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CHAPTER 1

Introduction to Image Reconstruction for MRI

1.1 Motivation

Over the last ten years, many advances in hardware, pulse sequence design, and

post-processing methods have improved the image quality of magnetic resonance

imaging (MRI) experiments. However, the predominant method for reconstructing

MR images from the acquired measurements has remained relatively unchanged:

conjugate phase or other conventional Fourier reconstruction techniques. The con-

jugate phase method is a modi�ed inverse Fourier transform method that attempts

to compensate for phase accrual due to inhomogeneities of the main magnetic �eld.

This classical Fourier-based reconstruction method requires density compensation

for non-uniform sampling trajectories and is limited to the case of smoothly-varying

�eld inhomogeneities. Also, some important physical e�ects have been ignored, such

as gradients in the local �eld intensity across a voxel and relaxation during the sig-

nal acquisition. In many applications of MRI, conjugate phase or even conventional

Fourier reconstruction is adequate�artifacts caused by unmodeled physical e�ects

are small or easily ignored by the radiologist. However, demand for faster scans and

1
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higher SNR for fMRI and other applications has led to the use of stronger main

magnetic �elds, nonlinear k-space trajectories (such as spirals and rosettes), and

long data readout times. These properties make the MR experiment more sensitive

to physical e�ects from �eld inhomogeneities and relaxation.

The overall goal of this research is to develop, implement, analyze, and eval-

uate an iterative, inverse problem approach to the reconstruction of MR images

from general types of MR acquisitions using accurate physical models, with the goal

of ultimately producing higher quality images. The proposed iterative algorithms

take into account T ∗
2 relaxation and �eld inhomogeneities, along with the e�ects of

through-voxel gradients of the local magnetic �eld, leading to images with reduced

susceptibility artifacts and reduced signal void regions. The focus is on fMRI ap-

plications where gradient-echo, single-shot acquisitions make the scans extremely

sensitive to these e�ects.

In this opening chapter, I describe the basics of MR imaging and image recon-

struction, including the e�ects of �eld inhomogeneity. In Chapter 2, I introduce

our �eld-corrected iterative image reconstruction for MRI along with methods to

speed its computation. Chapter 3 extends the iterative algorithm to include coil

sensitivities and subsampled k-space trajectories, allowing for its application to the

rapidly growing area of parallel imaging. In Chapter 4 we examine the stability of

the iterative reconstruction over a time series of images. This stability is necessary

for our target application of functional MRI studies. Chapter 5 gives an extension

of the iterative algorithm to the simultaneous estimation of the image, �eld map,
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and T ∗
2 -relaxation map from an extended (multi-echo) readout. Chapter 6 includes

a discussion of the parameterization of the image reconstruction problem to include

e�ects from gradients in the �eld inhomogeneity distribution across a voxel. Finally,

Chapter 7 summarizes our contributions and gives ideas for areas of future work.

1.2 Signal Equation for MR

Atoms with either an odd number of protons or an odd number of neutrons have

a nuclear spin angular momentum and can give rise to a measurable signal using

MR. For the most part, proton imaging is used because the body contains large

amounts of water. In the absence of an applied magnetic �eld, the spin angular

momentum of a proton is randomly oriented. However, when an external magnetic

�eld is applied, a small portion of them tend to align with the magnetic �eld giving

rise to a net magnetic moment, Mo, that is aligned with the applied magnetic �eld.

The equilibrium magnetic moment is determined by a Boltzmann distribution and

for protons it is given by (Equation 6.11 in [1]):

Mo =
1

4
ρo

γ2h2

kT
Bo, (1.1)

where ρo is the proton density, γ is the gyromagnetic ratio speci�c to the nucleus

being imaged, h is Planck's constant divided by 2π, k is Boltzmann's constant, T is

the absolute temperature, and Bo is the applied magnetic �eld strength. Values of

γ for various nuclei that are typically imaged can be found in Table 1.1. Thus the

magnetization is proportional to the �eld strength and proton density, but inversely

proportional to temperature. In an imaging experiment, we are typically trying to
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Nucleus γ (MHz/T) Abundance in Body
1H 42.58 88M

23Na 11.27 80mM
31P 17.25 75mM
17O -5.77 16mM
19F 40.08 4µM

Table 1.1: Gyromagnetic ratios for various nuclei, from Haacke, et al. [1].

measure some function of the magnetization of a collection of protons, such as their

relative density in a tissue of interest.

1.2.1 One-Dimensional Imaging

If the net magnetization vector is tipped away from the applied �eld direction

into the transverse plane, the magnetization begins to precess around the �eld at the

Larmor frequency, ωo, given by:

ωo = γBo. (1.2)

This gives us a basis for imaging proton distributions present in the sample of interest.

By applying a spatially dependent magnetic �eld, the spatial position of protons can

be determined from the frequency content of the resulting signal. This is illustrated

in Figure 1.1. The simulation object that we will use for this example is shown in

panel a. This image shows the density of protons in an object of interest. The applied

magnetic �eld strength is Bo, but a gradient is applied across the one dimension over

which we will be imaging, as shown in panel b. of Figure 1.1. This results in a

variation of the Larmor frequency corresponding to spatial position. Speci�cally, if

the applied gradient strength is G with units of Tesla/cm and if the applied magnetic

�eld is Bo, then the Larmor frequency of a proton depends on its spatial position as
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a b c

Figure 1.1: Imaging in MR. a.) Simulation object. b.) Spatially dependent magnetic
�eld. c.) Fourier transform of basebanded signal.

follows:

ωL(x) = γ(Bo + Gx) = ωo + γGx. (1.3)

Note that 1 Tesla = 104Gauss. If we collect samples of the signal over a short

period of time, demodulate the signal by ωo (called basebanding), and take the

Fourier Transform to determine the frequency information from the signal, we get

the one-dimensional �image� in panel c. of Figure 1.1. A mapping exists between

the frequency and the spatial position. If we make ∆ω the resulting frequency o�set

from ωo, then we can convert to spatial position using (1.3),

x =
∆ω

γG
. (1.4)

1.2.2 K-space

For the transition to imaging in two- and three-dimensions, we defer to the con-

cept of k-space. In the previous section, Section 1.2.1, we saw the Fourier transform

relationship between the signal and the image in one-dimension. Using k as the

Fourier domain variable, the basebanded signal, s(k), is given by,

s(k) =

∫
ρ(x)e−i2πkxdx, (1.5)
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for some position, k, in the frequency domain and some density of protons at position

x, ρ(x). Alternatively, we can look at the basebanded phase, φ(x), of a proton at

position x precessing in the transverse plane at a certain time, t, that has been

subjected to a time-varying gradient G(t). Integrating Equation (1.3) over time, we

get:

φ(t, x) = γ

∫ t

0

G(τ)xdτ. (1.6)

If we look at the signal resulting from all protons with phase that has accumulated

under time-varying gradients, we get,

s(t) =

∫
ρ(x)eγ

R t
0 G(τ)xdτdx. (1.7)

We can see by comparing Equations (1.5) and (1.7) that,

k(t) =
γ

2π

∫ t

0

G(τ)dτ. (1.8)

This variable, k(t), can be interpreted as the sampling trajectory in the frequency

domain or k-space. For the one-dimensional example of Figure 1.1, the trajectory

is simply a straight line with samples spaced by γ
2π

G∆t, where ∆t is our sampling

time.

1.2.3 Two- and Three-Dimensional Imaging

In two- and three-dimensional MRI experiments, the basebanded phase of a pro-

ton at a position (x, y, z) at time t is given by the addition of the phases due to the

gradients in the three principle directions,

φ(t, x, y, z) = γ

∫ t

0

(Gx(τ)x + Gy(τ)y + Gz(τ)z) dτ

= γ

∫ t

0

G(τ) · rdτ, (1.9)
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where G(t) = (Gx(t), Gy(t), Gz(t)), i.e. gradients of the main magnetic �eld in

the three principle directions, and r = (x, y, z). Therefore, similar to the one-

dimensional example in the previous section, samples of the spatial frequency infor-

mation of the object of interest are obtained by moving around in two- or three-

dimensional k-space through the application of gradients. The k-space coordinates,

k(t) = [kx(t), ky(t), kz(t)], are given by:

kx(t) =
γ

2π

∫ t

0

Gx(τ)dτ, ky(t) =
γ

2π

∫ t

0

Gy(τ)dτ, kz(t) =
γ

2π

∫ t

0

Gz(τ)dτ. (1.10)

The complex basebanded signal is given by,

s(t) =

∫
ρ(r)e−i2πk(t)·rdr. (1.11)

There are many options and considerations when designing the k-space trajectory.

In a general two-dimensional acquisition called spin-warp, a readout gradient, such as

a constant Gx gradient, follows a blipped phase encode gradient, such as a short pulse

of Gy. Data acquisition occurs during the application of the readout gradient tracing

out a line of constant ky. By varying the value of ky during subsequent acquisitions, a

rectilinear or Cartesian trajectory is followed in k-space and this trajectory is shown

in Figure 1.2a. A train of readout gradients can be separated by small blips in the

phase encode direction to decrease the amount of time required to acquire a complete

k-space. This is called echo-planar imaging (EPI) and it uses a k-space trajectory

similar to that of spin-warp. Other trajectories for acquiring k-space quickly are

spirals and rosettes [3], shown in Figure 1.2 in panels b. and c., respectively. These

trajectories acquire data while both the time-varying Gx(t) and Gy(t) gradients are
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a b c

Figure 1.2: K-space trajectories for two-dimensional imaging. a.) Rectilinear or
Cartesian. b.) Spiral. c.) Rosette.

on. Spiral trajectories are often used in functional MRI experiments as they provide a

quick and e�cient coverage of k-space and are robust to motion and �ow e�ects. The

main focus of this work will be for spiral k-space trajectories although the methods

developed are applicable to any arbitrary trajectory.

1.3 Fourier Reconstruction

As was the case for the one-dimensional imaging problem, the two- (or three-)

dimensional data in k-space are related to the image through a Fourier transform. If

the k-space trajectory does not intersect itself, then there is a one-to-one mapping

from t to k, so that s(t) = s(k(t)) and (1.11) becomes:

s(k) =

∫
ρ(r)e−i2πk(t)·rdr. (1.12)

This form shows the Fourier relation of the expected data to the image. If the k-space

trajectory intersects itself, then the calculation of density compensation functions for

Fourier reconstruction (described below) becomes more complicated. Note that the

iterative methods presented in this thesis do not require density compensation and

are able to handle intersecting k-space trajectories.
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The Fourier transform relationship in Equation (1.12) is inverted for the image

reconstruction problem,

ρ̂(r) =

∫
K

s(k)ei2πk·rdA, (1.13)

where K denotes that the integration is performed over all of k-space and dA is the

di�erential area element around the point k [4]. If a Cartesian k-space trajectory

is used, as shown in panel a. of Figure 1.2, then dA = constant = dk and the

reconstruction becomes,

ρ̂(r) =

∫
K

s(k)ei2πk·rdk. (1.14)

Discretizing this integral, we get:

ρ̂(rn) =
M∑

m=1

s(km)ei2πkm·rn . (1.15)

This equation is evaluated quickly by a two-dimensional fast Fourier transform

(FFT).

For the spiral and rosette trajectories shown in Figure 1.2, the sampling density

is much higher at the center of k-space than at the edges. If a non-Cartesian k-space

trajectory is used, then a change of variables in Equation (1.13) is needed in order to

transform the integration variable to a variable on a uniform grid [4]. This will give

proper compensation for changes in the sampling density during k-space acquisition.

Let (u, v) be variables on a uniform grid representing the acquisition scheme and let

T be a transformation such that (kx, ky) = T (u, v) = T (u). Then using the change

of variables, Equation (1.13) is given by:

ρ̂(r) =

∫
T−1(K)

s(kx(u), ky(u))ei2π(kx(u)x+ky(u)y)

∣∣∣∣∂(kx, ky)

∂(u, v)

∣∣∣∣ dudv, (1.16)
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so that the di�erential area is given by,

dA =

∣∣∣∣∂(kx, ky)

∂(u, v)

∣∣∣∣ dudv. (1.17)

The determinant of the Jacobian of the transformation T , |∂(kx, ky)/∂(u, v)|, is pro-

portional to the di�erential area element in the original coordinates around points

which are uniformly spaced in the transformed coordinates, (u, v). This means that

the determinant of the Jacobian of the transformation is inversely proportional to

the sampling density in the original coordinates. Discretizing Equation (1.16), we

get the Fourier-based reconstruction for arbitrary k-space as,

ρ̂(rn) =
M∑

m=1

wms(k(tm))ei2πk(tm)·rn , (1.18)

where wm is the density compensation function evaluated at the sampling points tm.

