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CHAPTER 1

Introduction

In past years, the conventional practice in Positron Emission Tomography (PET) has

been to reconstruct images while ignoring the effects of anatomical motion in the patient.

When motion is ignored, a PET scanner acts something like a conventional optical camera

with the shutter open: one obtains the superposition of images of the object as it appears

in various phases of motion. Thus, the image exhibits a degree of blur that is related to

the motion magnitude. Until recently, the drawbacks of ignoring object motion has been

ignored due to limitations in the spatial resolution of early PET scanners. The magnitude

of anatomical motion was not always substantial enough, in comparison to the scanner

resolution, for motion correction to promise any benefit. However, with the improvement

of scanner resolution over time, motion-related blur is becoming a limiting factor in the

resolution achievable in PET reconstruction.

This problem has been compounded by changing trends in the application of PET. In

early years, PET was applied mainly in the research of the brain, where the relatively

small movements of the head made motion effects still easier to dismiss. Conversely,

recent clinical PET practice has emphasized cancer treatment, and therefore thorax scans

have become more prevalent. Thus, not only has scanner resolution increased, but interest

has shifted over the years to the scan of anatomy where motion is much larger. As a result
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of these factors, the recent tomographic imaging literature has seen much interest (e.g.,

[51, 62, 37, 66, 95, 80, 61, 96, 79]) in motion correction techniques.

In this dissertation, our work is motivated by the problem of reconstructing motion-

corrected images of the thorax from respiratory gated (histogram mode) data and its poten-

tial benefits to lung cancer treatment. In acquiring respiratory gated data, one essentially

makes a separate scan of the object for every different position of the lungs. In PET scans

of the thorax, image intensity in the region of a lung lesion can be used as an indicator of

malignancy and also, if it is malignant, of how well it is responding to treatment. Quantify-

ing this intensity accurately is therefore desirable. However, blur associated with the mo-

tion of the lungs can degrade quantification accuracy, unless effective motion-correction

measures are employed. The desire for an effective reconstruction method naturally leads

to questions about which method, among various candidates, performs best. For any given

method, questions then arise as to how that method can be efficiently implemented. This

dissertation considers these various questions in three main parts.

The first part, dealing with the comparison of various reconstruction methods, is the

subject of Chapter 4, where we look at various motion-correction approaches, that might

be applied to the lung lesion quantification task. One of these methods is based on an

original model, proposed by us, for the statistics of respiratory gated measurements. This

model is derived by representing the PET image, as it appears in various phases of its

motion, via image transformations of the kind widely considered in the image registration

literature. A method that we call Joint Estimation with Deformation Modeling (JEDM) is

used to derive both motion parameter and image intensity estimates simultaneously based

on the full set of gated projection data. The other methods are based on the more adhoc

strategy of first reconstructing separate images from each of the measurement gates and

then deriving estimates of their motion in the image domain. These kinds of strategies are
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intuitive extensions of conventional reconstruction methods and have been considered by

various investigators (e.g., [51, 97, 96, 79]).

We compare these methods in terms of how accurately, on average, they quantify a

lung lesion in a simulated torso scan. Pains were taken, in these simulations, to imitate

realistic torso anatomy and motion. Accordingly, ground truth image intensity and motion

parameter values were derived from gated CT images of an actual human patient. We also

propose a strategy by which regularizing roughness penalties can be judiciously designed,

with the aid of side information from a breath hold CT so as to avoid blurring the lesion.

The remainder of the dissertation addresses the cost function minimizations required

by the methods of Chapter 4, and likely to be required by most other approaches as well.

In Chapter 5, we look at the computational cost of certain interpolation operations com-

mon to the different motion-corrected reconstruction methods in Chapter 4. We further-

more propose pre-approximation/pre-computation techniques to ease some of the compu-

tational burden of these operations. The impact of these acceleration measures on some of

the minimization sub-problems required by the methods of Chapter 4 are tested.

Chapter 6 presents a body of theoretical analysis that we have done on the behavior

of so-called Majorize-Minimize (MM) algorithms. This analysis is a stepping stone in

ongoing efforts toward finding effective implementations of the methods in Chapter 4.

Majorize-Minimize algorithms are a family of optimization algorithms in which a given

cost function is montonically reduced by minimizing a sequence of majorizing approxi-

mations to that cost function. The design of these majorizing functions (which we call

tangent majorants) is not highly systematic, and often requires problem-specific insights

on the part of the algorithm designer. We initially had several ideas for the design of

tangent majorants, applicable to the cost function minimizations involved in the motion

correction methods of Chapter 4. These designs involved the coordinate block alternation
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technique proposed in [32, 33]. However, the analyses in those works was not entirely

general enough to include the form of the tangent majorants in our candidate algorithms.

Moreover, in the motion correction application, it is natural to consider constrained param-

eter spaces of a form also not formally addressed in these works. This led us to embark

on an extensive theoretical analysis that expands the range of block alternating MM algo-

rithms that one could consider.

In the course of this work, we came to many other generalizations and insights as well,

which we also present. Among them, we give what we believe to be the first generic anal-

ysis of the local region of convergence for MM algorithms employing connected tangent

majorants.

The main contributions of this dissertation can be summarized as follows.

• An original statistical model for gated PET data and, associated with this, a statis-

tically principled approach, namely the JEDM method, to simultaneous motion and

activity image estimation (Sections 4.2 and 4.3).

• An empirical investigation of the average lesion quantification accuracies of different

motion correction schemes (Section 4.5.2) using realistic simulated anatomy and mo-

tion. The comparison includes the JEDM method and some gate-wise reconstruction

approaches that are natural to consider and also similar to those considered by other

investigators.

• An approach to using breath hold CT side information to avoid over-blurring of can-

cerous lesions (Sections 4.4.5 and Section 4.5.4).

• Table-lookup methods to accelerate the interpolation operations in various motion

estimation cost functions (Chapter 5).

• A generalization of previous convergence conditions for MM algorithms (Chapter 6).
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The generalizations include,

– With the technique of block alternation, the feasible sets can be closed, non-

polyhedral, and the objective function need not be convex.

– Minimization of the tangent majorants may be carried out over strict subsets of

the feasible set.

– Only once-differentiability is assumed on the cost function and the tangent ma-

jorants.

– continuity conditions on the tangent majorants, required in previous analyses

(e.g., [25, 102, 57, 33]) can be relaxed in favor of local curvature bounds. This

permits more freedom in the way tangent majorants can vary from between iter-

ations.

• An analysis of the region of local convergence of MM algorithms that use connected

tangent majorants (Section 6.5). This property has some negative implications for

MM, as it is popularly employed, but also positive possibilities for how it can be

used to implement non-convex minimization strategies.

The above remarks describe the core material in this dissertation. Relevant background

to this material is discussed in Chapter 2. Also, the reader will encounter optional sections

throughout the dissertation whose titles are marked with an *. These sections delve into

topics somewhat tangential to the main theme of the dissertation, and can be skipped

without loss of continuity.



CHAPTER 2

Background and Preliminaries

2.1 Miscellaneous Mathematical Conventions

We list here some miscellaneous conventions to be used throughout this dissertation.

1. Matrices vs. non-matrices. Symbols for vectors and matrices will be in boldfaced

type. Other quantities shall be in plain type. Thus for example M is a matrix, but

Mij is its ij-th entry.

2. Euclidean Spaces. The notation R
d shall denote the Euclidean space of real, length d

column vectors.

3. Vertical concatenation. Ordered n-tuples shall be thought throughout as the vertical

concatenation of those elements. Thus, given column vectors x, y, and scalar a, the

ordered triple (x, a,y) will denote the column vector obtained by stacking x on top

of a on top of y. Similary, in the expression f(x, a,y) , it is to be understood that f

is a function of the column vector (x, a,y).

6
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4. Diagonal concatenation. The operation diag {Ai} shall denote the diagonal concate-

nation of {Ai}
n
i=1, an ordered set of not necessarily square matrices, i.e.,

diag {Ai} =










A1 0 0

0
. . . 0

0 0 An










.

In addition, given a vector v with components vi

D {v} = diag {vi}

shall denote the diagonal matrix with v along the diagonal.

5. Multiple interpretation of arrays. In various situations, we will introduce vectors v

whose components vj are associated with the nodes of a multi-dimensional grid. In

such cases, we shall freely and interchangeably index the components of this vector

either using a single linear subscript, as in vj , or using multiple subscripts, as in vmnp,

where the multiple subscripts denote the associated node coordinates. We shall also

refer to these v at times as discrete images, projections, etc. . . or some other kind

of discrete scalar field, even though we shall be manipulating v mathematically as a

vector.

6. Identity Matrices. They will be denoted I . When the dimensions are not self-evident

In shall denote the n× n identity matrix.

7. Kronecker Products. The Kronecker tensor product of matrices A and B shall be

denoted by

A⊗B =






A11B A12B

A21B
. . .




 .

8. Generalized Summation and the KL Distance. The generalized summation operator
∑∗

i
will denote the sum over i when i is a discrete index and the integral over
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i when it is a continuous index. The following definition of the Kullback-Leibler

distance KL distance, therefore,

KL(a, b)
4
=
∑∗

i

[bi − ai log bi] −
∑∗

i

[ai − ai log ai] (2.1)

will apply to both continuous or discrete functions ai and bi of i. Note that we use

the convention 0 log 0 = 0.

9. Gradient and Jacobian Matrices. Given a length J column vector-valued function

f(x1, x2, . . . , xK) with components fj(x1, x2, . . . , xK), the K × J gradient (matrix)

of f , denoted ∇f , has kj-th entry [∇f ]kj =
∂fj

∂xk
. When f is scalar-valued, this

is just the usual column gradient of f . The operator denoted ∇T will produce the

transpose of the gradient matrix,

∇Tf
4
= (∇f)T

and is precisely the Jacobian matrix of f .

10. Set Cardinality. Given a finite set S, the notation |S| will denote its cardinality, i.e.,

the number of elements in S.

2.2 Background on Tomography

Tomography is a scanning method used in nuclear medicine in which photons are radi-

ated through or emitted from an object (which, in practical settings, is a hospital patient)

and detected by a scanner. The scanner consists of an array of detector cells that surround

the object, and whose function is to measure the number of photons yi passing through the

object along certain rays i = 1, 2, . . . , Nrays. It is common to model these yi as statisti-

cally independent Poisson random variables. We denote by y, the vector with components

yi. Since y is a Poisson random vector, its distribution is characterized by its mean ȳ(θ),
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where θ is an unknown parameter vector. The form of ȳ(θ) depends on the specifics of the

scanner and data acquistion physics. Typically, the components of θ parametrize certain

spatially (and possibly also temporally) varying functions that are informative about the

inner workings and structure of the object. The aim in tomography is to deduce θ from the

yi and thus to reconstruct images of these spatially varying quantities.

One example of a spatially varying quantity that clinicians wish to reconstruct is the

attenuation image. The attenuation image µ(~r) measures the tendency of the object to

absorb or deflect photons at location ~r in the object. Attenuation is related to material

composition, and so µ(~r) can be used to discern the location of different tissue types in

a patient. Another example is the activity image λ(~r), which is pertinent to emission

tomography (see Section 2.2.2). Emission tomography is an imaging modality in which

the source of the photons is a radioactive tracer substance that is pre-injected into the

patient. The activity λ(~r) measures the concentration of tracer at location ~r, and gives

information about the amount of metabolic processing occuring at ~r.

These concepts are illustrated in Figure 2.1, which depicts a 2D cross-section of a

cylindrical detector array with a hypothetical object. This detector geometry is common in

Positron Emission Tomography (PET). In PET, photons passing through the object result

from the decay of a radio-tracer that is pre-injected into the patient. Tracer decay events

lead to the emission of photon pairs that travel approximately colinearly in opposite di-

rections and are detected by pairs of opposing detectors centered around each projection

ray. In emission tomography modalities, such as PET, the mean measurements ȳi are in-

fluenced by both the attenuation and activity image. It is common to approximate the
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attenuation and activity images by nearest neighbour interpolation

µ(~r) ≈
∑

j

µjvj(~r)

λ(~r) ≈
∑

j

λjvj(~r)

Here, each interpolator vj(~r) is the indicator function of a voxel (i.e., a small 3D box-

shaped region) at sample location ~rj . Thus µ is described by a parameter vector µ with

components µj = µ(~rj) and similarly λ is a parameter vector describing λ. As indicated

in Figure 2.1, this leads to a parametrization ȳi(θ) where θ is a concatenation of µ, λ (see

also Section 2.2.2), and possibly other parameters as well.

µ − attenuation image
λ − activity image

θ~ Poisson{ y(  ) }

θ = (µ,λ, ....)

~ Poisson{ y(  ) }

Ray i

y

y

i

i

Figure 2.1: A 2D cross-section of a hypothetical object in a cylindrical tomographic system.

In the remainder of this section, we discuss the form of ȳi(θ) in a bit more detail

for some common tomographic systems. We also describe some issues related to the

reconstruction of images based on these models.
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2.2.1 Transmission Tomography Basics

A transmission source is a source that is external to the object and transmits photons

through it. Transmission tomography is a scanning protocol in which only a transmission

source is used. The aim is to determine the attenuation µ(~r) at various sample locations ~rj

in the object. The attenuation µ(~r) measures the tendency of an object to absorb photons

at location ~r and is related to the material composition of the object at that location. (It

is also related to the energy of the source, although this energy level is usually known a

priori).

As mentioned, one commonly approximates the continuous-space attenuation function

µ(~r) using nearest-neighbour interpolation,

µ(~r) ≈
∑

j

µjvj(~r), (2.2)

among a finite set of desired samples µj = µ(~rj). Here, each interpolator vj(~r) is the

indicator function of a voxel at sample location ~rj . We shall refer to the column vector µ

with components µj as the (discrete) attenuation image.

Based on Beer’s law and the approximation (2.2), the survival probability, i.e., the

probability that a photon transmitted along ray i through the object (see Figure 2.1) passes

unabsorbed to the surrounding detector array, is often modeled as exp(−[Aµ]i). Here A

is a matrix whose ij-th entry gives the length of intersection of ray i with voxel j, so that

[Aµ]i is an approximate line integral through µ(~r) along i.

From the above considerations, the following, now classical model for the Poisson

mean ȳi(µ) of transmission tomography measurements is obtained:

ȳi(µ) = bi exp(−[Aµ]i) + ri. (2.3)

In (2.3), the bi ≥ 0 are so called blank scan data. They are calibration co-efficients ob-

tained by running a transmission scan with no object present. The quantities ri ≥ 0 are the



12

mean of stray background photons that do not originate from the source. The ri are often

pre-determined by making detector measurements with no source present. The problem is

now to use (2.3) to determine the unknown vector θ = µ.

2.2.2 Emission Tomography Basics

An emission source is one which emits photons from within the object, typically due

to the decay of a radio-isotope (alternatively called a radio-tracer, or simply tracer) that

has been introduced into it. Emission tomography is a scanning protocol in which only

an emission source is used. In practical settings, the object is a living patient who has

ingested or been injected with the radio-isotope. In non-practical settings, the scan may be

conducted on a test object (or phantom) containing tracer-filled compartments. In emis-

sion tomography, the aim is to determine the radio-tracer concentration or activity λ(~r) at

various sample locations ~rj . In living patients, λ(~r) reflects metabolic activity occuring at

~r, and so is useful for measuring functional activity inside the body of the patient.

As mentioned, one commonly approximates the continuous-space activity function

λ(~r) using nearest-neighbour interpolation,

λ(~r) ≈
∑

j

λjvj(~r). (2.4)

We refer to the column vector λ with components λj as the (discrete) activity image. A

Poisson model for the mean of emission tomography measurements is

ȳi(λ, µ) = [P (µ)λ]i + ri. (2.5)

As in (2.3), ri is the mean of the background counts detected along ray i. Also, P (µ)

is a matrix, depending on the attenuation image µ, whose ij-th element Pij(µ) is the

probability that a photon emission event in voxel j is detected along ray i.

The form of Pij(µ) depends on the physics of both the emission and the acquisition

processes. For example, in Positron Emission Tomography (PET), tracer decay results
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in the emission of photon pairs that travel approximately colinearly in opposite directions

and are detected by pairs of opposing detectors centered around each projection ray. Beer’s

law (see also Subsection 2.2.1) then leads to a model of the form,

Pij(µ) = exp(−[Aµ]i)εiGij (2.6)

where Gij is the geometry-based probability that an emission event in voxel j propogates

within the space seen by detector pair i and εi are efficiency factors for the detectors as-

sociated with ray i. Different models/approximations for Gij have been considered (e.g.,

[91, 74]). Another factorized model (see e.g., [94]) is,

Pij(µ) = exp(−[Aµ]i)niAij (2.7)

where ni are the normalization factors routinely measured in PET by scanning a uniform

test object.

The problem is now to use (2.5) to determine the unknown vector λ. Here, µ is a nuis-

sance parameter vector which must be also be determined. A common practice in emission

tomography is to pre-determine µ from a separate transmission scan of the patient, prior

to the injection of radio-tracer. One then views µ as known, whereupon (2.5) reduces to

the now classical model

ȳi(λ) = [Pλ]i + ri. (2.8)

and the task reduces to the determination of λ. This decoupling leads to relatively simple

reconstruction algorithms. Clearly though, a more statistically principled approach would

be to aggregate transmission scan and emission scan measurements into a single data set

and estimate λ and µ simultaneously based on (2.3) and (2.5) (e.g., [16, 31]).

2.2.3 Further Tomographic Acquisition Models*

Some more elaborate tomographic acquisition models than those discussed in Sec-

tion 2.2.1 and Section 2.2.2 have recently been considered. For example, [104] addressed
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the following generalization of (2.3),

ȳi(µ) =
∑

m

[bim exp(−[Amµ]i)] + ri. (2.9)

This equation models the case where the transmission scan measurements in ray i result

from separate, overlapping transmission source beams, indexed by m. The summation

over m in (2.9) superposes the contributions of all the sources. This model is appropriate

for certain Single Photon Emission Computed Tomography (SPECT) system designs.

As another example, [28] and [46] looked at a model for when a transmission and

emission scan are both done after the patient receives the radio-tracer injection. This

results in an emission measurement vector yE and a transmission measurement vector yT

with Poisson means given by

ȳE
i (λ,µ) = bEi exp(−[Aµ]i)[Gλ]i + rE

i

ȳT
i (λ, µ) = bTi exp(−[Aµ]i) + rT

i + ki exp(−[Aµ]i)[Gλ]i.

Because tracer is present in the patient during the transmission scan, yT
i gets contribution

from both transmission and emission sources. Thus, the above expression for ȳT
i is a

superposition of the form (2.3) and (2.5), with Pij(µ) approximated as in (2.6).

The above show how Poisson models for tomographic systems can become progres-

sively sophisticated. The challenge of designing reconstruction algorithms for such mod-

els progresses in a corresponding way.

2.2.4 Radon-Based Reconstruction

When the unknown vector θ is an image, the Poisson mean vector ȳi(θ) often has the

approximate form

ȳ(θ) = f(Aθ) (2.10)
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where f is an invertible function and, as before, A is a matrix whose ij-th element is the

length of intersection of voxel j with ray i. One can see that ȳ(µ), as given in, (2.3), has

the form (2.10) with θ = µ, when all the bi are strictly positive. In a similar manner,

one obtains an emission tomography model ȳ(λ) of the form (2.10), with θ = λ, by

combining (2.7) with (2.5) and pre-computing µ as described in Section 2.2.2.

One can rewrite (2.10) to obtain

θ = A†f−1(ȳ). (2.11)

whereA† is a pseudo-inverse ofA. This motivates a simple first order Method of Moments

(MOM) type estimator,

θ̂(y) = A†f−1(y). (2.12)

Here, y is used as the empirical first order moment approximating ȳ.

Since A is a matrix of voxel-ray intersections, Aθ performs a discrete approximation

of the Radon transform on the unknown image θ. Discrete versions of Radon transform

pseudo-inverses can be used to approximate A†. Furthermore, efficient algorithms are

known by which these pseudo-inverses can be computed. For 2D parallel projection ge-

ometries, a popular choice is the Filtered Back Projection (FBP) algorithm, in which A†

takes the form,

A† = ATF (2.13)

Here, F is a high-pass filtering operator. A variant of this for fully 3D projections is the

3DRP algorithm [50]. Combining the above with (2.12) gives

θ̂(y) = ATFf−1(y). (2.14)

Reconstruction methods such as these, that are based on the radon transform and its in-

verse, have been used the most widely by tomographic imaging practitioners for many

years. We shall refer to such reconstruction methods as Radon-based.
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Radon-based methods lead to fair quality reconstructed images of at a minimum of

computational expense. Apart from the evaluation of AT , the computations in inversion

formulae like (2.14) tend to be minor (see also Section 2.2.6). This quality/computation

trade-off was regarded as the optimal one by medical practitioners for many years, and

therefore, prior to the late 1990s, Radon-based methods were the most popular and widespread.

However, Radon-based methods have at least two shortcomings that limit the quality of

the images that they can produce. Firstly, they exploit only the form of the mean ȳ(θ) and

not on how y is distributed about that mean. Secondly, to obtain the inversion formula in

(2.12), it is necessary to approximate ȳ(θ) in terms of A. This in turn can place restric-

tions on how one models the acquisition process. For example, in emission tomography,

putting ȳ(λ) in the form (2.10) required, as discussed above, that one model P (µ) as

in (2.7). In the next section, we discuss penalized likelihood (PL) reconstruction which,

while considerably more demanding computationally, suffer from neither of these short-

comings.

2.2.5 Penalized Likelihood Estimation

In past years, much literature (e.g., [39, 41, 40, 55, 23, 33, 22, 4]) has emerged on the

use of penalized likelihood (PL) estimation algorithms for reconstructing θ (in particu-

lar, the λ or µ components of θ) from y. A negative loglikelihood function for Poisson

measurement vector y is

L(θ)
4
= KL(y, ȳ(θ))

=
∑

i=1

[ȳi(θ) − yi log ȳi(θ)] −
∑

i=1

[yi − yi log yi] (2.15)

By adding to this a penalty function R(θ), one obtain a penalized likelihood cost function

ΦPL(θ) = L(θ) +R(θ). (2.16)
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A penalized likelihood estimate θ̂ is obtained according to,

θ̂ ∈ argmin
θ∈Θ

{ΦPL(θ)} (2.17)

where Θ is an allowable space of parameters. When R(θ) ≡ 0, then (2.17) reduces to the

formula for the maximum likelihood estimate (MLE) of θ.

The addition of a penalty improves the conditioning the problem, which in turn reduces

the statistical variance of θ̂. Furthermore, it allows one to suppress non-physical behavior

that could otherwise manifest in the MLE. For example, in emission tomography, with

θ = λ, one expects the activity image λ to be smooth in most places. Therefore, it is

common to choose the penalty R(λ) as to increase with image roughness. Such a penalty

function is often constructed to be of the form,

R(λ) =
∑

k

ωkψk([Cλ]k). (2.18)

Here, the 1D functions ψk(x) are so-called potential functions with weights ωk ≥ 0 and

the matrixC is such that the components [Cλ]k are measurements of differences between

neighbhouring voxel intensities in λ. The ψk(x) are usually chosen symmetric, convex,

and strictly convex on |x| < δ for some fixed parameter 0 < δ ≤ ∞. A difficulty with

roughness penalties is that they smooth over desired sharp features in the images like tissue

boundaries. In some cases, however, one has access to side information that can be used

to discriminate between image regions where smoothness is desirable and undesirable

[30, 18]. In such situations, one can set the ωk weights in (2.18) to low values in regions

where sharpness is desired.

It has been found (e.g., [78, 15]) that penalized likelihood estimation algorithms pro-

duce images that outperform Radon-based methods at certain medical tasks. A difficulty

with penalized likelihood estimation is that the minimization in (2.17) typically has no

closed form solution and must be carried out with iterative optimization algorithms. The
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iterative nature of these algorithms results in lengthy computation, a drawback that has

historically impeded the acceptance of penalized likelihood algorithms in clinical envi-

ronments. Parallel computing and the development of incremental gradient methods for

algorithm acceleration (e.g., [44, 12, 14, 24, 6, 1, 2]) have progressively lessened this

problem in recent years. Furthermore, clinicians have lately come to desire better perfor-

mance from tomographic imaging methods, and therefore seem more prepared to accept

the computational demands of penalized likelihood algorithms.

2.2.6 The Role of Forward and Back Projection

In the previous sections, we saw Poisson models ȳ(µ) and ȳ(λ) that depend on the

unknown images λ and µ through expressions like Aµ and Gλ. We refer to matrices

like A and G – which map image vectors into projection space vectors – as projection

matrices. Multiplication with such matrices are called discrete forward projections of the

images. Conversely, multiplication with their transpose are called discrete back projection

operations.

