analytical results /N can be inconvenient since it would seem to necessitate
(29) and (30). Sinc€’SS'C is only J x J, whereJ is designing a new interpolator for each signal length of in-
usually less than 10, we always precomIitie (26) prior terest. To simplify the design, we consider hereafter cases
to all other calculations. whereN is “large.” These are of course the cases where

As described next, there are a few natural methods fast algorithms are particularly desirable.
using the above formulas, depending on one’s tradeoff be Defining . £ K /N, from (6) one easily sees that
tween memory and computation. th Sn(t) = sinc(t/p),

— 00

t=—L

D. Precompuited mode where sinc(t) £ sin(nt)/(nt). So for largeN, T ~ T
In problems like iterative image reconstruction, onghere
must compute the NUFFT (2) several times for the same L1 .
set of frequenciegw,,}, but for different signalse. In (-1, - & 3 - Sinc(j — 1+t - 8)> .
such cases, itis preferablegoecomputend store allf M ey M
of the interpolation coefficients;(wy,), if sufficient fast (31)
memory is available, and then apply (9) directly to consimilarly, r(w) & 7(w) where
pute the NUFFT as needed. .
Precomputing eachu(wy,,) using (25) requires only Fi(w) 2 Z o Sinc(w/v — ko(w) — 5 +ﬁt> 32
O(J(L + 1+ J)) operations. A key property of (29) and 7
(30) is that they collapse the summations orédnto the
easily-computed functiobiy, thereby significantly reduc-
ing the precomputation operations. _ A s
After precomputing eachu(w,,), every subsequent u(w) = A(W)TF(w). (33)
NUFFT interpolation step (9) requires onfy(JM) op- From (29) and (30), the maximum argument &f is
erations. Excluding the precomputation, the overall op{.J + 5L) and typically is less than 30. From (6), as long
eration count per NUFFT i®(K log N) + O(JM). An as this argument is much smaller th&n the sinc approx-
accuracy-computation time tradeoff is available througmation will be very accurate. For example, even fer
the choices for the oversampling factéf/N and the as small as 32, the sinc ang differ by less than 1% for
neighborhood sizd. Typically we useK ~ 2N, L < 13, arguments less than 30. Thus, focusing on the sinc-based
J < 10, and M =~ N, so the overall computationalinterpolator (33) is very reasonable.

t=—L

Combining these with (25), the interpolator we consider
hereafter is
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| Method | Precomputation| Interpolaton | Storage | Accuracy |
QR precomputed J2NM JM JM very high
Tr precomputed JL+1+J)M JM JM high
T'r partial 0 JL+1+J)M J? high
Table / linear interp. (table size) 2JM (table size)| medium high

Table 1: Compute operations and interpolator storage requirements for various modes, disregarding small factors inde
pendent of)/.

G. Effective interpolation kernel Equivalent interpolator for J=7, K/N=2
Most interpolation methodstart with a specific func- ! _ '\S"iir?c‘max

tional form for the kernel, such as a Gaussian bell or B-
spline. In contrast, we have started with only the min-max
criterion and no other constraints except usingtheear- o6t
est neighbors. Consider the case of uniform scaling fac-
tors s, = 1, soL = 0 andag = 1). To visualize the
min-max interpolator (33), we can vawy/~y over the in-
terval [—.J/2, .J/2] and evaluatd'7(w) using (33), yield- 0.2
ing real functions such as those shown in Fig. 1 and Fig. 2
for the cased = 6 andJ = 7 respectively, using. = 2.

The figures also show (part of) a sinc interpolatft (5)) 02l | j
for comparison. For eved, the min-max interpolator is R S— 0 1 5 3
not differentiable at integer arguments. For addthe wly

min-max interpolator has discontinuities at the midpoints

between DFT samples since the neighborhood changeEiS’f”e 2: lllustration of the min-max interpolator corre-
that point (cf (7). These properties depart significant§Ponding to (33) forJ = 7, N = 128, K/N = 2, and
from classical interpolators but they need not be surprisitgiform scaling factors.

since regularity was not part of the min-max formulation.

efficient vectora(w) seems to satisfy the property that
23-121 u; is close to unity (particularly ag increases).

0.8f

Interpolator
o
isS

Equivalent interpolator for J=6, K/IN=2

! * g"ii:gmax / ] This is an expected property of interpolators, but our for-

mulation did not enforce this constraiatpriori. Interest-
ingly, it seems to have arisen naturally from the min-max
framework. With uniform scaling factorss (= 1), the
kernel also satisfies the property that it is unitywat= 0
and zero at each othek. This expected property follows
directly from the min-max formulation.