1.3.1 Density Compensation

From this point on, the determinant of the Jacobian in Equation (1.17) will be

referred to as part of a family of density compensation functions. There is still

some discussion on quickly computing optimal density compensation functions for

arbitrary k-space trajectories [4�12]. Note that for the iterative image reconstruction

method presented in later chapters, this sample density weighting is not needed [13].

Jackson, et al. de�ned an area density function which was the convolution of

delta functions at the k-space trajectory locations with a convolution function [5].

In [4], the Jacobian of the determinant between the spiral and Cartesian coordinates

is given as,

W (t) =

∣∣∣∣∂(kx, ky)

∂(t, β)

∣∣∣∣ =
γ

2π
‖k(t)‖‖G(t)‖‖ cos(G(t), k(t))‖, (1.19)
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where β is the parameterization of shot number for multi-shot spiral acquisitions.

Meyer et al. o�er a similar expression in [11].

Pipe and Menon in [8] form an iterative procedure to �nd the weighting functions

by noticing in Equation (1.22) that the image reconstructed from the sampled data

will be blurred by convolution with the Fourier Transform of the weighting function.

So the iterative update of the weighting function tries to enforce a delta point spread

function inside the �eld of view (FOV) for the Fourier transform of the weighting

function. If φ(x, y) is a function that is non-zero inside the FOV and zero outside it,

Φ(u, v) is its Fourier Transform, and w(x, y) is the Fourier Transform of the weighting

coe�cients, then we want to esure that,

w(x, y)φ(x, y) = δ(x, y). (1.20)

Convolving both sides of Equation (1.20) with w and expressing in k-space gives

their update rule (Equation 14 in [8]),

Wi+1 =
Wi

Wi⊗Φ
, (1.21)

where ⊗ denotes convolution.

Qian, et al. equate the point spread functions (psf) of the images reconstructed

from data acquired on a Cartesian grid with the weighted data acquired on an ar-

bitrary grid. They solve for the unknown weights using an iterative method. They

term the weights as �same-image weights.�

Sedarat and Nishimura in [6] attempt to formulate both gridding reconstruction

(described in Section 1.3.2) and a least-squares interpolation (similar to URS de-

scribed Section 1.3.3) in similar forms. They can then examine the error between
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these two methods. Note that least-squares interpolation does not require density

compensation functions, but is an iterative and computationally-intensive proce-

dure. The gridding reconstruction does include a density compensation weighting.

The optimal weighting coe�cients for the gridding reconstruction are determined by

minimizing the error between these two methods.

In [12], density compensation functions for arbitrary k-space trajectories are

found by dividing up the total area of k-space into Voronoi cells around each sample

location. The density compensation factors are then just the inverse of the area of the

Voronoi cells. This method is very accurate and simple to apply to arbitrary trajec-

tories. Unless otherwise noted, this weighting is used for all gridding and conjugate

phase reconstructions in this thesis.

1.3.2 The Gridding Algorithm

When k-space is sampled on a uniform grid, an FFT can be used to quickly re-

construct the image as noted after Equation (1.15). The computational advantage

of the FFT can be used for non-Cartesian k-space trajectories if we �rst interpolate

or grid the data onto a uniform grid and then apply the FFT. Despite low accuracy,

simply using bilinear interpolation of the density-compensated data and then apply-

ing the FFT gives a reconstruction of the image. Other interpolation schemes have

been examined in computerized tomography applications [14�16].

A more accurate and widely used method in MRI is referred to as the gridding

algorithm [5, 11]. I will discuss the steps used in the gridding algorithm, but the
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entire method is summarized by the following equation [5]:

Mc = {[(M ·S ·W )⊗ C] ·R} ⊗−1 C (1.22)

where Mc is the data in k-space gridded onto a Cartesian grid, M ·S is the sampled

data on the k-space trajectory, W is the density compensation function, C is the con-

volution function used for gridding the data, R denotes the Cartesian grid sampling

function, and ⊗ denotes convolution. There are four main steps to gridding:

1. Multiply the data that is sampled on the k-space trajectory, M ·S with a density

compensation function, W , to account for the unequal sampling of k-space.

2. Convolve the weighted data with a chosen convolution function, C, and resam-

ple on a Cartesian grid, R.

3. Apply the two-dimensional FFT to reconstruct an image.

4. Perform deapodization to remove the e�ect of the convolution function by

dividing the result by the Fourier Transform of the convolution function, this

is denoted by ⊗−1C in (1.22).

There are a few practical considerations that result in a greatly increased accuracy

of the gridding algorithm. When choosing a convolution function, two criteria have

been used to evaluate performance, sidelobe energy and roll-o� of the interpolator

within the �eld-of-view (FOV). According to Fourier theory, sampling in k-space

results in replication of the object in the image domain. By convolving the k-space

samples with a convolution function, the resulting image replicates are multiplied
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by the FT of the convolution function. If the FT of the convolution function has

signi�cant energy that exists outside the FOV, then this energy will be aliased back

into the image from the replicates. The other criteria commonly considered is roll-

o� of the interpolator within the FOV. During the deapodization process, the image

is divided by the FT of the convolution function. If the Fourier transform of the

convolution function rolls o� at the edges of the FOV, this will be compensated by

deapodization at the expense of amplifying aliased sidelobe energy occurring at the

edges of the FOV. A solution to this problem, as presented by Jackson, et al. [5], is

to grid the k-space data onto a �ner grid. If the grid size is reduced by a factor of

two, then the resulting FOV of the image is doubled. This allows a wider frequency

response of the convolution function, resulting in reduced sidelobes. This also allows

the FT of the convolution function to be more uniform over the desired FOV, with

the tapering o� occurring mostly in the outer portion of the larger FOV which will

be discarded to get back to the original FOV. Jackson, et al. also examine various

convolution functions with respect to the two criteria mentioned above. They found

that the Kaiser-Bessel kernel was simple to compute and worked very well. The

optimal parameters for various sizes of the interpolation kernel are given in [5]. A

higher accuracy is achieved using a larger kernel and larger oversampling factor, but

it is at the expense of a higher computational burden - more samples involved in the

convolution and a larger FFT, respectively.

Once the data has been resampled onto a Cartesian grid, we can take advantage

of the computational e�ciency of the FFT. To remove the e�ect of the fall-o� of
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image intensity near the edges of the image, we divide by the Fourier Transform of

the convolution function, this is known as deapodization. After deapodization, the

reconstructed image is found by truncating the result to the original FOV before

upsampling to the �ner k-space grid.

1.3.3 Other approaches

Other approaches exist to grid the data from arbitrary k-space trajectories onto a

regular grid, notably Uniform ReSampling or URS [17]. URS proceeds by formulating

the gridding interpolation problem as the forward problem Ax = b, where x is the

value of the k-space data on a regular grid, b is the data on the arbitrary trajectory,

and A is a matrix of interpolation coe�cients, i.e. sinc interpolation coe�cients.

Given the interpolation matrix and the data at the arbitrary k-space locations, the

inverse problem is solved by least-squares, i.e. computing the pseudo-inverse of A.

Once the regularly spaced data, x, is determined, the image is formed by taking the

two-dimensional FFT. No density compensation of the data or deapodization of the

resulting image is necessary in this case. A variant of this algorithm called Block

URS, or BURS, makes the solution more computationally feasible by truncating the

interpolation in the rows of A to only the nearest neighbors of each sampling location

corresponding to the entries in b.

1.4 Nonidealities in the Imaging Experiment

The relation between the received signal and the object expressed in Equa-

tion (1.12) is an ideal case. In reality, tissues possess a property called magnetic

susceptibility which alters the e�ective magnitude of the magnetic �eld inside the
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brain. Figure 5 in [18] shows the distribution of the magnetic �eld in the head due

to susceptibility as calculated from a simulation performed by Truong, et al. [18]. As

this �gure shows, inhomogeneity due to susceptibility di�erences occurs in regions

next to the paranasal sinuses, including the frontal and sphenoid sinuses, and the

ear canals, inner ear and mastoid air cells, for example, in the orbital-frontal cortex

and inferior temporal lobes. This �eld inhomogeneity disrupts the careful control of

the resonant frequency relation to spatial position expressed in (1.3), which can now

be written as,

ωL(x) = ωo + γGx + ∆ωo(x), (1.23)

for the one-dimensional case, where ∆ωo(x) is the susceptibility-induced resonant

frequency change. For simplicity, we will refer to this magnetic susceptibility or �eld

inhomogeneity e�ect as ω(r) for the multi-dimensional case. Ignoring this e�ect in

the image reconstruction process leads to geometric distortions (pixel shifts) when

Cartesian k-space trajectories are used [19] and it leads to blurring of the image for

spiral trajectories [20].

Another e�ect ignored in the idealized Equation (1.12) that occurs in the gradient

echo acquisitions that are typical of functional MRI studies, is relaxation of the signal

due to dephasing of the magnetic dipoles within a voxel. This e�ect is referred to as

T ∗
2 . This decay is due to microscopic �eld inhomogeneities resulting in a dispersion of

resonant frequencies within a voxel. Note that the T ∗
2 -decay mechanism is important

to functional MRI. Changes in the T ∗
2 decay of a voxel can be related to changes

in oxygenation of hemoglobin [21] and this is referred to as the Blood Oxygenation
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Level Dependent, or BOLD, e�ect. Ignoring the e�ect of T ∗
2 during the reconstruction

leads to broadening of the point spread function of the reconstruction algorithm.

A more accurate model of the complex baseband signal during and MRI experi-

ment is given by [22],

y(t) = s(t) + ε(t)

=

∫
f̃(r)c(r)e−iω(r)(t+TE)e−R∗

2(r)(t+TE)e−i2π(k(t)·r)dr + ε(t), (1.24)

where y(t) is the complex baseband signal at time t during the readout in the presence

of noise ε(t), TE is the echo time, f̃(r) is a continuous function of the object's

transverse magnetization at location r immediately following the spin preparation

step, c(r) is the spatial sensitivity of the receiver coil, ω(r) is the �eld inhomogeneity

present at r, and R∗
2(r) is the 1/T ∗

2 (r) relaxation. The noise, ε(t), is mostly white

Gaussian noise [1] along with physiological noise induced by respiration and cardiac

cycles. Some post-processing methods exist to signi�cantly reduce the physiological

component from the noise [23]. If we absorb the coil sensitivity and the decay and

�eld inhomogeneity e�ects at the echo time into the object to be reconstructed, i.e.

f(r) = f̃(r)c(r)e−iω(r)TEe−R∗
2(r)TE , we can express Equation (1.24) as,

y(t) =

∫
f(r)e−iω(r)te−R∗

2(r)te−i2π(k(t)·r)dr + ε(t). (1.25)

The goal in an imaging experiment is to reconstruct f(r) from the noisy samples

y(tm) for m = 1, . . . ,M , where M is the number of samples acquired. If we can

accurately reconstruct f(r), we could in principle recover f̃(r) from knowledge of

the coil sensitivity, �eld inhomogeneity, and T ∗
2 relaxation.
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1.4.1 Standard Field-Corrected Reconstruction

When the magnetic �eld inhomogeneity term is included in Equation (1.25) and

relaxation is ignored, we get,

s(t) =

∫
f(r)e−iω(r)te−i2π(k(t)·r)dr. (1.26)

Many image reconstruction methods have been proposed to correct for the image dis-

tortions caused by �eld inhomogeneities. If fast Cartesian trajectories, such as EPI,

are used, a common and e�ective way to correct for the geometric distortions caused

by �eld inhomogeneities is by a pixel-shift method [19, 24�26]. For this method, a

map of the o�-resonance frequencies due to �eld inhomogeneity is converted into a

pixel shift map by dividing by the frequency content per pixel. This shift is then

applied to the image in the phase encode direction. For EPI trajectories, the tim-

ing of the acquisition is much slower in the phase encode direction compared to the

readout direction, so phase accumulation due to �eld inhomogeneity is dominant

in this direction. The pixel-shift method works well for smoothly-varying �eld in-

homogeneities such that the point spread function (psf) of neighboring pixels are

not shifted enough to overlap. When non-Cartesian trajectories are used, there are

three main �eld-inhomogeneity correction schemes: SPHERE, auto-focusing, and

conjugate phase. As described in [27], Simulated PHase Evolution REwinding or

SPHERE begins with a Fourier reconstruction of the data resulting in a distorted

image. Using an estimate of the �eld inhomogeneity map that is also distorted, this

distorted image is used to simulate k-space data using (1.26), except that the nega-

tive of the �eld map is used in order to rewind the phase accumulation due to �eld
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inhomogeneities. This resulting k-space is reconstructed to give an estimate of the

undistorted image. In the auto-focusing method of [28], an image is constructed by

choosing the resonant frequency for each pixel based on a measure of blurriness of

the reconstructed image. The sharpness of the image is chosen by minimizing a non-

linear function of the imaginary component of the image after removing a low-pass

�ltered phase, according to,

∫ ∫
|Imag{I(x, y; ∆ωE)}|αdxdy = 0 (1.27)

where I(x, y; ∆ωE) is the image reconstructed with an inhomogeneity o�set frequency

of ∆ωE and the integration is performed in a local neighborhood in the image. A

method to speed up the algorithm and make it less vulnerable to noise is presented

in [29]. In that paper, auto-focusing is done in two steps. The �rst step provides a

coarse use of auto-focus over the whole image using large blocks as the local neighbor-

hood. The second step limits the deviation of the o�-resonant frequency of smaller

sub-blocks of the image to a range around that estimated for the larger block. Fi-

nally, the most prevalent method for �eld-inhomogeneity correction for non-Cartesian

trajectories is the conjugate phase method. The conjugate phase method seeks to

compensate for the phase accrual at each time point due to the o�-resonance [30�32].