Such operations are a fundamental and inevitable in tomographic reconstruction algo-

rithms because they describe the physics relating the unknown parameters and the mea-

surements, which of course must be accounted for in any reasonable reconstruction algo-

rithm. For example, in Radon-based methods of the form (2.14), we see that a backpro-

jection step involving AT is required. Also, evaluating the derivative of the loglikelihood

term L(θ) in the penalized likelihood cost function (2.16) involves one forward and back-

projection step. This is because L(θ) depends on θ through ȳ(θ) which in turn depends

on θ through some projection matrix. As an example, in (2.8), ȳ(λ) depends on λ through

Gλ. Thus, in this case, the gradient of the penalized likelihood takes the form

∇ΦPL(λ) = GT∇GλL(Gλ) + ∇R(λ).
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Here, we have expressedly denoted the dependence of L on Gλ. One sees that gradient

calculations require both a forward projection Gλ, to evaluate ∇GλL(Gλ) and a back-

projection GT . Higher order derivatives require even more forward and back projection

matrix manipulations.

Projection matrices tend to be quite large and have historically been the computational

bottleneck in tomographic reconstructiong algorithms. Much research effort has been de-

voted to their fast computation [89, 26, 94, 20, 5]). A common ingredient to the ac-

celeration of these operations is to take advantage of the sparsity of projection matrices.

Generally, projection matrix elements Aij or Gij are nonzero only if voxel j lies near ray

i. Another ingredient to accelerated projections is to use some simplified approximation

to the values of the matrix elements. Such approximations admit faster computation, but

compromise the accuracy of the physical model. The impact of this kind of trade-off has

been studied, for example, in [103].

2.3 Background on Image Registration

Image registration is a field of image processing dealing with the alignment of geomet-

rically similar images. Formally, one is given a continuous-space source image f src(~r) and

a target image f targ(~r). The aim is to find a transformation T such that T f src(~r) is similar

to f targ(~r). Naturally, there are restrictions on the form T can take, so it must be drawn

from some agreed upon set Strans of transformation functions. A wide range of registration

methods are posed as minimization problems of the generic form,

min. discr(T f src, f targ) +R(T ) s.t. T ∈ Strans (2.19)

where discr is a measure of the discrepancy between T f src(~r) and f targ(~r) and R(T ) is a

regularizing penalty function meant to discourage undesired T .
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In this dissertation, we shall be mainly concerned with image registration as it applies

to intra-modality motion correction. That is, f src and f targ represent images of the same

subject acquired by the same physical device, except that the subject has moved between

the two acquisitions. The aim is to find a T that describes the differences between f src and

f targ due to this motion. However, it is important to note that the field of image registra-

tion goes well beyond this. In the wider spectrum of image registration applications, the

images need not have been derived from the same imaging device (inter-modality registra-

tion), nor even from the same subject (inter-subject registration). In medical applications,

inter-subject registration becomes necessary when doing statistical comparisons of images

of the same anatomy across populations of subjects. Inter-modality registration becomes

necessary when multiple medical scanning methods are used to obtain different informa-

tion about the same anatomy. Even if the subject is the same for both, the fact that the

subject needs to visit different scanners means the images obtained from these scanners

must be aligned for comparison purposes. A more detailed survey of these matters can be

found, for example, in [19].

The image registration literature considers a wide variety of possibilities for discr,

Strans, and R(T ), some more suited to certain registration tasks than others. We overview

some of these in the next several subsections. The discussion will be in the context of 3D

image registration (thus, ~r = (x, y, z)).

2.3.1 Discrepancy Measures

In intra-modality registration (our focus here), the intensity values of both images can

be meaningfully compared via the L2-norm difference,

discr(T f src, f targ) =
1

2
||T f src − f targ||2L2

. (2.20)



21

This criterion has been considered, for example, in [99, 92, 53, 51, 54, 73, 97, 106]. A

discrepancy measure that has become popular for inter-modality registration is the mutual

information criterion [100, 17, 65, 93, 68, 77],

discr(T f src, f targ) = KL(ρ(T f src, f targ), ρ(T f src)ρ(f targ)).

where ρ(f1, f2, . . . ) are the joint intensity distributions of (f1, f2, . . . ). Other comparison

criteria in the image registration literature include those based on landmarks (e.g., [9, 84]).

The method known as principal axes transformations (e.g., [3]) uses the image intensities

of f src and f targ to define distributions on the spatial coordinates ~r and compares the im-

ages in terms of the associated moments. Finally, correlation-based registration compares

images in terms of the correlation coefficient of their intensities (see e.g., [38, p. 583]).

2.3.2 Image Transformations

A widely considered class of transformations Strans are pure geometric deformations

parametrized by a deformation parameter vector α,

T (α)f src(x, y, z) = f src(d(x, y, z,α)). (2.21)

Furthermore, a widely considered form for d(x, y, z,α) is where α is partitioned into

sub-vectors α = (αX ,αY ,αZ) of basis coefficients and
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Here {bCk(x, y, z)}C∈{X,Y,Z} are deformation basis functions for the various Cartesian di-

rections. When {bCk(x, y, z)}
KC

k=1 = {x, y, z, 1} for all C = {X,Y, Z}, we obtain the

family of 12 degree of freedom affine1 deformations. Usually, one is interested in affine

1The use of the term affine here refers to the form of d as a function of (x, y, z) and not as a function of α. Clearly,
all d in the more general family (2.22) are affine with respect to α. This terminology is simply a convention of the image
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deformations restricted to the set

Strans =
{
α : det∇T

~rd(~r,α) > 0
}
. (2.23)

Within the family of affine deformations, there is the family of 6 degree of freedom rigid

deformations, wherein f src can only rotate/translate like a solid object. The family of rigid

deformations can be obtained from the affine family by restricting Strans, so thatα satisfies,

Strans =
{
α : ∇T

~rd(~r,α)∇~rd(~r,α) = I
}
. (2.24)

Rigid deformations arise in motion correction applications when the anatomy in question

is well-modeled as a rigid body. This includes head motion correction (e.g., [45]). Both

rigid and affine deformation models have been applied to cardiac motion (e.g., [51, 61]).

Situations are encountered when higher degree of freedom deformations are desired.

A typical case is in modeling the motion of non-rigid, elastic anatomy, such as the thorax

and lungs. Another case is in inter-subject registration. For such applications, a popular

choice of deformation basis functions [52, 68, 86, 81, 59, 73] are those based on B-splines.

Assume, for convenience, that f src and f targ are supported on continuous space region of

integer dimensions NX × NY × NZ and that these dimensions are evenly divisible by

{∆X ,∆Y ,∆Z}. Then the standard construction is, for each C ∈ {X,Y, Z}, to cover this

support region with basis functions,

bCk(x, y, z) = βq

(
x

∆X

−mk

)

βq

(
y

∆Y

− nk

)

βq

(
z

∆Z

− pk

)

(2.25)

where βq is the 1D B-spline of order q and (mk, nk, pk), k = 1, 2, . . . are the node coor-

dinates of a control point grid of dimension (NX/∆X) × (NY /∆Y ) × (NZ/∆Z) nodes.

registration literature.
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spline
support

Figure 2.2: Depicts a 2D control point grid, superimposed on a thorax phantom, at two levels of fineness.
The region of influence of a cubic B-spline basis functions is also shown for each case.

Most often, cubic B-splines are used

β3(t) =







|t|3

2
− |t|2 + 2

3
, 0 ≤ |t| ≤ 1

−(|t|−2)3

6
, 1 ≤ |t| ≤ 2

0, |t| ≥ 2

(2.26)

A principal advantage of B-spline models is related to the localized support of βq. This

allows spatial deformation to be controlled locally via the corresponding αCk in that re-

gion. One can also tune the fineness or coarseness of the deformation model by adjusting

the node spacings {∆C}C∈{X,Y,Z}. Figure 2.2 depicts a 2D control point grid at two levels

of fineness, along with the region of influence of a cubic B-spline basis functions in both

cases.

A difficulty with B-spline deformations is that they can exhibit non-physical traits such

as uninvertibility (with respect to ~r) or an absence of topology-preserving behavior. One

can combat this by restricting α to certain constrained regions, as in [73, 49]. In [71], an
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alternative to B-spline bases is considered, that is invertible, but shares, to a degree, the

localization properties of B-spline models. Another difficulty with B-splines arises when

modeling the deformation of objects containing some rigid, but mostly elastic substances

(e.g., the bone and soft tissue present in the thorax). Transformations based on B-splines

may induce rigid media to deform elastically, contrary to their physical nature. Efforts to

combat this include post-filtering steps [90] and the design of regularizing terms R(T ), as

in [85], to encourage locally rigid behavior, where appropriate. In [67], an alternative to

B-splines, involving weighted combinations of rigid transformations, was proposed.

2.3.3 Regularization in Image Registration

Here we discuss briefly, different choices of the regularizing term R(T ) in (2.19). For

the parametric T given by (2.21) and (2.25), we have already mentioned the use of penal-

ties in [85] to encourage different degrees of rigidity at different spatial locations. In

[106], neighbourhood roughness penalties, similar to those discussed for images in Sec-

tion 2.2.5, were applied to the αCk in the control point grid. The idea here was that

smooth transitions between neighbouring αCk would induce smooth deformations. In

[83], the performance of a penalty on bending energy, as quantified by the sum of the

entries (∇T
~rd(~r,α))(∇~rd(~r,α)), is compared to a compressibility penalty, that penalizes

deviations of det∇T
~rd(~r,α) from unity. The use of penalties to incorporate side infor-

mation is seen, for example, in [54]. There, a weighted quadratic penalty is constructed

based on landmark side information that penalizes deviations of deformed points from the

landmarks.

A variety of regularizers also arise in non-parametric registration problems based on

the parameter-free analogue of(2.21),

T f src(x, y, z) = f src(d(x, y, z)).
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Some of these regularizers are motivated by physical equations for the behavior of matter.

Examples include elastic registration [11] and fluid registration [70, p. 121]. Others are

constructed to encourage spatial smoothness of d based on its derivatives as in diffusion

registration [34] and curvature registration [35].

2.4 Background on Majorize-Minimize (MM) Algorithms

One can see, for example from (2.17) and (2.19), that tomographic imaging and motion

correction applications often involve the minimization of cost functions. One approach to

such minimizations is the Majorize-Minimize (MM) optimization technique.2 The MM

technique will be the focus of Chapter 6. To aid subsequent discussion, however, we give

some preliminary background here. Given a minimization problem

min. Φ(θ) s.t. θ ∈ Θ ⊂ R
p, (2.27)

an MM algorithm is one that reduces Φ monotonically by minimizing a succession of

approximations to Φ, each of which majorizes Φ in a certain sense. An MM algorithm

uses what we call a majorant generator φ(·; ·) to associate a given expansion point θ i

with what we call a tangent majorant φ(·;θi). In the simplest case (illustrated for a 1D

cost function in Figure 2.3), a tangent majorant satisfies Φ(θ) ≤ φ(θ;θi) for all θ ∈ Θ

and Φ(θi) = φ(θi;θi). That is, φ(·;θi) majorizes Φ with equality at θi. Because of

this majorization condition, any θ ∈ Θ that reduces φ(·;θi) from its value at θi, likewise

reduces Φ,

φ(θ;θi) < φ(θi;θi) =⇒ Φ(θ) < Φ(θi)

In particular, the constrained minimizer θi+1 ∈ Θ of φ(·;θi) satisfies Φ(θi+1) < Φ(θi)

whenever strict reduction of φ(·;θi) is possible. Repeating these steps iteratively, one

2The technique has gone by various other names as well, such as iterative majorization or optimization transfer.
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obtains a sequence of feasible vectors {θi} such that {Φ(θi)} is monotone non-increasing.

0

0.5

1

1.5

Φ(θ) φ(θ;θ0)

φ(θ;θ1)

A B C

Co
st

θ0θ1θ2

Figure 2.3: One-dimensional illustration of an MM algorithm.

More elaborate forms of MM have been considered [32, 33] that allow an iteration-

dependent sequence {φi(·; ·)} of majorant generators to be used, rather than just a single

φ(·; ·). This generalization allows one to choose the form of the majorant generator at a

given iteration based on the observed progress of the algorithm. In addition, one can allow

the tangent majorants {φi(·;θi)} to depend on an i-dependent subset of the components

of θ. Thus, one can take iterative steps that, similar to coordinate descent, reduce Φ(θ) as

a function of subsets of the optimization variables. This technique, which we call block

alternation, can facilitate MM algorithm design for several reasons. Firstly, it makes it

easier to satisfy the majorization requirement, because Φ(θ) ≤ φi(θ;θi) now need only

be satisfied for certain components of θ. Secondly, since the majorization requirement

is weaker, it also becomes easier for φi(·;θi) to approximate Φ with higher accuracy,

which can lead to faster convergence [32]. Thirdly, each resulting φi(·;θi) can be easier

to minimize since it is a function of fewer than p variables.

The subject of MM has appeared in a range of statistics literature over the years (e.g.,

[42, 43, 56, 58]). A prominent example is the Expectation Maximization (EM) methodol-
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ogy (commonly attributed to [25]) which is an application of MM to maximum likelihood

estimation. In the field of statistical tomographic imaging, maximum likelihood estima-

tors, and EM algorithms for implementing them, achieved early popularity in [88] and

[57]. Since then, MM has become an algorithm design technique of increasing prevalence

in this field, as is apparent in such works as [21, 22, 23, 104, 107]. The popularity of MM

has also reached the commercial medical imaging world. In particular, several manufac-

turers now package their emission tomography scanners with software for an incremental

gradient version (due to [44]) of an MM algorithm.

An MM algorithm is derived by choosing majorant generators of a particular form, and

the form selected is based on the algorithm designer’s insights into the shape of the cost

function in question. One design goal is to choose majorant generators {φi(·; ·)} so that

the corresponding tangent majorants {φi(·;θi)} approximate Φ as accurately as possible

over as large a region of Θ as possible, all the while respecting the majorization require-

ment. One expects greater approximation accuracy to result in more rapid descent of

{Φ(θi)}. At the same time, one tries to choose the majorant generators so that the result-

ing tangent majorants {φi(·;θi)} can be constructed and minimized in a computationally

efficient manner. Typically, therefore, one generates tangent majorants that are convex

(although we will not make this a global assumption in our analysis in Chapter 6) as in

Figure 2.3. Naturally, these design aims can conflict, and this has led to abundant literature

that examines alternative designs for particular applications (e.g., [27, 28, 32, 33]).

Since the majorant generators, and hence the descent mechanism of the algorithm, are

custom designed to suit the particular cost function at hand, MM algorithms have the

potential to outperform more generic algorithms that do not take the specifics of Φ into ac-

count. The latter would include textbook-variety derivative based methods (e.g., gradient

projection and conditional gradient). These considerations are particularly important if Φ
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is of a general type that must be minimized routinely. If a cost function of a specific form is

minimized on a repeat basis then, logically, algorithms like MM that are custom-designed

to suit this form can be a worthwhile investment. This notion seems to account for the

popularity of MM in statistical tomographic imaging. There, one routinely minimizes in-

stances of loglikelihood or other cost functions of a common form, but corresponding to

different sets of measured data.



CHAPTER 3

A Matrix-Vector Framework for Interpolation-Based Image
Deformations

In this chapter, we develop a discrete domain description of the transformation T (α)

defined by (2.21) and (2.22) when f src has the parametric form

f src(x, y, z) =

|G|
∑

k=1

ukwk(x, y, z). (3.1)

Here, G is the following set of integer grid coordinates

G
4
=
{
(xk, yk, zk) ∈ Z

3 : 0 ≤ (xk, yk, zk) ≤ (NX , NY , NZ)
}
,

the uk are components of a parameter vector u ∈ R
|G|, and

wk(x, y, z) = w (x− xk)w (y − yk)w (z − zk) , (xk, yk, zk) ∈ G. (3.2)

are interpolating basis functions formed from tensor product of the 1D interpolator w. The

integer coordinates (xk, yk, zk) ∈ G range with k over G. This framework will be used

throughout this dissertation.

3.1 Deformation Space Notation

We first consider the array obtained from the deformed sample points

dj(α)
4
= d(xj, yj, zj,α), (xj, yj, zj) ∈ G. (3.3)

29
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Define νX , νY , and νZ , all in R
|G|, as the vectors whose j-th components are xj , yj , and

zj respectively, and

ν
4
= (νX ,νY ,νZ).

Also, define the matricesBX ,BY , andBZ to have entries

[BC ]jk
4
= bCk[xj, yj, zj], C ∈ {X,Y, Z}.

Then (3.3) can be re-expressed

dj(α) = (djX(αX), djY (αY ), djZ(αZ)) (3.4)

4
= ([νX +BXαX ]j, [νY +BYαY ]j, [νZ +BZαZ ]j). (3.5)

The vector quantity BCαC is the discrete deformation map, for the direction of deforma-

tion C ∈ {X,Y, Z}.

We shall also define

B
4
= diag {BX ,BY ,BZ} .

and refer toBα as the overall deformation map vector. Note that

ν +Bα = (νX +BXαX ,νY +BYαY ,νZ +BZαZ) (3.6)

in light of our vector concatenation convention (see Section 2.1, Item 3).

3.2 Intensity Transformation Matrices

Let us define the operator T (α) as the one that maps f src, the vector whose j-th com-

ponent is f src
j

4
= f src(xj, yj, zj) to the vector whose j-th component is T (α)f src(xj, yj, zj).
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Then combining (3.1) with (2.21)

f src

j =
∑

k

wk(xj, yj, zj)uk (3.7)

[T (α)f src]j = f src(d(xj, yj, zj,α))

=
∑

k

wk(dj(α))uk. (3.8)

Now, we define the matrixW (α) to have entries

[W (α)]jk
4
= wk(dj(α)). (3.9)

From (3.5), we have that dj(0) = (xj, yj, zj) and therefore

[W (0)]jk = wk(xj, yj, zj). (3.10)

Thus, (3.7) and (3.8) can be re-expressed in the matrix-vector form

f src = W (0)u (3.11)

T (α)f src = W (α)u, (3.12)

Finally, we assume that the interpolators wk are chosen so that in (3.7), the uk are uniquely

defined by the samples f src
j , or equivalently that W (0) is invertible in (3.11). Combining

(3.11) and (3.12) we obtain,

T (α)f src = W (α)(W (0))−1f src, (3.13)

and since this holds for any f src,

T (α) =W (α) (W (0))−1, (3.14)

which is the explicit representation of T (α) as a matrix.
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3.3 Discrete Formulations of Registration Problems

In practical image registration, it is necessary to operate on discrete representations

of the source and target images f src and f targ. Accordingly, one must also pose discrete

versions of the discrepancy measures discussed in Section 2.3.1. In this dissertation, we

will be interested in the comparison of T (α)f src to f targ (defined analogously to f src) via

the Sum of Squared Differences (SSD) criterion

discrSSD(T (α)f src,f targ)
4
=

1

2
||T (α)f src − f targ||2`2 (3.15)

which is the widely considered discrete version (e.g., [99, 92, 53, 51, 54, 73, 97, 106]) of

(2.20). For convenience, we shall make the abbreviated definition

ΦSSD(α)
4
= discrSSD(T (α)f src,f targ).

When the w in (3.2) are B-splines, it is better, for the purpose of minimizing ΦSSD(α) (or

similar cost functions) to incorporate (3.12) and re-express (3.15) as follows

ΦSSD(α)
4
=

1

2
||W (α)u− f targ||2`2 . (3.16)

This is because T (α), as given by (3.14) is much less sparse1 a matrix than W (α).

Iterative minimization of the RHS of (3.16) tends to be much more efficient, in terms

of gradient evaluations and so forth, than the RHS of (3.15). For these same reasons, we

will also have occasion to re-express other cost functions Φ(T (α)f src) as Φ(W (α)u),

thereby bringing the problem into the domain of uk coefficients.

1 In fact, if one considers (3.11) for the case when the w are B-splines, it becomes clear that (W (0))−1, the mapping
from the vector of B-spline coefficients u to the vector image samples f src, is simply interpolation pre-filter and T (α) is
the operator that re-interpolates the samples f src

j via the corresponding cardinal splines. (cf. [98, pp. 25-26]). Naturally,
direct interpolation via cardinal splines is a much less sparse operation than when done in the B-spline domain.



CHAPTER 4

A Comparison of Motion-Corrected PET Reconstruction Methods

4.1 Introduction

In this chapter, we present the first branch of work of which this dissertation is com-

posed. Namely, we compare different methods for carrying out respiratory motion-corrected

PET reconstruction of the thorax. In making this comparison, the aim is to assess which of

various methods gives best results in quantifying the amount of radio-tracer in hot lesions

at the boundary of the lung (of the kind seen in FDG oncology studies).

In past years, the conventional practice in Positron Emission Tomography (PET) has

been to reconstruct images while ignoring the effects of anatomical motion in the patient.

When motion is ignored, a PET scanner acts something like a conventional optical camera

with the shutter open: one obtains the superposition of images of the object as it appears

in various phases of motion. Thus, the image exhibits a degree of blur that is related to

the motion magnitude. Until recently, the drawbacks of ignoring object motion has been

ignored due to limitations in the spatial resolution of early PET scanners. The magnitude

of anatomical motion was not always substantial enough, in comparison to the scanner

resolution, for motion correction to promise any benefit. However, with the improvement

of scanner resolution over time, motion-related blur is becoming a limiting factor in the

resolution achievable in PET reconstruction.

33
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This problem has been compounded by changing trends in the application of PET. In

early years, PET was applied mainly in the research of the brain, where the relatively

small movements of the head made motion effects still easier to dismiss. Conversely,

recent clinical PET practice has emphasized cancer treatment, and therefore thorax scans

have become more prevalent. Thus, not only has scanner resolution increased, but interest

has shifted over the years to the scan of anatomy where motion is much larger. As a result

of these factors, the recent tomographic imaging literature has seen much interest (e.g.,

[51, 62, 37, 66, 95, 80, 61, 96, 79]) in motion correction techniques.

A prominent class of motion correction techniques that one sees in the literature revolve

around applying motion-correcting pre-transformations to the photon detection informa-

tion, e.g., [62, 95, 80, 61]. These techniques have been applied mainly to brain and cardiac

imaging. They assume an affine model for the anatomical motion, and in some cases also

on the ability to measure the motion directly. Both assumptions are highly non-ideal when

dealing with motion of the lungs, as is our focus here.

Another prominently considered class that one sees (e.g., [51, 97, 96, 79]), and one

that does not have the above limitations, is based on frame-wise reconstruction from gated

projection data. Gated data consists of a separate measured projection vectors {y t}
Ngates−1
t=0

each constituting a scan of the object in one of Ngates phases of its motion. Frame-wise

methods proceed by first reconstructing an image from each projection gate (or frame)

yt, then aligning these images by image registration methods, and finally fusing them

together in some sort of consolidation step (e.g., by averaging them). In these types of

approaches, the registration step is done post-reconstruction and hence, typically, does not

make full use of the projection measurement statistics. Moreover, each image registration

step occurs between very noisy images reconstructed from low-count, single-gate data,

and can be expected to result in poor alignment.
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This motivated us in earlier work [47] to pose a parametric Poisson model for the

gated measurements involving a single unknown activity image and a set of deformation

variables describing how that image deforms from gate to gate due to patient motion. By

maximizing a loglikelihood for this model, a method we call Joint Estimation by Deforma-

tion Modeling (JEDM), one determines both image and deformation parameter estimates

jointly from the full set of projection measurements. We previously compared JEDM to

frame-wise approaches and to ungated reconstruction for a highly simplified simulated

thorax scan involving a single-slice image, a 2-gate acquisition, and a 1-parameter de-

formation model. Preliminary results showed JEDM to outperform the other methods in

terms of both lung lesion tracer uptake recovery and motion estimation.

In this chapter, we continue this work, but look at much more realistic simulations. Re-

construction is done with a 3D B-spline motion model based on 2300 parameters per gate.

Moreover, the simulated motion and activity distribution are derived from CT scans of

actual thorax anatomy. Thirdly, whereas before we tested only pure maximum likelihood

estimation, here we add a roughness penalty term to accomplish regularization. In design-

ing the penalty, we discuss how side information can be used – assumed to be available

from a breath-hold CT scan – to avoid smoothing over hot lesions in a region of interest

(see Section 4.4.5).

This chapter is organized as follows. In Section 4.2, we describe the Poisson model for

gated PET data on which JEDM is based. The various reconstruction methods to be com-

pared are outlined in Section 4.3. Some details on how the methods will be implemented

are given in Section 4.4. Finally, in Section 4.5, we present experiments comparing the

methods in terms of their lesion quantification performance. Experiments are also pre-

sented that test our lesion preserving penalty strategy.
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4.2 Parametric Statistical Model for Gated PET Data

In acquiring gated data, one obtains a set of measured projection vectors {yt}
Ngates−1
t=0 ,

each constituting a scan of the object in one of Ngates phases (which we shall interchange-

ably refer to as gates or frames) of its motion. The total measured projection vector can

be represented as the concatenation y = (y0, . . . ,yNgates−1). The natural extension of the

classical statistical model (2.8) is to model the mean of each yt as

ȳt(λt) = τt(Pλt + rt) 0 ≤ t ≤ Ngates − 1 (4.1)

where λt denotes the activity sample vector of the object, as it appears in gate t and τt is

the gate duration.