Interpolator

IIl. EXTENSIONS AND VARIATIONS

This section describes some extensions to the min-max
NUFFT developed above.

wly A. Multidimensional NUFFT

Figure 1: lllustration of the min-max interpolator corre- The extension of the min-max method to two dimen-
sponding to (33) forJ = 6, N = 128, K/N = 2, and sions and higher is conceptually very straightforward. In
uniform scaling factors. 2D, we oversample the 2D FFT in both directions, and
precompute and store the min-max interpolator for each
Although we have not attempted to prove this analytitesired frequency location using the nearkst.J sample
cally, we have found empirically that the interpolation cdecations. The storage requirements &g/?M) if the
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interpolation coefficients are precomputed. Precomputi@ne can evaluate each of these two expressions using an
the interpolator involves simple Kronecker products of th¥-point FFT. In general, one need§/N FFTs, where

the 1D interpolators. Specifically, for a 2D image, if wéhe modulation needed for the’th FFT ise™"", m =

use aJ; x Jy neighborhood, with oversampling factor9),..., K/N — 1.

w1 = K1/N7 andus = K7 /N5 in the two dimensions re-

spectively, then the matriE in (31) becomes a KroneckerE- Adioint operator

product (denoted&™): Since the NUFFT method described above is a linear
- . - operator, it corresponds implicitly to somd x N ma-
Top = Tip(J2, p2) ® Tip(J1, ), (34) trix, say G. In other words, we can express (9) and (3)

in matrix-vector form asX = Gz whereG = VWS,

where S was defined below (14)}¥ is the K x N over-
(35) Sampled DFT matrix with elements;,, = e~k andV

is the (sparse)M x K interpolation matrix with elements

as does the vectarin (32):

Top = T1p(J2, p2) @ T1p (J1, p1).

Subroutines for Matlab are freely available onfine vmk- (This matrix representation is for analysis only, not
_ _ for implementation.) For iterative image reconstruction al-
B. Shifted signals gorithms, one also needs tadjoint of the NUFFT opera-

Applications often need a “shifted” version of (1): tor, i.e., one must perform matrix-vector multiplications of
the form G’y for some vectoy € CM. SinceG itself is
Nl i(n—1) o vl o too large to store in the imaging problems of interest, and
> ane =e“T Y aneT™. (36) since direct matrix-vector multiplication would be compu-
n=0 n=0 tationally inefficient, we must evalua@'y = S'W'V'y
Incorporating the™” phase term into the precomputed inby “reversing” (not inverting!) the algorithm steps de-
terpolation coefficients ; (w) induces this shift efficiently. scribed in Section II.
The adjoint corresponding to (4)e., the V' term, is
C. Adaptive neighborhoods o
In the approach described above, the same nuniloér X, = Z Uk Y-
neighboring DFT samples is used for each frequency lo- m=1
cationw,, of interest. This simplifies implementation, bu{This step is akin to “gridding.”) When the (sparse) inter-
is suboptimal in terms of both memory and computatiopolation matrix is precomputed and stored, this interpo-
Some of thev,,’s are likely to fall very close to the DFT |ation step require®)(.JM) operations. For (3)i.e., for
samples in the st x, and for those locations a smallenw”’, the adjoint is
value of J may suffice (depending ofx, see Fig. 6). An

K-1
interesting extension would be to specify a maximum er- 5 _ z Xpet2mhn/K . n=0,...,N—1,
ror tolerance, and then for each, use the smallesf,, o

that guarantees that error tolerance, assuming that one hﬁsh i< the K-noint i DFT off ed bvk
made a reasonable choice &1/ V. which s the K -point inverse Ol Scaled Dy,

In higher dimensions, one could consider using noffiscarding all but the firstv signal values. This step re-

square neighborhoods.g. approximate balls. quires O(K log K') operations. One can reduce this to
. g g. app O(K log N) by using the adjoint of the reduced FFT (37).

D. Reduced FFT The final step, foiS’, is to scale each,, by s.

Since (3) corresponds to an oversampled FFT, Whgn Nonuniform inverse EET
K/N is an integer, one can evaluate (3) by combining
K /N invocations of anV-point FFT routine, reducing the
operation count for (3) fron® (K log K') to O(K log N).
As a concrete example, K/N = 2 then

By duality, i.e., by changing the sign in the exponent of

(1), one could apply the min-max approach to cases where

one has uniformly-spaced frequency samples and wants

to evaluate the inverse FT on a nonuniform set of spatial

. 271:/:_01 (5nn) e*l%"ﬂ(%), & even :cocations_. GivenXy, k£ =0,..., K — 1 corresponding to
k= SN (g0 omim) e‘ﬂﬁﬂ"(%), % odd requencieg vk}, we can compute

n=0

37)

K-1
x(ty) = Z Xpektn n=1,...,N (38)
k=0

http://www.eecs.umich.edu/ ~fessler
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using the same type of approach with min-max interpo- IV. ERRORANALYSIS

lation. This is again “Problem 2” in the terminology of Combining (21) and (20) and simplifying yields the fol-
[34, 40]. lowing expression for the worst-case error at frequency

G. Inverse NUFFT Eexact (w)

! ! / —1 !