The conjugate phase reconstruction is given by,

f̂(rn) =
M∑

m=1

wms(tm)eiω(rn)tmei2π(k(tm)·rn). (1.28)

Time-segmented and frequency-segmented approximations exist for this method to

allow it to utilize the computational speed of gridding reconstruction [30, 32]. This
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method, like the other noniterative methods discussed here, relies on the assumption

of a smoothly-varying �eld map and fails in regions where this assumption is violated

[13,30,33].

Schomberg [31] provides a rigorous analysis of the family of conjugate-phase

methods for o�-resonance correction of MR images, and concludes that segmented

conjugate-phase methods are preferable to SPHERE methods [27], at least for spi-

ral imaging. Therefore, we focus on comparing our proposed iterative methods to

the conjugate-phase method as the de facto standard for non-iterative o�-resonance

correction for non-Cartesian k-space trajectories.

Although �eld inhomogeneity was mentioned above along with methods to par-

tially correct for it, this continues to be a signi�cant problem in gradient echo MR

experiments. Image distortions from �eld inhomogeneities are worse in high �elds

and with long readout times, common properties desired for good functional con-

trast and temporal resolution in fMRI. The corrections mentioned above are limited

to smoothly varying �eld maps and are zeroth-order corrections. Distributions of

resonant frequencies across a voxel, in-plane or through the slice, cause image distor-

tions and dephasing (signal loss) in an MR experiment. Some work has been done

on modifying conjugate phase reconstructions to account for the �rst-order e�ect

of in-plane dephasing [34], but this eliminates some of the computational advan-

tage of the noniterative method while still being limited to smoothly-varying �eld

inhomogeneities.
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1.4.2 Measuring the Field Map

The conjugate phase method relies on the accurate measurement of a �eld map, a

map of the spatial distribution o�-resonance frequency due to susceptibility-induced

�eld inhomogeneities. Field inhomogeneity maps are typically obtained by acquiring

a gradient-echo image at two slightly di�erent echo times and dividing the phase

di�erence in the reconstructed images by the di�erence in echo times [2]. This is

illustrated graphically in Figure 1.3. The di�erence in phase of a pixel at echo time

TE1 vs TE2 is attributed to o�-resonance from �eld inhomogeneity. Dividing this

phase di�erence by the di�erence in echo times gives an estimate of the �eld map.

If I1(r) is the image at an echo time of TE + τ and I2(r) is an image obtained at an

echo time of TE, then an estimate of the �eld inhomogeneity is given by,

ω̂(r) = −∠(I1(r))− ∠(I2(r))

τ
, (1.29)

where ω̂(r) is given in rad/sec and ∠I(r) indicates the phase angle of the complex im-

age I(r). To avoid problems with 2π phase wraps introduced during the subtraction

of the phases, in practice we �rst compute an intermediate image,

Ic(r) = I1(r)I∗2 (r), (1.30)

where ∗ indicates that the complex conjugate of the image I2(r) is used. Then the

�eld map estimate is formed by,

ω̂(r) = −∠Ic(r)

τ
. (1.31)



22

Figure 1.3: Standard �eld map estimation using the method of [2] proceeds by ac-
quiring two images at two slightly di�erent echo times and examining
the extra phase accrual due to the �eld inhomogeneity.

1.5 Application to functional imaging

Functional MRI (fMRI) relies on encoding task information from regions of the

brain in modulations of the magnitude of reconstructed, T ∗
2 -weighted images [21].

The contrast is developed due to the BOLD response, i.e. changes in blood oxygena-

tion levels lead to changes in T ∗
2 . Long acquisition scans at high �eld strengths are

more sensitive to the e�ects of changes in T ∗
2 , but these scan parameters make the

acquisitions more sensitive to artifacts from �eld inhomogeneity. In functional brain

imaging, considerable scienti�c e�ort is devoted to study design, data acquisition,

and statistical data analysis. The image formation step is equally important to the

success of an fMRI study. Since contemporary fMRI studies are often investigat-

ing high-level cognitive tasks with very low signal levels, physical e�ects that are
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left uncorrected by the conventional Fourier-based reconstruction methods may be

particularly important to address. The methods developed here have been mainly

applied to fMRI scans using spiral trajectories, but the results should extend to many

other acquisition schemes and applications.



CHAPTER 2

Iterative Image Reconstruction1

As discussed in the previous chapter, non-iterative, Fourier-based methods exist

to compensate for �eld inhomogeneity artifacts but they are limited to smoothly-

varying �eld inhomogeneities. Regions of the brain near air/tissue interfaces, such as

those above the frontal sinuses, have �eld distributions that violate this assumption.

A natural alternative to Fourier-based reconstruction is to pose the reconstruction

problem as a statistical estimation inverse problem, where the object's transverse

magnetization is represented as a (large) parameter vector of unknown voxel values,

and the goal is to �nd the voxel values that �best �t� the acquired measurements

(the MR signal values). Here, �best� is determined by both a physical model and a

statistical model. The statistics of MR measurements are well described by (complex)

additive white Gaussian noise so a least-squares criterion is appropriate (in the

maximum likelihood sense) as the measure of best �t. In fMRI one also observes

�physiological noise� that is not white, but methods to remove these e�ects in k-

space, i.e. before image reconstruction begins, are given in the literature, for an

example see [23]. For the physical model, we can return to the fundamental equation
1This chapter based primarily on work found in [13,35]

24
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of MR and the signal equation and include all physical e�ects that are relevant

to the particular imaging situation, including �eld inhomogeneities and relaxation

e�ects. The primary disadvantage of a physics-based reconstruction method is that

generally an iterative algorithm is required to �nd the best �t image, and each

iteration requires more computation than just an FFT or gridding. Unlike standard

reconstruction schemes that directly map the k-space data to a reconstructed image,

(we will call this a back-projector), most iterative reconstruction methods require a

forward-projector (given an estimate of the object and �eld map, form k-space data)

as well as the adjoint of the forward projector. Model-based iterative reconstruction

methods have the potential to account for �eld inhomogeneities that violate the

smoothly-varying assumption and do not require the use of a density compensation

function.

There are a few occurances of iterative reconstruction in the literature. Munger

et al. [36] reported that iterative conjugate-gradient methods based on Fourier re-

constructed echo-planar images outperform the conjugate-phase approach. Their

sparsi�ed system model is speci�c to Cartesian trajectories like echo-planar, whereas

the conjugate gradient (CG) approach considered here is applicable to any trajectory.

Man et al. [37] described an iterative algorithm to remove the residual blur left over

after conjugate phase reconstruction in regions with rapidly varying inhomogeneity.

The iterative reconstruction algorithm proposed by Harshbarger and Twieg [33] was

shown to provide signi�cant improvements in image quality over noniterative meth-

ods even for �eld maps with discontinuities. Their method also can be used in an
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extended form to estimate more accurate �eld maps.

Interest in iterative reconstruction methods has increased recently due to its

utility in multiple coil non-Cartesian k-space sensitivity encoding (SENSE) problems

[38]. Due to the complex aliasing pattern associated with undersampling k-space

trajectories such as spirals, iterative methods that include coil sensitivity patterns

in the projectors are necessary to reconstruct artifact-free images in practice [38].

In [39], a method was presented to speed iterative SENSE reconstruction. This

method, however, was not analyzed for accuracy and lacked �eld inhomogeneity

correction. We discuss the application of our method to SENSE in Chapter 3.

In this chapter, I will begin with a short background of iterative methods giving

some references for the main machinery used in this work. Then, I will discuss

my implementation of the iterative reconstruction algorithm in Section 2.2. Then

I will discuss methods to speedup the iterative image reconstruction algorithm. In

Section 2.3.1, I will discuss some implementation issues related to initialization of the

algorithm and preconditioning. In Section 2.3.2 and 2.3.3, I will give the derivation

and results for two methods we developed to signi�cantly speedup the iterative image

reconstruction process, the non-uniform fast Fourier Transform [35] and a min-max

optimal temporal interpolation scheme [13], respectively.

2.1 Iterative methods

Iterative methods are used in linear algebra applications for �nding the minimum

of a function. For the image reconstruction problem, we are usually trying to �nd

the discrete image x that best �ts the sampled data y. If the data is linearly related
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to the image or object, then the equation relating the two can be written as

y = Ax, (2.1)

where A is the system matrix containing information about the signal formation

process. Since A
?
A is Hermitian symmetric and positive de�nite, where ? denotes

complex conjugate transpose, minimization of the following quadratic form yields

the solution to Equation (2.1),

Φ(x) = ‖y −Ax‖2. (2.2)

Actually the equation corresponding to this quadratic form is given by [40],

A
?

y = A
?

Ax. (2.3)

Minimization could proceed by �nding the gradient of the function with respect to

the unknown x at the nth iterative step of the estimate of x, xn. The estimate of x

is updated to xn+1 by stepping a certain distance along this gradient. This method

is referred to as a gradient descent. If a search for the minimum is performed along

the line passing through the current estimate, xn, along the direction of the gradient,

then the method is called steepest descent. The conjugate gradient method ensures

that the step size taken in a certain step direction is large enough such that the

algorithm will never have to step in that direction again. To perform such a feat, we

must ensure that the error in our estimate is orthogonal to the step direction after

the step has been taken. Since we do not know the true solution and hence do not

know the error in our estimate, we instead enforce the error and the step direction

be A-orthogonal, or conjugate through the system matrix A. For a problem of size
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N , the conjugate gradient method converges in N steps, although a much smaller

number of steps is usually performed. The conjugate gradient method is a powerful

minimization routine for linear problems and is used extensively in this work. For the

nonlinear estimation problems, such as the joint estimation of image and �eld map

in Chapter 5, a steepest descent method is employed. Faster convergence rates may

be possible using truncated Newton's methods [41], other Quasi-Newton methods,

or linearization of the problem. A couple of good references on the steepest descent

and conjugate gradient algorithms and their implementations are [40, 42].

2.2 Iterative Reconstruction Algorithm for MRI

In MRI, ignoring relaxation e�ects, the signal equation is given by Equation (1.26)

and repeated here,

s(t) =

∫
f(r)e−iω(r)te−i2π(k(t)·r)dr. (2.4)

Recall that in an MR experiment, the measurements are noisy samples of this signal,

yi = s(ti) + εi, i = 1, . . . ,M. (2.5)

The image reconstruction problem is to reconstruct f(r) from these noisy samples.

The combination of Equations (2.4) and (2.5) form a continuous-to-discrete (CD)

mapping. This is clearly an ill-posed problem since there is an in�nite collection of

solutions, f(r), that exactly match the data y = (y1, . . . , yM). In [43], the pseudoin-

verse of this CD mapping was investigated for minimum-norm least-squares image

reconstruction without �eld-correction. Although their approach was computation-

ally intensive, the pseudoinverse calculation was object-independent and could be
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performed once for a given trajectory. However, in the case of �eld-corrected imag-

ing, the CD mapping is object-dependent because of the speci�c �eld map of the

slice of interest. This prohibits precalculation of the SVD of the CD operator, so we

seek more practical methods.

Instead of �nding the pseudoinverse of the CD mapping, we restrict the number

of unknowns to be estimated by parameterizing the object and �eld map in terms of

basis functions, φ(r), assuming that

f(r) ≈
N−1∑
n=0

fnφ1(r − rn)

ω(r) ≈
N−1∑
n=0

ωnφ2(r − rn). (2.6)

For this section, we will use the voxel indicator function

φ1(r) = φ2(r) = rect(r1/∆1) · · · rect(rP /∆P ) for the P -dimensional problem. This

choice is somewhat natural for display devices that use square areas of nearly con-

stant luminance. However, this parameterization does not model within-voxel �eld

gradients. Triangle basis functions would allow us to model �rst order gradients of the

�eld map and voxel intensities, which could help reduce within-voxel susceptibility

e�ects. Regardless of what basis one chooses, Equation (2.6) is only an approxi-

mation and we explore other choices in Chapter 6. Substituting Equation (2.6) in

Equation (2.4) yields

s(t) ≈ Φ(k(t))
N−1∑
n=0

fne
−iωnte−i2π(k(t)·rn), (2.7)

where Φ(u) denotes the Fourier Transform of φ(r), i.e. Φ(u) = sinc(u1) · · · sinc(up).
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We express the noisy measured samples of this signal in matrix-vector form as follows

y = Af + ε, (2.8)

where f = (f0, . . . , fN−1) and the elements of the M ×N matrix A are

ai,j = Φ(k(ti))e
−iωjtie−i2πk(ti)·rj . (2.9)

In the discrete-to-discrete formulation Equation (2.8), our goal is to estimate the

image f from the k-space data y, accounting for the statistics of the noise ε. This

will still be an ill-posed problem if N > M , and is usually ill-conditioned even if

N ≤ M for non-Cartesian trajectories.