A limitation of this model is that it does not exploit the fact that the {λt} are related, i.e.,

that they derive from motion-deformed versions of the same object. Our approach, based

on work begun in [47], is to relate the {λt} using the discrete image transformation model

described in Chapter 3. Accordingly, we introduce an unknown deformation parameter

vector α = (α1, . . . ,αNgates) and model the relationship between the {λt} as follows,

λ0
4
= λ (4.2)

λt = T (αt)λ, 1 ≤ t ≤ Ngates − 1. (4.3)

Combining this with (4.1) leads to

ȳ0(λ) = τ0(Pλ+ r0) (4.4)

ȳt(λ,αt) = τt(PT (αt)λ+ rt), 1 ≤ t ≤ Ngates − 1. (4.5)

Thus, the mean of the projection data in gate 0 are now based on projections of λ, the

activity image samples in that gate. In each subsequent gate, however, the mean is based

on projections of T (αt)λ, a transformation of λ that accounts for motion. Note that
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the number of unknowns in (λ,α) would normally be much smaller than the number in

{λt}. The deformation parameter vector α would consist of a relatively small number of

components, reflecting the number of degrees of freedom in the anatomical motion.

Taking into account (3.11) and (3.12) with λ = f src, one can see that alternative

parametrization of (4.4) and (4.5) is

ȳ0(u) = τ0(PW (0)u+ r0) (4.6)

ȳt(u,αt) = τt(PW (αt)u+ rt), 1 ≤ t ≤ Ngates − 1. (4.7)

where

u = (W (0))−1λ. (4.8)

The gate-wise models (4.6) and (4.7), can be expressed more compactly as

ȳ(u,α) = P(α)u+ r (4.9)

where (denoting here the Kronecker product by ⊗ and the R
d identity by Id),

P(α)
4
= INgates ⊗ (τ0W (0), τ1W (α1), . . . , τNgates−1W (αNgates−1)) (4.10)

r
4
= (τ0r0, . . . , τNgates−1rNgates−1).

When the matrices {W (αt)} have non-negative entries, one can interpret P(α) as a

motion-corrected projection matrix. This is the case when, in (3.2), the 1D interpolators w

are non-negative.

4.3 Proposed Reconstruction Methods

In this chapter, we shall compare three methods, described below, for reconstructing λ.

Two of these (JEDM and FWPR-PA) were considered in our previous work [47].
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1. Joint Estimation with Deformation Modeling (JEDM). In the JEDM method, we consider

the joint penalized loglikelihood function (see also Section 2.2.5) based on (4.4) and (4.5)

ΦJEDM(λ,α) = KL(y0, ȳ0(λ)) +

Ngates−1
∑

t=1

KL(yt, ȳt(λ,αt)) + βRact(λ). (4.11)

Here

Ract(λ) =
∑

k

ωkψ([Cλ]k). (4.12)

is an activity roughness penalty function of the form (2.18), and β ≥ 0 is a regularization

parameter controlling the influence of Ract. We then reconstruct an image λ̂ according to

λ̂ = argmin
λ

{

min
α

ΦJEDM(λ̂,α)
}

(4.13)

This is illustrated in Figure 4.1. We introduced this approach in [47], but made very

preliminary tests there and only for the unregularized case (i.e., β = 0), which corresponds

to pure maximum likelihood estimation.
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Figure 4.1: Flow diagram of the JEDM method.

2. Frame-Wise reconstruction with Post-Registration (FWPR). An FWPR method is our generic

terminology for a method in which images {λ̂t}, each reconstructed separately from the

corresponding projection gate yt, are post-registered and consolidated in some way to

produce a final image λ̂. There are two varieties that we consider here.
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(a) FWPR with Post-Averaging (FWPR-PA). In the post-registration step, each λ̂t, t >

0, is registered to the common target image λ̂0. This yields deformation parameter

estimates {α̂t} satisfying, to some degree of accuracy

T (α̂t)λ̂t ≈ λ̂0, 1 ≤ t ≤ Ngates − 1. (4.14)

Consolidation is then accomplished by taking the weighted average (according to

gate duration) of λ̂0 and the {T (α̂t)λ̂t},

λ̂ =
τ0λ̂0 +

∑Ngates−1
t=1 τtT (α̂t)λ̂t
∑Ngates−1

t=0 τt
.

This approach, illustrated in Figure 4.2, is an intuitive and natural one, and seems to

have occured independently to various investigators (e.g., [51, 96, 97, 47]). However,

unlike JEDM, neither the determination of {α̂t}, nor the final consolidation of the

{λ̂t} are based on a model for the measurement statistics.
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Figure 4.2: Flow diagram for the FWPR-PA method.

(b) FWPR with Penalized-Likelihood Consolidation (FWPR-PLC). In the post-registration

step, each λ̂t, t > 0, serves this time as a target image to which λ̂0 is registered. This
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yields deformation parameter vector estimate α̂ = {α̂t} satisfying, to some degree

of accuracy

T (α̂t)λ̂0 ≈ λ̂t, 1 ≤ t ≤ Ngates − 1. (4.15)

Consolidation is then accomplished by substituting these {α̂t} into (4.11) as knowns

and carrying out penalized likelihood minimization with respect to λ,

λ̂ = argmin
λ

{ΦJEDM(λ, α̂)} .

These steps are illustrated in Figure 4.3.

This variation is slightly more statistically principled than FWPR-PA, in that the con-

solidation step exploits the loglikelihood of the measurements. A similar approach

has been considered recently in [79], but where the {α̂t} are derived from the reg-

istration of gated CT scans. Here, we assume that at most a breath-hold CT scan is

available, and so we must derive the deformation parameter estimates from the gated

emission data.

Apart from the methods listed above, there are other notable variants that we will not

consider, except perhaps in future work. These include an approach, proposed in [36], for

reconstructing based on a motion-parametrized model for ungated projection data. The

mean of the measurement vector yungated is essentially obtained by summing over (4.4)

and (4.5),

ȳungated[λ,α] = P

[

τ0I +

Ngates−1
∑

t=1

τtT (αt)

]

λ+ r (4.16)

Another approach, proposed in [37, 66] is to do penalized likelihood reconstruction based

on (4.1), but with a penalty function involving motion parameters. The penalty term (and

only the penalty term) encourages the solution {λt} to be related through a certain mo-

tion model. This is in contrast to JEDM in which the motion is described entirely in the

loglikelihood KL(y, ȳ(u,α)).
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Figure 4.3: Flow diagram for the FWPR-PLC method.

4.4 Structure of Algorithm Implementations

In this section, we describe the skeleton of how we implement the reconstruction meth-

ods proposed in Section 4.3. We adhere to this implementation format in our experiments

in Section 4.5. However, different implementation choices from those described below

can be contemplated, and may be looked at in future work.

4.4.1 Transformation Model Parameters

The discrete deformation operators T (α) and W (α) will be based on deformation

basis functions {bCk(x, y, z)}C={X,Y,Z} of the form (2.25). Cubic B-splines β3 shall be

used (see (2.26)). As mentioned, this choice is a popular one for modeling the motion of

non-rigid structures in the thorax.

The image intensity basis functions wk in (3.2), shall also be cubic B-spline tensor

products, i.e., w(x) = β3(x). Equivalently, we transform the voxel values λ using cubic
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cardinal spline interpolation (see also Footnote 1). This intensity model has been used

in [99, 92, 53, 54], although many people still use linear interpolation (e.g., [52, 101]).

A principal attraction of the former is that cubic cardinal spline interpolation is an accu-

rate approximation of sinc interpolation and, when implemented in the B-spline domain,

is much cheaper computationally due to the small support of cubic B-splines. Sinc in-

terpolation obviously has its appeal due to its roots in Shannon sampling theory. It has

also been reported [82], that sinc-like interpolators reduce the presence of inflection points

and/or sub-optimal local minima where the optimization algorithms can get stuck. This is

probably linked to the higher order differentiability of cubic splines, as opposed to linear

interpolation which is not even once differentiable.

Despite the potential advantages of w(x) = β3(x), it also leads to much less sparse

W (α) and so comes at a higher computational cost than linear interpolation. We shall

discuss this in greater detail in Chapter 5.

4.4.2 Implementation of JEDM

Our current approach is to minimize ΦJEDM over unconstrained α and over λ con-

strained to the set1

Θλ
4
=
{
λ : u = (W (0))−1λ ≥ 0

}
. (4.17)

By combining (4.9) and (4.17), one can reformulate (4.13) as follows

ΦJEDM(u,α) = KL(y,P(α)u+ r) + βRact(W (0)u) (4.18)

û = argmin
u≥0

min
α

ΦJEDM(u,α) (4.19)

λ̂ = W (0)û. (4.20)

1This is an inevitable complication of using w(x) = β3(x). Ideally, we would like the minimization constrained
to have non-negative activity samples in every gate, {(λ, α) : λ ≥ 0, T (αt)λ ≥ 0}, but this is a complicated, non-
convex set. In light of (3.14), the set Θλ, defined in (4.17) is a convex subset of this, and one we believe is sufficiently
large to find useful λ estimates.
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The minimization of (4.19) is approached using the general coordinate block alternating

minimization below.

Algorithm 4.4.1 (Block alternating JEDM implementation)

For n = 1, . . . , Nouter

For m = 1, . . . ,Mu(n)

Fix all variables but u and reduce ΦJEDM(u,α) as a function of u,

ΦJEDM(uold,αold) > ΦJEDM(unew,αold). (4.21)

according to an appropriate sufficient decrease rule.

end

For t = 1, . . . , Ngates − 1

For m = 1, . . . ,Mα(n),

Fix all variables but αt and reduce ΦJEDM(u,α) as a function of αt,

ΦJEDM(uold,αold) > ΦJEDM(uold, . . . ,αnew

t , . . . ). (4.22)

according to an appropriate sufficient decrease rule.

end

end

end

The reader will observe in (4.18) that, for fixed α, ΦJEDM as a function of u has the

form of a standard penalized likelihood cost function, based on (2.8), but with projection

matrix P(α). This means that the variety of specialized algorithms that have been devised

over the years for PL estimation in PET can be used to accomplish (4.21). Apart from that,

by reformulating the minimization in terms of u, rather than λ, manipulations of P(α)
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involve (see (4.10)) the sparse deformation matrices W (α) instead of the denser T (α).

This parallels remarks made about (3.16) in Chapter 3.

We would like to ensure that Algorithm 4.4.1, even if it may not converge to a global

minimum, at least has no non-stationary limit points. For this, the updates (4.21) and

(4.22) must obey a sufficient decrease criterion. For monotonic algorithms, sufficient de-

crease is generally ensured (cf. [105, p. 91]) when the update operation yields, over the

neighborhood any given non-stationary point, a uniform minimum decrease. It is straight-

forward to show this to be the case in Algorithm 4.4.1, when (4.21) are iterations of the

the Separable Paraboloidal Surrogates (SPS) algorithm [29] and when (4.22) are iterations

of steepest descent with the Armijo line search rule [7, p. 29]. This is the combination that

we shall use.

With the Armijo rule, one pre-selects scalars 0 < σ, γ < 1 and s > 0. When updating

a cost function f(θ) along update direction ∆θ, a step (γns)∆θ is made where n is the

smallest integer satisfying,

f(θ) − f(θ + (γns)∆θ) ≥ −σγns∇Tf(θ)∆θ. (4.23)

The SPS algorithm is an example of an MM algorithm with quadratic tangent majorants.

The quadratics are characterized by curvature parameters for which there are various

choices. We use the minimum possible curvature parameter values (see [28, p. 62]) in

all cases. This choice is expected to yield the fastest rate of descent.

In our experience, the deformation parameters α converge fairly quickly, as compared

to u, presumably because the motion parameters are fewer in number and much more

over-determined. We have therefore found it efficient to have Mα(n) in Algorithm 4.4.1
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be of the form

Mα(n) =







M∗
α, n ≤ Nmax

α

0, otherwise
, (4.24)

that is, to stop updating α after a certain number of outer iterations n = Nmax
α .

4.4.3 Implementation of Motion-Free Penalized Likelihood

In the experiments to follow in Chapter 4.5, we will have occasion to do various Penal-

ized Likelihood (PL) reconstructions that do not involve unknown motion parameters. To

make these reconstructions comparable to JEDM, we implement them in terms of u as in

(4.18) – (4.20), but with changes described as follows:

1. Frame-Wise Reconstructions. All frame-wise reconstructions in FWPR-PA and

FWPR-PLC will be done with (4.18) replaced by

ΦPL(u) = KL(yt,PW (0)u+ rt) +
τt
∑

t̃ τt̃
βRact(W (0)u)

Note that the regularization parameter β is scaled according to gate duration. This is

so that the weight of the penalty term relative to the negative loglikelihood term is

approximately the same in all gates t. In turn, this ensures that all frames undergo

approximately the same degree of smoothing prior to being consolidated, and that

this smoothing is comparable to that in ordinary JEDM.

2. Penalized Likelihood with Known Motion. Comparisons will be made with the

case when gated data is PL reconstructed with known deformation parameter vector

αtrue. In this case, we will use

ΦPL(u) = KL(y,P(αtrue)u+ r) + βRact(W (0)u).

in place of (4.18). This case provides an upper performance bound against which

methods that involve motion estimation can be measured.
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3. Ungated Penalized Likelihood. Comparisons will be made with the conventional

practice of reconstructing based on ungated projections. Accordingly, we carry out

PL reconstructed based on
∑

t yt, using the cost function

ΦPL(u) = KL(
∑

t

yt,P
∑

t

τtW (0)u+
∑

t

τtrt) + βRact(W (0)u).

in place of (4.18).

As with JEDM, all PL iterations shall be done via SPS with optimum curvature param-

eters.

4.4.4 Implementation of Image Domain Registration

The frame-wise algorithms FWPR-PA and FWPR-PLC require image domain regis-

tration steps (4.14) and (4.15) respectively. Currently, we implement these registrations

using the Sum of Squared Differences (SSD) criterion (see (3.16)). For these minimiza-

tions, we apply steepest descent with the Armijo step rule (4.23), just as with the cost

function reductions (4.22).

4.4.5 Lesion Preserving Penalty Design Strategy

As has already been discussed, our principle aim in considering motion-corrected re-

construction methods is to combat the blur of small hot lesions that ignoring motion would

otherwise induce. A natural concern, therefore, is whether the roughness penalty Ract(λ),

used in all of these methods, could introduce blur comparable to what motion correction

removes. If so, this would detract from the effectiveness of the motion correction and

could obscure the comparison of the different methods in Section 4.3.

As discussed in Section 2.2.5, one can set the ωk weights in (4.12) to low values in

regions where sharpness is desired. This is reasonable provided that one has a priori

information about where these sharp features are located. In the case of the tumour quan-
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tification task considered here, it is reasonable – in light of the growing preponderance

of PET-CT scanners – to assume that this information is available from a breath-hold CT

scan. If a breath-hold CT scan is available, we know the approximate location of the lesion

in the PET image near full inspiration. In addition, we know the approximate amplitude

of typical respiratory motion. These two pieces of information can be combined to local-

ize the lesion to some generously sized ROI, whose dimensions are on the order of a few

centimeters.

Once this ROI is identified, one can set appropriate ωk to zero so that Ract will ignore

voxels there. However, since many voxels outside of this ROI remain subject to the rough-

ness penalty, we can still hope that the regularization will greatly reduce under-determined

behavior and statistical variance in the reconstruction. We apply this practice throughout

our experiments in Section 4.5. Some anecdotal support for it is given in Section 4.5.4.

4.5 Experiments

In this section, we conduct experiments using the various reconstruction methods, im-

plemented as described in Section 4.4. The experiments were based on a simulated thorax

acquisition which we describe next.

4.5.1 Simulated Data and Reconstruction Parameters

We simulated a 10 gate thorax acquisition as follows. We first obtained real thorax CT

images at 5 levels of respiration. The CT images were downsampled to voxels of size

4 × 4 × 2 millimeters and cropped to a grid size of 81 × 105 × 17. These 5 images were

co-registered using an 11 × 14 × 5 × 3 control point grid of cubic B-spline deformation

basis functions using the Sum of Squared Differences (SSD) criterion. These grid dimen-

sions along with Section 4.4.1 characterize the deformation model that we use throughout

these experiments. Let {αt}
4
t=1 denote the resulting motion parameter vector sequence
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in order of increasing inspiration level. Using this sequence, we formed the following

concatenation

αtrue = (α1,α2,α3,α4,α4,α3,α2,α1,0)

to model a symmetric 10 gate breathing cycle.2 This αtrue is what we used as the ground

truth motion parameter vector in the simulation described here.

A synthetic ellipsoidal lung lesion of axial radius 2 mm and transaxial radius 4 mm

was inserted into the gate 0 image. This image’s intensity values were mapped to obtain a

realistic PET activity distribution and also so that it lay within the set Θλ (see (4.17)). We

call this image λtrue. A slice of λtrue containing the lung lesion is shown in Figure 4.4(a).

A sense of the lesion blur that would result from an ungated reconstruction is given in

Figure 4.4(b) where the superposition of the image from all gates is shown.

A mean Poisson projection vector ȳ((W (0))−1λtrue,αtrue), as described by (4.9) was

simulated. The forward projection operator P was 2D and based on a line integral model

(see, e.g., [89]) discretized into a 128 angular by 105 radial system of bins in every image

slice. For the present study, equal gate durations τt were used. This choice deviates from

some proposed sinusoidal models for patient breathing patterns (e.g., [63, 87]). However,

in our private communication with clinicians, we have seen no consensus on whether

a lung cancer patient’s breathing would follow such a regular pattern, considering that

the lung tumor might interfer with it. We therefore postpone the problem of realistically

simulating the relative τt to future work. The τt were chosen, however, so as to obtain

80K mean total counts per axial millimeter of the image, 30% of which were accounted

for in the background term r. These are typical count and background levels in thorax

acquisitions on the ECAT HR+ scanner.

2However, our subsequent reconstruction experiments will use no knowledge of the breathing cycle’s symmetry!
Each motion correction method will estimate 9, and not 4, separate αt vectors.
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True Image

 

(a) Mean Pre−Image of Ungated Data

 

(b)

Figure 4.4: (a) The true activity (slice #8) in gate 0. (b) The superposition of the true activity (slice #8) from
all gates.

We added 20 realizations of Poisson noise to the mean measurement ȳ. On each data

realization, the three reconstruction methods of Section 4.3 were performed. In addition,

an ungated PL reconstruction and a gated PL reconstruction with known motion were per-

formed. The implementation of all of these are as described in Section 4.4. Our aim here

is to assess, as far as possible, the performance of the various methods when optimally im-

plemented. This is complicated by the possibility of the various minimization operations

involved getting trapped at sub-optimal local minima. In an effort to reduce the chance

of this, we have initialized all minimization sub-operations in all the reconstruction meth-

ods at the true value of the parameter that they are trying to estimate (that is, λtrue, αtrue,

T (αtrue
t ) λtrue etc. . . ).

Iteration parameters for the various minimization sub-problems were chosen based

on some preliminary empirical tests. For every SSD registration sub-problem (see Sec-

tion 4.4.4), 300 iterations were used. For every, PL sub-problem (see Section 4.4.3), 1500

iterations were used. For the JEDM reconstructions, the iteration parameters of Algo-

rithm 4.4.1 were Nouter = 45 and Mu(n) = 50 for all n. We chose Mα(n) as in (4.24)
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with M ∗
α = 30 and Nmax

α = 15.3 We chose the parameters γ = σ = 0.5 in all Armijo line

search operations (recall (4.23)). The parameter s was chosen adaptively so that the initial

step magnitude ||s∆α||∞ in the very first search step would equal 10 voxel lengths.

Roughness penalties were applied with β = 3.125×10−7. An approximately 3.2×3.2×

1.2 cm ROI around the lung lesion (see Figure 4.5) was excluded from Ract, as described

in Section 4.4.5. The lesion, throughout its true motion, remains within this ROI.

 

(a)

 

(b)

Figure 4.5: The same as Figure 4.4, except the ROI around the lesion excluded from the penalty Ract is
shown superimposed. Part (b) is to show this ROI encompasses the motion of the lesion.

4.5.2 Activity Estimation and Lesion Recovery Performance

Denoting U as the lesion uptake in the reconstruction and U true as that in λtrue, the per-

formance of the various reconstructions were quantified in terms of the absolute perecent

uptake error,

∆U =
|U − U true|

U true
× 100%.

3Note that our proposed method, JEDM, gets more total passes over u and α than the other methods. Because all
minimizations are initialized at the ideal, true parameter values however, this is, if anything, a handicap for JEDM, not
an advantage. More passes over the variables gives the algorithm iterates additional opportunity to retreat from the ideal
initial values.
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Figure 4.6: Cumulative mean percent error of the lesion tracer uptake for the various reconstruction methods.

The cumulative means of ∆U , as a function of number of realizations, are plotted for the

different reconstruction methods in Figure 4.6.

Sample reconstructions based on one of the 20 realizations are displayed in Figure 4.7.

A common slice from each reconstruction method and from the true activity image is

shown. The mean of these images is shown in Figure 4.8.

In these preliminary results, our proposed method JEDM demonstrated the best perfor-

mance in terms of average lesion quantification accuracy (see Figure 4.6). The accuracy

was close to that of the idealized case when the motion vector αtrue was known. (This was

in spite of the handicap mentioned in Footnote 3). The second best performance was that
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True Activity Image

 

(a) PL with Known Motion

 

(b)
Fully Joint Estimation

(JEDM)

 

(c)

Frame−Wise
Semi−Statistical (FWPR−PLC)

 

(d)
Frame−Wise

Post−Averaging (FWPR−PA)

 

(e) Ungated PL

 

(f)

Figure 4.7: Slice #8 of the reconstructed image, as reconstructed by various methods, for one realization of
the data.

of FWPR-PLC which, in terms of absolute quantification performance, did not lag dra-

matically far behind JEDM, and certainly outperformed the established custom of simply

ignoring motion and reconstructing from ungated data.

The FWPR-PA method exhibited the worst lesion quantification, worse even than the

ungated reconstructions. This may have been due, in part, to the fact that (4.14) essentially

tries to find a T (α) that will unwarp T (αtrue
t )λtrue. However, small lesion-like features in

T (αtrue
t )λtrue would be sensitive to voxel interpolation error. That would make them dif-

ficult to unwarp, and could have independently contributed to the misquantification of the

lesion. Additional experiments will be needed to determine how much misquantification
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True Activity Image

 

(a) PL with Known Motion

 

(b)
Fully Joint Estimation

(JEDM)

 

(c)

Frame−Wise
Semi−Statistical (FWPR−PLC)

 

(d)
Frame−Wise

Post−Averaging (FWPR−PA)

 

(e) Ungated PL

 

(f)

Figure 4.8: Slice #8 of the mean image, as reconstructed by various methods, and averaged over 20 realiza-
tions.

in FWPR-PA is due to interpolation error and how much is due to misregistration.

Based on Figure 4.8, however, both frame-wise methods seem to have suffered, as

expected, from similarly high variance in registration accuracy. This is evident by the blur

in Figures 4.8(d) and (e) not only in the region of the lesion, but throughout the images as

a whole. Because of this, there seems little reason, at this point, to expect that FWPR-PA

would outperform FWPR-PLC, let alone compete with JEDM.

4.5.3 Motion Estimation Performance

Using the estimated deformation parameters {α̂t} from JEDM and FWPR-PLC, we

calculated the position of the center of the lesion in each gate. These estimated trajectories
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are compared to the true trajectory in Figure 4.9. The three panels in the figure show the

position in each Cartesian direction of motion C ∈ {X,Y, Z}. In the present context,

the X-direction of motion was the front-to-back motion of the patient, Y was left-to-right

motion, and Z was axial motion. In the plots, the error bar radius is one standard error. The

corresponding standard deviations, but averaged across gates, are tabulated in Table 4.1.

The trends observed in this performance data are consistent with observations in Sec-

tion 4.5.2. The JEDM motion estimation accuracy is greater, on the whole, than that of the

frame-wise method FWPR-PLC. Interestingly, the discrepancy is most pronounced (see

Figure 4.9) in the left-right direction of motion. Moreover, the variance of FWPR-PLC is

higher. Again, this is expected considering that JEDM estimates motion based on the full

set of projection data whereas FWPR-PLC does not.

Table 4.1: The standard deviations, averaged across gates, of the estimated lesion trajectories for each Carte-
sian direction of motion. Values are in millimeters.

Front-Back Left-Right Axial
FWPR-PLC 2.53 2.73 1.07

JEDM 1.63 1.67 0.82

4.5.4 Anecdotal Test of Lesion Preserving Penalization Strategy

Here, we look at an anecdotal test of the lesion preserving penalty design strategy

discussed in Section 4.4.5. Reconstructions were made, shown for one slice in Figure 4.10,

to test various relevant combinations of cases. The percent tracer recovery in the lesion

for each case is also shown. The reconstructions were made using half as many gates and

three times as many total counts as the data simulation described in Section 4.5.1, but is

essentially the same otherwise.

Figures 4.10(a) and (b) look at converse cases. In (a), a moderate roughness penalty is

applied uniformly and indiscrimantly throughout the image, but motion is accounted for

(using JEDM) in the reconstruction. Conversely, in (b), roughness penalties are completely
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Figure 4.9: The trajectory of the center of the lesion, along with the mean trajectories as estimated by JEDM
and FWPR-PLC, plotted for each Cartesian direction of motion. The radius of the error bars are
a single standard error, taken over the 20 realizations.

omitted, but the data is ungated and motion effects are completely ignored. We see that

the percent lesion tracer recoveries for these are not dramatically different. This seems

to support our earlier conjecture, namely, that indiscriminant regularization might blur a

lesion to a degree similar to that of ignoring motion. Of course, (a) is an improvement over

(b) in terms of SNR, because of the reduced background variance effected by the penalty.