The formulation (2) is called “Problem 2” in the termi- | /7 - HS ClC'S5CICSb(w) — b(w)H
nology of [34, 40]. We view the imaging problems that _ H(I _ QQ’)b(w)H ’ (40)
motivated this work as being thaverseof (2). For ex-
ample, in magnetic resonance imaging with non-CartesighereQ was defined in (23). The errdmoundsgiven in
k-space trajectories, we are given nonuniform samplR&JFFT papers are often described as pessimistic. In con-
in the spatial-frequency domain, and want to reconstrugist, theexactworst-case error given by (40) is achiev-
uniformly-spaced object samples. In other words, thgle. Of course, the unit-norm signal that achieves this
X (wm)'s are given and we must find the,’s. One worst-case error may not be representative of many prob-
can formulate such applications mwerse problemsn a |ems of interest, so the “typical” performance may appear
maximume-likelihood or penalized-likelihood frameworkpetter than (40).

e.g, [54]. For example, a least-squares formulation would Alternatively, combining (25) and (20) yields:
be

N . . Eoxc

& = srgmin||X - Ga], foalt) g oA @)Tr(w)] - o)
whereG was defined in Section IlI-E. Lee and Yagle an- -
alyze the conditioning of such problems [55]. Lacking an = V1-7()Trw). (41)

efficient method for solving this inverse problem directl)ovhenj <10 —

LT ) ) . K/N, the simpler form (41) i Il
(for large N), one applies iterative algorithms. These it- /N, the s pier 10 .( . ) is usually
. ; . . .. adequate. For largef the subtraction within the square
erative algorithms require repeated calculation of the “for- " . . .
rodc_)rt is numerically imprecise so we revert to (40).

ward problem” (from object space to frequency space, an o simplify analysis for modest values #f one can use
the adjoint thereof) [18-20, 28, 56]. Those forward prol?ﬁe

lems are exactly of the “Problem 2” type addressed in thllse O'S,:%Eév \/%pgémgrr:ja;]c;r;s (gl)e?igg;ﬁ’ 2) tﬁre]dfor;l?a :;;??I-
paper, so the methods herein enable fast and accurate |%er- P - =P Y. 9

: . . approximation is usually very accurate:
ative solutions to “inverse NUFFT” problems. PP y very

In yet another family of problems, one would like to Eexact (W) A R
compute an expression of the form N E(w) = \/1 — 7' (W) T7(w). (42)
ZFlewlt (39) we focus on this normalized errd(-) hereafter when
! J <10 - K/N.

where the’s of interest are uniformly spaced but the given Due to the shift-invariance property (22), the erdw)

w;’s are not. This is called “Problem 1” in [34, 40]. lItis periodic with periody. One can also show th&{w) has

has been called “the Fourier transform of nonuniformlg local extremum whew is midway between the nearest
spaced data,” although it differs from the usual Fouriéwo DFT sampleq~k}. Themaximumerror

transforms considered in signal processing. One can use

NUFFT methods to compute accurate approximations to Emax = max &(w) (43)

(39) [34, 40]. Such methods are known as “gridding” in

the imaging literatureg.g, [25]. The interpolator pro- usually occurs either at the midpoint between DFT sam-
posed in this papemay be useful for (39), but here weples, or at the DFT samples themselves. (See Fig. 6 below
have been unable to formulate any claim of optimality. [{®r examples.) Unfortunately this does not always hold, so
the context of imaging problems known to us, we believe apply numerical methods to evaluate (43). We begin
that iterative inverse NUFFT approaches will improve imWith the simplest case: uniform scaling factoss= 1).

age quality relative to formulations of the form (39), albeit

at the expense of greater computation. Nevertheless, tH%reU
may be other applications where “Problem 1" is the nat- Fig. 3 plotsé&,,.x for a variety of choices of neighbor-
ural formulation, and for these problems we recommeimod sizeJ and oversampling factoK /N for uniform
the general guidelines provided in reviews like [41]. scaling factors £ = 1). As expected, increasing or

niform scaling factors
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K /N reduces the error, with diminishing returns/ggN
increases. By examining many such curves, we fit the fol-
lowing empirical formula for the error:

Emax ~ 0.75 exp(—J[0.29 + 1.031og (K /N)]) .

(44)

This might serve as a guide for choosifigand K/ N .

factors using the following criterion:

min max &(w).

seCN  w

Unfortunately, an analytical solution to this optimization
problem has proven elusive. For the ideal interpolator (5),
uniform scaling factors are optimal. (In fact thg's are

To create Fig. 3, we used (40) because for large valdaglevant.) Intuition suggests that for good interpolators,
of J andK /N, the matrixC’'C becomes very poorly con-thes,,’s should be fairly smooth, so a low-order expansion
ditioned and (41) becomes numerically inaccurate. Usiig (28) should be adequate. (This is consistent with the
a truncated SVD to compute the pseudo-invers€t®® smooth choices that have been used in the literatugg,

did not seem to help.