Since the dominant noise in MRI is white Gaussian [1], we estimate f by mini-

mizing the following penalized least-squares cost function,

Ψ(f) =
1

2
‖y −Af‖2 + βR(f) so that,

f̂ = arg min
f

Ψ(f). (2.10)

The second term in the equation for Ψ(f) is a regularization function, R(f), that

penalizes the roughness of the estimated image. This regularization can decrease the

condition number of the image reconstruction problem and, therefore, speed conver-

gence. We choose the parameter β by examining the point spread function of the

reconstructed image [44], preferably by choosing β small enough to not signi�cantly

degrade the spatial resolution relative to the natural resolution associated with the

k-space trajectory.

The least-squares cost function used here is appropriate for Gaussian measure-

ment noise. If non-Gaussian error �spikes� are present, then one could use a non-
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quadratic cost function to provide robustness to those outliers [45], at the expense of

increased computation. Alternatively, one could use other methods to detect those

spikes, e.g., [46], then exclude the corresponding measurement samples from the

iterative reconstruction process; no �interpolation� of samples is needed.

We apply the iterative conjugate gradient (CG) algorithm for minimization of

Equation (2.10). The algorithm is given below for reference. For simplicity, we have

used quadratic regularization: R(f) = 1
2
‖Cf‖2 for a matrix C that takes di�er-

ences between neighboring pixels. The algorithm may also include a data weighting

matrix W for performing weighted least squares, i.e. replace ‖ · ‖2 with ‖ · ‖2
W in

Equation (2.10). One can also include a preconditioning matrix M to speed conver-

gence of the CG algorithm. Section 2.3.1 discusses the weighting and preconditioner

matrices in more detail. In the algorithm below, gnew denotes the negative gradient

of Ψ(f) from Equation (2.10), r is the residual, d denotes the step direction, and α

denotes the step size. The algorithm is started with an initial estimate of the image,

f = f0. Section 2.3.1 discusses the choice of this initial estimate.
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CG Algorithm

Initialize

r = y −Af0 (residual)

Iteration Steps

gnew = A?Wr − βC?Cfn

γ =

 0 1st iteration

gnew
?Mgnew

gold
?Mgold

else

d := Mgnew + γd

q = Ad

α =
d?gnew

q?Wq + βd?C?Cd

fn+1 = fn + αd (update image)

r := r − αq (update residual)

gold = gnew

The dominant computation in each iteration of the CG algorithm is computing

Ad and A?r, where the superscript ? denotes complex conjugate transpose. Comput-

ing Af corresponds to evaluating Equation (2.7). For Cartesian k-space trajectories,

one can evaluate Equation (2.7) quickly via the Fast Fourier Transform (FFT) if the

�eld inhomogeneity is ignored. However, for non-Cartesian k-space trajectories (spi-

rals, etc.) direct evaluation of Equation (2.7) is very time consuming. When �eld

inhomogeneity is ignored, a non-uniform fast Fourier Transform (NUFFT) can be

used to rapidly and accurately evaluate the discrete signal equation (2.7) even for
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non-Cartesian trajectories. Our development of the NUFFT will be described in

Section 2.3.2. However, the NUFFT method is not directly applicable when the �eld

inhomogeneity is included because Equation (2.4) is not a Fourier transform integral.

We circumvent this problem by approximating Equation (2.4) by a time segmented

version, similar to [30], and derive a min-max optimal temporal interpolator. This

allows the use of the NUFFT to compute Equation (2.7) rapidly and accurately.

2.3 Speedups

The principal drawback of iterative reconstruction methods has been computa-

tion time, with reported values of computation time per iteration ranging up to

eight minutes [33]. Along with an e�cient implementation, we have developed two

methods to speed computation of the iterative image reconstruction algorithm, the

non-uniform fast Fourier Transform (NUFFT) and a min-max optimal interpolator

for time segmentation.

2.3.1 Speeding Convergence of the CG Algorithm

It has been suggested that a weighted-least squares approach be used to speed

convergence of the CG algorithm for iterative MR image reconstruction and that

the weights be the coe�cients of the sampling density compensation function [39].

However, there has been some discussion on how to calculate optimal density com-

pensation factors [6�10] and the iterative image reconstruction algorithm does not

require and is not dependent upon these weights if an unweighted (i.e. weighting is

unity) least squares approach is used instead. Also, assuming the noise in MRI is

white Gaussian, using nonuniform weighting would be suboptimal statistically ac-
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cording to the Gauss-Markov Theorem. Using nonuniform weighting may appear

to provide faster convergence in the initial steps of the algorithm for some choices

of initial image, but would prevent convergence to the minimum variance solution.

Although, Pruessmann et al. [39] state that the SNR penalty is negligible when the

density compensation function is used as the weights, we will next discuss how to

bene�t from this approach without risking any SNR.

Consider the CG algorithm in (2.11) when an initial estimate of the image of

zeros is used: f0 = 0. Then the �rst iteration gives,

f1 = αA?Wy. (2.11)

If the data weighting matrix W were just the identity matrix, then this �rst iteration

would simply give the conjugate phase reconstruction without density compensation.

If W were instead equal to the density compensation factors, then the �rst iteration

yields a density-compensated conjugate phase reconstruction. Therefore, rather than

using an inappropriately weighted CG algorithm, we use the conjugate phase image

(reconstructed via a fast, density-compensated, time-segmented approach) as the

initial estimate, f0. As noted in [47], initializing with a good density-compensated

conjugate phase image ensures that subsequent iterations will improve on this initial

guess.

Convergence of iterative algorithms can be accelerated by the use of an appro-

priate preconditioner, e.g., M in (2.11). Circulant preconditioners have been shown

to be e�ective in shift-invariant problems in tomographic imaging [48]. These pre-

conditioners attempt to undo the blurring induced by applying the forward projec-
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tor and its adjoint. A circulant preconditioner should be particularly helpful for

MR reconstruction with small o�-resonance e�ects, where the point spread function

(PSF) is nearly shift invariant, but may also be of some bene�t in regions of higher

o�-resonance e�ects. Our results to date with circulant preconditioners have been

inconclusive. Preconditioners have also been designed for shift-variant problems [49]

and such methods will be investigated for MRI in our future work.

2.3.2 Non-Uniform Fast Fourier Transform (NUFFT)

For Cartesian k-space trajectories, one can evaluate Equation (2.7) quickly via

the Fast Fourier Transform (FFT) if the �eld inhomogeneity and T ∗
2 relaxation are

ignored. However, for non-Cartesian k-space trajectories (spirals, etc.) direct evalua-

tion of Equation (2.7) is very time consuming. When �eld inhomogeneity is ignored,

a family of fast, interpolation methods have been presented to perform the Fourier

Transform of nonequally spaced data [50�58]. These methods are called non-uniform

Fast Fourier Transforms (NUFFT) and have been applied to MRI data with spiral

k-space trajectories [59,60].

The MR reconstruction problem is closely related to the problem of reconstruct-

ing a band-limited signal from nonuniform samples. Strohmer argued compellingly

for using trigonometric polynomials (complex exponentials) for �nite-dimensional

approximations in such problems, and proposed to use an iterative conjugate gradi-

ent reconstruction method with the NUFFT approach of [52] at its core [61, 62]. In

the MR context, this is essentially equivalent to the �nite basis expansion we use in

Equation (2.6). In [39], an NUFFT-like algorithm, referred to as `reverse gridding,'
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was applied in combination with the CG algorithm to speed up SENSE image re-

constructions. In [59, 60], NUFFT methods were applied to iterative reconstruction

of spiral MRI acquisitions. These NUFFT methods have reduced the computation

time per iteration to that of noniterative reconstruction methods.

Derivation of the NUFFT

We developed a min-max optimal interpolation for the N-dimensional NUFFT

which has a tradeo� between computation time and accuracy [35,60,63]. Our method

is easily generalized to N-dimensions, but I will give an overview of the 1D derivation

here. The Fourier Transform (FT) of a set of equally spaced signal samples, xn,

possibly weighted by scaling factors sn, at a set of frequency locations, ωm, is given

by

X(ωm) =
N−1∑
n=0

snxne
−iωmn, m = 1, . . . ,M. (2.12)

For now we will use unity scaling factors, i.e. sn = 1, n = 0, . . . , N − 1. Later in this

section we will look at using spatially-varying scaling factors to reduce the interpo-

lation error. If the ωm's are equally spaced, then Equation (2.12) can be evaluated

using an FFT. The NUFFT methods proceed by �rst calculating an upsampled FFT

and then interpolating to �nd the values of the FT at the nonuniform frequency

locations. The upsampled FFT of x, Y , is given by,

Yk =
N−1∑
n=0

xne
−iγkn, k = 0, . . . , K − 1, (2.13)

where γ = 2π/K is the fundamental frequency of the K-point discrete Fourier trans-

form and K > N , usually K = 2N or K = 3N . The approximation of the FT values
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at the nonuniform frequency locations occurs by interpolation over Yk,

X̂(ωm) =
K−1∑
k=0

v∗m,kYk, (2.14)

where the vm,k's denote the interpolation coe�cients, �∗� denotes complex conjugate.

The problem remains to choose the vm = (vm,1, . . . , vm,K). In order to reduce com-

putation over the slow evaluation of the FT, we restrict the number of coe�cients

of the interpolation to that of the J nearest neighbors on the oversampled grid to

the nonuniform sampling location. The integer o�set, km, is used to index the �rst

sample of the J nearest neighbors and is given by:

km =

 (arg mink∈Z ‖ω − γk‖)− J+1
2

, J odd

(max{k∈Z : ω ≥ γk})− J
2
, J even.

(2.15)

Let uj(ωm), for j = 1, . . . , J , be the J possibly nonzero entries of vm. Then the

interpolation in Equation (2.14) becomes,

X̂(ωm) =
J∑

j=1

Ykm+ju
∗
j(ωm). (2.16)

We use a min-max criteria to �nd the optimal interpolation coe�cients, u(ωm) =

u1(ωm), . . . , uJ(ωm). In this framework, we �nd the interpolation coe�cients that

minimize the maximum error over all signals x of unit norm, i.e.

min
u(ω)∈CJ

max
x∈CN :‖x‖=1

|X̂(ω)−X(ω)|. (2.17)

Looking at the error,

|X̂(ω)−X(ω)| =

∣∣∣∣∣
J∑

j=1

Ykm+ju
∗
j(ωm)−X(ωm)

∣∣∣∣∣
=

J∑
j=1

u∗j(ωm)

[
N−1∑
n=0

xne
−iγ(km+j)n

]
−

N−1∑
n=0

xne
−iωmn

= 〈x, g(ωm)〉, (2.18)
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where g is given by,

gn(ωm) =

[
J∑

j=1

eiγ(km+j)nu∗j(ωm)

]
− eiωmn, for n = 0, . . . , N − 1, or,

g = H(ωm)Wu(ωm)− b(ωm), (2.19)

where the diagonal matrix Hn,n(ωm) = eiγkmn, Wn,j = eiγnj, and bn(ωm) = eiωmn. In

this form, the min-max problem becomes,

min
u(ω)∈CJ

max
x∈CN :‖x‖=1

|〈x, g(ωm)〉|. (2.20)

Using the Cauchy-Schwarz inequality, the worst case signal is x = g∗(ω)/‖g(ω)‖ and

the min-max problem is reduced to a least squares with the following solution:

u(ωm) = (W
?

W )−1W
?

H?(ωm)b(ωm). (2.21)

Remarkably, the calculation of Equation (2.21) is assisted by closed-form expressions

for two components,

[
W

?

W
]
l,j

= κ(j − l)[
W

?

H
?

(ωm)b(ωm)
]
n

= κ(ωm/γ − km − n) (2.22)

with κ(t)
4
= e−iπt/K sin(πtN/K)/ sin(πt/K). As can be seen in Equation (2.21),

calculation of the interpolator involves inverting the J×J matrix (W
?
W ) that does

not depend on the speci�c position of the nonuniform sampling location.

The shape of the min-max interpolator is shown in Figure 2.1 for various values

of ω/γ for both even and odd values of J . For even J , the min-max interpolator

is not di�erentiable at integer arguments. For odd J , the interpolator is not con-

tinuous at integer arguments due to the neighborhood changing at that point, see

Equation (2.15). The sinc interpolator is shown for reference in these �gures.
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a b

Figure 2.1: Min-max interpolator corresponding to Equation (2.21) for N =
128, K/N = 2 for a.) J = 6 and b.) J = 7.