A comparison of Figure 4.10(c) with (a) and (d), however, suggests that the potential

benefits of the motion correction is more fully realized when the ROI exclusion technique

is used. In (d), we observe the case where blur is contributed neither by a roughness penalty
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(since the reconstruction was purely ML) nor by unknown motion (since the reconstruction

incorporated αtrue). Accordingly, the maximum lesion recovery of the 4 cases is observed

in (d). In (a), conversely, one observes the minimum background variance of the 4 cases,

due to the uniform penalty. Case (c) exhibits the best of both worlds: the background noise

is similar to (a), yet the lesion recovery is very close to that of (d).

These initial tests suggest, therefore, that motion correction is most effective when the

penalty is judiciously designed, so as to incorporate side information.

4.6 Conclusion

We conducted reconstruction experiments to compare the ability of various algorithms

to quantify an FDG-like hot lesion in the lung. In the simulated conditions of these ex-

periments, the lung lesion was subject to significant inter-gate motion and the total count

levels imitated those encountered in common medical practice. Moreover, the simulated

anatomy and motion were both derived from gate-wise CT reconstructions of an actual

human patient.

In these experiments, we compared a statistically principled method, JEDM, to less

statistically principled ones based on frame-wise reconstruction approaches. The JEDM

method was expected to perform better in part because all motion parameters are estimated

based on the full set of gated projection data. This stands in contrast to the frame-wise

methods in which the motion parameter vector at each gate is derived only from two gates

of low count projection data. These expectations seem to be supported by our experi-

ments. Not only did the JEDM method outperform the frame-wise methods in terms of

lesion quantification, but significantly more blur was observed throughout the mean recon-

structed image of the frame-wise methods. This suggests that the frame-wise methods had

difficulty in the registration step as a whole. A comparison of motion estimation accuracy
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Uniformly Penalized JEDM

Lesion Recovery = 63.11%

(a)
Totally Unpenalized ML

from Ungated Data

Lesion Recovery = 57.51%

(b)

JEDM, Unpenalized ROI

Lesion Recovery = 86.15%

(c)
Totally Unpenalized ML

with Known Motion

Lesion Recovery = 87.22%

(d)

Figure 4.10: Anecdotal comparison of the effect, on tracer recovery, of (a) indiscrimant roughness penaliza-
tion but accounting for motion, (b) penalization totally absent but ignoring motion, (c) selective
penalization and accounting for motion, and (d) penalization totally absent and ideal motion
correction.
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of JEDM and FWPR-PLC was also made in Section 4.5.3, and lent further support to these

conclusions.

For its part, the JEDM exhibited promising performance. Its average lesion misquantifi-

cation came very close to the case where motion was fully known. In addition, the absolute

levels of lesion misquantification were quite small ∼ 10%. It is likely that this was en-

abled by our lesion preserving penalization technique. In Section 4.5.4, we found that this

technique improves SNR relative to the practice of indiscrimantly penalizing throughout

the image.

In our future work, there are two principal issues that need to be explored further.

One issue is the sensitivity of the various reconstruction methods to local minima. An

effort was made to circumvent this issue by initializing all reconstructions at truth. Since

this is possible only in simulation, we will need to see if known strategies for avoiding

local minima can be used to recover the high performance of JEDM when ground truth is

unknown. These strategies would include multi-resolution pyramid techniques from the

image registration literature (e.g., [99, 92]).

Apart from this, there are still more realistic degrees of simulation to be tried. For

example, our simulations so far have assumed no modeling error. Both the reconstruc-

tions and the simulations were based on identical models of motion and count acquisition.

Finally, of course, we would like to compare these methods on real projection data.



CHAPTER 5

Accelerating Interpolation Operations Using Pre-Computation
Strategies

5.1 Introduction

This chapter contains the second branch of our work, and is based on [48]. We examine

here several pre-computation techniques that can be used to reduce the computational

effort in voxel intensity interpolations. These interpolation operations are common across

registration tasks based on the image transformation framework of Chapter 3. In such

registration tasks, one faces the need to iteratively reduce cost functions

Φ(α) = ξ(W (α)u) (5.1)

An example is the SSD cost function (3.16). Also, for fixed u, the iterative reductions in

(4.22) are of a cost function of the form (5.1). Other techniques for accelerating reg-

istration include randomized downsampling [52] and multiresolution approaches (e.g.,

[99, 92]). The techniques that we discuss here can easily be combined with these to obtain

additional speed-up factors.

59
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It will be convenient, in what follows, to expressW (α)u alternatively as,

W (α)u = Wu
www(ν +Bα)

= Wu
www(νX +BXαX ,νY +BYαY ,νZ +BZαZ)

where we have introduced Wu
fgh(·) to denote the interpolations of u performed at the

various of deformed grid points determined by ν +Bα,

[Wu
fgh(ν +Bα)]j

4
=
∑

mnp

umnpf ([νX +BXαX ]j −m)× (5.2)

g ([νY +BYαY ]j − n)×

h ([νZ +BZαZ ]j − p)

for all 1 ≤ j ≤ |G| and using the tensor product of 1D interpolators f , g, and h. With this,

we can re-express (5.1) as

Φ(α) = ξ(Wu
www(ν +Bα)). (5.3)

The computational cost of evaluating Φ is influenced by the respective computational costs

of B, Wu
www(), and ξ. Analogous remarks hold for evaluations of the derivatives of Φ.

Taking the gradient in (5.3) with respect to αX , for example, leads to,

∇αX
Φ = BT

XW
u
ẇww(ν +Bα)∇ξ (5.4)

Note here that the gradients of Wu
www(·), that being Wu

ẇww(·), are again interpolation op-

erations of a form and complexity comparable to Wu
www(·).

In this chapter, we will examine methods for accelerating the evaluations of the inter-

polation steps Wu
www(·) (which will apply equally well to the interpolation steps Wu

ẇww(·),

etc. . . in the derivatives). We will restrict attention throughout to the case where the w in



61

(3.2) are cubic B-splines,

w(t) = β3(t) =







|t|3

2
− |t|2 + 2

3
, 0 ≤ |t| ≤ 1

−(|t|−2)3

6
, 1 ≤ |t| ≤ 2

0, |t| ≥ 2

.

Then, taking note of (3.5), we have

[Wu
www(ν +Bα)]j =

∑

mnp

umnpβ3 (djX(αX) −m) β3 (djY (αY ) − n) β3 (djZ(αZ) − p) (5.5)

The ideas in this section readily generalize to other w. Focusing on cubic B-splines is in

part to simplify presentation, in part due to the popularity of this choice among certain

researchers (e.g., [99, 92, 53, 54]), and in part for their relevance to our work in Chapter 4.

There, we used cubic B-splines for reasons discussed in Section 4.4.1. In addition, cubic

B-splines are a practically relevant case because the benefits of using them, as compared

to the more traditional choice of linear interpolation (i.e., first order B-splines), are bought

at significantly greater computational expense. In 3D linear interpolation, one must inter-

polate a series of 2 × 2 × 2 blocks of image values, whereas the wider cubic B-splines

involve blocks of size 4 × 4 × 4. Thus, 8 times more computation is required.

In focusing on cubic B-splines, we are is in part to simplify presentation and for rel-

evance to the specifics of our experiments in Chapter 4. it is because there is a certain

popularity to the choice w = β3 among other researchers . As discussed in Section 4.4.1,

the more traditional use of higher order B-splines over the more common choice of

The impact of accelerating Wu
www(·) on CPU time will depend on how complicated B

and ξ are in relation to Wu
www(·). There are several factors that can mitigate the contribu-

tions ofB and ξ that will be important for us. These are:
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1. B is simple as given. For example, in the case of affine registration problems, mul-

tiplication with B involves only only 12|G| scalar multiplications and 3|G| memory

transfers. Conversley, evaluating Wu
www(·) can require 132|G| multiplications and

65|G| memory transfers (see Section 5.2).

2. The minimization algorithm being used involves line searches. Looking at Φ(α)

along a hypothetical ray {α+ `∆α : 0 ≤ ` ∈ R}, one obtains, in light of (5.3),

a(`) = ξ(Wu
www(ν +Bα

︸ ︷︷ ︸

4
=x

+`B∆α
︸ ︷︷ ︸

4
=∆x

)). (5.6)

Hence, the repeated evaluation of a(`) for different ` in line search operations is

not encumbered by multiplications with B, once the vectors x and ∆x have been

computed.1 The other operations ξ and Wu
www(·) therefore become the computational

bottlenecks during the line search.

3. ξ is simple as given. In ΦSSD(α), for example, ξ = 1
2
||z − f targ||2`2 is a simple norm

evaluation and its gradient is a simple vector subtraction z − f targ.

4. Minimization of Φ(α) is accomplished via an MM algorithm, in which the tangent

majorants are derived by taking ξ (z) in (5.3) and replacing it with a simpler φ(z, z̄).

This scenario arises in Section 6.6.1.

The rest of the chapter is organized as follows. In Section 5.2, we dissect computations

involving Wu
www(·) and B, looking at the different contributions to their computational

expense. In Section 5.3, we describe acceleration techniques that we devised. One of these

ideas is a tabulation techniques that reduces the number of grid points participating in each

interpolation. The second idea uses block alternation to make various computed quantities

1This is a recognized line search implementation strategy for cost functions involving compositions with an affine
function (e.g., [10, p. 508]).
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reusable. Some tests of these techniques are made in Section 5.4. In Section 5.4.1, the

techniques are tested in a simple 2D torso phantom registration via the SSD criterion

(3.15). In Section 5.4.2, we present some computational tests relevant to the minimizations

with respect to α in the JEDM method of Chapter 4.

5.2 The Components of the Computations

In this section, we look at the number of multiplications and the number of memory

transfers to and from RAM in the various operations associated with the evaluation of

W (α) = Wu
www(ν +Bα).

5.2.1 The Components of the Intensity Interpolations

We start be considering the number of multiplications and memory transfers needed to

compute the RHS of (5.5) for each dj . Because the cubic B-splines β3 are of width 4 grid

points, the interpolation can be limited to a 4 × 4 × 4 neighbourhood of grid points umnp

around dj(α). Moreover, since the 3D interpolator is a tensor product of 1D interpola-

tion functions, efficient computation demands that one interpolate the umnp in consecutive

passes, first along the m-direction, then the n-direction, and finally in the p-direction.

There are two components to this calculation. First, one must compute the interpola-

tion weights β3(djX(αX) − m), β3(djY (αY ) − n), and so forth. For the interpolation

along each grid axis, there will be 4 such weights, each one computed by evaluating a

cubic polynomial. Each cubic polynomial evaluation takes 4 multiplications, for a total of

4×4×3 = 48 multiplications. Secondly, one must take these weights and carry out the ac-

tual 3-pass interpolation of the 4×4×4 grid values in umnp. This requires 64+16+4 = 84

multiplications. The total over all of these steps is 48 + 84 = 132 multiplications. This

breakdown is summarized in Table 5.1. To aid later discussion, we have also include there

the analgous breakdown in 2D registration for the interpolations over 4 × 4 regions done
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by Wu
ww(·).

Estimates of the number of memory transfers of these operations are tabulated in Ta-

ble 5.2. In the case of Wu
www(·), each interpolation operation requires that a 4 × 4 × 4

sub-block of umnp be accessed from RAM. The result of the interpolation is then put back

in RAM for a total of 64 + 1 = 65 memory transfers.

5.2.2 The Components of the Deformation Map Computations

Here, we consider the number of multiplications and memory transfers needed to carry

out a multiplication withB (orBT ) needed to compute the deformation map vector.

For affine deformations the basis functions are {bCk(x, y, z)} = {x, y, z, 1}, C ∈

{X,Y, Z} (see also Section 2.3.2) meaning that each BC , is a |G| × 4 matrix. Multi-

plication with B therefore involves 4 × 3 = 12 multiplications per grid point. In terms of

memory transfers, it is reasonable to suppose that the 12 motion parameters can be held

permanently in cache and that the values of B can be generated on-the-fly with in the

CPU. Therefore, the only memory transfers of significance are those required to put the

3|G| resulting values of {dj(α)}b
j∈G ack into RAM.

In the case of cubic B-spline based deformations (i.e., with q =3 in (2.25)), we have for

each C ∈ {X,Y, Z} and (m′, n′, p′) ∈ G

[BCα]m′n′p′ =

NX/∆X∑

m=0

NY /∆Y∑

n=0

NZ/∆Z∑

p=0

αCmnpβ3

(
m′

∆X

−m

)

β3

(
n′

∆Y

− n

)

β3

(
p′

∆Z

− p

)

(5.7)

One sees that these values are downsamples of a discrete convolution. The summations in

(5.7), like those in (5.2), can therefore be done in separable passes, although this time over

the entire array αCmnp, rather than in 4 × 4 × 4 blocks. In the course of these passes, the

array size changes and this has a bearing on the amount of computation. When done first
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in m, then in n, then in p, the total number of multiplications is

No. of multiplications

' (4∆X)
NX

∆X

NY

∆Y

NZ

∆Z

+ (4∆Y )NX
NY

∆Y

NZ

∆Z

+ +(4∆Z)NXNY
NZ

∆Z

= 4|G|(1 +
1

∆Z

+
1

∆Y ∆Z

) (5.8)

≤ 12|G| (5.9)

Summing this over C ∈ {X,Y, Z}, we see from (5.8) and (5.9) that the number of mul-

tiplications can range between 12-36 per grid point. However, typical choices of control

point grid spacing parameters ∆C , C ∈ {X,Y, Z}, would be large enough so that the

actual value, given by (5.8), will tend toward the lower end of the range.

These calculations are also summarized in Table 5.1, again with the analogous case in

2D. Another aspect of the deformation map computations, also summarized in Table 5.1,

is that no on-the-fly interpolation weight computation is required. The weights used in

each separable pass in Equation (5.7), e.g., β3

(
m′

∆X
−m

)

are easily pre-computed and

stored.

In a similar way, one can also count the number of memory transfers in the sequence

of passes over αCmnp. The tally below includes transfers both in and out of RAM,

No. of memory transfers

= |G|(1 +
2

∆Z

+
2

∆Y ∆Z

+
1

∆X∆Y ∆Z

) (5.10)

≤ 6|G|. (5.11)

and summing over C ∈ {X,Y, Z} leads to a range of 3 − 18 memory transfers per grid

point. As before, for typical ∆C , the actual number would tend toward the lower end of

this range.
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In the tables, one observes that, even near the worst case bounds, the implied num-

ber of multiplications and memory transfers is significantly smaller than that required by

Wu
www(·). Interestingly, the worst case bounds are also independent of the spacings ∆C ,

and hence also the number of unknowns αCmnp. This is due, in part, to the fact that, when

one reduces the control grid spacing ∆C , the support of the basis functions reduces in the

same proportion. One can see this mathematically in (2.25) and graphically in Figure 2.2.

The computational demands of B become even less weighty in algorithms that use line

search operations, as discussed earlier. Since the deformation cost functions of the type in

(5.3) depend on α entirely throughBα, we therefore expect overall that the computation,

per iteration, of cost minimizations will be rather insensitive to the dimension of α.

Table 5.1: A tally of the number of multiplications per image grid point in image deformation operations.
2D 3D

Wu
β3β3β3

(·) affine B β3-basedB Wu
β3β3

(·) affine B β3-basedB
weight computations 32 0 0 48 0 0

interpolation 20 6 8-16 84 12 12-36
TOTAL 52 6 8-16 132 12 12-36

Table 5.2: A tally of the number of memory transfers per image grid point in image deformation operations.

2D 3D
Wu

β3β3β3
(·) affineB β3-basedB Wu

β3β3
(·) affineB β3-basedB

memory transfers 17 2 2-8 65 3 3-18

5.3 Acceleration Techniques

In this section, we describe two techniques for accelerating interpolation. One involves

using block alternation to make certain intermediate computed quantities reusable. The

second eliminates one of of the separable interpolation steps in (5.5) with approximate,

pre-tabulated values. For ease of presentation, we shall describe the techniques in a 2D

setting. That is, we will be discussing how to accelerate the evaluation of Wu
ww(·), where
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again w = β3. The same ideas carry over to 3D.

5.3.1 State Variable Hold-Over

In this section, we discuss an acceleration technique that we call state variable hold-

over. The technique is applicable to algorithms that alternatingly update αX and αY as

follows:

Algorithm 5.3.1 (Skeleton of a block alternating algorithm) Initialization. Choose a num-

ber of iterations L > 0 and sub-iteration parameters LX , LY > 0.

For i = 0, . . . , L

For k := 0, . . . , LX − 1

Update αX only: (αold
X ,αold

Y ) 7→ (αnew
X ,αold

Y )

end

For k := 0, . . . , LY − 1

Update αY only: (αold
X ,αold

Y ) 7→ (αold
X ,αnew

Y )

end

end

When certain αC are held fixed, quantities that are functions of the fixed variables

can be held in memory and re-used each time the non-fixed variables are updated. Thus,

additional, consecutive updates of the non-fixed variable are more cheaply obtained than

if all quantities were freshly computed. The fixed quantities include, for example, the

deformation maps associated with the fixedαC . It also includes the intensity interpolation

weights associated with the fixed αC . These concepts are illustrated in Figure 5.1 for

the case where αX is the fixed variable. There, we see that, when αY is updated, the

x-coordinate of dnew

j is the same as of dold

j . Thus, the local interpolation rectangle has
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Figure 5.1: Depiction of how interpolation neighborhoods shift during block alternation state variable hold-
over. There is no shift in the direction corresponding to the fixed variables. Therefore, no new
interpolation weights are needed.

the same x-coordinates as for dold

j . Locating the new interpolation rectangle only requires

computing the new y-coordinates. Similarly, the x-direction interpolation weights applied

to the new rectangle is the same as for the old. Hence, only the y-direction weights need

to be recomputed.

5.3.2 Table-Lookup Elimination

In this section, we propose a table-lookup technique that eliminates the need to in-

terpolate along at least one axis of the intensity coefficient array umn. The idea is to

pre-interpolate along that axis at a small sampling interval, compared to the original grid

spacing of u, and tabulate the results. During the iterations of the minimization algorithm,

interpolation along this axis may then be replaced with nearest-neighbor table-lookup.

Figure 5.2 illustrates this for when the x-axis (but not the y-axis) is finely sampled. As

shown in the figure, each region of interpolated grid values reduces from a 4× 4 region to

a 4× 1 region. This means half as many interpolation weight computations, 4 times fewer
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Figure 5.2: Illustration of table-lookup elimination.

interpolation weight multiplications, and 4 times fewer memory transfers of the umn array

are required.

The table-assisted interpolations in Figure 5.2 approximate each [Wu
ww(ν +Bα)]j as

follows,

[Wu
ww(ν +Bα)]j ≈

NY∑

n=1

w(y − n)

[
NX∑

m=1

w(x−m)umn

] ∣
∣
∣
∣
∣
x=〈djX(αX)〉
y=djY (αY )

. (5.12)

Here 〈djX〉 is djX rounded to the nearest in a set of finely spaced x-values {x`s} where

x`s = `+ s/S, 0 ≤ ` ≤ NX , 0 ≤ s ≤ S − 1. (5.13)

The parameter S ∈ N is the upsampling ratio.

The table-lookup technique assumes that the quantity
∑NX

m=1w(x − m)umn has been

pre-tabulated at all x`s. The number of the elements in the table will be S|G|, i.e., it is

equivalent to storing S images. Our conjecture is that, for many applications, S = 5 or S =
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10 would be an effective trade off between sampling accuracy and memory consumption.

If sub-pixel accuracy by more than a factor of 10 is desired, one could at least exploit this

table-assisted scheme in the preliminary stages of a multi-resolution registration.

5.3.3 Combining Table-Lookup and State Variable Hold-Over

If one can afford the extra memory cost, then on-the-fly interpolation weight compu-

tation can be almost completely eliminated by combining table-lookup and state variable

hold-over. To do so, one pre-tabulates interpolation values along each Cartesian axis of

umn, as described in Section 5.3.2. Suppose, as in Figure 5.2, that αX , but not αY , was

being updated in the course of the block alternations of Algorithm 5.3.1. If state variable

hold-over is used, the weights for the y-direction interpolation (which is the only direction

in which interpolation occurs) are held in memory throughout the consecutive updates of

αX . Thus, updating Wu
ww(ν + Bα) simply involves multiplying the values in the new

interpolation rectangle by these already available weights and summing. No new weight

calculations are required. One of course needs an additional table to cover the case when

the roles of αX and αY are reversed. That is, 2|G|S pre-computed values must be stored,

whereas before only |G|S elements were stored.

5.4 Computational Tests
5.4.1 Sum of Squared Differences in 2D

Here, we apply the acceleration techniques to the problem of the registration of two 2D

images, according to the SSD criterion, with a low complexity deformation map matrix

B. As discussed in Section 5.1, this is the case where interpolation operations are the

most intensive among the computations involved. We can therefore get an idea of the

maximum effect of the techniques that we have proposed. These experiments would also

be relevant to the case where line searches are used, even for a more complicated B. As
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is also discussed in Section 6.1, the overhead associated withB becomes marginalized by

the repeated cost evaluations required by the line search.

Accordingly, we set out to register the 128 × 128 torso image shown in Figure 5.3(a)

with the image shown in Figure 5.3(b). The absolute difference between these images

appears in Figure 5.3(d). The array of pixel values in Figure 5.3(a) played the role of the

source image data, u. By applying a certain warping W (αtrue)u to u, we generated the

target image data vector f targ which is the image displayed in Figure 5.3(b).

For deformation basis functions, we used 2D tensor products of cubic B-splines, of

width 4, but irregularly and densely positioned. The basis functions {bXk(x, y)}
120
k=1 were

each centered at a pixel in the shaded region about the left lung boundary in Figure 5.3(c).

Similarly, deformation basis functions {bY k(x, y)}
283
k=1 were situated at pixels in the shaded

region by the right lung. The true parameter values αtrue
Xk and αtrue

Y k were all equal to -10

pixel lengths.

To minimize ΦSSD, we employed the following special case of Algorithm 5.3.1:

Algorithm 5.4.1 (A Block-Alternating Newton-like Method) For i = 0, . . . , L

For C ∈ {X,Y }

For k = 0, . . . , LC − 1

H := BT
CHCC(αX ,αY )BC

g := BT
CgC(αX ,αY )

αC := αC − {H}−1
+ g (5.14)

end

end

end
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In (5.14), the transformation {·}+ is some operation that makes H positive definite. When

{·}+ is simply the identity mapping, {H}+ = H, these update equations reduce to New-

ton steps in αX and αY respectively. However, ΦSSD is non-convex, so {·}+ would nor-

mally be something non-trivial.

In the present experiment, {H}+ was the transformation that alters the eigendecompo-

sition of H by replacing each eigenvalue, λk, with max{|λk|, 0.1}.2 This can be viewed as

a refinement of the Levenberg-Marquardt method.3 In the Levenberg-Marquardt method,

the Hessian eigenvalues are all increased by a common constant. Conversely, in our

method, eigenvalues that are sufficiently large to begin with are left alone, thus avoiding

unnecessarily large curvatures and slower convergence.

We implemented Algorithm 5.4.1 using all combinations of the acceleration techniques

in Section 5.3. Each implementation was then tested on the source and target image data.

In all cases, the iteration/sub-iteration loop sizes were L = 5 and LX = LY = 10. Also,

the components of the initial α were set, in each test, to -5 pixel lengths. The imple-

mentations employing the table-lookup technique did so with S = 10. Two sets of tables

were maintained. One set was derived from pre-interpolation (with w and all relevant

derivates) in the x-direction. The second set was similarly derived by pre-interpolating in

the y-direction.4

In Figures 5.4 and 5.5, the progress of each algorithm implementation is plotted versus

CPU time. Figure 5.4 only accounts for the time spent on gradient and Hessian evaluations,

2The threshold value of 0.1 was empirically chosen. More generally, one desires a constant threshold that is small
compared to the Hessian eigenvalues in the neighbourhood of the solution.

3The application of Levenberg-Marquardt, without coordinate block alternation, was considered for the least squares
registration problem [53, 54].

4This allowed us to maximally exploit the combination of state variable hold-over and the table-lookup technique as
described in Section 5.3.3. In practice, of course, one may decide to conserve memory by tabulating only 0-th derivatives
and only for one Cartesian direction. A variety of memory-saving schemes along these lines are possible.
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Figure 5.3: (a) The source image. (b) The target image. (c) Locations of the deformation basis functions.
A separate 2D cubic B-spline basis function bCk(x, y) was situated at each pixel in the darkened
regions near the lung boundaries. Basis functions {bXk}

120

k=1
were placed in the region at the

left lung and {bY k}
283

k=1
were placed in the region at the right lung, for a total of 383 irregularly,

but densely positioned control points. (d) Absolute difference between the source and target
images.

which is where all of the interpolation operations occur. Figure 5.5 plots descent against

the total CPU time expended up to that point in the program execution. The latter took

into account overhead for generating the lookup tables before the start of the iterations

and computing {H}−1
+ . The trials marked ‘Plain’ refer to the case where none of the

acceleration techniques were used, i.e., interpolations were done entirely-on-the fly.