Maximum error for a = (1)

[34,37,40].) Using the series expansion (28) and denoting
the dependence @, on the Fourier series coefficients
«a and ong, for a givenL, we would like to solve

107
-~ KIN=1.5 .
RS ~— KIN=2 min Emax (e, 3).
" “§3\: S g - KIN=2.5 P
107 IR e S & K/N=3 Lacking an analytical solution, we have explored this
SOA0L, g —#— KIN=4 -acking y . ' P
. A ~: " e —— KIN=5 minimization numerically using brute-force global search
10 NN RN S~e g for small values of_, by searching jointly ovef anda =
" . s
LUE SN, % . S—g (1,04,...,ar). For example, for the cade= 1, J = 6,
10° N AL e andK /N = 2, we searched jointly ove? anda; in a =
S A S .
SN %o (1, 1). The bests was 0.19, and Fig. 4 plots,,.x versus
10 ™ . W o oy for that3. The minimizer isx; = —0.46, rather than 0,
N A so clearly uniform scaling factors are suboptimal. Because
A
o . A the minimum in Fig. 4 is sharp, this minimization required
10 =

11

14

17

20

a fine search, so such extra effort is warranted only when

J one needs many NUFFTs for the sathe@nd K/N. We

also investigated complex values fer and found that the

Figure 3: Maximum erro of min-max interpolator . . .
9 Emax P minimizer was always a real-valued .

with uniform scaling vector{ = 1), for various neigh-
borhood sizeg/ and oversampling factor& /N .

-2

Error for J=6, K/N=2, f=0.19

B. Multidimensional case
Using (34) and (35), the 2D error has the form
&p = \/1-7pTopfp

= \/1 — ’FéTQ’Fg’FiTl’I"l \
= J1-a-&)a-e) <. /ere,

where&; and&, denote the 1D errors in (42). This gives 10} --- EQ)

an upper bound on the potential accuracy “penalty” in 2D RN , , Ev2)

-05  -04 -03 02 01 0 0.1

relative to 1D. It also suggests that tensor products of good
1D min-max interpolators should work well in higher di-
mensions, so we can focus the efforts in optimizingnd Figure 4: Maximum erro

5onthe 1D Emax as a function ofay for
on the case.

L =1 andagy = 1. Since the minimum is not ai; = 0,

C. Choice of scaling factors uniform scaling factors are suboptimal.

Both # and T in the error expression (42) depend on ForL = 2, J = 6, and K/N = 2, we numerically
the choice of scaling vectaras seen in (31) and (32). Reminimized £y,ax ((1, a1, a2), 5) overai, as, 3. The min-
turning to (10), ideally we would like to choose the scalingnizer wasa = (1, —-0.57,0.14) and3 = 0.43. Fig. 5
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showsEax((1, —0.57, ), 0.43) versusy,. Again, in the
neighborhood of the minimung,,,., can be fairly sensi-
tive to a.

Error for J=6, K/N=2, a,=-0.57, $=0.43 Worst-case errors for J=6, K/N=2

- Emax I I I I
) m
E(v/2)

10°

E(w)

K —©— B=0.50,a0 =(00.5) "cosine"
) —— B=0.00,a=(1) "uniform"
—A— B=0.19,a0=(1-0.46)

—8- B=0.43,a0=(1-0.570.14)

10 .
0.25 0 0.2 0.4 0.6 0.8 1
wly

-4

10

Figure 5: Maximum erro€,.x as a function ofa, for

Figure 6: Worst-case errd(w) for various scaling vec-
L =2anday = 1.

torsa. The “cosine” scaling factors are inferior to uniform

Table 2 summarizes the optimizeds and's for these scaling factors. Optimizingy significantly reduces error.

and other cases.

Fig. 6 compares the accuracy of these optimized min-
max interpolators to uniform scaling factors and to the co-
sine scaling factors emphasized in [40]. As acknowledged
by Nguyen and Liu, ‘the cosine scaling factors ... are by no
mean|s] the “best” ones, a point that Fig. 6 confirms. We
found in many such experiments (for a variety.&$ and
K/N's) that uniform scaling factors yielded consistently
lower errors than cosine scaling factars

The shapes of the curves in Fig. 6 are noteworthy. Uni-
form scaling factors yield zero error at the DFT samples,
and peak error at the midpoints. In contrast, optimized
scaling factors tend to balance the error at the DFT sam-
ples and at the midpoints. We expect that the latter prop-
erty will be preferable in practice, since the desired fre-
guency locations often have essentially random locations
so there is little reason to “favor” the DFT sample loca-
tions. 0

The interpolators shown in Fig. 1 and Fig. 2 were for
uniform scaling factors. Fig. 7 shows the effective interpo-  ~0-2 . . . . .
lators for the optimizedy's described above fat = 1, 2. s 2 A 0 1 2 3
The optimized interpolatorsi{ = 1, 2) have lower side-
lobes than the uniform casé (= 0) and are not unity at Figure 7: Effective min-max interpolator fof = 6 and
zero nor zero at other DFT samples. K/N = 2 for optimizeda and.