The accuracy of this NUFFT is greatly increased through the use of spatially

varying scaling factors in Equation (2.13). These scaling factors are analogous to the

deapodization function in the gridding algorithm, but are applied as a precompen-

sation instead of a postcompensation because we are performing the reverse of the

gridding operation. The purpose of the scaling factors is to partially precompensate

for errors in the interpolation. Two approaches were examined for determining appro-

priate scaling factors: numerical optimization and Fourier inversion of the resulting

interpolation function (analogous to the gridding case). For numerical optimization,

the scaling factors were expanded in terms of a truncated Fourier series as,

sn =
L∑

t=−L

αte
iγβ(n−ηo), (2.23)

where ηo = (N − 1)/2 and the natural fundamental frequency corresponds to β =

K/N , but β could also be an optimization parameter. By restricting the αt's to be

Hermitian symmetric, optimization over the scaling factors is reduced to optimiza-

tion over L + 1 coe�cients. Lacking an analytical solution, this optimization was
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performed by a brute force global search and was possible only for small values of L.

Results

Figure 2.2 shows the resulting error of the NUFFT method versus an optimized

Kaiser-Bessel and Gaussian interpolators. The parameter L refers to the number

of Fourier coe�cients used in the FT of the scaling function. The NUFFT allowed

a reduction in computation time for the FT from O(N2) to O(K log K), where K

is typically 2N or 3N [35]. As shown in Figure 2.2, the optimized Kaiser-Bessel

interpolator is nearly as accurate as the best min-max interpolator we found during

an expensive search over scaling factors. Since the Kaiser-Bessel interpolator is easy

to compute, we use this version of the NUFFT in our work. Then the scaling factors

are found by an inverse transform of the Kaiser-Bessel interpolator.

2.3.3 Time Segmentation

The previous section gave our derivation of the min-max optimal NUFFT to al-

low for quick, accurate reconstruction of MRI data on arbitrary k-space trajectories.

However, the standard NUFFT method by itself does not allow for the compensation

of �eld inhomogeneity e�ects because the integral signal equation for MR is not a

Fourier transform when �eld inhomogeneities are included. Inspired by the time-

segmented conjugate-phase reconstruction approach [30], we propose a fast time-

segmented forward projector, and its adjoint, that accounts for �eld e�ects and uses

the NUFFT. The possibility of combining �conventionally used [time or frequency]

segmentation approaches� with NUFFT-type methods to correct for �eld inhomo-

geneities was noted by Pruessman et al. [39]. However, as we show in this section,
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Figure 2.2: Maximum error for various interpolators with neighborhood size J . In-
terpolators shown are the min-max interpolator using uniform weights
sn = 1, an optimized Gaussian interpolator, the min-max interpolator
with optimized weights and L = 2, an optimized Kaiser-Bessel interpo-
lator with Fourier transform weights, and a min-max interpolator with
optimized weights L = 13 and β = 1.

the conventional temporal interpolators (linear, Hanning, etc.) are sign�cantly sub-

optimal since they fail to capture the oscillatory nature of phase modulations caused

by o�-resonance e�ects. Instead, in this section we present a temporal interpolation

method that is optimal in the min-max sense of minimizing worst-case interpola-

tion error, and compare its accuracy to the �conventional� temporal interpolators.

We show that accurate temporal interpolation combined with the NUFFT results in

a fast, accurate iterative reconstruction algorithm for �eld-corrected imaging. We

evaluate the accuracy of our time-segmentation interpolator by comparing it to the
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result of the exact (but slow) evaluation of the signal equation.

Derivation of Min-Max Temporal Interpolator

In Equation (2.7), the computational problem arises in the term e−iωnt, where t is

not a constant. If t were a constant, then the term e−iωnt could be absorbed into fn

and (2.7) could be evaluated quickly by the NUFFT. The idea of �time segmentation�

is to use small time segments over which t is approximately constant [30]. For a time-

segmented approximation of the term e−iωnt, we partition the acquisition window into

L time segments of width τ and compute the term at the L+1 break points. We then

interpolate between these break points to evaluate an approximation at intermediate

time points as follows:

e−iωnt ≈
L∑

l=0

al(t)e
−iωnτl, (2.24)

where al(t) is the interpolation coe�cient for the lth break point for time t. Re-

placing the term e−iωnt in Equation (2.7) with its time-segmented approximation

Equation (2.24) gives:

ŝ(t) = Φ(k(t))
L∑

l=0

al(t)
N−1∑
n=0

[
fne

−iωnτl

]
e−i2π(k(t)·rn). (2.25)

The key property of Equation (2.25) is that it is a weighted sum of discrete-space

Fourier transforms of the term in brackets, weighted by the coe�cients a(t) =

(a0(t), . . . , aL(t))′. We can perform these inner FT's quickly and accurately using

an NUFFT. Our goal here is to choose the a(t) to minimize the error of approxi-

mation Equation (2.25). In the spirit of [35, 63] and Section 2.3.2, we propose to

adopt a min-max criterion to optimize the temporal interpolation coe�cients, a(ti)
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for i = 1, . . . ,M , i.e., for every point in the k-space readout. For any time t, we

choose the coe�cients a(t) using the following criterion:

min
a(t)

max
f∈CN :‖f‖=1

∣∣∣∣ ŝ(t)− s(t)

Φ(k(t))

∣∣∣∣ . (2.26)

That is, we seek the interpolation coe�cients a(t) that will minimize (min) the

interpolation error for the object vector, f , that causes the largest (max) error of

all possible signals. Note that if Φ(k(t)) = 0, then the error in the approximation

(2.25) would be zero regardless of the interpolator.

The error in the approximation (2.25) can be expressed as,

ŝ(t)− s(t)

Φ(k(t))
=

N−1∑
n=0

fne
−i2π(k(t)·rn)

[
L∑

l=0

al(t)e
−iωnτl − e−iωnt

]

=
N−1∑
n=0

gn(t)fne
−i2π(k(t)·rn),

=
√

N〈g(t), h(t)〉, (2.27)

where g(t) = (g0, . . . , gN−1), h = (h0, . . . , hN−1), and

gn(t) =
1√
N

[
L∑

l=0

al(t)e
−iωnτl − e−iωnt

]
hn(t) = fn

?ei2π(k(t)·rn). (2.28)

De�ne bn(t) =
(
1/
√

N
)

e−iωnt, and let G be an N by L + 1 matrix with Gnl =(
1/
√

N
)

e−iωnτl, then,

g(t) = Ga(t)− b(t). (2.29)

From Equation (2.28), ‖f‖ = ‖h(t)‖ and ‖h(t)‖ is independent of time. Therefore,

using Equation (2.27), we can rewrite our min-max estimation problem from (2.26)
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as follows

min
a(t)

max
h∈CN :‖h‖=1

√
N |〈g(t), h〉|. (2.30)

By the Cauchy-Schwarz inequality, for a given time t, the worst-case h is g?(t)/‖g(t)‖,

i.e.,

max
h∈CN :‖h‖=1

|〈g(t), h〉| = ‖g(t)‖. (2.31)

Note that this is the approximation error in Equation (2.24). Inserting this worst-

case h into the min-max criterion (2.30) and applying Equation (2.29) reduces the

min-max problem to,

min
a(t)

‖Ga(t)− b(t)‖. (2.32)

The solution to this least-squares problem yields the min-max interpolator:

a(t) = (G?G)−1G?b(t), (2.33)

where

[G?G]l,l′ =
1

N

N−1∑
n=0

e−iωnτ(l′−l)

[G?b(t)]l =
1

N

N−1∑
n=0

e−iωn(t−τl), (2.34)

for l, l′ = 0, . . . , L. To compute the min-max interpolator, we form the (L+1)×(L+1)

matrix G?G and multiply its inverse by the (L + 1) × 1 vector G?b(t). Typically

L � N so this is feasible.
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Computing the Min-Max Interpolator

The interpolator in Equation (2.33) is object dependent since it is a function of

the �eld map, ω = (ω0, . . . , ωN−1), and therefore must be computed after an initial

estimate of the �eld map is formed. To compute G?G e�ciently, �rst form the

column sums of G as follows:

γl ,
1√
N

N−1∑
n=0

Gn,l, for l = 0 . . . , L. (2.35)

Then using Equation (2.34), we evaluate the elements of G?G as follows:

[G?G]l,l′ =

 γl′−l l′ − l ≥ 0

γ?
l−l′ otherwise.

(2.36)

This is a very fast way to compute G?G for the min-max interpolator.

The sums in Equation (2.34) do not depend on the spatial arrangement of the

�eld map. This independence suggests that we could compute these sums using

simply a histogram of the �eld map values. We have investigated approximating

the computation of Equation (2.34) by forming the histogram of the �eld map using

NB equal-sized bins covering the range of o�set frequencies induced by the �eld

inhomogeneity. Let mp be the number of �eld map values that fall into bin p with a

center o�-resonant frequency of fp. Then we can approximate Equation (2.34) by

[G?G]l,l′ ≈ 1

N

NB∑
p=1

mpe
−i2πfpτ(l′−l),

[G?b(t)]l ≈ 1

N

NB∑
p=1

mpe
−i2πfp(t−τl). (2.37)

We compute Equation (2.37) e�ciently via a FFT of mp, since we use equally-spaced

histogram bins. We call this approach the histogram approximation to the min-max
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interpolator. This quantization of the �eld map into a histogram is somewhat akin to

the frequency-segmentation method for reducing computation in the conjugate-phase

approach for �eld inhomogeneity correction [64,65].

The expression for this interpolator bears a striking resemblance to the �multi-

frequency interpolator� proposed by Man et al. [32]. However, the use of the two

interpolators is quite di�erent. The multifrequency interpolator is applied to a set of

images that have each been reconstructed by a constant demodulation approximation

to the conjugate-phase approach for �eld inhomogeneity correction. In contrast, our

min-max interpolator is applied to predicted k-space signals. The multifrequency

interpolation approach inherits the fundamental limitations of the conjugate-phase

approach (in particular the requirement of a spatially smooth �eld map) which are

illustrated in the �gures in Sections 2.3.3.

The min-max interpolator (2.33) depends on the �eld map and should be recom-

puted if the �eld map changes. To avoid recalculating the interpolator coe�cients

when a �eld map is updated, we also investigated the use of an object-independent

histogram for the �eld map values. A generic histogram for �eld maps was used

to calculate the interpolator coe�cients in (2.37) and we will refer to this approach

as the generic histogram approximation. Several shapes and ranges for generic his-

tograms were examined.

METHODS

Three sets of studies were performed to evaluate the accuracy and utility of our

min-max interpolated iterative reconstruction algorithm. All three studies used a
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single-shot spiral k-space trajectory with a TE of 25 ms, matrix size of 64×64, and

FOV of 22 cm×22 cm, giving 3770 k-space points. The length of the readout interval

was 18.9 ms, so 100 Hz o� resonance causes 3.8π extra spin phase accrual during the

readout.

Interpolator Accuracy We performed a simulation study to evaluate the maxi-

mum interpolation error, ‖g(t)‖ in Equation (2.31), over a �nely sampled range of

times, t, for several temporal interpolators. We used the �eld map ω shown in Fig-

ure 2.3. We observed empirically that, for many �eld maps, the min-max optimal

temporal interpolator could have a signi�cant imaginary component, and this imag-

inary component contributes to the overall accuracy of the min-max interpolation

method. Conventional temporal interpolators used in MRI have been real valued,

so to simplify comparisons between the proposed min-max approach and the con-

ventional approaches, we shifted the �eld map values to a range where the min-max

interpolator had a very small imaginary component, as illustrated in Figure 2.5. We

compared the following interpolation methods: linear interpolation of the two near-

est endpoints to the time sample of interest, a Hanning window interpolation using

only the two nearest endpoints (similar to that used in [30] for the back-projector

problem), the ideal min-max interpolator (2.33), the histogram approximation to

the min-max interpolator calculated using (2.37) with 1000 bins, and an interpola-

tor using a generic histogram also calculated using (2.37). Various shapes (�at and

triangular) and ranges were used for the generic histogram to determine the e�ect of

accuracy of the histogram on the error of the interpolator.
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Simulation Study We performed a series of simulation studies using the same

�eld map and a simulation object shown in Figure 2.3. The simulation data was

formed by constructing a simulation phantom at a matrix size of 256×256 and then

applying (2.7) to compute the signal at the desired k-space locations. To avoid

intravoxel e�ects from gradients of the �eld map inside our larger reconstructed voxels

(matrix size of 64×64), we constructed the simulated �eld map at a size of 64×64

and zero-order-hold interpolated it up to 256×256 to create the simulation �eld

map. (We also present one case that includes intravoxel dephasing for comparison.)