One thing that becomes evident when looking at Figures 5.4 and 5.5 is that the impact

of the table-lookup scheme comes primarily from the way it conserves memory transfer

operations, as opposed to the number of arithmetic operations. Comparing the rate of

descent when table-lookup alone was used to the case when no acceleration method was

used, one observes a factor of 4 speed-up. The table-lookup scheme, we know, simplifies
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Figure 5.4: The progress of the algorithm implementations versus cumulative time spent on interpolation
operations, i.e., on gradient and Hessian computations.

the interpolation steps from the processing of 4 × 4 regions to the processing of 4 × 1

regions of umnp. This of course entails 4 times fewer memory transfers.

The number of multiplications is also reduced, but not by as large a factor. As discussed

in Section 5.3.2, half the weight computations are required (16 multiplications) while in-

terpolating the 4 × 1 region requires 4 multiplications. Thus, the arithmetic involves 20

multiplications in comparison to the (see Table 5.1) 52 multiplications required in the non-

accelerated case. Thus, if arithmetic were dominant, we would expect to see a speed-up

factor of little more than 2 in Figure 5.4 and perhaps less in Figure 5.5, which accounts for

other overhead. Instead, however, we see the same factor of 4 speed-up in both.

Once the table-lookup technique is in play, however, the reduction in the number of

operations effected by state variable hold-over seems to have an impact. An additional

speed factor of about 2 is observed when state variable hold-over and table-lookup are



75

0 20 40 60 80 100 1200

5

10

15

20

25

30

35

40

Co
st

Cumulative CPU Time (sec.)

Table−Lookup + State Variable Hold−Over
Table−Lookup Only
State Variable Hold−Over Only
Plain

Figure 5.5: The progress of the algorithm implementations versus total CPU time.

combined.

5.4.2 Interpolation Effort in JEDM

In Section 5.4.1, we saw that the table-lookup strategy produced the dominant bene-

fit. We are now interested in seeing to what extent this benefit carries over to relevant

minimization tasks in our implementation of JEDM (see Chapter 4, Section 4.4.2). In

particular, as described in Section 4.4.2, we employ steepest descent with the Armijo line

search rule to minimize ΦJEDM with respect to each αt. It is of interest to know to what

extent the table-lookup elimination technique can reduce the repeated cost function eval-

uations in these line searches. Relative to the SSD tests in Section 5.4.1, this case is

complicated due to the presence of forward projection operations. In terms of (5.3), we

have a situation where the outer function

ξ(z) = KL(yt, τt(Pz + rt))
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has its own significant level of complexity due to the required multiplications with P .

The overhead due to P might bottleneck the computations and reduce the impact of the

accelerated interpolations.

We have conducted timing tests to compare, for various 3D image sizes, the CPU time

of the interpolations (with and without table-lookup assistance) to projection time. Be-

cause memory transfer issues appeared to dominate in our tests of the previous section,

we ran these tests for two cases. In one case, we set the deformations to zero. This forces

the interpolation operations to extract series of 4 × 4 × 4 blocks sequentially arranged in

memory. The results are shown in Figure 5.6. In the second case, we set the deformation

map to a random value, thereby simulating the case where the 4 × 4 × 4 blocks would be

accessed in a highly varied order. The results for this latter case are shown in Figure 5.7.

In the left panel of each plot, we show the CPU time ranging from very small to PET sized

image volumes. To explore an extreme, we have added to the plot, in the right hand panel

of each figure, the case of a much larger, comparable to CT image sizes.

The forward projection matrix P , was implemented as a sparse matrix using tools

from the ASPIRE library, based on a 2D line integral model. The relative CPU times

for projection and interpolation operations will obviously be affected by the projection

model and the size of the sinogram array used. In our experiments in Chapter 4, we

found that accurate motion correction was possible via a reduced number of projection

angles. Accordingly, we parallel these conditions in our tests here and used a number of

projection angles equal to the length of the image. (In real-life circumstances, one might

re-incorporate the full set of projection data once the motion estimation was sufficiently

complete.)

In Figure 5.6, one sees that the interpolation times for both implementations scale quite

linearly with image volume, even up to the CT-sized case. Moreover, a factor of 4 speed-
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up is again observed. In Figure 5.7, it is seen that the randomness in the access order had

a significant impact on the total interpolation times in all cases, increasing them by at least

a factor of three. The acceleration factor confered by table-lookup was impacted as well,

but less so. One sees in the randomized cases that the speed-up factor reduced from 4 to 3.

Regarding the projection times, one sees that the interpolation time is a significant

fraction of the projection time in PET sized volumes and even significantly exceeds it in

the random access case. Given the plots, one can expect to save about 25−50% CPU time

on line searches using table look-up assisted interpolation.
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Figure 5.6: Comparing CPU times of accelerated interpolation schemes and forward projection. Here a zero
deformation map is used, simulating the case where the grid values umnp are accessed in the
most sequential and favorable order. In the right hand plot, we have added an additional point to
reflect an exaggerated, CT sized volume.

5.5 Conclusion

This chapter has discussed acceleration methods applicable to interpolation based trans-

formation models in various image registration problems. The method of dominant effect

was a table look-up technique that makes the operationsW (α)u = Wu
www(ν+Bα) more



78

0 2 4 6 8 10
x 105

0

20

40

60

80

100

120

140

Image Volume (No. of Voxels)

CP
U 

Ti
m

e 
(s

ec
.)

Random Access, 10 gates x 5 iter.

0 2 4 6 8
x 106

0

200

400

600

800

1000

1200

Image Volume (No. of Voxels)

CP
U 

Ti
m

e 
(s

ec
.)

Random Access, 10 gates x 5 iter.

Voxel Interp., No Upsampling
Voxel Interp., Pre−Upsampling
Projection Time

Figure 5.7: Similar to Figure 5.6, except that here a random deformation map is used, simulating the case
where the grid values umnp are accessed in the most variable and least favorable order.

sparse. This reduces the required number of memory transfers resulting in a speed-up by

the same factor. The overall interpolation time is greatly impacted by the sequentiallity

with which the image data umnp is accessed, but the acceleration factor is only slightly

impacted. This may motivate us to consider, in future work, the idea of pre-sorting the

deformed grid values dj(α) before looping through the image.

The impact of the acceleration methods depends on the particular deformation cost

function considered and other bottlenecks that may exist. In the case of SSD registration,

the interpolations are the dominant computation. We therefore expected the acceleration

methods to have a strong impact and this was indeed corroborated in our experiments

in Section 5.4.1. In the case of the JEDM cost function, it was found in Section 5.4.2,

that the table-lookup scheme could accelerate line search operations to some degree, with

certain assumptions on the projection matrix. However, the speed-up is by a more modest

fraction than in SSD image domain registration, due to overhead introduced by the forward

projection operations. As mentioned in Section 5.1, one way to combat overhead such as
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this is to use the MM methodology and replace the given cost function with a simpler one.

This is a path we embark upon in Chapter 6.



CHAPTER 6

Extending the Theory of Majorize-Minimize (MM) Algorithms

6.1 Introduction
6.1.1 Scope and Context

This chapter presents our final branch of work, which deals with generalizing the theory

of Majorize-Minimize (MM) algorithms. Some background on MM has already been

given in Section 2.4. The scope of our treatment here will be the application of MM to

minimization problems of the general form,

min. Φ(θ) s.t. θ ∈ Θ, (6.1)

where Φ(θ) : Θ ⊂ R
p → R is a continuously differentiable (but possibly non-convex)

cost function, R
p is the space of length p column vectors,1 and Θ is a convex feasible set.

In making the analysis that follows, we have tried to anticipate the needs of a range of

applications and MM algorithm design ideas.

In relation to the motion-correction application emphasized in this dissertation, we

mean this chapter to be viewed as a stepping stone to future work. The generalized MM

theory that we present opens up certain algorithm design possibilities for implementing

JEDM. We discuss some of them in Section 6.6, and how the analyses we do here sup-

1When θ is a scalar variable, we shall use the notation θ instead.
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port them. The hope is that they will lead to better performing alternatives to the ones

we currently use to implement JEDM in Chapter 4. For now, though, our intent is to pro-

vide a flexible algorithm design framework, one which lets us consider various candidate

algorithms and gives us a basis for knowing whether or not they will converge.

6.1.2 Desirable Generalizations of MM

As new minimization problems are encountered, the creativity of MM algorithm de-

signers leads to new kinds of tangent majorants and corresponding algorithms. Because

of this trend, it is desirable to have as general a theory as possible regarding the kinds

of tangent majorants that one can use and the kinds of cost functions that one can apply

them to. The literature complicates this somewhat, because various analyses have been

made under a variety of different conditions. To our knowledge, a fairly complete reposi-

tory of current MM theory would be obtained by consolidating [72] and [32, 33]. Prior to

these works, MM algorithms studied in the literature used only a single majorant generator

φ(·; ·). Furthermore, convergence analyses mostly treated convergence to interior points

of the feasible set only. Those analyses that did consider convergence to the boundary

were valid only for specific problems and tangent majorants (e.g., [13, 88]). Beginning

with [32, 33], the majorant generators were allowed to be iteration-dependent, resulting

in various benefits like block alternation. In [32], only convergence to interior points of

the feasible set was considered. The work of [33] extended [32] and tried to address con-

vergence to the boundary when Θ was the non-negative orthant and when Φ was strictly

convex. However due to an error (see Remark 6.4.6), the extension is valid only under

much more restrictive assumptions than intended. In [72], a very unified treatment of con-

straints is given, one that covers even non-convex constraints. However, the analysis there

does not allow iteration-dependent majorant generators, as in [32, 33].
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Although more general than their forerunners, the collective fruits of [32, 33, 72] have

lately proven insufficient to cover various contemporary problems and MM algorithms

devised for them. One limitation is that [32, 33] do not treat constrained, non-convex

problems comprehensively. Constraints are considered in [33], but the analysis contains

an error as mentioned above. Furthermore, only the case in which Φ is strictly convex and

in which Θ is the non-negative orthant is addressed. These restrictions apply to certain

penalized likelihood minimization problems commonly encountered in emission tomog-

raphy, and it is these problems that the authors of [33] had in mind when they made that

analysis. However, more recent work in medical imaging applications has given rise to

more complicated cost functions that are not convex, but for which MM algorithms can

be derived (e.g., [27, 104, 46, 47]). Moreover, the kinds of constraints now encountered

in medical imaging go beyond mere non-negativity constraints. For example, in non-rigid

image registration, feasible sets of a more complicated polyhedral form may be desired

(see [49, p. 60]) to ensure physically realistic solutions. These more complicated con-

straints would be covered by [72] so long as iteration-independent majorant generators

were used. However, iteration-dependent φi(·; ·) are often desirable, at minimum because

they allow block alternation, which can simplify algorithm design.

Further limitations of [33] are that the tangent majorants are required to be twice differ-

entiable, strongly convex, and defined throughout the feasible set Θ. In [47], we derived

several kinds of convex tangent majorants for a non-convex problem. However, the tangent

majorant domains were strict subsets of Θ. Furthermore, many imaging problems involve

cost functions with convex, but only once-differentiable penalty terms. This motivates

certain MM algorithm designs with only once-differentiable convex tangent majorants.

In this chapter, we generalize the analysis in [33] resulting in a much more versatile

algorithm design framework. Our analysis is more general than [33] in several respects.
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Firstly, arbitrary convex feasible sets are permitted in our framework. In this way, we

marry some of the generality of [72] with that of [33]. Secondly, the tangent majorant

domains can be strict subsets of the feasible set. Thirdly, the technique of block alternation

is considered for feasible sets of a more general Cartesian product form. Fourth, Φ is not

required to be convex and the tangent majorants {φi(·;θi)} are often allowed to be non-

convex as well. Finally, our analysis does not require the cost function and the tangent

majorants to be more than once continuously differentiable. Since we treat only convex

feasible sets, the scope of possible constraints is more restrictive than in [72]. However,

unlike [72], the use of iteration-dependent tangent majorants is covered in the presence of

constraints (and hence also, the error in [33] is remedied).

6.1.3 Chapter Organization

The rest of the chapter is organized as follows. In Section 6.2, we formalize the class

of MM algorithms considered in this chapter. Next, in Section 6.3, we give a few addi-

tional mathematical preliminaries and describe various conditions imposed in the subse-

quent analysis. In Section 6.4, we analyze the asymptotic behavior of MM. Results are

developed showing stationarity of MM limit points in both the block alternating and non-

block alternating case. In each case, two sets of conditions are applied. One set involves

traditional kinds of continuity assumptions on the majorant generators. None of these con-

ditions are more restrictive than [33]. The second set involves local curvature bounds on

the tangent majorants. We then deduce convergence of MM in norm (see Theorem 6.4.5)

in a standard way by imposing discreteness assumptions on the set of stationary points of

(6.1). Non-isolated stationary points are not generally stable (cf. [7, p. 22]) under pertur-

bations of Φ. Therefore, whether or not an algorithm converges in norm to such points

seems mainly a question of theoretical interest. It is for such reasons that algorithm users
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often settle for algorithms with stationary limit points. Nevertheless, we have done some

work on convergence to non-isolated stationary points, which the interested reader can

find in Section 6.7.

When Φ is non-convex, local behavior of MM becomes important and is the subject of

Section 6.5. Here we restrict our attention to the case where the tangent majorants have

path-connected sublevel sets (e.g., as in the case when the tangent majorants are convex).

For this family of tangent majorants, it is shown that the iterates {θi} are captured by local

basin-like regions in the graph of Φ. This property allows us to derive a local analogue,

namely Theorem 6.5.6, to the convergence described in Theorem 6.4.5. An implication of

Theorem 6.5.6 is that local convergence will occur over a larger neighborhood of a global

minimizer than can typically be guaranteed with more standard algorithms. In addition,

various non-convex minimization strategies involve basin-probing steps. The basin capture

property of connected tangent majorants makes MM algorithms particularly suitable for

implementing these steps.

In Section 6.6, we discuss the relevance of our results to the JEDM problem, in par-

ticular, how one might devise tangent majorants to accomplish the cost reductions (4.22).

Section 6.7 considers the question of whether convergence in norm will occur to stationary

points that are not isolated. This question might be of theoretical interest only, because

of stability issues alluded to above. However, various MM algorithms ([13, 88, 64]) have

been observed to converge in norm, even to non-isolated minima, so specialists are apt to

wonder if this behavior can be proved more generally. For single variable problems, we

show, in Theorem 6.7.2, that, if the iterate sequence {θi} is bounded and the {φi(·; θi)}

have a uniform lower curvature bound, then convergence is assured, regardless of whether

or not continua of stationary points exist. Moreover, we argue (see Example 6.7.1) that

these conditions are about as weak as one can consider. For multi-variable problems, we
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find that these conditions are insufficient for convergence. This is demonstrated via an

example in R
2 (see Example 6.7.5). At this time, we are unable to extend Theorem 6.7.2

to the multi-variable case. However, the aforementioned 2D example provides some in-

tuition as to what conditions may be sufficient, and so is a useful starting point for future

work.

6.2 Mathematical Description of MM Algorithms

In this section, we describe the class of MM algorithms considered in this chapter. With

no loss of generality, we assume that the feasible set Θ is a Cartesian product of M ≤ p

convex sets, i.e.,

Θ = Θ1 × Θ2 × . . .× ΘM , (6.2)

where Θm ⊂ R
pm , m = 1, . . . ,M and

∑M
m=1 pm = p. Since Θ is assumed convex, such a

representation is always possible with M = 1.

To facilitate discussion, we first introduce some indexing conventions. Given θ =

(θ1, . . . , θp) ∈ Θ, we can represent θ as a concatenation of vector partitions θ = (θ1,θ2, . . . ,θM)

where θm ∈ Θm, m = 1, . . . ,M . If S = {m1,m2, . . . ,mq} is a subset of {1, . . . ,M},

then we write

θS = (θm1 ,θm2 , . . . ,θmq
)

ΘS = Θm1 × Θm2 × . . .× Θmq

RS = R
pm1+pm2+...+pmq

to indicate certain Cartesian sub-products and their elements. Thus, one can write θS ∈

ΘS ⊂ RS . The complement of S shall be denoted S̃ . We may also represent a given θ ∈ Θ

in the partitioned form θ = (θS ,θS̃), and Φ(θ) may be equivalently written Φ(θS ,θS̃).
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The following example illustrates these indexing conventions and gives the flavor of

the problems that this framework is meant to accommodate.

Example 6.2.1 Consider the following minimization problem with Θ1 ⊂ R
3, Θ2 ⊂ R,

and Θ3 ⊂ R
2 specified by the constraints as indicated.

min. Φ(θ1, . . . , θ6) =

{
6∑

j=1

θj

}

− log

{
6∑

j=1

θj

}

subject to

Θ1







θ1, θ2, θ3 ≥ 0

θ1 + θ2 + θ3 = 10

θ1 + 2θ2 = 5

Θ2

{

1 ≤ θ4 ≤ 6

Θ3

{

θ2
5 + θ2

6 ≤ 9.

Thus, we obtain the decomposition Θ = Θ1 × Θ2 × Θ3, a particular case of (6.2) with

p = 6, M = 3, p1 = 3, p2 = 1, and p3 = 2. Given θ = (θ1, . . . , θ6) then, according to

our indexing conventions, θ1 = (θ1, θ2, θ3), θ2 = (θ4), and θ3 = (θ5, θ6). If, for example,

we let S = {1, 3}, then θS = (θ1, θ2, θ3, θ5, θ6), ΘS = Θ1 × Θ3, and RS = R
5. Also,

S̃ = {2}, θS̃ = θ4, ΘS̃ = Θ2, and RS̃ = R. Observe, as in the case of Θ1 above, that

any Θm can have an empty interior in its corresponding space R
pm . That is, we are not

assuming that the Θm are solid subsets of R
pm .

Given an index set S ⊂ {1, . . . ,M} and a point-to-set mapping D(·) such that θ̄S ∈

D(θ̄) ⊂ ΘS for all θ̄ ∈ Θ, we define a majorant generator φ(·; ·) as a function mapping

each θ̄ ∈ Θ to what we call a tangent majorant, a function φ(·; θ̄) : D(θ̄) ⊂ ΘS → R

satisfying

Φ(ξ, θ̄S̃) − Φ(θ̄) ≤ φ(ξ; θ̄) − φ(θ̄S ; θ̄) ∀ξ ∈ D(θ̄). (6.3)



87

We call θ̄ the expansion point of the tangent majorant. Given the point-to-set mapping

D(·), we can also write φ(·; ·) : D → R, in which

D =
{
(ξ; θ̄) : ξ ∈ D(θ̄) ⊂ ΘS , θ̄ ∈ Θ

}

denotes the domain of the majorant generator. An equivalent way of expressing (6.3) is

min
ξ∈D(θ̄)

{φ(ξ; θ̄) − Φ(ξ, θ̄S̃)} = φ(θ̄S ; θ̄) − Φ(θ̄). (6.4)

Certain properties of tangent majorants (see, for example, Note A.2) are more obvious

from this definition.

To design an MM algorithm, one selects an initial point θ0 ∈ Θ, a sequence of index

sets {S i}
∞
i=0, and a sequence of majorant generators {φi(·; ·) : Di → R}

∞
i=0 with domains

Di =
{
(ξ; θ̄) : ξ ∈ Di(θ̄) ⊂ ΘSi , θ̄ ∈ Θ

}
.

where the Di(·) ⊂ ΘSi are point-to-set mappings, each satisfying θ̄Si ∈ Di(θ̄) for all

θ̄ ∈ Θ. The simplest case is when Di(θ̄) = ΘSi and Di = ΘSi × Θ for all i. This was the

assumption made in [33]. This assumption does not hold, however, for the MM algorithms

in [21, 47]. Once the majorant generators are chosen, the MM algorithm is implemented

by generating an iteration sequence
{
θi ∈ Θ

}∞

i=0
satisfying,

θi+1
Si ∈ argmin

ξ∈Di(θi)

φi(ξ;θi) (6.5)

θi+1

S̃i = θi
S̃i . (6.6)

Here, we assume that the set of minimizers in (6.5) is non-empty. We shall refer to the total

sequence
{
θi
}∞

i=0
produced this way as an MM sequence. In the simplest case, in which

one chooses φi(θSi ; θ̄) = Φ(θSi , θ̄S̃i) for all i, (6.5) and (6.6) become a generalization

of block coordinate descent (e.g., [7, p. 267]), in which the coordinate blocks are not

necessarily disjoint. By virtue of (6.3) and (6.5), {Φ(θi)} is monotonically non-increasing.
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A tangent majorant is a mild generalization of what we call a true tangent majorant. A

function φ(·; θ̄) satisfying (6.3) is a true tangent majorant if it also satisfies

φ(ξ; θ̄) ≥ Φ(ξ, θ̄S̃) ∀ξ ∈ D(θ̄), (6.7)

φ(θ̄S ; θ̄) = Φ(θ̄). (6.8)

That is, φ(·; θ̄) majorizes Φ(·, θ̄S̃) over D(θ̄) and is tangent to it in the sense that equality

holds2 at θ̄S . These considerations motivate our choice of the term tangent majorant.3 We

shall refer to a majorant generator that produces true tangent majorants as a true majorant

generator . Also, we abbreviate (6.7) and (6.8) via the notation,

φ(·; θ̄)
θ̄
�

D(θ̄)
Φ(·, θ̄). (6.9)

The relational operator
θ̄
�

D(θ̄)
describes a partial ordering between functions on D(θ̄). Any

tangent majorant can be made into a true tangent majorant by adding to it an appropriate

global constant. Doing so does not influence the update formulae (6.5) and (6.6). The

distinction between tangent majorants and true tangent majorants is therefore irrelevant

in studying MM sequences. The distinction becomes important, however, when deriving

tangent majorants by composition of functions (see Note A.1).

When the sets S i vary non-trivially with the iteration number i, we say that the algo-

rithm is block alternating (cf. [32, 33]). Conversely, if all S i = {1, . . . ,M}, then ΘSi = Θ

for all i, and we say that the algorithm is not block alternating (or, that the updates are si-

multaneous). In the latter case, (6.3) simplifies to

Φ(ξ) − Φ(θ̄) ≤ φ(ξ; θ̄) − φ(θ̄; θ̄) ∀ξ ∈ D(θ̄), (6.10)

2It is also tangent to it in the sense that the directional derivatives of φ(·; θ̄) and Φ(·, θ̄S̃) match at θ̄S except in
special circumstances (see Note A.2).

3In some literature, the term surrogate has been used, however much more general use of this term has been used in
other works. We feel that the term tangent majorant is much more descriptive of the kind of surrogate functions used in
MM specifically.
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while (6.5) and (6.6) reduce to

θi+1 ∈ argmin
θ∈Di(θi)

φi(θ;θi), (6.11)

The technique of block alternation can be advantageous because it can be simpler to de-

rive and minimize tangent majorants satisfying (6.3), which involve functions of fewer

variables, than tangent majorants satisfying (6.10). Block alternation can also provide

faster alternatives to certain non-block alternating algorithm designs [32]. To apply block

alternation meaningfully, Θ must be decomposable into the Cartesian product form (6.2)

with M > 1. When this is not the case, one can sometimes find a subset Θ′ ⊂ Θ that

does have this form, and which contains a solution to (6.1). One can then reformulate the

problem by substituting Θ′ for Θ.

6.3 Mathematical Preliminaries and Assumptions

In this section, we overview mathematical ideas and assumptions that will arise in the

analysis to follow.

6.3.1 General Mathematical Background

A closed d-dimensional ball of radius r and centered at x ∈ R
d is denoted

Bd(r,x)
4
=
{
x′ ∈ R

d : ||x′ − x|| ≤ r
}
.

where || · || is the standard Euclidean norm. For the minimization problem (6.1), we shall

also use the notation

BS(r, ξ)
4
= ΘS ∩ {ξ′ ∈ RS : ||ξ′ − ξ|| ≤ r} .

to denote certain constrained balls.

Given vectors xj ∈ R
d and real scalars αj, j = 1, . . . , N for which

∑N
j=1 αj = 1,

the form
∑N

j=1 αjxj is called an affine combination of these vectors. A set G ∈ R
d is
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called affine if it contains all affine combinations of its members. Given a set G ⊂ R
d, the

affine hull aff(G) of G is defined as the smallest affine set containing G or, equivalently,

the set of all affine combinations of elements in G. A point x ∈ R
d is said to lie in the

relative interior ri(G) if there exists some r > 0 such that Bd(r,x) ∩ aff(G) ⊂ G. When

aff(G) = R
d, then ri(G) is simply the interior of G. We denote the closure of G by cl(G).

Recall that cl(G) is the smallest closed set containing G or, equivalently, the set of all

limits of sequences of points in G. The notation ∂G will denote the relative boundary,

cl(G) \ ri(G).

A set G ∈ R
d is said to be discrete if for each x ∈ G, there exists an r > 0 such

that Bd(r,x) ∩ G = {x}. The points in G are then said to be isolated. A function

f : D ⊂ R
d → R is said to be connected on a set D0 ⊂ D if (see [75, p. 98]), given

any x, y ∈ D0, there exists a continuous function g : [0, 1] → D0 such that g(0) = x,

g(1) = y, and

f(g(α)) ≤ max{f(x), f(y)}

for all α ∈ (0, 1). A set C ⊂ R
d is said to be path-connected if, given any x,y ∈ C

there exists a continuous function g : [0, 1] → C such that g(0) = x and g(1) =

y. Convex and quasi-convex functions are simple examples of connected functions with

g(α) = αy + (1 − α)x. Also, it has been shown (e.g., Theorem 4.2.4 in [75, p. 99]) that

a function is connected if and only if its sublevel sets are path-connected.