Our emphasis here has been on worst-case error, and
the error values given in Fig. 3 differ from those reported

Equivalent min-max interpolator for J=6, K/N=2

o
fos)

o
o)

o
[N

Interpolator: [R r(co)]1
o
iy

2There is an error in the second to last equation on p. 292 of [40]
regarding uniform scaling factors.
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L J[8 e | Emax |
0 6 |0 (1) (uniform) 21073
0 6 [1/2 (0 1/2) (cosine) 61073
1 6 019 | (1-0.46) 51074
2 2 (034 |(1-02 -0.04) 51072
2 4 |056 |(1-0.47 0.085) 11073
2 6 043 |(1-0.57 0.14) 11074
2 8 |047 |(1-0.54 0.16) 21075
2 10|043 | (1-0.57 0.185) 6-10~7
3 4 |0.6339|(1-0.5319 0.1522 -0.0199)3-10~*
3 6 |0.2254| (1-0.6903 0.2138 -0.0191)1.10~*

Table 2: Coefficients in (28) of conventional and numerically optimized scaling factofs fr = 2.

in [40]. This “discrepancy” has two explanations. FirstiyhereS = diag{s,}, b(w) is defined as in (18), and
we consider “Problem 27 in (2), whereas the figures in [40]

are for “Problem 1. These problems may have differ- R =

ent error properties. Secondly, the errors reported in [40] (W) = \/—N Z T (w/y — k).

and related papers are for particular experiments involv- k=0

ing pseudo-random data and sample locations; the chakin to (19), the worst-case unit-norm signal s =

acteristics of such data may differ considerably from ﬂ(%"q — b)/|S'q - b, so the worst-case error for fre-
“worst-case” sighak considered in the analysis here. quUencyw normalized byl /v/N, is

parently one must be cautious about generalizing accura-

cies reported in particular experiments. E(s,w) = HS,‘I(W) _ b(w)H ) (46)
V. CONVENTIONAL INTERPOLATORS Expanding, an alternate expression is
The preceding error analysis was for min-max interpo- N—1
lation. To enable comparisons, this section analyzes the ¢2(5 ) = 1 sV Ngn(w) — 4" 2
worst-case error of conventional shift-invariant interpola- N~ "
tion. | V-1
Lett)(-) denote a finite-support interpolation kernel sat- = N |Snzn(w/y) — 1\2 47
isfying (k) = 0 for || > J/2. AssumeK > J. Con- n=0
ventional interpolation has the following form:
where
N KL K-1
X(w) = Yip(w/v = k), 49 L () 2 VNG (py) = S g — k).
F=0 ! k=0
- . L (48)
whereY}, was defined in (3), and denotes thét-periodic - Sincez, (p) has period unityé (-) is y-periodic. Thus we
and phase-modulatedf( (5)) version ofi): focus onw = py for p € [0, 1), for which
7 A - —1y(k—IK) e
Pr)E D e Moh(k — IK). nlp) = o=k )
l=—0c0 k=0
A. Min-max error analysis 22
' ) — Z ezw(p—j)(n—no)¢(p — 7).
Mimicking (13), the error for interpolator (45) is j=—J/2+1

X (@)~ X(w)| = VN |(z, S'q(w) —bw))

, For odd.J the summation limits are- 252 to Z1.
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For a given interpolation kerne), ideally we would s Cn | 1 K-l vk
like to choose the scaling factossto minimize themaxi- = D cne K > Ve
mumerror via the following min-max criterion: ":O;OO k=0

Ié%r]\lr mjxxé’(s,w). = Z Cne T ny  Sin) g
S n=—oo

This maximization ovetw seems intractable. One prac- Nl o
tical “do no harm” approach would be to minimize the = Z LnSntn€
worst-case erroat the DFT frequency locations n=0

N-1
min max £(s,w). 49 + —w(ntK) | (571
ScCN UJEQ)[(( ( ) ( ) 7;) Tn | Sn I#ZOCTL‘HKQ ( )

Considering (47), the solution to (49) is simply _ o _ _
Viewed in this form, the natural choice for the scaling fac-

Sy = 1 — 1 ] (50) torss,, is the following (assuming thegg’s are nonzero):
Zn(()) Z/ZQ:}/Q ez’yk(n*no)qﬂ(k) ) )

If the kernely(-) satisfied the classical interpolation prop- on Cn f ﬁZ P(k)err(n—mo)r dr’ (2)
ertiesy(0) = 1 andy (k) = 0 for k& # 0, then (50) would
reduce to uniform scaling factors & 1). forn =0,..., N — 1. For this choice, the error is:

One calculates the worst-case error of conventional in- N1 oK)
terpolators of the form (45) by substituting (50) into (47)[ e () - X(w)| = z . Zl;«éo CntlK©
Since (47) approaches a finite limit A58 — oo, we again o " Cn
focus on this “largeV” approximation. S o lenix]

With the choice (50)€(w) = 0 for all w € Q, and we < e, e 17’5707'

have observed empirically that the maximum error occurs
at the midpoints between the DFT frequendigs as €x- For this error to be small, we want to choogesuch
pected. We conjecture thatif(-) is Hermitian symmetric hat the Fourier series coefficients are small forn ¢
about zero, the& (w) has a stationary point at = /2 {0,...,N —1}. Sincey has finite supporf—.J/2, J/2],
for the choice (50). Lacking a proof, we compute numefing ¢, 's cannot all be zero, so one must chogseonsid-
cally the maximum erro€ya, = max,, £(s, w). ering the usual time-frequency tradeoffs.