Noise-free simulation studies were conducted to examine the e�ect of iteration on

the interpolation error by computing the normalized root-mean-squared (NRMS)

di�erence in the reconstructed image of the interpolated, time-segmented approach

versus using the exact (slow) signal equation (2.7) at convergence.

For the rest of the simulation studies, zero-mean complex Gaussian noise was

added to the k-space data to give an SNR of approximately 100, calculated as

the ratio of the norms of the k-space data vector and the noise vector: ‖s‖/‖ε‖.

We examined the normalized root-mean-squared error (NRMSE) between the recon-

structed image and the known simulation object. This measure was used to examine

accuracy and convergence rate of our proposed iterative algorithm. In the simulation

and human studies, the NUFFT was used with the following parameters: 2 times

oversampling, a neighborhood size of 5× 5, and an optimized Kaiser-Bessel window

and scaling factors [35].
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Figure 2.3: Simulation object and �eld map in Hz.

Human Study The time-segmented, NUFFT reconstruction scheme was applied

to a human data set collected on a 3.0T GE Signa Scanner in accordance with the

Institutional Review Board of the University of Michigan. For the human data, the

�eld inhomogeneity map must be measured by acquiring 2 gradient echo images with

slightly di�erent echo times [2]. To minimize �eld inhomogeneity distortions in the

images used to estimate the �eld map, we acquired a pair of 4-shot gradient echo

images with TE's of 5 and 7 ms. This �eld map was used to reconstruct �eld-corrected

images of the same slices with single-shot spirals at a TE of 25 ms. The proposed

fast, iterative reconstruction scheme was compared to the conjugate phase method

and an uncorrected gridding reconstruction. Since the exact object is not known

in a human data set, we attempted to match the full conjugate phase and iterative

reconstruction times and qualitatively compare the resulting images.

RESULTS

Interpolator Accuracy Figure 2.4 shows the maximum interpolation error for

L = 1 through L = 13 time segments for the �ve interpolators described above in

Section 2.3.3. The error given, maxt ‖g(t)‖, is the maximum error in interpolation as
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Figure 2.4: Maximum interpolation error over a range of time points for each interpo-
lator for various numbers of time segments. Error given is the maximum
error in interpolation over a range of times as given in (2.31).

given in (2.31) over a range of times t. The generic histogram used was �at over the

range of [-75, 75] Hz. The min-max interpolators (ideal min-max, histogram min-

max, and generic histogram min-max) have been plotted until the condition number

of the (G?G) matrix becomes too large for inversion. For L = 8 the maximum error

for the min-max and histogram interpolator is more than 4 orders of magnitude lower

than that of the linear and Hanning �conventional� interpolators.

Figure 2.5 shows the Hanning and min-max interpolators for L = 5. The real and

imaginary parts of the min-max interpolator are oscillatory, a property not found in

the conventional interpolators. The histogram interpolators looked very similar to

the ideal min-max interpolator, even though the generic histogram had a di�erent

range of o�-resonance frequencies and di�erent histogram shape (�at). Even though

it was not explicitly required in our formulation, the min-max interpolators appear

to sum to unity at every time point, a property expected of interpolators.
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Figure 2.5: Real (solid lines) and imaginary (dashed lines) parts of interpolators
using L = 5 for the Hanning and min-max interpolators for the �eld
map given in Figure 2.3.
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Figure 2.6: Comparison of maximum interpolation error of various generic histogram
approximate min-max interpolators.

When a histogram of the �eld map is used that di�ers from the actual �eld map

(generic histogram), the max error in Figure 2.4 showed a slightly higher level of error

compared to the ideal min-max interpolator and required a larger number of time

segments. We investigated several generic histograms, rectangular and triangular

shapes, and several di�erent ranges of o�-resonance, 75, 100, 150, 200, and 250 Hz.

All the generic histograms were centered around 0 Hz, to agree with the simulated

�eld map. Figure 2.6 shows the maximum NRMSE for various numbers of time

segments. As seen in this �gure, the interpolator is relatively immune to moderate

changes in the histogram of the �eld map. At values of L of 11 and 12, the rectangular

histograms with ranges of 150, 200, and 250 Hz and triangular histograms with ranges

of 150 and 200 Hz all provide maximum interpolation errors below 10−4. Given

the independence on spatial arrangement in the formulation of the ideal min-max

interpolator, we need only have a range of o�-resonance in our histogram that is

similar to that of the exact �eld map.
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Figure 2.7: NRMS di�erence between f approx
k and f exact

100 for L = 6 in simulation
study.

Simulation Study As described in Section 2.3.1, we examined the convergence of

the CG algorithm under various conditions using the simulation object and �eld map

shown in Figure 2.3. Considering the max error in Figure 2.4, we selected L = 6

to give a low error for the min-max interpolator, and examined the error of time

segmentation versus using the exact (slow) signal equation (2.7) over iteration to

see how the error propagates through the iterative process. Figure 2.7 shows the

NRMS di�erence between f approx
k and f exact

100 where f approx
k denotes the kth iteration

of CG algorithm with the fast approximation (2.25) using various interpolators and

f exact
100 denotes the 100th iteration (i.e. essentially at convergence) of CG using the

exact (slow) signal equation (2.7). As shown in Figure 2.7, interpolation errors can

cause the CG algorithm to converge to a di�erent image. The linear and Hanning

interpolated iterative methods converge to a �nal image that di�ers from the exact

�nal image by more than 10% NRMS.

To choose a value for L that gives fast computation yet retains good reconstruc-
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tion accuracy, we examined the NRMS di�erence between the interpolated and exact

iterative methods for various values of L. Figure 2.8 shows the NRMS di�erence be-

tween f exact
100 and f approx

k over 20 iterations using the ideal min-max interpolator for

L = 1, 3, 4, 5. Computation time for the min-max interpolated iterative method is

approximately proportional to L + 1. On a 2 GHz Xeon workstation using Mat-

lab (The Mathworks, Natick MA), our implementation of the exact (slow) iterative

method, using (2.7), took ≈12.7 s per iteration to evaluate. The min-max interpo-

lation method, took approximately (0.019 + 0.030(L + 1)) s per iteration for values

of L = 1, . . . , 13. The linear interpolated method took approximately the same com-

putation time as the min-max interpolated method and is shown for reference in

Figure 2.8. Depending on the noise level expected in our reconstructed images, a

value of L = 4 might be reasonable for the min-max interpolator. We chose to use

L = 5 for the ideal min-max interpolator for our simulation and human data studies

with a time per iteration of 0.2 sec., a speed-up of around 60 over the exact iterative

method.

Next, given the exact �eld map, we ran a simulation study with noise to compare

the errors in the reconstructed images under �ve di�erent reconstruction schemes:

no correction for �eld inhomogeneities, a conjugate-phase reconstruction with den-

sity compensation, a fast conjugate phase reconstruction using time segmentation

according to [30], the exact (slow) evaluation of the signal equation used in combi-

nation with the CG algorithm (the slow iterative method), and the NUFFT with

min-max temporal interpolation used in combination with the CG algorithm (the
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Figure 2.8: NRMS di�erence between f approx
k using the ideal min-max interpolator

for L = 1, 3, 4, 5 and f exact
100 over 20 iterations. The time to compute the

exact iterative method, using (2.7), was ≈12.7 s per iteration while the
time to compute the fast, interpolated iterative method, using (2.25),
was (0.019 + 0.030(L + 1)) s per iteration.

fast iterative method, L = 5). The results of NRMSE and computation time are

shown in Table 2.1. The NRMSE was calculated over a mask de�ned by the true ob-

ject's support. Figure 2.9 shows the reconstructed images. The full iterative and fast

iterative methods give virtually the same results with a NRMS di�erence between

the two reconstructions of 0.07%, but the fast iterative method takes only 2.2 s for

10 iterations as compared to 128 s for the slow iterative method. The unsegmented,

density-compensated conjugate-phase reconstruction takes 4 s and both conjugate

phase reconstructions produce serious artifacts in regions where the �eld map is not

smoothly varying, and these artifacts propagate to nearby regions.

To verify that interpolator accuracy is important in reconstructing �eld-corrected

images, we compared reconstructions from the CG algorithm using NUFFT with lin-

ear, Hanning, and ideal min-max interpolators. Figure 2.10 shows the reconstructions
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Table 2.1: Computation time and NRMSE between f̂ and ftrue for simulation study

Figure 2.9: Reconstructed images from the simulation study.
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using L = 5 and ten iterations of the CG algorithm. The standard interpolators are

insu�ciently accurate and the algorithm converges to a distorted image, whereas the

min-max method yields a nearly undistorted image. This behavior agrees with the

quantitative comparison shown in Figure 2.7.

As mentioned in Section 2.3.3, the simulated �eld map was purposefully con-

structed to avoid intravoxel dephasing due to within-voxel �eld inhomogeneities. To

show the e�ects of such dephasing on the �eld-corrected reconstructions of Figure 2.9,

we simulated a �eld map at a 256×256 matrix size that allowed gradients across the

voxels when reconstructed at a matrix size of 64×64. Figure 2.11 shows the recon-

structed images. As this �gure shows, by assuming basis functions of rect(r), we

are unable to model the �eld gradients across the voxel and the result is signal loss

where the �eld gradient is high. In the iterative reconstruction, this degradation is

localized primarily in the pixels where the high gradient occurs. In the conventional

�eld correction, the artifacts are more widespread. We plan to implement triangular

basis functions in our future work to model linear intravoxel susceptibility gradients,

or to use over-sampled �eld maps.

Human Data As a �nal comparison, we reconstructed real data collected from a

slice of the brain using both the proposed iterative method and a full conjugate phase

method. Although the proposed iterative method can be used in an extended form to

estimate an undistorted �eld map, in this case we focused on comparing computation

time, so both reconstructions used a �eld map obtained in the standard way from

two short TE (5, 7 ms) 4-shot gradient echo images. For convenience in the iterative
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Figure 2.10: E�ect of temporal interpolator on fast iterative reconstructions.

Figure 2.11: Reconstructed images from a simulation study with intravoxel �eld ef-
fects.
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method, we used the generic histogram (�at, [0,150] Hz) since it does not depend on

the speci�c �eld map and can be computed in advance for a given trajectory (depends

only on number of time points and a chosen range of o�-resonance frequencies). The

range of the generic histogram, [0, 150] Hz, was chosen to agree with our routinely

acquired �eld maps from the slice of interest. The NUFFT used the parameters

given in Section 2.3.3 and the min-max interpolator used L = 8. The reconstruction

time for the full conjugate phase was about 4 s, the time for ten iterations of the

proposed fast iterative method was 3.6 s. Figure 2.12 shows the reconstructed images

for 2 slices. Artifacts in regions of high o�-resonance are reduced signi�cantly by the

iterative approach. The conjugate phase reconstruction su�ers from ringing and

piling-up artifacts near the region of �eld inhomogeneity. Residual signal loss in the

iterative reconstruction could be due to a high in-plane gradient in the �eld map or

may be due to through-plane susceptibility gradients. We plan to incorporate models

of both phenomena in our future work. Also, the iterative method can be used to

simultaneously estimate an undistorted �eld map and provide a better �eld-corrected

image [33,66].

DISCUSSION

We have presented a method that allows fast, iterative reconstruction of �eld-

corrected MR images. By combining the NUFFT with time segmentation using

a min-max temporal interpolator, a computation speed up of a factor of around

60 is achievable with NRMS error in the reconstructed image of 0.07%. We have

also developed an approximation to the min-max interpolator that depends on the



60

Figure 2.12: Distorted image, its �eld map, conjugate phase and iterative image
reconstructions for 2 slices. The time for the �eld-corrected reconstruc-
tions were about 4 s each.

object-speci�c �eld map only through the range of o�-resonant frequencies yet pro-

vides accuracies near those of the ideal min-max interpolator. For a given trajectory,

this interpolator can be precomputed and stored. We have shown that this approxi-

mation is relatively robust to small changes in the shape or range of the histogram

of the �eld map. This method should easily be adaptable to other forms of itera-

tive reconstruction in MRI, including SENSE to allow fast, �eld-corrected SENSE

reconstructions [67].

We envision the iterative reconstruction algorithm in the general case to proceed

as follows: �rst, an initial �eld map is formed via a gridding reconstruction on data

at two di�erent echo times. This initial estimate of the �eld map is used to derive

an interpolator for the min-max time interpolation. The estimate of the �eld map
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is also used, via a fast conjugate phase reconstruction, to give an initial estimate

to the iterative reconstruction. The iterative reconstruction is then run in extended

mode with simultaneous estimation of �eld map and image either by explicit joint

estimation [66] or by alternating updates [31,33]. After several loops of updating the

image and �eld map, we are left with an undistorted estimate of the image and �eld

map.

If the �eld map has a strong linear component, then it may be possible to adapt

the method of Irarrazabal et al. [65] to reduce the number of segments required for

a given accuracy.