Often, we will need to take gradients with respect to a subset of the components of a

function’s argument. Given a function f(x;y), we shall denote its gradient with respect to

its first argument, x, as ∇10f(x;y). Likewise, ∇20f(x;y) shall denote the Hessian with

respect to x. An expression like ∇mΦ(θ), m ∈ {1, . . . ,M} shall denote the gradient with

respect to the sub-vector θm ∈ Θm of θ. Similarly, ∇SΦ(θ) is the gradient with respect

to θS .
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A key question in the analysis to follow is whether the limit points of an MM algorithm

(i.e., the limits of subsequences of {θi}) are stationary points of (6.1). By a stationary

point of (6.1), we mean a feasible point θ∗ that satisfies the first order necessary optimality

condition,4

〈∇Φ(θ∗), θ − θ∗〉 ≥ 0 ∀θ ∈ Θ. (6.12)

Here 〈·, ·〉 is the usual Euclidean inner product. Henceforth, when an algorithm produces

a sequence {θi} whose limit points (if any exist) are stationary points of (6.1), we say that

the algorithm and the sequence {θi} are asymptotically stationary .

6.3.2 Assumptions on MM Algorithms

Throughout the chapter, we consider cost functions Φ and tangent majorants φ(·; θ̄) that

are continuously differentiable throughout open supersets of Θ andD(θ̄) respectively. For

every θ̄, the domain D(θ̄) is assumed convex. In addition, for a given MM algorithm

and corresponding sequence {φi(·;θi)}, we impose conditions that fall into one of two

categories. Conditions in the first category, listed next, are what we think of as regu-

larity conditions. In this list, a condition enumerated (Ri.j) denotes a stronger condition

than (Ri), i.e., (Ri.j) implies (Ri). Typical MM algorithms will satisfy these conditions to

preclude certain degenerate behavior that could otherwise be exhibited.

(R1) The sequence {θi} lies in a closed subset of Θ. Thus, any limit point of {θi} is

feasible.

(R1.1) The sequence {θi} is contained in a compact (i.e., closed and bounded) subset

of Θ.

4Recall that (6.12) is a more fundamental first order condition than the KKT conditions. Condition (6.12) is
necessary for θ∗ to be a local minimizer of Φ and, if Φ is convex, sufficient for θ∗ to be a global minimizer (see
Proposition 2.1.2 in [7, p. 194]).
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(R2) For each i and ξ ∈ ΘSi , the Gateaux differential,

ηi(θ; ξ)
4
=
〈
∇10φi(θSi ;θ), ξ − θSi

〉
(6.13)

is continuous as a function of θ throughout Θ. Furthermore,

ηi(θi; ξ) =
〈
∇SiΦ(θi), ξ − θi

Si

〉
. (6.14)

Thus, the directional derivatives of the tangent majorants {φi(·;θi)} at their expan-

sion points match those of the cost function in feasible directions.

(R2.1) For every i and θ̄ ∈ ΘSi ,

∇10φi(θ̄Si ; θ̄) = ∇SiΦ(θ̄). (6.15)

Here, the tangent majorant and cost function derivatives match in all directions (not

just feasible ones) and at all expansion points (not just at the {θi}). Note that, un-

der (R2.1), the continuity of any ηi(·; ξ) follows from (6.15) and the fact that Φ is

continuously differentiable.

(R3) There exists an r > 0 such that BSi(r,θi
Si) ⊂ Di(θi) for all i. In other words,

each tangent majorant is defined on a feasible neighborhood of some minimum size

around its expansion point.

Aside from the above regularity conditions, most results will require specific combina-

tions of the following technical conditions. Similar to before, a condition denoted (Ci.j)

implies (Ci).

(C1) Each tangent majorant φi(·;θi) is connected on its respective domain Di(θi).

(C2) The elements of the sequence {φi(·; ·)} are chosen from a finite set of majorant gen-

erators.



93

(C3) For each fixed i, the majorant generator φi(·; ·) is continuous throughout its domain

Di. In addition, for any closed subset Z of Θ, there exists an ri
Z > 0 such that the set

{
(ξ,θ) : ξ ∈ BSi(ri

Z ,θ
i
Si),θ ∈ Z

}
lies in a closed subset of Di.

(C4) There exists an integer J > 0 and, for each m ∈ {1, . . . ,M}, an index set S (m) con-

tainingm, a majorant generator φ(m)(·; ·), and a set Im =
{
i : S i = S(m), φi = φ(m)

}

such that

∀n ≥ 0,∃i ∈ [n, n+ J ] s.t. i ∈ Im.

That is, every sub-vector θm ∈ Θm, m = 1 . . .M of θ is updated regularly by some

φ(m).

(C5) limi→∞ ||θi+1 − θi|| = 0.

(C5.1) The sequence {θi} has at least one feasible limit point. Also, there exists a

γ− > 0, such that for all i and ξ,ψ ∈ Di(θi),

〈
∇10φi(ξ;θi) −∇10φi(ψ;θi), ξ −ψ

〉
≥ γ−||ξ −ψ||2.

In other words, the {φi(·;θi)} are strongly convex with curvatures that are uni-

formly lower bounded in i. The fact that (C5.1) implies (C5) is proven in

Lemma 6.3.5(c).

(C6) In addition to (R3), there exists a γ+ ≥ 0, such that for all i and ξ ∈ BSi(r,θi
Si) (here

BSi(r,θi
Si) is as in (R3)),

〈
∇10φi(ξ;θi) −∇10φi(θi

Si ;θi), ξ − θi
Si

〉
≤ γ+||ξ − θi

Si ||
2
.

In other words, the curvatures of the tangent majorants are uniformly upper bounded

along line segments emanating from their expansion points. The line segments must

extend to the boundary of a feasible neighborhood of size r around the expansion

points.
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There are a variety of standard conditions under which Condition (R1) will hold. The

simplest case is if Θ is itself closed. Alternatively, (R1) will hold if one can show that

the sublevel sets sublevτ Φ
4
= {θ ∈ Θ : Φ(θ) ≤ τ} of Φ are closed, which is often a

straightforward exercise. In the latter case, with τ0 = Φ(θ0), the level set sublevτ0 Φ

is closed, and because {Φ(θi)} is montonically non-increasing, it follows that the entire

sequence {θi} is contained in this set. Similarly, if Θ (or just sublevτ0 Φ) is compact, then

(R1.1) holds. The closure or compactness of sublevel sets often follows if Φ is coercive,

i.e., tends to infinity at the boundary of Θ.

The simplest case in which (R3) holds is when Di(θ) = ΘSi for all i and θ ∈ Θ. A

typical situation in which (C4) holds is if the index sets {S i} and the majorant generators

{φi(·; ·)} are chosen cyclically. Condition (C5) has frequently been encountered in the

study of feasible direction methods (e.g., [75, p. 474]). Condition (C5.1) is a sufficient

condition for (C5) that is relatively easy to verify. It is essentially a generalization of

Condition 5 in [33].

Remark 6.3.1 In the MM literature, the stronger condition (R2.1) is used customarily to

ensure (R2). However, this can be excessive as discussed in Note A.3.

Remark 6.3.2 Equation (6.14) is, in fact, implied whenever aff(Di(θ̄)) = aff(ΘSi) and

θ̄Si ∈ ri(Di(θ̄)). For details, see Note A.2.

6.3.3 More Preliminaries

We now give several lemmas that facilitate the analysis in this chapter. Most of these

lemmas are slight generalizations of existing results.

Lemma 6.3.3 (Functions with curvature bounds) Suppose f : D ⊂ R
d → R is a con-

tinuously differentiable function on a convex set D and let y ∈ D.
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(a) If 〈∇f(x) −∇f(y), x− y〉 ≤ γ+||x− y||2 for some γ+ > 0 and ∀x ∈ D, then

likewise

f(x) − f(y) ≤ 〈∇f(y), x− y〉 +
1

2
γ+||x− y||2 ∀x ∈ D.

(b) If 〈∇f(x) −∇f(y), x− y〉 ≥ γ−||x− y||2, for some γ− > 0 and ∀x ∈ D, then

likewise

f(x) − f(y) ≥ 〈∇f(y), x− y〉 +
1

2
γ−||x− y||2 ∀x ∈ D.

Proof. Assume first that the assumptions of part (a) hold. Since D is convex, the scalar

function f(y + t(x − y)) is defined for t ∈ [0, 1]. Moreover, since f is continuously

differentiable, then the directional derivative 〈∇f(y + t(x− y)), x− y〉 is Riemann in-

tegrable as a function of t in the interval [0, 1]. Thus, by the fundamental theorem of

calculus,

f(x) − f(y) =

∫ 1

0

〈∇f(y + t(x− y)), x− y〉 dt

= 〈∇f(y), x− y〉 +

∫ 1

0

〈∇f(y + t(x− y)) −∇f(y), x− y〉 dt

≤ 〈∇f(y), x− y〉 + γ+||x− y||2
∫ 1

0

t dt

= 〈∇f(y), x− y〉 +
1

2
γ+||x− y||2.

Virtually identical manipulations, but with reversed inequalities, establish part (b). 2

Remark 6.3.4 Results similar to Lemma 6.3.3 are often proved under slightly stronger

assumptions (e.g., Proposition A.24 in [7, p. 667]).

Lemma 6.3.5 (Consequences of the existence of limit points) Suppose that {θi} is an

MM sequence with a limit point θ∗ ∈ Θ. Then

(a) {Φ(θi)} ↘ Φ(θ∗).
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(b) If θ∗∗ ∈ Θ is another limit point of {θi}, then Φ(θ∗∗) = Φ(θ∗).

(c) If, in addition, (C5.1) holds then, limi→∞ ||θi − θi+1|| = 0.

Proof.

(a) Let {θik} be a subsequence converging to θ∗. The continuity of Φ then implies that

Φ(θik) → Φ(θ∗). Since {Φ(θi)} is monotonically non-increasing, we conclude that

{Φ(θi)} ↘ Φ(θ∗).

(b) Immediate from part (a) and the uniqueness of the limit of {Φ(θi)}.

(c) Since (C5.1) holds, then Lemma 6.3.3(b) applies with f = φi(·;θi), D = Di(θi),

x = θi
Si , and y = θi+1

Si ,

φi(θi
Si ;θi)−φi(θi+1

Si ;θi) ≥
〈
∇10φi(θi+1

Si ;θi), θi
Si − θi+1

Si

〉
+

1

2
γ−||θi

Si − θi+1
Si ||

2 (6.16)

for all i. Since φi(·;θi) is convex with minimizer θi+1,

〈
∇10φi(θi+1

Si ;θi), θi
Si − θi+1

Si

〉
≥ 0.

In addition, due to (6.3),

φi(θi
Si ;θi) − φi(θi+1

Si ;θi) ≤ Φ(θi) − Φ(θi+1).

Incorporating these observations into (6.16),

||θi
Si − θi+1

Si ||
2
≤

2

γ−
(Φ(θi+1) − Φ(θi)),

and since θi
S̃i = θi+1

S̃i , this is equivalent to

||θi − θi+1||
2
≤

2

γ−
(Φ(θi+1) − Φ(θi)).

Due to part (a), the limit of the right hand side of this inequality is 0 and the result follows.

2
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Lemma 6.3.6 (Convergence to isolated stationary points) Suppose {θi} is a sequence

of points lying in a compact set K ⊂ Θ and whose limit points S ⊂ K are stationary

points of (6.1). Let C denote the set of all stationary points of (6.1) in K. If either of the

following is true,

(a) C is a singleton, or

(b) Condition (C5) holds and C is a discrete set.

then {θi} in fact converges to a point in C.

Proof. Since {θi} lies in a compact set, convergence is established by showing that S is a

singleton. The fact that S contains only stationary points implies that S ⊂ C. Therefore, in

case (a) it is readily seen that S is a singleton. Alternatively, suppose that (b) is true. Then,

since S ⊂ C and C is discrete, then likewise S is discrete. In addition, since K is bounded

and (C5) holds, then S is also connected (see p.173 of [76]). Since S is both discrete and

connected, it is a singleton. 2

6.4 Asymptotic Stationarity and Convergence to Isolated Stationary
Points

In this section, we establish conditions under which MM algorithms are asymptotically

stationary. Convergence in norm is then proved under standard supplementary assump-

tions that the stationary points are isolated (see Theorem 6.4.5). Theorem 6.4.1, our first

result, establishes that non-block alternating MM sequences are asymptotically station-

ary under quite mild assumptions. Two sets of assumptions are considered. One set in-

volves (C3), a continuity condition similar to that used in previous MM literature (e.g.,

[102, 33, 72]). In the second set, the central condition is (C6), which requires a uniform

local upper bound on the tangent majorant curvatures. To our knowledge, we are the first

to consider such a condition. Note also that, in Theorem 6.4.1, the tangent majorants can
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be non-convex.

Theorem 6.4.1 (Asymptotically stationary: non-block alternating case) Suppose that all

S i = {1, . . . ,M}, that {θi} is an MM sequence generated by (6.11), and that the regular-

ity conditions (R1), (R2), and (R3) hold. Suppose further that either (C6) or the pair of

conditions {(C2), (C3)} holds. Then any limit point of {θi} is a stationary point of (6.1).

Proof. Suppose θ∗ ∈ Θ is a limit point of {θi} (it must lie in Θ due to (R1)) and,

aiming for a contradiction, let us assume that it is not a stationary point. Then there exists

a θ′ 6= θ∗ ∈ Θ such that
〈

∇Φ(θ∗),
θ′ − θ∗

||θ′ − θ∗||

〉

< 0. (6.17)

Since ∇Φ is continuous, then, with (R2) and (R3), it follows that there exists a constant

c < 0 and a subsequence {θik} satisfying, for all k,

||θ′ − θik || ≥ min(r, ||θ′ − θ∗||/2)
4
= t̄, (6.18)

where r is as in (R3), and
〈

∇10φk(θik ;θik),
θ′ − θik

||θ′ − θik ||

〉

≤ c. (6.19)

Define the unit-length direction vectors

sk 4
=

θ′ − θik

||θ′ − θik ||
, s∗

4
=

θ′ − θ∗

||θ′ − θ∗||

and the scalar functions

hk(t)
4
= φik(θik + tsk;θik) −

[
φik(θik ;θik) − Φ(θik)

]
, t ∈ [0, t̄ ] . (6.20)

Due to (R3) and (6.18), all hk are well-defined on the common interval indicated. The next

several inequalities follow from (6.11), (6.10), and Lemma 6.3.5(a), respectively,

hk(t) ≥ φik(θik+1;θik) −
[
φik(θik ;θik) − Φ(θik)

]
≥ Φ(θik+1) (6.21)

≥ Φ(θ∗). (6.22)
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The remainder of the proof addresses separately the cases where {(C6)} and {(C2), (C3)}

hold.

First, assume that (C6) holds. This, together with Lemma 6.3.3(a), implies that for

t ∈ [0, t̄ ],

hk(t) − hk(0) ≤ ḣk(0)t+
γ+

2
t2.

However, hk(0) = Φ(θik), while ḣk(0) ≤ c due to (6.19). These observations, together

with (6.22), leads to

Φ(θ∗) − Φ(θik) ≤ ct+
γ+

2
t2 t ∈ [0, t̄ ] .

Passing to the limit in k,

ct+
γ+

2
t2 ≥ 0, t ∈ [0, t̄ ] .

Finally, dividing this relation through by t and letting t ↘ 0 yields c ≥ 0, contradicting

the assumption that c < 0, and completing the proof for this case.

Now, assume {(C2), (C3)}. In light of (C2), we can redefine our subsequence {θ ik} so

that, in addition to (6.18) and (6.19), φk(·; ·) equals some fixed function φ̂(·; ·) for all k.

That and (6.21) give, for t ∈ [0, t̄ ],

hk(t) = φ̂(θik + tsk;θik) −
[

φ̂(θik ;θik) − Φ(θik)
]

≥ Φ(θik+1). (6.23)

From (R1), we know that {θik} lies in a closed subset Z of Θ. With (C3), there therefore

exists a positive rZ ≤ t̄ such that hk(t), as given in (6.23), converges as k → ∞ to

h∗(t)
4
= φ̂(θ∗ + ts∗;θ∗) −

[

φ̂(θ∗;θ∗) − Φ(θ∗)
]

for all t ∈ [0, rZ ]. Letting k → ∞ in

(6.23) therefore yields,

h∗(t) ≥ Φ(θ∗) ∀t ∈ [0, rZ ] . (6.24)

The function h∗(t) is differentiable at t = 0 due to (R2). Now, hk(0) = Φ(θik), so that

in the limit, h∗(0) = Φ(θ∗). Thus, we have that (6.24) holds with equality at t = 0, from
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which it follows that

ḣ∗(0) ≥ 0. (6.25)

However, ḣk(0) ≤ c due to (6.19), and the continuity requirement in (R2) implies that

ḣk(0) converges to ḣ∗(0) as k → ∞. Thus, we have in the limit that ḣ∗(0) ≤ c < 0,

contradicting (6.25). 2

The following example provides a simple illustration of how an MM algorithm can be

non-asymptotically stationary when the assumptions of Theorem 6.4.1 are not met. From

this example, one can see that the requirements of Theorem 6.4.1 are not excessive and

give meaningful guidelines for the design of majorant generators.

0 1 1.50

0.5

1

1.5

2

2.5

3

θ

Co
st

θ1 θ2 θ3

φ(θ;θi)

Φ(θ)

θ6

Figure 6.1: Illustration of Example 6.4.2. The MM sequence {θi} converges to a non-stationary point. This
is possible since the conditions of Theorem 6.4.1 are not satisfied.

Example 6.4.2 Consider the case R
p = R, Θ = [0, 1.5], and Φ(θ) = 2 − θ. Take θ0 = 0
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and let {θi} be the sequence generated via (6.11) with

φi(θ; θ̄) = φ(θ; θ̄)
4
= c(θ̄)(θ − θ̄)2 + Φ(θ)

c(θ̄)
4
=







1 θ̄ = 1

1

|θ̄−1|
θ̄ 6= 1

It is immediate from the definition of φ(θ; θ̄) that every φ(·; θ̄) is a true tangent majorant.

The resulting sequence of iterates {θi} and tangent majorants φ(·; θi) are depicted for

several iterations in Figure 6.1. By induction, one can readily determine that θi = 1− 2−i.

Hence, {θi} converges to 1 which is not a stationary point. This presents no conflict with

Theorem 6.4.1, however. The tangent majorants do not satisfy condition (C6), since the

tangent majorant curvatures {c(θi) = 2i} tend to infinity. Also, φ(θ; ·) is discontinuous at

θ̄ = 1, so (C3) is not satisfied. Consequently, the hypothesis of Theorem 6.4.1 does not

hold.

Remark 6.4.3 The kind of discontinuities exhibited in Example 6.4.2 can arise in EM

majorant generators because of a discontinuity in the KL distance (see Note A.4).

The next result addresses the block alternating case, but requires additional conditions,

namely (C4) and (C5). (Although, Condition (C2) is no longer required.) These condi-

tions, however, are no stronger than those invoked previously in [33]. Condition (C4) is

a generalization of [33, Condition 6]. Condition (C5) is an implied condition in [33], as

shown in Lemma 3 in that paper.

Theorem 6.4.4 (Asymptotic stationarity: block alternating case) Suppose that {θ i} is

an MM sequence generated by (6.5) and (6.6) and that the regularity conditions (R1),

(R2), and (R3) hold. Suppose, further, that (C4), (C5) and either (C6) or (C3) holds. Then

any limit point of {θi} is a stationary point of (6.1).
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Proof. Suppose θ∗ ∈ Θ is a limit point of {θi} (it must lie in Θ due to (R1)) and, aiming

for a contradiction, let us assume that it is not a stationary point. In light of (6.2), there

therefore exists a θ′ 6= θ∗ ∈ Θ and an m ∈ {1, . . . ,M}, such that

〈∇mΦ(θ∗), θ′m − θ∗m〉 < 0 (6.26)

and such that θ′m̃ = θ∗m̃, ∀m̃ 6= m. Then, with S (m) as in (C4), it follows from (6.26) that,

〈

∇S(m)Φ(θ∗),
θ′S(m) − θ

∗
S(m)

||θ′S(m) − θ
∗
S(m) ||

〉

< 0. (6.27)

Now, consider a subsequence {θik} converging to θ∗. We can assume that S ik = S(m)

and φik = φ(m), for otherwise, in light of (C4), we could construct an alternative sub-

sequence {θik+Jk}, Jk ≤ J which does have this property. Furthermore, this alternative

subsequence would converge to θ∗ due to (C5).

In light of (6.27), we can also choose {θik} so that, similar to the proof of Theo-

rem 6.4.1,

||θ′ − θik || ≥ min(r, ||θ′ − θ∗||/2)
4
= t̄.

and
〈

∇10φ(m)(θik
S(m) ;θ

ik),
θ′S(m) − θ

ik
S(m)

||θ′S(m) − θ
ik
S(m) ||

〉

≤ c.

for some c < 0. Now define

sk 4
=

θ′S(m) − θ
ik
S(m)

||θ′S(m) − θ
ik
S(m) ||

and

hk(t)
4
= φ(m)(θik

S(m) + tsk;θik) −
[
φ(m)(θik

S(m) ;θ
ik) − Φ(θik)

]
, t ∈ [0, t̄ ] .

The form and properties of this hk(t) is a special case of that defined in (6.20). Under (C6),

a verbatim argument as in the proof of Theorem 6.4.1 therefore leads to the contradiction

c ≥ 0, completing the proof for this case. Likewise, the hk(t) above has the same form
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and properties as in (6.23). The arguments in the proof of Theorem 6.4.1 following (6.23)

relied only on (C3), and complete the proof of this theorem as well. 2

In the following theorem, we deduce convergence in norm by adding discreteness assump-

tions on the stationary points of (6.1).

Theorem 6.4.5 (Convergence of MM sequences to isolated stationary points) Suppose

{θi} is an MM sequence satisfying (R1.1), as well as the conditions of either Theo-

rem 6.4.1 or Theorem 6.4.4. Suppose, in addition, that either of the following is true.

(a) The problem (6.1) has a unique solution as its sole stationary point, or

(b) Condition (C5) holds and (6.1) has a discrete set of stationary points.

Then {θi} converges to a stationary point. Moreover, in case (a), the limit is the unique

solution of (6.1).

Proof. Under (R1.1), {θi} lies in a compact subset of Θ. Moreover, the limit points of

{θi} are all guaranteed to be stationary by either Theorem 6.4.1 or Theorem 6.4.4. The

result then follows from Lemma 6.3.6. 2

Remark 6.4.6 The convergence analysis in [33] is less general than stated due to an

error in the proof of Lemma 6 in that paper. The error occurs where it is argued “if

∇10
k φ

(k)(θi
S(k) ;θ

i) > 0 then θi+1
k > θi

k”. This argument would be valid only if, in addition

to what was already assumed, φ(k)(·;θi) were a function of a single variable. Due to the

analysis in the present chapter, however, we can claim that the conclusions of [33] are

indeed valid, even if the arguments are not. This follows from Theorem 6.4.5(a) above,

which implies convergence under conditions no stronger than those assumed in [33].
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6.5 The Capture Property of Connected Tangent Majorants

When Φ is non-convex, one often thinks of its graph as consisting of many capture

basins, i.e., high dimensional analogues of valley-shaped regions, each containing a local

minimum. In this section, we show that, if the tangent majorants are connected, the MM

algorithm will remain confined to such a region. This property, which we call the capture

property of MM, has a variety of consequences that we shall discuss.

To proceed with our analysis, we require a formal mathematical definition of a capture

basin. The following definition describes what we call a generalized capture basin. It

includes the kind of regions that one traditionally thinks of as a capture basin as a special

case.

Definition 6.5.1 We say that a set G ⊂ Θ is a generalized capture basin (with respect to

the minimization problem (6.1)) if, for some θ ∈ G, the following is never violated

Φ(θ) < Φ(θ̃), θ̃ ∈ cl(G) ∩ cl(Θ \G). (6.28)

Moreover, we say that such a θ is well-contained in G.

Thus, a point is well-contained in G if it has lower cost than any point θ̃ in the common

boundary cl(G) ∩ cl(Θ \ G) between G and its complement. The definition is worded

so that cl(G) ∩ cl(Θ \ G) can be empty. Thus, for example, the whole feasible set Θ

always constitutes a generalized capture basin (provided that it contains some θ), because

cl(Θ) ∩ cl(Θ \ Θ) is empty, implying that (6.28) can never be violated.

Remark 6.5.2 The regions described by Definition 6.5.1 are a bit more general than tradi-

tional notions of a capture basin in a few ways. In particular, the definition requires neither

that Φ be unimodal over G, nor that G be path-connected, nor that Φ attain its maximum

over G in ∂G. However, it is straightforward to show that any generalized capture basin
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G must have the same dimension as Θ, in the sense that aff(G) = aff(Θ) (see Note A.5).