B. Aliasing error analysis C. Comparisons of min-max to conventional

The error formula (47) is convenient for computation, The purpose of the preceding analysis was to enable
but seems to provide little insight. Here we summarizg fajr comparison of the min-max interpolator (33) with
an alternate form for the error that is somewhat more iggnyentional interpolators (45) while using good scaling
tuitive, following related analyses of “gridding” methodsgaciors for the latter. The following subsections report

e.g, [25,41]. o _ _ ~ comparisons with Dirichlet, Gaussian bell, and Kaiser-
Sincey is K -periodic, it has a Fourier series expansioegse| interpolators.
of the form .
D(k) = Z %efwnn C.1 Apodized Dirichlet
n=-—00 The apparent similarity in Fig. 1 between the min-max
(assuming sulfficient regularity), where thg's are sam- interpolator and the (truncated) ideal Dirichlet interpo-
ples of the inverse Fourier transformof lator (5) raises the question of how well a simple trun-
7 cated Dirichlet interpolator would perform. Using (43)
/2 J/2 . , :
cn 2 N(R)er‘mn dk = (H)ew(n—no)f@ dk. and (47), Fig. 8 compares the maximum error for the min-
—J/2 —J/2 max interpolator and for the truncated Dirichlet interpola-
Substituting into (45): tor I(w) rect(%), for K/N = 2, whererect(-) is unity
Kol - on(—1/2,1/2) and zero otherwise. Fig. 8 also shows the
X(w) _ Z Y, z En o—ryn(w/y—k) cos3-tapered Dirichlet interpolator proposed in [57, 58].
—o Mt K Both uniform scaling factors and numerically optimized
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a’s were used for the min-max case. Min-max interpdhe presence of sharp local minimz. (Fig. 5) is a chal-
lation can yield much less error than truncated or taperietge for local descent methods. We found the following
Dirichlet interpolation. The seemingly minor differenceapproach to be a useful alternative. After optimizing the

in Fig. 1 can strongly affect maximum error! width o for the Gaussian bell interpolator, we compute its
scaling factors using (52). Then we use ordinary least-
Maximum error for K/N=2 squares linear regression with~ 6 in (28) to find a«

for (28) that closely matches the optimized Gaussian bell
scaling factors. Then we use thatin (43) to compute
the error of this “optimized” min-max interpolator. An
example is shown in Fig. 9. This approach reduces the
nonlinear part of the search from d@adimension search
overa to a 1D search over the Gaussian bell width. Again
this process is practical only when one plans to perform
many NUFFTSs for the samé& and K/N. (Clearly analyt-

1075]| ~0~ Truncated Dirichlet ical optimization ofs for the min-max approach would be
- Tgpered Dirichlet preferable.)
* Linear (J=2)
-6[| —&— Min—Max (uniform)
10 | 4~ Min-Max (best L=2) Maximum error for K/IN=2

2 4 6 8 10 12 10
J

Figure 8: Maximum erro€,,., of truncated Dirichlet in-
terpolator, ofcos-tapered Dirichlet interpolator, of linear N
interpolator (/ = 2), and of min-max interpolator for var- ]
ious neighborhood size$, and for oversampling factor [ f _
K/N = 2. Despite similarities in Fig. 1, the min-max ap- 10
proach significantly reduces error relative to a truncated or
tapered Dirichlet.

4.

0t

—%— Gaussian (best 0)
—&— Min-Max (uniform)
10 H & Min-Max (L=6 LS fit)
—©— Min-Max (best L=2)
a4 O

C.2 Truncated Gaussian bell z p
Many NUFFT papers have focused on truncated Gaus-
sian bell interpolation using Figure 9: Maximum erro€,,., of min-max interpolators
and truncated Gaussian bell interpolator vs neighborhood
P(k) = e~ (92 pect (%) : size J for oversampling facto /N = 2. For each/,
Y

the Gaussian bell width was optimized numerically by

For fair comparisons, for eachwe optimized the Gaus- €xhaustive search to minimize worst-case error. Three

sian bell width parametes using (47) by exhaustive choices of scaling factors;{'s) for the min-max method

search. We investigated both (50) and (52) as the scale shown: uniform, numerically optimized, and LS fit of

ing factors, and found the latter to provide 10-45% lowgpg) to optimized Gaussian ba),’s given by (50).