The ability to accurately compensate for o�-resonance e�ects as demonstrated

here may increase the feasibility of using other acquisition methods with long readout

times, such as echo-volume imaging [68].

Although this section has focused on MR image reconstruction in the presence of

�eld inhomogeneities, the general approach is also applicable to image reconstruction

with compensation for other sources of undesired (but known) spin phase accrual,

such as eddy currents and concomitant gradient e�ects [69,70]. An iterative method

based on an explicit signal model like (2.4) should yield more accurate images com-

pared to conventional approaches to compensating for such e�ects.

We have ignored spin-spin relaxation during the signal readout in our signal model

(2.4). However, many aspects of the algorithms we have described are also applicable

to problems where both spin density and spin relaxation are estimated from multi-

echo measurements [71�74]. The framework for the min-max time interpolation
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provided by (2.32) can be extended to include relaxation e�ects, such as R∗
2. The

simpli�cations that resulted in (2.34) are not available in this case and computation

of the interpolator may be more expensive. Preliminary testing shows that the high

accuracy of the time segmentation method can still be achieved without knowing the

exact �eld and R∗
2 maps. This work will be explored further in Chapter 5.



CHAPTER 3

Sensitivity Encoding1

3.1 Introduction

If we neglect �eld inhomogeneity and relaxation in (1.25), the data is a Fourier

encoding of the image. If the Nyquist sampling rate is satis�ed, we have adequate

information about the spatial frequencies of the image to reconstruct an unaliased

version of the image. Looking at (1.24) we can see that the signal equation includes

coil sensitivity information. We can combine the data from multiple coils, each with

its own sensitivity into a larger system of equations as follows:

s1(t)

s2(t)

s3(t)

s4(t)


=



AD(c1)

AD(c2)

AD(c3)

AD(c4)


f , (3.1)

where sl(t) is the signal received from coil l and D(cl) is a diagonal matrix with the

coil sensitivity values along the diagonal. If k-space is not adequately sampled, then

reconstructing the signal received from the lth coil, sl(t), results in an aliased image

of the object, f , weighted by the sensitivity map of the coil, cl. If the coils have
1This chapter based primarily on work found in [67]

63
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distinct sensitivity patterns, then that spatial sensitivity information can be used to

help form an unaliased image from the undersampled data. In the traditional SEN-

Sitivity Encoding (SENSE) formulation [38], Cartesian k-space trajectories were the

preferred sampling strategy because aliasing from undersampling resulted in a small

number of overlapping pixels. Since unaliasing requires inversion of a matrix of size

equal to the number of overlapping pixels, Cartesian trajectories allowed for fast

SENSE reconstruction. For non-Cartesian trajectories all pixels in the reduced sam-

pling image interact with the point spread functions of all other pixels in the image.

Unaliasing these images requires inversion of a large matrix and, therefore, iterative

methods are necessary for reconstruction. In the follow-up to their original SENSE

paper, Pruessmann, et al. introduced a faster method to speed up computation when

non-Cartesian trajectories were used [39]. They referred to their method as a reverse

gridding operation and use it without analysis of accuracy. Our iterative method

is easily applicable to a SENSE experiment and our computational speedups have

been analyzed as seen in Section 2.3. Also, our iterative method can include �eld

inhomogeneity and other nonidealities in the SENSE reconstruction [67].

The sensitivity encoding (SENSE) method compensates for aliasing due to un-

dersampling by using spatial information of distinct receiver coils arranged around

the object to be imaged [38, 39]. This undersampling results in shorter acquisition

readout times and therefore reduces susceptibility distortions in the resulting im-

ages. This work seeks to demonstrate that including �eld inhomogeneity e�ects in

the reconstruction is still bene�cial for producing SENSE images that are free of �eld
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inhomogeneity-induced distortions. We presented some preliminary results on this

topic in [67] and we expand those results here.

3.2 Methods for the SENSE experiments

We used a set of four coils from Nova Medical (Boston, MA) for performing

SENSE experiments. The desired full FOV and matrix size were 22 cm and 64×64,

but a spiral pulse sequence with FOV of 11 cm and matrix size of 32×32 was used

to acquire data with the coil array. An alternative acquisition scheme is one in

which the full FOV and matrix size are speci�ed, but a 2-shot spiral is used to

collect the data. The data can then be reconstructed to a full, unaliased image for

each shot. This method allows the coupling of a SENSE reconstruction with post-

�ltering methods, such as UNFOLD [75�77], to remove residual aliasing from the

SENSE reconstructions since they would alternate with the shot. I will speci�cally

distinguish between these two acquisition methods when necessary.

The sensitivity maps were measured by acquiring short echo time, 2-shot or 4-

shot images with both the body coil and the SENSE coils. To get the sensitivity

map for each coil, its full FOV coil image was divided by the magnitude of the body

coil image resulting in a noisy sensitivity map. To reduce this noise and extend the

sensitivity information beyond the object, a local 2-D polynomial �tting procedure

was performed. For small blocks of pixels (6 × 6 with overlapping borders of 2) a

second order polynomial was �t to regions inside a mask of the object. This poly-

nomial was then evaluated at all points inside the 6× 6 block. Only the magnitude

was smoothed using this polynomial �tting procedure. The phase of the original
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division was applied back to the smoothed magnitude. Although low-pass �ltering

the magnitude and phase images would be a simpler method, accurate SENSE re-

constructions rely on the preservation of peak information in the sensitivity patterns

and low-pass �ltering rounds o� peaks at object boundaries.

3.3 Results

3.3.1 Phantom Study

We acquired a 4-shot, short echo time data set with the body coil in order to

get a relatively undistorted estimate of the �eld inhomogeneity map, shown in Fig-

ure 3.1. Then we acquired a 2-shot body-coil image and fully encoded surface coil

images to calculate the sensitivity maps, shown in Figure 3.2. We performed a lo-

cal 2-D polynomial �tting of second order in a block-wise fashion to the magnitude

of the sensitivity maps, as described in Section 3.2. For the SENSE data set, we

acquired a time series of 2-shot images and used the SENSE reconstruction to re-

construct an image at each shot. The aliased images from each coil can be seen in

Figure 3.3. For purposes of comparison, Figure 3.4 shows images reconstructed from

single-shot acquisitions with the body coil, a two-shot acquisition with the body coil,

a SENSE reconstruction without �eld correction, and our proposed �eld-corrected

SENSE image. Both the single-shot and two-shot reconstructions from the body

coil were �eld-corrected iterative reconstructions. Panel a. of this �gure shows the

two-shot body coil image, which o�ers the least distorted image of all the reconstruc-

tions in this �gure. The two-shot image has a short readout time, but requires two

TR intervals to acquire a full image leading to reduced temporal resolution during
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a. b.

Figure 3.1: Image and �eld map from 4-shot, short echo time acquisition. a.) 4-shot
image. b.) 4-shot �eld map in Hz.

a time series. The SENSE reconstructions combine the reduced acquisition time of

the two-shot sequence with the acquisition of an image in one TR interval similar to

the single-shot acquisition. As shown in panels c. and d. in Figure 3.4, the SENSE

reconstruction without �eld correction shows blurring around the edges, especially at

the corners. This blurring is signi�cantly reduced by including �eld-inhomogeneity

terms in the SENSE reconstruction.

Figure 3.5 shows the magnitude time course for a pixel inside the object. There is

an oscillation corresponding to the �rst-shot/ second-shot acquisition for the SENSE

images, i.e. residual aliasing after the SENSE reconstruction that di�ers depending

on which shot of the two-shot sequence was used. In order to reduce the variance

of this oscillation, we employ methods suggested in [75�77] and apply a temporal

�lter to the resulting time course of images. Alternatively, we could have acquired

a reduced FOV, reduced matrix size acquisition and reconstructed a full FOV and

matrix size image using SENSE. The oscillation due to shot number would then be

absent.
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a. b. c. d.

Figure 3.2: Magnitude of the sensitivity maps from the four coils. Maps were de-
termined by dividing coil image by body coil and local 2-D polynomial
�tting. a.) Coil 1. b.) Coil 2. c.) Coil 3. d.) Coil4.

a. b. c. d.

Figure 3.3: Aliased coil images. a.) Coil 1. b.) Coil 2. c.) Coil 3. d.) Coil4.

a. b. c. d.

Figure 3.4: Comparison Images. a.) Body coil 2-shot image. b.) Body coil 1-
shot image. c.) SENSE reconstruction without �eld correction. d.)
Our SENSE reconstruction with �eld inhomogeneity correction. SENSE
reconstructions used 1-shot from a 2-shot acquisition.
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Figure 3.5: Magnitude of the time series of a point in the object. Note that the
SENSE data was acquired by using a 2-shot sequence, so temporal �lter-
ing can be used eliminate this e�ect.

3.3.2 Human Study

The magnitude of the coil sensitivity maps for a human study are shown in

Figure 3.6. The SENSE reconstructed image using our iterative method with �eld

inhomogeneity correction is shown in Figure 3.7 along with the iterative reconstruc-

tion of a single-shot acquisition from the body coil. At the location indicated by the

arrow, the single-shot image su�ers from susceptibility-induced signal loss that is not

present in the SENSE reconstructed image.

The acquisitions were taken as part of a bilateral �nger-tapping functional study,

20 s on/ 20 s o� with 4 repeats. The functional results are shown in Figure 3.8. The

activation maps were formed by �nding the correlation coe�cient between a sinu-

soidal representation of the task waveform and the magnitude of the reconstructed

voxel time courses. The correlation coe�cient maps were thresholded at 0.6. As

seen in this �gure, the regions of activation in the motor cortex of the two maps

are similar. The SENSE reconstruction shows residual aliasing of the task at points
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e. f. g. h.

Figure 3.6: Magnitude of the sensitivity maps for SENSE experiment. Sensitivity
maps from a.) Coil 1, b.) Coil 2, c.) Coil 3, d.) Coil 4.

a. b.

Figure 3.7: a.) Single-shot image and b.) SENSE reconstruction with �eld inhomo-
geneity correction.

that are half a FOV away from the true activation. This is due to an incomplete

unwrapping of the aliasing by the SENSE reconstruction, possibly from inaccurate

sensitivity maps. More work needs to be done in obtaining accurate sensitivity maps.

3.4 Discussion

As shown in the phantom study in Figure 3.4, despite having shorter acquisition

readouts, �eld inhomogeneity correction during reconstruction is still important for

accurate reconstructions using SENSE. The SENSE reconstruction may be more

sensitive to �eld inhomogeneity when Cartesian k-space trajectories are used. Recall

that �eld inhomogeneities result in geometric distortions for Cartesian sampling of
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a. b.

Figure 3.8: Functional activation maps overlayed on reconstructed images. Activa-
tion maps are from correlation coe�cient map thresholded at 0.6. a.)
Body coil, single-shot spiral and b.) SENSE reconstruction, half FOV
and half matrix size acquisition.

k-space. This geometric distortion could interact with the undistorted coil sensitivity

maps and result in additional artifact.

The human studies show that we retain high sensitivity to functional activations

using SENSE acquisitions. The decrease in susceptibility-related artifacts from the

shorter readouts may make it possible to study brain function in regions that are

plagued with susceptibility artifacts, such as the orbital-frontal cortex and inferior

temporal lobes. However, as shown in Figure 3.8, additional artifacts may appear in

functional maps due to incomplete unwrapping of the aliasing pattern.

Additional work must be done to get reliable and accurate sensitivity maps.

As stated in Section 3.2, we performed two-dimensional polynomial �tting on the

magnitude of the sensitivity maps and did not smooth the phase. A better approach

may be to formulate the sensitivity maps in a joint estimation framework using the

body coil and SENSE coils data. This will be examined in our future work.



CHAPTER 4

Stability of Iterative Reconstruction

4.1 Introduction

Functional MRI (fMRI) using the blood oxygenation level dependent (BOLD)

e�ect relies on encoding task information from regions of the brain in modulations of

the amplitude of the reconstructed T ∗
2 -weighted images [21]. High �eld strengths and

long readout times are desirable for functional contrast, but these same parameters

make fMRI sensitive to inhomogeneities in the main magnetic �eld. The distortions

in the images caused by the �eld inhomogeneities appear as geometric shifts when

Cartesian k-space trajectories are used to acquire data. Blurring and signal voids

result when non-Cartesian trajectories, such as spirals, are used.

Many methods have been presented to correct for �eld inhomogeneities when non-

Cartesian trajectories are used [13, 27, 28, 30�33]. The predominant method to date

has been the conjugate phase method which attempts to compensate for the phase

accrual at each time point due to the �eld inhomogeneities. Recently, iterative re-

construction methods have been presented that provide e�ective �eld inhomogeneity

correction even in regions where conjugate phase fails, i.e., in regions where the �eld

72
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inhomogeneity is not smoothly varying [13,33] and Chapter 2 of this thesis. In [13],

the authors utilized the nonuniform fast Fourier transform (NUFFT) [35] and a min-

max optimal temporal interpolation to signi�cantly speedup reconstruction times for

�eld-corrected iterative image reconstruction.