Thus, for example, if Θ = R
2, no line segment inside Θ can constitute a generalized

capture basin. This is consistent with common intuition.

The following proposition lays the foundation for the results of this section. It asserts

that, if the expansion point of a connected tangent majorant is well-contained in a general-

ized capture basin G, then any point that decreases the cost value of that tangent majorant

(relative to the expansion point) is likewise well-contained in G. For the case where the

tangent majorant takes arguments in R
p (i.e., excluding tangent majorants used for block

alternation), Figure 6.2 shows how this result can be interpreted in terms of the tangent

majorant sublevel sets.

Proposition 6.5.3 Suppose that φ(·; θ̄) is a tangent majorant that is connected on its do-

main D(θ̄) ⊂ ΘS and whose expansion point θ̄ ∈ Θ is well-contained in a generalized

capture basin G. Suppose, further, that θ ∈ Θ satisfies

θS ∈ D(θ̄), θS̃ = θ̄S̃ ,

φ(θS ; θ̄) ≤ φ(θ̄S ; θ̄), (6.29)

Then θ is likewise well-contained in G.

Proof. It is sufficient to show that θ ∈ G. For taking any θ̃ ∈ cl(G)∩ cl(Θ \G), and then

combining (6.29), (6.3), and the fact that θ̄ is well-contained in G,

Φ(θ) ≤ Φ(θ̄) < Φ(θ̃), (6.30)

implying that θ is also well-contained in G. Aiming for a contradiction, suppose that

θ ∈ Θ \ G. Since φ(·; θ̄) is connected on D(θ̄), there exists a continuous function g :
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[0, 1] → Θ with g(0) = θ̄, g(1) = θ, and such that, for all α ∈ (0, 1), one has

[g(α)]S ∈ D(θ̄), [g(α)]S̃ = θ̄S̃ ,

φ([g(α)]S ; θ̄) ≤ max{φ(θ̄S ; θ̄), φ(θS ; θ̄)} = φ(θ̄S ; θ̄), (6.31)

where the equality in (6.31) is due to (6.29). Also, since g(0) = θ̄ ∈ G,

α∗ 4
= sup {α ∈ [0, 1] : g(α) ∈ G}

is well-defined. Finally, let ψ = g(α∗).

We now argue that ψ ∈ cl(G) ∩ cl(Θ \ G). Firstly, due to the definition of α∗, there

must exist a sequence 0 ≤ α̂j ≤ α∗, j = 1, 2, . . . with α̂j → α∗. Since g(α̂j) → ψ,

by continuity, and all g(α̂j) ∈ G, it follows that ψ ∈ cl(G). Secondly, the definition of

α∗ also implies that, if α∗ < α ≤ 1, then g(α) ∈ Θ \ G. Together with the fact that

g(1) = θ ∈ Θ \ G, it follows that there is a sequence α∗ ≤ α̌j ≤ 1 , j = 1, 2, . . . with

α̌j → α∗ and g(α̌j) ∈ Θ \G. Since g(α̌j) → ψ, we have that ψ ∈ cl(Θ \G) as well. We

conclude thatψ ∈ cl(G)∩cl(Θ\G) as claimed. Therefore, from the rightmost inequality

in (6.30), we have, with θ̃ = ψ,

Φ(θ̄) < Φ(ψ) = Φ([g(α∗)]S , θ̄S̃). (6.32)

With (6.3), this implies that φ([g(α∗)]S ; θ̄) > φ(θ̄S ; θ̄) contradicting (6.31). 2

Using Proposition 6.5.3, we obtain the following result as an immediate consequence.

It articulates the capture property of MM for generalized capture basins.

Theorem 6.5.4 (Capture property of MM and generalized capture basins) Suppose that

{θi} is an MM sequence generated by (6.5) and (6.6). In addition, suppose that some it-

erate θn is well-contained in a generalized capture basin G and that the tangent majorant

sequence {φi(·;θi)}∞i=n satisfies (C1). Then likewise θi is well-contained in G for all

i > n.
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θ

G

Θ \ G

cl(G) ∩ cl(Θ \ G)

Constant cost surfaces of φ(·; θ̄)

Figure 6.2: Illustration of the sublevel set containment property of connected tangent majorants. Suppose
that φ(·; θ̄) takes arguments in R

p and satisfies the assumptions of Proposition 6.5.3. Then the
proposition implies that the sublevel sets of φ(·; θ̄) of level φ(θ̄; θ̄) or less are strictly contained
in G.

Proof. The result follows from Proposition 6.5.3 and an obvious induction argument. 2

Remark 6.5.5 Note that Proposition 6.5.3 and Theorem 6.5.4 are fundamental properties

in that they rely on (C1), but none of the regularity conditions described in Section 6.3.2.

Also, using Proposition 6.5.3, one can obtain the same conclusions as in Theorem 6.5.4

if the sequence {θi} merely satisfied φi(θi+1
Si ;θi) ≤ φi(θi

Si ;θi) rather than (6.5). This

is relevant to practical situations, since one often does not obtain the exact minimizers in

(6.5).

The capture property of MM is linked to the global information implicit in tangent

majorants in general, and in connected tangent majorants in particular. The algorithm de-

signer uses insights into the global shape of Φ to derive a function satisfying the defining

property (6.3). Still more global information is needed to ensure that the tangent majo-

rant is connected. This collective information allows the algorithm descent mechanism to

respect the boundaries of a generalized capture basin, even though the location of these

boundaries may not be known explicitly to the algorithm designer. Textbook-variety al-

gorithms not assisted by such global information clearly will not imitate the capture prop-



108

erty reliably. Such algorithms include derivative-based feasible direction methods (e.g.,

steepest descent or Newton’s method), possibly combined with ad hoc constant step-size

choices or numerical line-search operations.

Algorithms using constant step-sizes will clearly escape a generalized capture basin if

the step-size is chosen too large in comparison to the size of this region. Avoiding such

large choices of step-sizes therefore requires foreknowledge of the size of the surrounding

generalized capture basin, a degree of global information no less than that inherent in

MM. Proposition 1.2.5 in [7, p. 52] describes a capture property for gradient methods with

constant step-sizes. However, the region of capture in that Proposition is smaller than the

set of well-contained points and becomes smaller as the step-size is increased.

Common numerical line search methods (bisection, Armijo, . . . ) can likewise let the

algorithm escape a generalized capture basin. This is because many points on the search

line can satisfy the termination criteria of the line search method and not all of these points

are guaranteed to lie within the smallest surrounding generalized capture basin. Bisection,

for example, can find any 1D stationary point on the search line and, for non-convex Φ,

many such points may exist, some lying within the local generalized capture basin and

some without. To ensure capture, one would need to restrict the search operations to the

line segment intersecting the surrounding generalized capture basin. Here again, though,

global information would be required to locate the boundaries of this line segment.

Our first application of the capture property is in deriving the following local version of

Theorem 6.4.5.

Theorem 6.5.6 (Convergence of MM sequences to isolated stationary points (local form))

In addition to the assumptions of Theorem 6.5.4, suppose that the conditions of either The-

orem 6.4.1 or Theorem 6.4.4 are satisfied. Suppose further that G is bounded and either

of the following are true
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(a) cl(G) contains a single stationary point, or

(b) Condition (C5) holds and the set of stationary points in cl(G) is discrete.

Then {θi} converges to a stationary point θ∗ ∈ cl(G).

Proof. Since G is bounded, it follows from Theorem 6.5.4 that the sequence {θ i} lies in

the compact set K = cl(G). Moreover, all limit points of {θi} are stationary, as assured

by either Theorem 6.4.1 or Theorem 6.4.4. The conclusions of the Theorem then follow

from Lemma 6.3.6. 2

Naturally, an instance of part (a) of primary interest is the case where the region cl(G)

contains a single stationary point which is also a global minimizer. For then, the theorem

guarantees convergence to a solution of (6.1). Traditionally, local convergence results

for minimization algorithms, such as Proposition 1.2.5 in [7, p. 52], identify a region

of convergence that is unimodal and basin-like around the local minimizer. The converse,

however, is not usually true. Given a unimodal, basin-like region around a local minimizer,

one cannot usually conclude that convergence to that minimizer will take place from any

point in that region. In a sense, therefore, Theorem 6.5.6(a) is the strongest kind of local

convergence result, ensuring convergence over the largest possible region that one can

hope for.

Apart from its role in local convergence, the capture property makes MM an appropriate

instrument for implementing the basin-probing steps in various non-convex minimization

strategies. Perhaps the most standard strategy is is try to obtain, by heuristics or ad hoc

methods, an initial point believed to reasonably approximate the desired solution and to

hope that this point lies in a unimodal capture basin around the global minimizer. The strat-

egy then tries to descend locally, within the capture basin, to reach the global minimizer.

Figure 2.3 illustrates how the MM capture property facilitates this kind of basin-search.
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There, the MM sequence results from convex (and hence connected) tangent majorants.

Consequently, the sequence is confined to the basin-like region in the interval {B, C] that,

fortunately, contains the global minimizer.

If the graph of Φ is clustered with peaks and valleys, a single basin-probing step may

not be sufficient. In this case, another standard strategy is to do several basin-searches,

as outlined above, but using different initial points. The idea is to search locally around

those points and to find the deepest basin. To implement this strategy in a principled

way, it is highly desirable to do the basin-searches with an algorithm endowed with the

capture property. Otherwise, the basin-searches could converge to any stationary point on

the graph of Φ and one has no assurance that distinct basins will be probed.

A third example worth mentioning is a path-following method due to [8] called Grad-

uated Non-Convexity (GNC). The GNC strategy employs a sequence of increasingly ac-

curate approximations {F (·, tk)}
K
k=1 of Φ(·), begining with a convex function F (·, t1) that

can be easily globally minimized, and ending with F (·, tK) = Φ(·). By globally minimiz-

ing each F (·, tk), a sequence {θ∗(tk)}
K
k=1 is obtained which, one hopes, converges to the

global minimum of Φ. Moreover, each minimization step is initialized with the result of

the previous minimization so that the {θ∗(tk)}, one hopes, are obtained incrementally. In

well-behaved circumstances, the initial point of each minimization step will lie in a cap-

ture basin containing the solution to the current minimization problem (see Figure 6.3).

Therefore, an algorithm endowed with the capture property is desirable here.

For certain problems, it may be too expensive to employ strategies involving multiple

basin-searches. In such cases, and if Φ is clustered with peaks and valleys, then MM

with connected tangent majorants is hazardous, because the likelihood of getting trapped

at a sub-optimal solution is high. This limitation is important to recognize, since convex

tangent majorants are the most common type used. In such situations, it is worthwhile to
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Figure 6.3: Illustration of the capture property as it pertains to the Graduated Non-Convexity (GNC) strategy.

consider algorithms not endowed with the capture property. For example, one may try to

derive an MM algorithm with non-connected tangent majorants. However, we know of no

instance where the absence of the capture property has been systematically exploited. Any

success that such algorithms, be they MM or otherwise, have had in avoiding sub-optimal

minima seems largely fortuitous.

6.6 An MM Algorithm Design for JEDM

One of the reasons why it is natural to consider MM algorithms in the context of this

dissertation is that we are faced with difficult cost function reduction tasks such as (4.22)

in Algorithm 4.4.1. As discussed in Section 4.4, we currently use an off-the-shelf line

search method (the Armijo rule) to accomplish this, for lack of a better alternative.

However, the form of ΦJEDM as a function of αt is not particularly line search friendly.

Along the line {αt + `∆αt : 0 ≤ ` ∈ R}, it looks like

a(`) = f(PW (αt + `∆αt)u)

The nonlinear form ofPW (αt)u, as a function ofαt, cannot be simplifed in any apparent
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way. Thus, for each evaluation of a(`) in a line search, a forward projection step via P is

needed. This is a substantial computational expense, and is a classic kind of situation that

the MM methodology tries to circumvent.

In particular, it motivates us to try to find majorant generators for ΦJEDM that are easy

to minimize. For then, the reductions in (4.22) could be implemented, with greater com-

putational ease, by minimizing corresponding the tangent majorants. Furthermore, if as

before (4.21) is also implemented via MM steps, then Algorithm 4.4.1 becomes a block

alternating algorithm overall, and the convergence theorems that we have developed here

may apply.

The cost reduction in (4.22) is equivalent to reducing a cost function

Φt(αt)
4
= KL(yt, τt(PW (αt)u+ rt)) (6.33)

where here u ≥ 0 is fixed. This cost function is one term of ΦJEDM. All other terms

are independent of αt. In what follows, we discuss some ideas for constructing majorant

generators for Φt(αt). These ideas are similar to those in [47].

6.6.1 A Non-Convex Tangent Majorant

In [32], several majorant generators were presented for the function

L(λ) = KL(yt, τt(Pλ+ rt)). (6.34)

One of these, from which the ML-EM-3 algorithm was derived, had the form

φ(λ; λ̄) = KL(e(λ̄),λ+m) (6.35)

for certain image vectors 0 < m ∈ R
|G| and 0 ≤ e(λ̄) ∈ R

|G|. By substituting λ =

W (αt)u in (6.34), one obtains Φt(αt). Moreover, since the majorization relationship

φ(·; λ̄) � L(·) is preserved by function composition, one can obtain a majorant generator
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for Φt(αt) by making the same substitution into (6.35),

φ(αt; ᾱt) = KL(e(W (ᾱt)u),W (αt)u+m)

=
∑

j∈R|G|

[[W (αt)u]j − ej(W (ᾱt)u) log([W (αt)u]j +mj)] + const. (6.36)

The tangent majorant φ(·; ᾱt) is already more line search friendly than Φt(αt). The oper-

ations W (αt)u are now the principal ones in the computation of the RHS of (6.36), and

methods have been developed, namely in Chapter 5, to accelerate that still further.

It is straightforward to verify that an MM algorithm based on (6.36) satisfies both pairs

of hypotheses in Theorem 6.4.1. Asymptotic stationarity is assured by the Theorem so

long as the succesion of tangent majorants can be globally minimized. However, φ(·;αt)

is non-convex and therefore this global minimization is not easily accomplished. One

could partially minimize φ(·;αt) consistent with some sufficient decrease rule, however

that rule would need to be derived. Alternatively, one could implement (4.22) by par-

tially minimizing φ(·;αt), but infrequently interrupt Algorithm 4.4.1 with an iteration of

non-block alternating steepest descent. The steepest descent iterations constitute so-called

spacer steps and would guarantee asymptotic stationarity due to [7, Proposition 1.2.6].

6.6.2 A Convex Tangent Majorant

Another alternative is to derive a convex φ′(·; ᾱt) that is a tangent majorant for φ(·; ᾱt),

and hence also one for Φt(αt). Our idea for doing so is to construct Q+
j (αtC ; ᾱt) and

Q−
j (αtC ; ᾱt), C ∈ {X,Y, Z}, that are respectively convex and concave functions of αtC

and satisfy

Q−
j (·; ᾱt)

ᾱt

≺ [W (·)u]j
ᾱt

≺ Q+
j (·; λ̄, ᾱ).

That is, Q+
j is a true majorant generator for [W (·)u]j and Q−

j is a true majorant generator

for −[W (·)u]j , both with respect to αtC . Since − log(·) of a concave function is convex
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and since − log(·) is monotone increasing, it then follows (see also [47, Proposition 3.3])

that,

φ′(αtC ; ᾱt)
4
=
∑

j

[
Q+

j (αtC ; ᾱt) − ej(W (ᾱt)u) log(Q−
j (αtC ; ᾱt) +mj)

]
(6.37)

generates convex tangent majorants for Φt. It is the basis of a block alternating MM

algorithm that alternates over blocks {u,αtX ,αtY ,αtZ}.

To derive such Q+
j , one first observes that [W (αt)u]j depends on each αtC , C ∈

{X,Y, Z}, entirely through

djC = [νC +BCαtC ]j.

Fixing, for example C = Z, one can write this as

[W (αt)u]j = Fj(`)
∣
∣
`=[νC+BCαtC ]j (6.38)

where Fj(`) is the 1D function

Fj(`) =
∑

mn

w (djX(αX) −m)w (djY (αY ) − n)×

∑

p

umnpw (`− p)

︸ ︷︷ ︸

4
=fmn(`)

(6.39)

Since the substitution in (6.38) is affine inαtC , the problem now reduces to replacing each

1D function fmn(`), defined in (6.39) with a 1D convex quadratic true tangent majorant,

q+
mn(`, ¯̀) = ¯̀+ ḟmn(¯̀)(`− ¯̀) +

1

2
vmn(¯̀)(`− ¯̀)2.

Here the vmn(¯̀) ≥ 0 are curvatures chosen (ideally as small as possible and) so that

q+
mn(·, ¯̀) � fmn. One can determine vmn(¯̀) ≥ 0 by looking at the 1D piecewise cubic

difference polynomial

δ(`) = q+
mn(`, ¯̀) − fmn(`)
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and computing how large vmn needs to be so that ¯̀ is the only root of δ(`). These vmn can

be tabulated over a suitably discretized interval of `. Note that vmn(`) must be uniformly

bounded above in ` since fmn(`) is of bounded curvature. We can also design vmn(`) so

that it is uniformly bounded from below. The motivation for doing so will become clear

shortly.

Once q+
mn(`, ¯̀) is substituted for fmn(`) in (6.39) one obtains a quadratic true tangent

majorant F+
j (·; ¯̀) � Fj(·) with curvatures,

Vj(¯̀) =
∑

mn

vmn(¯̀)w (djX(αX) −m)w (djY (αY ) − n) .

Thus, once the vmn have been tabulated, the curvature computation requires only a 2D

interpolation (cf. Section 5.3.2). Finally, Q+
j is obtained by replacing Fj with F+

j (·; [νC +

BCᾱtC ]j) in (6.38). An analogous process is used to derive Q−
j except that instead of

fmn ≺ q+
mn, one has vmn ≤ 0 and fmn � q−mn.

The composition of functions approach that was used to derive (6.37) has a complexity.

Namely, since the Q−
j (·; ᾱt) are concave, the log terms in (6.37) is undefined except in the

convex region D(ᾱt) =
{
αt : Q−

j (αt; ᾱt) > −mj

}
. Thus, we have a case where D(ᾱt)

is a ᾱt-dependent strict subset of the entire feasible set. Previous work on block alter-

nating MM [32, 33] does not tell us whether such majorant generators induce asymptotic

stationarity. Therefore we invoke our own result, Theorem 6.4.4. The main observations

needed to do so is that (C5.1) and (C6) hold at iterations over αt. The other conditions

required by Theorem 6.4.4 are reasonably self-evident.

In the degenerate case where no limit points exist, clearly no non-stationary ones exist

either. If limit points do exist, the remaining hypotheses of (C5.1) hold due to the de-

sign choice, mentioned above, that vmn is uniformly bounded from below. This forces

Q+
j (·; ᾱt) and hence also φ′(·; ᾱt) to be uniformly strongly convex as required. That (C6)

holds is readily seen when one considers the following facts:
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(a) The curvatures of Q+
j (·; ᾱt) are uniformly bounded from above (because vmn(`) is

so bounded).

(b) In an MM sequence, the quantitiesQ−
j (ᾱi

tC ; ᾱi
t)+mj (i.e., the log term arguments in

(6.37) when evaluated at the expansion points), must stay uniformly bounded away

from zero. Otherwise, the value of the true tangent majorants at the expansion points,

and hence also of the cost, would diverge to infinity in (6.37), thus contradicting the

monotonicity of the algorithm.

(c) The derivatives of Q−
j (·; ᾱi

t) are globally bounded. This is because the first deriva-

tives coincide with those of [W (αt)u]j , which are continuously differentiable, finitely

supported functions. The second derivatives are bounded, once again by the design

of vmn.

The resulting tangent majorant φ′(·; ᾱt) is even more line search friendly than the tan-

gent majorant φ(·; ᾱt), devised in Section 6.6.1. This can be seen by comparing the RHS

of (6.36) with (6.37). Along the line {αt + `∆αt : 0 ≤ ` ∈ R}, the form of the latter

simplies to

a(`) =

|G|
∑

j=1

[
q+
j (`) − ej log(q−j (`))

]

where the q±j (`) are 1D quadratics. Each evaluation of a(`) requires |G| log operations

and, due to the quadratics, 5|G| memory transfers and 4 |G| multiplications. This is to

be contrasted with the line evaluations in (6.36). There, the need to evaluate the various

[W (·)u]j by interpolation results in a minimum of 17|G| memory transfers, 20 |G| multi-

plications and |G| log operations. This minimum figure corresponds to the case where the

table-assisted interpolation technique of Chapter 5 is used.
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6.7 Toward Conditions for Convergence to Non-Isolated Stationary
Points*

In previous sections, we established convergence of MM sequences under the assump-

tion that the stationary points of (6.1) are isolated. However, other investigators have found

that certain MM algorithms are convergent even when a continuum of stationary points is

present. This has been observed in certain applications of the EM algorithm (e.g., [13, 88])

and also coordinate descent [64], both of which, as noted earlier, are special cases of MM

algorithms. It is natural to wonder, therefore, whether there are general conditions ensur-

ing convergence when the stationary points are possibly not isolated. In this section, we

discuss, and examine by way of examples, what conditions might be required.

It seems clear that (R1.1) must be hypothesized a priori. This is because an MM

sequence can easily become unbounded if it is initialized in a region where the graph of

Φ has a pathological shape. Taking a 1D example, suppose Φ(θ) = θ exp(−θ), Θ =

{θ ∈ R : θ ≥ 0} , and connected tangent majorants are used that satisfy the conditions of

Theorem 6.4.1. Initializing with θ0 > 1 can only produce an unbounded sequence {θi}.

This must be the case since G = (1, ∞) is a generalized capture basin where Φ has no

stationary points. Thus, by Theorem 6.4.1 and Theorem 6.5.4, {θi} is confined to (1, ∞)

but has no limit points there. (Conversely, if θ0 ∈ [0, 1), then {θi} must converge to the

stationary point at θ = 0.)

Another hypothesis that seems necessary for convergence is that the tangent majorants

φi(·;θi) have a uniform positive lower bound on their curvatures. Otherwise, they can

become asymptotically flat in places, which makes oscillations possible. The next example

demonstrates this.
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Figure 6.4: Illustration of Example 6.7.1. The sequence {θi} oscillates between points in the intervals
(−∞, −1) and (1, ∞), and therefore does not converge. The oscillations are possibly because
the tangent majorants become asymptotically flat in the interval [−1, 1].

Example 6.7.1 Suppose p = 1 and consider the cost function

Φ(θ) =







0.25(|θ| − 1)2, |θ| ≥ 1

0, |θ| < 1.

This cost function is piece-wise quadratic. In this example, we present an MM sequence

{θi}, obtained from tangent majorants that are also piece-wise quadratic, which, as in Fig-

ure 6.4, oscillates between the intervals (−∞, −1) and (1, ∞). To construct the relevant

tangent majorants, we first define, for any d > 0,

γd = 3 +

(

4 −

√

17

4
d2 + 16 d+ 16

)

d−1

Bd = 2d(γd − 1)

Ad = 1 + 2(Bd − d)2/d2

g1(t, d) = (t+ 1)2

g2(t, d) = 2(t+ d+ 1)2 − 2d(t+ d+ 1) + d2

g3(t, d) = (0.5d2γ2
d − d2γd + d2) +Bd(t+ d+ 1 − 0.5dγd)

g4(t, d) = Ad(t− 1 − 0.5d)2 +Bd(t− 1 − 0.5d) + 0.375d2,
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and

g(t; d) =







g1(t, d) t ≤ −d− 1

g2(t, d) −d− 1 < t ≤ −d− 1 + 0.5dγd

g3(t, d) −d− 1 + 0.5dγd < t ≤ 1 + 0.5d

g4(t, d) t > 1 + 0.5d.

One can verify the following facts about the foregoing definitions. Firstly, 0 ≤ γd ≤

1. Secondly, g(·; d) is continuously differentiable with a non-decreasing derivative (and

hence is convex). Thirdly, g(·; d)
d
�
R

Φ(·). Fourthly, the unique minimizer of g(·; d) is

tmin
d = 1 + 0.5d−

Bd

2Ad

. (6.40)

Define the following majorant generator

φ(θ; θ̄) =







Φ(θ),
∣
∣θ̄
∣
∣ ≤ 1

g(− sign(θ̄)θ;
∣
∣θ̄
∣
∣− 1),

∣
∣θ̄
∣
∣ > 1.

One can readily verify, from the aforementioned properties of f , that φ(·; ·) satisfies the

requisite properties of a majorant generator.

Let {θi} be the MM sequence produced by

θ0 = −3

θi+1 = argmin
t∈R

φ(t; θi)

The first few iterations of this sequence are shown in Figure 6.4. By considering (6.40) and

the definition of φ, one can verify that θi+1 > 1 if θi < −1 and vice-versa for all i. Thus,

the sequence {θi} oscillates between the intervals (−∞, −1) and (1, ∞) as claimed, and

so cannot converge. This oscillatory behavior is possible precisely because the tangent

majorants become progressively flatter in the interval [−1, 1].
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Because the algorithm is monotonic and Φ has compact sublevel sets, (R1.1) holds,

so {θi} has a bounded set of limit points. It is natural to wonder whether these limit

points are stationary. If non-stationary limit points exist, it means that {Φ(θi)} cannot

converge to the global minimum value of Φ. In fact, though, one can easily verify that the

assumptions of Theorem 6.4.1 are satisfied. In the present example, both condition sets

(C6) and {(C2), (C3)} are met. Therefore, the limit points of {θi} are indeed stationary

and consist of the two global minimizers {−1, 1}.