maximum error, so we focused on (52). Empirically the

min-max width agreed closely with the approximation: Fig. 9 illustrates several important points. Firstly, the

o~ 0.31 % J052, min-max interpolator with simple uniform scaling factors
Fig. 9 compares the worst-case error of min-max inteias comparable error to the exhaustively-optimized Gaus-

polation and optimized Gaussian bell interpolation. Esian bell interpolator. Secondly, optimizing the scaling

rors for the min-max method are shown for both uniforfactors very significantly reduces the min-max interpola-

scaling factors and least-squares fit scaling factors as tien error, outperforming both the Gaussian bell interpo-

scribed next. lator and the min-max interpolator with uniform scaling
Choosing the scaling vector by exhaustive minimizdactors. Thirdly, forJ < 6, exhaustive optimization ak

tion of £,.x becomes more tedious dsincreases, and with L = 2 yields comparable maximum error to the sim-
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pler least-squares fit (using = 6) to the optimized Gaus- C.3 Kaiser Bessel

sian bell scaling factors (50), so the latter approach may
be preferable in the practical use of the min-max method.
However, even better results would be obtained if there
were a practical method for optimizing for L > 2.

Kaiser—Bessel Error for K/IN=2 and a=2.34[]

m (Kaiser—Bessler order)

Figure 10: Maximum erro€,,,, of Kaiser-Bessel inter-
polator versus ordet: for « = 2.34J. Surprisingly, the
minimum is neam = 0.

Kaiser-Bessel Error for K/IN=2 and m=0

1.5 2 25 3
o/J (Kaiser—Bessler width)

Figure 11. Maximum errof,,,,, of Kaiser-Bessel interpo-
lator versus width parameterfor m = 0.

An alternative to the Gaussian bell interpolator is the

generalized Kaiser-Bessel function [59, 60]:

_ emy oy Im(afs(k))
Y(k) = f] (K)Tm)’
whereI,, denotes the modified Bessel function of order
,and

m

PARYS B <Ji/2)2 k| < J/2

0, otherwise
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The width of this function is related to the “shape parame-
ter” «.. This function is popular in “gridding” methods for

Maximum error for K/N=2 imaging problemse.g, [61], but has been largely ignored
' ' ' ' in the general NUFFT literature to our knowledge.

Again, for fair comparisons we used (43) and (46) to
optimize both the ordet, anda numerically to minimize
the worst-case error. Initially we had planned to use-

2, since this provides continuity of the kernel and its first
derivative at the endpoints = +.J/2. However we found
numerically that the min-max optimal order is near=
0. This property is illustrated in Fig. 10. Choosing= 0
reduces the maximum error by a factor of more than 10
relative to the “conventional’n = 2 choice. Form = 0,
Min—Max (L=13, p=1 fit we found that the optimat was abouR.34.J for K/N =
> > = s 5 2. Fig. 11 shows examples.

J For the scaling factors, we compared the “do no harm”

choice (50) to the Fourier choice (52k., s, = ¥ ("Z12)

Figure 12: Maximum erro,,,x of min-max interpo- where [59]:
lators, truncated Gaussian bell interpolator (with numer- md)2 i m
ically optimized width), and Kaiser-Bessel interpolator U(u) = (1/2)" 72 (T/2) ™ Az(w)) /Im (a0),

(with numerically optimized shape), vs neighborhood size, . 7 — 1 (for 1D case),y = d/2 + m, 2(u) =

J for oversampling factoi&X/N = 2. Three choices of [(mJu)? — a2, and A(z) = (z/2)"J,(z), where J,,
scaling factors,,’s) for the min-max method are showndenotes the Bessel function of the first kind of order
uniform, numerically optimized fol. = 2, and LS fit of The Fourier choice (52), which is conventional in gridding
(28) to optimized Kaiser-Besse},’s given by (50). methods, yielded about 25-65% lower errors than (50) for
m = 0.

Fig. 12 compares the maximum errors of the (opti-
mized) Kaiser-Bessel interpolator, the (optimized) Gaus-
sian bell interpolator, and a few min-max interpolators.
We investigated three choices of scaling factors: uniform,
: the numerically optimized choices fér= 2 shown in Ta-

T SaserBessel ble 2, and a third case in which we used the scaling factors
computed by least-squares fit of (28) with= 13 and
6 = 1to the Kaiser-Bessel scaling factors from (52).

As expected, the min-max interpolator yields lower er-
rors than both the optimized Gaussian bell and the op-
timized Kaiser-Bessel interpolators. For the choices of
scaling factors investigated here (particularly the least-
squares fitting approach), the reduction in error relative to
the Kaiser-Bessel interpolator is 30%-50% b 10. It
is plausible that larger error reductions would be possible
, if a practical method for optimizing the scaling parameters
9% o 5 (e.g, « for larger L) were found. Lacking such a method,

K it seems that the Kaiser-Bessel interpolator, with suitably
optimized parameters, represents a very reasonable com-
Figure 13: Optimized Kaiser-Besseh(= 0, « = 2.34J) promise between accuracy and simplicity.
and Gaussian bells( = 1.04) interpolation kernels for From Fig. 12, one sees thdt = 9 is sufficient for
J =10. single-precision {0~%) accuracy, in the min-max sense.
(Practical problems are usually not worst-case,/Jse 9
is probably overkill.) ForJ = 9 and K/N = 2, using

Min—Max (uniform)
Gaussian (best)

Min-Max (best L=2)
Kaiser—Bessel (best)

botdd

107

Optimized NUFFT Interpolation Functions, J=10

0.8f

0.6f

F(x)

0.4}

0.2f
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Matlab’scputime command we found that the interpola- The min-max formulation provides a natural framework
tion step (with precomputed coefficients) required roughfgr optimizing the scaling factors, when expressed using
twice the CPU time required by the oversampled FFT steam appropriate Fourier series. This optimization led to

Fig. 13 compares the shape of the optimized Kais@ensiderably reduced errors compared to the previously
Bessel and Gaussian bell interpolation kernels. Supernsidered uniform and cosine scaling factors [40]. Opti-
cially the kernels appear to be very similar. But= 10 mizing the scaling factors further remains an challenging
can provide errors on the order bd~° with the Kaiser- open problem; perhaps iterations like those used in grid-
Bessel kernel, so even subtle departures in the kerdaig [61,64] are required.

shape may drastically affect the interpolation error. Based on the results in Fig. 12, we recommend the
following strategies. In applications where precomput-
VI. 2D EXAMPLE ing and storing the interpolation coefficients is practical,

To illustrate the accuracy of the NUFFT method in gnd where multiple NUFFTs of the same size are needed,
practical context, we considered the classitz8 x 128 such for iterative reconstruction in the imaging problems
Shepp-Logan image [62, 63]. We generated 10000 r4Rat motivated our work, using the proposed min-max ap-
dom frequency locations4,,'s) in (—, ) x (—, ) and proach with scaling factors fit to the Kaiser-Bessgls
computed the 2D FExactly(to within double precision provides the highest accuracy of the methods investigated,

in Matlab) and with the min-max 2D NUFFT method with@nd therefore allows reducing the neighborhood diaed
J = 6 andK /N = 2. The relative percent error hence minimizing computation per iteration. On the other

hand, if memory constraints preclude storing the interpo-
max,, \X(wm) — X (wn)] lation coefficientg, then baseq on Fig. 9 _and Fig. 12 we
x 100% see that a Gaussian bell or Kaiser-Bessel interpolator, suit-
ably optimized, provides accuracy comparable to the min-
was less than 0.14% when uniform scaling factors wefgax interpolatoif one is willing to use a modestly larger
used, and less than 0.011% when the optimized scalifgighborhood/.
factors forL = 2 in Table 2 were used, and less than Alternatively, one could finely tabulate any of these in-
2.1 -10~*% when the scaling factors were based on leas¢rpolators and use table lookup (with polynomial interpo-
squares fits to Kaiser-Bessel scaling factors as descrilb&iibn) to compromise between computation and storage.
in Section V-C.3. These orders-of-magnitude error redu€the accuracy of such approaches requires investigation.
tions are consistent with the reductions shown in Fig. 30One remaining open problem is that tliex J matrix
and Fig. 12, and confirm that minimizing the worst-case’C becomes ill-conditioned asincreases beyond about
error can lead to significant error reductions even wittD. Likewise forC’SS’C, at least for the optimized scal-
practical signals of interest. The exact FT method requirge factors. SinceJ is small, we currently use a truncated
more than 100 times the CPU time of the NUFFT meth@®VD type of pseudo-inverse when such ill-conditioning
as measured by Matlabtee/toc  functions. For com- appears. Perhaps a more sophisticated form of regulariza-
parison, classical bilinear interpolation yields a relative efion of its inverse could further improve accuracy.
ror of 6.7% for this problem. This large error is why lin-  Several generalizations of the method are apparent. We
ear interpolation is insufficiently accurate for tomographigave used the usual Euclidian noffa|| in our min-max
reprojection by Fourier methods. The NUFFT approagBrmulation (10). In some applications alternative norms
with optimized min-max interpolation reduces this err%ay be useful. The genera| theory accommodates any
by four orders of magnitude. quadratic norm; however, whether simplifications of the
form (29) and (30) appear may depend on the norm.

Another possible generalization would be to dgéer-

This paper has presented a min-max framework for tegtscaling factors for the two FFTs in (37). Itis unclear
interpolation step of NUFFT methods. This criterion lead¥w much, if any, error reduction this generalization could
to a novel high-accuracy interpolator, and also aids in theovide, but the additional computational cost would be
optimization of the shape parameters of conventional ivery minimal.
terpolators. These optimized interpolators for the NUFFT Although detailed analyses of the errors associated with
have applications in a variety of signal processing amlJFFT methods for “Problem 1” are availabkeg, [41],
imaging problems where nonuniform frequency samplés our knowledge no provably optimal interpolator has
are required. been found for Problem 1, so this remains an interesting

max, | X (wm)|

VIl. DISCUSSION
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open problem.

[11]

Finally, one could extend the min-max approach to re-
lated transforms such as Hankel and cosine [12, 65].
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