From the above discussion and example, boundedness of {θi} and a lower bound on the

tangent majorant curvatures seem to be minimum requirements for a convergence theory.

For one-dimensional problems, i.e., when p = 1, we can show that these assumptions are

also sufficient. This is formalized in the following theorem.

Theorem 6.7.2 Suppose that p = 1 and that {θi} is an MM sequence generated by (6.11).

Suppose, further, that (R1.1) and (C5.1) hold. Then {θi} converges to a point in Θ.

Proof. Due to (R1.1), the sequence {θi} is bounded and has a compact set of limit points in

Θ. Furthermore, since (C5.1) holds, then likewise (C5) holds, so that limi→∞ ||θi+1 − θi|| =

0. A bounded sequence with this property has a connected set of limit points (see [76,

p. 173]). In this context, where R
p = R, we can therefore conclude that the limit points of

{θi} form a closed, bounded interval [a, b] ⊂ Θ. It remains to show that a = b.

Aiming for a contradiction, suppose a < b, so that the limit points form an interval

of positive length. Then, there exists some k such that θk ∈ (a, b) . In addition, due to

Lemma 6.3.5(b), Φ(θ) is constant throughout [a, b], and consequently dΦ(θk)
dθ

= 0. By first

order minimality conditions, Equation (6.10) can therefore be satisfied only if

dφk(θ; θk)

dθ
|θ=θk = 0. (6.41)

Now due to (C5.1), φk(·; θk) is strongly convex. Thus, (6.41) implies that θk is the unique
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global minimizer of φk(·; θk). This, in turn, implies that θk+1 = θk. Repeating this argu-

ment inductively, we can conclude that θi = θk for all i ≥ k. But then {θi} converges

to θk, contradicting the assumption that the limit points constitute an interval of positive

length. 2

Corollary 6.7.3 Suppose that p = 1 and that {θi} is an MM sequence generated by (6.11).

Furthermore, suppose (C5.1) and the assumptions of Theorem 6.4.1 hold. Then {θi} con-

verges to a stationary point in Θ.

Proof. The assumptions of Theorem 6.7.2 hold, so {θi} converges to a feasible point.

Since the assumptions of Theorem 6.4.1 holds as well, this limit is stationary. 2

Remark 6.7.4 The assumptions of Theorem 6.7.2 but not Theorem 6.4.1 are satisfied in

Example 6.4.2. The sequence {θi} therefore converges, but the limit is non-stationary.

It is common to obtain intuition about the behavior of multi-variable problems from

single variable ones. Theorem 6.7.2, however, is one case where this can be misleading. As

the next example shows, convergence may not occur if p > 1, even if the other assumptions

of Theorem 6.7.2 are met.

Example 6.7.5 Suppose R
p = R

2 and consider the quadratic cost function

Φ(θ) =
1

2

[
(θ1)

2 + (θ2)
2]

In this example, we present a non-convergent MM sequence {θi}, produced by tangent

majorants that are also quadratic, which starts at the point θ0 = [2 0]T and spirals in such

a way that its limit points are the entire unit circle (see Figure 6.5).
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Figure 6.5: Illustration of Example 6.7.5. The sequence {θi} spirals into an asymptotic orbit about the unit
circle.

We begin with a series of definitions:

ri = 1 + sin

(
π

2(i+ 1)

)

αi =







∑i
j=1

π
4j
, i ≥ 1

0, i = 0

ξi = [ri cosαi, ri sinαi]

λi =
ri cos

(
π

4(i+1)

)

ri cos
(

π
4(i+1)

)

− ri+1

Ri =






cosαi+1 − sinαi+1

sinαi+1 cosαi+1






φi(θ; θ̄) = (θ − ξi+1)TRT
i






λi 0

0 1




Ri(θ − ξi+1)

We now argue that {θi} = {ξi} is an MM sequence produced using {φi(·; ·)}. To do so,

we show that the {φi(·; ·)} satisfy (6.4) and that {θi} satisfies (6.11).
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One can verify, from the definition of φi(·; ·), that (6.15) holds. It is now sufficient

to show that λi ≥ 1
2

for all i. For if this is true, the first implication is that all the Hes-

sians ∇20φi(·;θi) are non-negative definite throughout R
2. This, in turn, implies that the

quadratics φi(·;θi) are convex with minima at ξi+1 so that the recursion (6.11) is satisfied

by {θi} = {ξi}. In addition, if λi ≥
1
2
, one can verify that ∇20φi −∇2Φ is non-negative

definite. Together with (6.15), this means that each φi(·; ·) satisfies (6.4).

From the definition of λi, one can verify that λi ≥
1
2

if

ri cos

(
π

4(i+ 1)

)

− ri+1 > 0 (6.42)

Using Taylor’s theorem with remainder, one can derive the following bounds for arbitrary

0 ≤ t ≤ 1,

1 + sin

(
πt

2

)

≥ 1 +
πt

2
−
π3t3

48

−

(

1 + sin

(
πt

2

))

≥ −1 −
πt

2

cos

(
πt

4

)

≥ 1 −
π2t2

32
.

Recalling the definition of ri, the last three inequalities give lower bounds on the three

trigonometric terms/factors on the LHS of (6.42). This leads to

ri cos

(
π

4(i+ 1)

)

− ri+1 >
P (i)

Q(i)
, (6.43)

where P (t) and Q(t) are polynomials given by,

P (t) = 1.2624 t4 + 3.6106 t3 + 2.1272 t2 − 1.3287 t− 0.9085

Q(t) = (t+ 1)5 (t+ 2) .

One can verify numerically that, for all t ≥ 1, the rational function P (t)
Q(t)

has no real roots

and is strictly positive. Hence, (6.42) follows from (6.43). We conclude that the {φi(·; ·)}
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satisfy the requisite property (6.4) and that {θi} = {ξi} is the corresponding MM se-

quence.

From the definition of ξi, one can see that {θi} has the spiral, non-convergent trajectory

of Figure 6.5. This is in spite of the fact that the conditions of Theorem 6.7.2 (apart from

p = 1) are satisfied. The sequence is indeed bounded, again by direct inspection of the

definition of ξi. Moreover, the fact that λi ≥
1
2

for all i implies that the tangent majorant

curvatures are uniformly bounded from below in all directions. Hence, (C5.1) holds.

In the example, {θi} does not converge even though it is a bounded sequence and the

tangent majorant curvatures are bounded from below. These conditions are insufficient to

prevent the increments {θi+1−θi} from becoming asymptotically tangential. Thus, in the

limit, the {θi} move in a circular path about the origin. This observation suggests that the

convergence of {θi} might be ensured by preventing this kind of asymptotically tangential

behavior. Preventing this behavior seems to require, at minimum, that both an upper and

lower bound exist on the curvatures of the tangent majorants φi(·;θi). In Example 6.7.5,

asymptotic tangentiality comes about precisely because the {λi}, which determine the

tangent majorant curvatures, become unbounded. We may explore these ideas further in

future work.

6.8 Conclusion

We have generalized the analysis of MM given in [33] by relaxing the twice differentia-

bility and convexity assumptions on the cost function Φ and tangent majorants {φi(·;θi)}.

The analysis applies to any convex feasible set and allows the tangent majorant domains

to be strict subsets of this set. We have also considered a more general version of the

block alternation technique. Our analysis examined the asymptotic properties of such al-

gorithms as well as the tendency of an MM algorithm to be captured in basin-like regions
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in the graph of Φ.

The asymptotic analysis addressed separately the cases where block alternation was

used and where block alternation was not used. When block alternation is not used,

asymptotic stationarity is assured if the sequence {φi(·; ·)} consists of majorant generators

chosen from a finite set (condition (C2)) and, moreover, that each φi(·; ·) satisfy continu-

ity conditions described in (C3). Alternatively, one can require that the tangent majorant

curvatures be uniformly upper bounded in the manner described in (C6). The tangent ma-

jorants need not be convex. In the block alternating case, we dropped (C2) and added (C4)

and (C5). However, these modified assumptions are no stronger than those considered pre-

viously in [33]. In these various cases, convergence results followed (see Theorem 6.4.5)

under standard discreteness assumptions on the problem’s stationary points.

In addition to the generality of our assumptions, our asymptotic analysis is structured

in a way that imparts several additional theoretical insights, as compared to previous lit-

erature. Firstly, we found in Theorem 6.4.1 that, in the non-block alternating case, con-

ditions like (C5.1), or even its weaker version (C5), need not be known to hold a priori

to establish asymptotic stationarity. Conversely, in [33, Condition 5], a strong convexity

condition similar to (C5.1) is incorporated throughout the analysis. Secondly, our analysis

shows that asymptotic stationarity can be assured by curvature conditions like (C6), and

not merely continuity conditions like (C3). Conversely, previous convergence analyses

are based mainly on continuity conditions. An advantage of the curvature conditions, in

the non-block alternating case at least, is that they allow more flexible iteration-dependent

behavior to be used. Note that, in Theorem 6.4.1, the continuity condition (C3) is accom-

panied by (C2). No such restriction is necessary when (C6) holds. Thirdly, our analysis

clarifies when asymptotic stationarity can occur – for algorithms using iteration-dependent

majorant generators – even when convergence in norm may not. By contrast, the line of
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proof in [33] establishes convergence first, before investigating whether the limit is sta-

tionary.

In Section 6.5, we proved the capture property of MM algorithms that use connected

(e.g., convex) tangent majorants, which is the most common practice. An implication

of this property is that global minimizers attract the iterates over essentially the largest

possible neighborhood. The capture property also makes MM a useful instrument in non-

convex minimization strategies that rely on basin-probing steps. A negative implication of

the capture property is that MM might have a higher tendency to get stuck in local minima

than other algorithms. To mitigate this, one must run the algorithm from multiple initial

points, and this can be computationally expensive.

Finally, we made a preliminary examination, in Section 6.7, of conditions that ensure

the convergence of MM sequences in the presence of non-isolated stationary points. For

1D problems, convergence is assured provided that a uniform lower bound exists on the

tangent majorant curvatures. However, for higher dimensional problems, this condition is

insufficient, as was shown by way of a 2D example. Conditions that ensure convergence

in higher dimensions were conjectured and may be considered further in future work.



CHAPTER 7

Summary and Future Work

7.1 Summary

We have conducted a comparison of the average tumor quantification accuracies of dif-

ferent motion correction schemes (Section 4.5.2). The comparison included a statistically

principled estimation method (JEDM), proposed by us, and some intuitive, but less statis-

tically principled, gate-wise reconstruction approaches, ones similar to those considered

by other investigators. The experimentation used simulated data derived from real patient

anatomy and motion. Moreover, we employed a regularization design scheme that, by

excluding the known region of the lesion, allowed each method to exhibit better quantifi-

cation than it otherwise would.

In this first round of tests, the JEDM method demonstrated the best average lesion

quantification accuracy. However, there are still issues to be addressed. Apart from a

desire to test the methods on yet more realistic measurement data, questions remain as to

the the sensitivity of JEDM (and other methods) to the presence of local minima. Because

of these issues, we do not expect the other reconstruction methods considered in Chapter 4

to be immediately dismissed. Even if JEDM continues to show superior performance

in subsequent tests, the semi-statistical method, FWPR-PLC showed reasonable enough

performance that it may provide a good way to initialize JEDM reconstructions.
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With this in mind, we proceeded to address the minimization sub-problems required in

all of the various methods compared in Chapter 4 and associated computational issues. All

of these sub-problems involve interpolation operations that impose some degree or other of

computational expense. In Chapter 5, we proposed various methods by which these oper-

ations could be accelerated. Foremost among these methods was a table-lookup approach

wherein part of the interpolation computation was replaced by approximate, pre-tabulated

quantities. This method reduced, by a certain factor, the size of the image blocks that each

interpolation operation needs to process. A reduction in CPU time by approximately the

same factor was observed in various computational tests.

The benefits of this method were the most pronounced in SSD registration problems.

There, interpolation operations introduce the most overhead. In the minimization sub-

problems associated with JEDM, the impact of these methods was appreciable, but some-

what less dramatic due to the overhead associated with forward projection operations. This

was one motivation for considering MM algorithms. The MM algorithm design methodol-

ogy can allow one to replace complicated parts of the given objective function with simpler

ones, thereby simplifying the cost reduction steps that one would otherwise face.

Ideas for block alternating MM algorithms for the JEDM problem were conceptualized

early on (some of them are discussed in Sections 6.6.1 and 6.6.2), but were of a form not

covered by previous convergence analyses. Thus, we embarked upon efforts to generalize

these analyses in Chapter 6. The analysis treats a framework that is simultaneously flexible

in terms of the form of the tangent majorants, the form of their domains, the form of the

cost function, and the form of the feasible set.

The analysis also characterized the local region of convergence for the broad family

of MM algorithms employing connected tangent majorants. We believe that this is the

first analysis in the MM literature to do so. We found that such algorithms will have
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larger regions of convergence than traditional algorithms, namely the region covers the

entire basin-like region surrounding a stationary point. This property can have negative

consequences – namely connected tangent majorants may have more of a tendency to

get stuck at sub-optimal local minima – but also positive potential applications to various

non-convex minimization strategies.

7.2 Future Work

• We have tested the various motion corrected reconstruction methods of Chapter 4 in

fairly realistic simulations. However, there are higher levels of realism to look at.

Future simulations will look at the impact of modeling error, both on the part of the

projection model and the deformation model. It is also desirable, of course, to test

these methods on real data.

• The sensitivity of the different motion correction methods to the presence of local

minima (and remedies for it) remains an issue. In tests not shown in Chapter 4,

we have found that JEDM performs better when initialized with a FWPR-PLC re-

construction than when initialized from uniform parameter values. We will want to

test the robustness of this approach. Various multi-resolution methods have been pro-

posed in the conventional image registration literature (e.g., [99, 92]). These might be

adapted to the projection domain deformation cost minimizations required in JEDM.

• We have carried out reconstructions so far using a fixed regularization penalty pa-

rameter β. It is desirable to examine how the lesion quantification performance of

the motion-correction algorithms is influenced by varying β.

• Because effective motion correction methods considered in this dissertation involve

gated data, there are Ngates as much data to process, as compared to the ungated case.
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The benefits of motion correction are therefore bought at Ngates times more compu-

tation. It may be possible to eliminate, or at least reduce, this factor by employing

ordered subsets or other incremental gradient minimization schemes. The partition-

ing of the projection data into gates opens the possibility of incrementalizing the

data processing across gates in addition to the typical approach of incrementally pro-

cessing subsets of projection angles. General experience with incremental methods

suggests that this should accelerate convergence by a factor of Ngates, offsetting the

increased size of the measured data.

• To date, all work on motion-corrected PET, that we know of, has addressed the

motion of the activity image, but ignored the corresponding motion of the atten-

uation image. The modeling approach of Section 4.2 can easily be extended, so

that both µ and λ transform from gate to gate according to deformation parameters

α = (α1, . . . ,αNgates).

• Many of the performance trends observed for the frame-wise methods were consis-

tent with the fact that these methods estimated each αt based only on the projection

data acquired in the corresponding gate. This is in contrast to JEDM in which all αt

were estimated based on the full set of projection data. This difference means that the

frame-wise methods estimate motion with higher variance and this in turn has an im-

pact on lesion recovery. However, some investigators (e.g., [51]) have proposed that

frame-wise methods should use inter-gate regularization to couple the α̂t to the entire

set {yt}. This would lower the variance of the α̂t and might narrow the performance

gap between JEDM and the frame-wise methods.

• There is still some question as to whether the performance trends of FWPR-PA in

Section 4.5.2 were due more to invertibility issues in (4.14) than to actual registration



131

error. It may be possible to test this in a simulation based on λ0 = T (αt)λt, t =

1, . . . , Ngates − 1 instead of on (4.3).

• The timing experiments in Section 5.4.2 showed that the sequentiality of memory ac-

cess has a significant effect on the CPU time of deformation options. A wise strategy

may be to pre-sort the deformation map before conducting the series of interpolation

operations, so as to make memory access more sequential.

• Ideas for MM algorithms for JEDM were proposed in Sections 6.6.2 and 6.6.1. These

are yet to be tested.

• We believe that we can generalize the analysis of MM algorithms in Chapter 6 still

further to accomodate non-convex feasible sets and inexact minimization of the tan-

gent majorants. This was done in [72], but only for the case of a single, iteration-

independent majorant generator.

• In Chapter 6, our analysis requires the tangent majorants to satisfy the majorization

property only over its own domainD(θ̄), which can be a subset of the overall feasible

set. This looser majorization requirement should allow tangent majorants to more

accurately approximate the cost function and so achieve faster convergence. This

raises questions as to how to design D(θ̄).
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APPENDIX A

Notes and Extended Discussions on MM Topics

Note A.1 (Tangent majorants vs. true tangent majorants) A sequence {θi} satisfies (6.5)

and (6.6) even if global constants are added to the {φi(·;θi)}. Thus, the behavior of MM

sequences can be studied irrespective of whether the {φi(·;θi)} are true tangent majorants,

or merely tangent majorants. The distinction becomes important, however, when deriving

tangent majorants by composition of functions. For example, suppose f : R → R and

g : R
p → R with f monotone increasing and suppose q(·; θ̄)

θ̄
�
Θ
g(·). Then the montonic-

ity of f implies

Q(·; θ̄)
4
= f(q(·; θ̄))

θ̄
�
Θ
f(g(·, θ̄S̃)). (A.1)

Thus, deriving the tangent majorant Q(·; θ̄) for f(g(·, θ̄S̃)) is accomplished by finding a

true tangent majorant q(·; θ̄) to g. Note that (A.1) is not necessarily true if q(·; θ̄) is a

tangent majorant to g, but not a true tangent majorant.

Note A.2 (Implied derivative matching) Often, MM majorant generators are designed

so that, for all i and θ̄ ∈ Θ

ηi(θ̄; ξ) =
〈
∇SiΦ(θ̄), ξ − θ̄Si

〉
∀ξ ∈ ΘSi . (A.2)

That is, the feasible directional derivatives of the tangent majorants {φi(·;θi)} should

match the cost function at any possible expansion point. This is a stronger version of

(6.14), which requires that derivatives match only at the iterates {θi}.
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It is interesting to note that Equation (A.2) is an implied condition whenever aff(D i(θ̄)) =

aff(ΘSi) and θ̄Si ∈ ri(Di(θ̄)). This follows directly from the alternative definition of a

majorant generator (6.4). The definition requires that the difference φi(·;θi)−Φ(·) be min-

imized over Di(θi) at θi. By standard necessary optimality conditions for interior points,

the derivatives of this difference must vanish in all feasible directions, i.e., all ξ− θ̄Si such

that ξ ∈ aff(Di(θ̄)) = aff(ΘSi). Since ΘSi ⊂ aff(ΘSi), the derivatives must vanish in all

directions ξ − θ̄Si such that ξ ∈ ΘSi . This is precisely (A.2).

In some literature (e.g., Footnote 6 in [27]), it is claimed incorrectly that (A.2) is im-

plied at all points in Di(θ̄) and not just in its relative interior. However, since the above

arguments rely on optimality conditions for interior points, one cannot expect it to remain

true at boundary points. This is illustrated in the following simple example.

Example A.0.1 (Derivatives need not match at the boundaries) Consider the 1D cost

function Φ(θ) = exp(−θ) + θ on Θ = {θ ≥ 0} and φ(θ; 0) = θ + 1 with domain

D(0) = Θ (see also Figure A.1). One can verify that φ(·; 0) satisfies the requisite property

(6.3) of a tangent majorant at expansion point θ̄ = 0. However, the feasible directional

derivatives of Φ and φ(·; 0) do not match at the expansion point.

Furthermore, minimizing φ(·; 0) does not produce a new expansion point. Any MM

algorithm that uses φ(·; 0) gets stuck at the non-stationary point θ̄ = 0. It is for this reason

that derivative matching must be directly enforced by the algorithm designer (e.g., through

(R2) or (A.2)) to avoid degenerate behavior.

Note A.3 (Imposed gradient matching in non-solid sets) In existing MM literature, the

stronger condition (R2.1) is customarily used to ensure (R2). Condition (R2.1) requires

that the derivatives of the cost function and tangent majorants match in all directions, not

just feasible ones. This might be excessive when ΘSi is not a solid subset of RSi (i.e., when

RSi 6= aff(ΘSi)), in which case the space of feasible directions in ΘSi is smaller than RSi .
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Figure A.1: Illustration that, when the expansion point of a tangent majorant is at the boundary of its domain,
its derivatives need not match the cost function at that point. It also shows how this can cause a
corresponding MM algorithm to prematurely stop at a non-stationary point.

A rudimentary example is obtained from Example 6.2.1 with S = 1. In ΘS = Θ1, the

space of feasible directions at any point is a one-dimensional subset of RS = R
3. A less

rudimentary example is encountered in applications to Positron Emission Tomography

(PET) reconstruction. In PET, the sum of the measured data is, with high probability

approximately equal to its mean. This motivates hyperplane (i.e., non-solid) constraints in

addition to the usual positivity constraints. Hyperplane constraints were also imposed for

this problem in [6], but with somewhat different motivation.

When dealing with non-solid ΘSi , it may be advantageous to impose (A.2). This con-

dition is weaker than (R2.1) but stronger and perhaps more easy to verify, than (R2).

Note A.4 (EM as a special case of MM) As discussed in Section 6.1, the family of EM

algorithms is a prominent special case of MM algorithms for minimizing the negative

loglikelihood Φ(θ) = − logP(Y = y|θ) of a measurement vector y. One develops an

EM algorithm by inventing a joint distribution P(Y, Z|θ) whose marginal with respect

to Y coincides with the given measurement likelihood P(Y |θ). In the EM literature, the
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artifical random vector Z is called a complete data vector. An MM algorithm is then

constructed using the majorant generator,

φ(θ; θ̄) = Φ(θ) + KL(P(Z|Y = y, θ̄),P(Z|Y = y,θ)). (A.3)

Often a joint distribution P(Y, Z|θ) is constructed by finding a complete data vector Z

such that Y = h(Z), where h is a deterministic function. This was the family of con-

structions considered in [25], but generalizations have been proposed, e.g., [32, 60, 69].

Note that the converse, i.e., constructing complete data so that Z = h(Y ) is generally

ineffective since (A.3) then reduces to φ(θ; θ̄) = Φ(θ).

Although it is a classical example of MM, the EM design methodology has frequently

resulted in slow algorithms (as discussed, for example, in [31]). This has motivated certain

investigators (e.g., [27, 28]) to depart from the EM framework and look for more general

types of majorant generators.

The kind of discontinuities exhibited in Example 6.4.2 can arise in EM majorant gen-

erators (A.3) because (see (2.1)), KL(f, g) can be discontinuous wherever f = g = 0.

This occurs, for example, in the emission tomography EM application of [88]. When

such discontinuities exist, the limit points of {θi} may still be stationary. However, very

situation-specific analysis may be required to establish this. For the EM algorithm of [88],

such an analysis can be found, for example, in [13]. Of course, if the complete data vector

is chosen so that P(Z|Y = y,θ) > 0 for all θ, then such discontinuities are not present.

Note A.5 (The dimension of a generalized capture basin) Any generalized capture basin

G must have the same dimension as Θ, in the sense that aff(G) = aff(Θ). Thus, for exam-

ple, if Θ = R
2, no line segment inside Θ can constitute a generalized capture basin. We

show this by contradiction.

Accordingly, assume instead that aff(G) is a strict subset of aff(Θ). A consequence
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of this is that Θ \ aff(G) is non-empty and contains a point that we denote ξ. This must

be true, since otherwise we would have Θ ⊂ aff(G), from which it would follow that

aff(Θ) ⊂ aff(G), contradicting the assumption that aff(G) is a strict subset of aff(Θ).

Now fix any point ψ ∈ G and any α ∈ (0, 1). Define

θα
4
= αψ + (1 − α)ξ. (A.4)

Then θα ∈ Θ, due to the convexity of Θ, but θα /∈ G. If θα were an element of G, then

rearranging (A.4) as follows,

ξ =
1

1 − α
θα −

α

1 − α
ψ,

yields ξ as an affine combination of elements of G. However, this is impossible, since ξ

was drawn from the set Θ\ aff(G). We conclude that θα ∈ Θ\G for any fixed α ∈ (0, 1).

Now, letting α tend to 1 causes θα to tend toψ and establishes thatψ ∈ cl(Θ\G). Also,

sinceψ was drawn fromG, we have thatψ ∈ cl(G). It follows thatψ ∈ cl(G)∩cl(Θ\G)

and, because ψ was arbitrary, that G = cl(G) ∩ cl(Θ \ G). However, no generalized

capture basin G can satisfy G = cl(G) ∩ cl(Θ \ G) because (6.28) would be violated by

taking any θ ∈ G and letting θ̃ = θ. This establishes a contradiction and proves that

aff(G) = aff(Θ).
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[27] H. Erdoğan and J. A. Fessler. Monotonic algorithms for transmission tomography. IEEE Tr. Med.
Im., 18(9):801–14, September 1999.
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