The conjugate phase and iterative reconstruction methods approach the image

reconstruction problem in very di�erent ways. Figure 4.1 provides a graphical de-

piction of the process used for both methods. In MRI, the equation for the complex

baseband signal,s(t), ignoring relaxation e�ects, is given by,

s(t) =

∫
f(r)e−iω(r)te−i2π(k(t)·r)dr, (4.1)

where f(r) is a function of the object's transverse magnetization at location r, ω(r)

is the �eld inhomogeneity, and k(t) is the k-space trajectory. In an MR scan, the

raw measurements are noisy samples of this signal,

ym = s(tm) + εm, m = 1, . . . ,M. (4.2)

The image reconstruction problem is to estimate the image, f(r), from the noisy

samples, y = y1, ..., yM . For conjugate phase reconstruction, information about the

�eld map, k-space trajectory, and sample density is used to construct an operator

that acts linearly on the data to form an image. The conjugate phase reconstruction

is given by,

f̂(rn) =
M∑

m=0

wms(tm)ei2π(k(tm)·rn), n = 1, . . . , N, (4.3)

where rn are the locations where the reconstructed image is formed and wm are

the sample density coe�cients, see [4,5,11] for a discussion of density compensation
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Figure 4.1: Graphical depiction of conjugate phase reconstruction vs. iterative re-
construction.

coe�cients. For the iterative reconstruction, we use the signal equation for MR to

simulate k-space data based on the current estimate of the image, as described in

Chapter 2. This simulated data is compared with the acquired data and the estimate

of the image is updated using the conjugate gradient method. Note that the iterative

reconstruction method does not need sample density information.

Both the conjugate phase and iterative reconstruction methods rely on accurately

measuring a �eld map, a map of the spatial distribution of the local o�-resonant

frequency. Typically, this map is estimated by acquiring two images with slightly

di�erent echo times and examining the phase di�erences between them [2]. The

phase di�erence is divided by the di�erence in echo time to estimate the �eld map.

The conjugate phase reconstruction is used frequently in fMRI studies because

it provides stable, �eld-corrected image reconstructions over the course of a time se-

ries. However, the conjugate phase method is limited by the smoothly-varying �eld
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map assumption and relies on accurate density compensation. The iterative recon-

struction method has been shown to provide accurate reconstructions even in the

presence of non-smooth �eld maps. Yet the iterative method is a complex operation

on the data and its stability properties for time series data have not been studied.

In the current chapter, we show that the iterative method is stable and that the

�eld correction algorithm does not introduce additional variance into the time series

of fMRI studies. This indicates that iterative image reconstruction is both accurate

and stable, making it bene�cial in processing time series data from functional ex-

periments. In Section 4.2 we describe the methods used in our analysis, including a

discussion in Section 4.2.1 about matching the point spread functions of the image

reconstruction methods. In Section 4.3 we give the results and Section 4.4 contains

a brief discussion of these results.

4.2 Methods

A spiral out pulse sequence was used to acquire time series data for 24 slices on

6 subjects using a GE 3T Signa Scanner (GE Medical Systems, Milwaukee, WI) in

accordance with the Institutional Review Board of the University of Michigan. The

following parameters were used: TE/TR/FA = 30/2000 ms/90o and �eld of view

of 22 cm×22 cm. The number of points per spiral was 3770, the matrix size was

64× 64, and the �rst time point's echo time was delayed by an additional 2.5 ms to

estimate the �eld map using the method presented in [2]. The �eld map estimate

is usually smoothed to reduce noise. We performed a small amount of smoothing

of the �eld map estimates within the object being imaged along with extending the
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�eld map beyond the object using a penalized weighted least squares smoothing

function [78]. A single �eld map was used for reconstructing the entire time series of

images for each slice and the same �eld map was used for both the conjugate phase

and iterative reconstructions. The subjects performed a motor task with 12 cycles

of on/o� bilateral �nger tapping, each cycle lasting 36 sec, for a total of 216 time

points acquired.

4.2.1 Normalizing and Matching Reconstruction Methods

The data was reconstructed using three methods: no �eld correction (a gridding

reconstruction), conjugate phase reconstruction, and fast iterative reconstruction.

For the fast iterative method, �fteen iterations of the conjugate gradient algorithm

were performed using the NUFFT with 2 times oversampling and 6×6 neighbors and

min-max optimal temporal interpolation with 8 time segments, see [13] for details.

A simulation study was performed to examine if a scaling factor was needed to

normalize the magnitudes of the reconstructed images. For our implementations of

these algorithms, no such scaling factors were required (results not shown).

The conjugate phase method is a Fourier reconstruction and assumes that the

object is band-limited, whereas the iterative reconstruction method models the con-

tinuous object with square voxels and includes quadratic spatial regularization. To

eliminate di�erences due to the full-width at half-max (FWHM) and shape of the

point spread functions from these two reconstructions, we smoothed all the recon-

structed images with a Gaussian �lter to 5 mm FWHM. We chose values for the

regularization parameter of the iterative method, β, that resulted in a FWHM of the
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PSF similar to that of the conjugate phase reconstruction before smoothing. The

PSF was determined by simulating a Kronecker impulse in �ve locations inside the

brain and adding it to the data for a slice from each subject. The reconstruction

with the impulse was subtracted from the reconstruction without it and the FWHM

was determined from this subtraction image [44]. A Gaussian �lter was designed

in the spatial-frequency domain for each reconstruction method so that the average

FWHM over all six subjects at the �ve chosen locations was 5 mm.

4.2.2 Stability Analysis

After reconstruction and smoothing with a Gaussian �lter in the spatial domain,

a second order polynomial �t was removed from the time course of each pixel to

compensate for any drifts in the data. A correlation coe�cient for each voxel was

determined by correlating the voxel's magnitude time course with a sinusoidal repre-

sentation of the task waveform. The number of voxels with a normalized correlation

coe�cient above a threshold (activated voxels) was determined for each method for

a range of thresholds.

For 5 slices containing voxels with signi�cant correlation to the task, further

processing was performed to examine the stability of the reconstructions. The task

waveform was regressed out of the time course of each voxel. The variance of the task-

removed time courses for all voxels inside the brain (as determined by intersecting

the thresholded conjugate phase and iterative reconstructions) were averaged for each

reconstruction. This was termed the residual mean variance (rmv). We performed

comparisons of the rmv of the three reconstructions on all six subjects. There were
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systematic di�erences in residual variance between subjects due to scaling di�erences

in the magnitude images, physiological noise di�erences, or subject motion during the

course of the study. To remove these between-subject e�ects from our comparison,

the rmv values for each subject were normalized to that of the conjugate phase

reconstruction. The other rmv values can then be seen as a fraction of the rmv

value of the conjugate phase reconstruction. We also examined the mean values

of the regression coe�cients over activated regions for each reconstruction, using a

correlation coe�cient threshold of 0.5 for the activation maps. The mean regression

values for the di�erent reconstructions were normalized to that of the conjugate

phase reconstruction for each subject. Using the residual mean variance and the

mean regression values, we can formulate a ratio that captures the BOLD signal-to-

noise ratio (SNR), as follows:

BOLD SNR =
mean regress.√

resid. mean var.
(4.4)

This measure is calculated for each reconstruction for each subject. The mean and

variance over all six subjects is used for the comparison of the overall performance

of the reconstruction methods.

4.3 Results

The widths of the Gaussian �lters in the spatial-frequency domain needed to

give a 5 mm FWHM for each of the reconstruction methods is given in Table 4.1.

Notice that we are using three di�erent values of the regularization parameter β

that give a FWHM of their PSF near that of the conjugate phase reconstruction.
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Method β Width, σ, (cm−1)
No Correction N/A 0.936
Conjugate Phase N/A 0.937
Iterative 8 0.902
Iterative 10 0.951
Iterative 12 1.016

Table 4.1: Widths of the smoothing Gaussian �lters in the spatial-frequency domain.

Figure 4.2: Point spread functions after smoothing with a Gaussian �lter for one
location in one subject. The iterative method is shown with β=10

This is seen by the fact that the widths of the �lters used for the iterative methods

surround the width used for conjugate phase. Figure 4.2 shows the PSF for the

three reconstructions after smoothing for one location of the simulated impulse in

one subject. The iterative reconstruction shown has β=10. The three reconstruction

methods have similar point spread functions after smoothing.

An example image from each reconstruction method is shown in Figure 4.3 for

one slice from one subject. As can be seen in this �gure, the uncorrected image is

blurred signi�cantly around the edges of the brain. Both the conjugate phase and

the iterative reconstruction (β=10 is shown) �x some of this distortion and result in
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No Correction Conjugate Phase Iterative

Figure 4.3: No correction, conjugate phase and iterative reconstructions from a typ-
ical slice from one subject.

similar reconstructions. The slice shown has a relatively smooth �eld map because

it is high above the frontal sinus. Therefore, the conjugate phase and iterative

reconstructions perform similarly here. If a lower slice were shown, the smoothly

varying �eld map assumption of conjugate phase may be violated and signi�cant

improvements in �eld-inhomogeneity correction would result from using the iterative

reconstruction, see [13,33] for examples of non-smooth �eld maps.

Correlation analysis was performed with the task waveform and Figure 4.4 shows

functional images from one subject for the iterative reconstruction (β=10) for the

5 slices with signi�cant numbers of task-correlated pixels. A correlation coe�cient

threshold of 0.6 was used for the functional overlay. The activated areas largely

correspond with motor cortex. Figure 4.5 shows the number of voxels above threshold

in the volume of 5 slices for a range of thresholds for each subject. The iterative

and standard conjugate phase reconstructions give similar numbers of active voxels

at each threshold.

In Table 4.2, we give the residual mean variance (rmv) for the three reconstruc-

tions for each of six subjects. In this table, the rmv values have been normalized

by the rmv of the conjugate phase reconstruction. This table shows that the rmv of
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Figure 4.4: Images with functional overlay for the 5 slices examined in the study.

Table 4.2: Normalized residual mean variance for the three reconstruction schemes
for each of six subjects.

the conjugate phase reconstruction is not signi�cantly di�erent from the uncorrected

reconstruction. However, the iterative reconstruction is consistently below both of

those reconstructions and is dependent on the regularization parameter, β. From the

results in the table, one is tempted to increase the regularization parameter further.

As the regularization parameter is increased beyond those used in this study, less

Gaussian �ltering would be needed to get a FWHM of 5 mm. This would result in

a PSF whose shape di�ers from that of the smoothed conjugate phase, making rmv

comparisons less meaningful.

Table 4.3 gives the mean value of the regression coe�cients for pixels with cor-
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Subject 1 Subject 2

Subject 3 Subject 4

Subject 5 Subject 6

Figure 4.5: Maps of voxels above threshold vs correlation coe�cient threshold for
the three reconstruction methods for each of six subjects. The number
of activated voxels are normalized by the number of activated voxels
for the conjugate phase reconstruction. x is no �eld correction, circle is
conjugate phase, and square is the iterative reconstruction.
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Table 4.3: Regression coe�cients vs the sinusoidal task waveform.

Table 4.4: Ratios of mean of regression coe�cients divided by the square root of the
residual mean variance.

relation coe�cients above 0.5. The regression coe�cients for each subject have been

normalized to that of the conjugate phase reconstruction. As can be seen in this ta-

ble, the conjugate phase and uncorrected reconstructions give higher mean regression

coe�cients than the iterative methods.

Combining the results from Tables 4.2 and 4.3, we can get a measure of the

sensitivity of each reconstruction to the BOLD signal changes as described in Sec-

tion 4.2.2 and Equation (4.4). The ratio is given in Table 4.4 for each subject and

the three reconstructions and the three values of β for the iterative reconstruction.

All the reconstruction methods examined give very close values for this ratio, and no

signi�cant di�erence exists between the iterative reconstructions and the standard

conjugate phase reconstruction.
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4.4 Discussion

In this chapter, we have shown the stability of �eld-corrected iterative image

reconstruction for fMRI. In our comparisons of the three reconstruction methods,

care was taken to match the width and shape of the PSF for each reconstruction by

using a Gaussian �lter. Various values of β for the quadratic spatial regularization of

the iterative method were investigated. Values were chosen such that the FWHM of

the PSF of the iterative method was similar to that of the conjugate phase method.

By smoothing these with a Gaussian �lter, we were better able to match the shape

and width of the PSF of the iterative method to that of the conjugate phase and

uncorrected methods.

In Figure 4.5, the iterative reconstruction gave a similar number of activated vox-

els at all threshold levels when compared to the conjugate phase reconstruction. The

residual mean variance values in Table 4.2 indicate that the iterative reconstruction

is stable over a time series. The rmv values for the iterative method were signi�-

cantly lower than those of both the conjugate phase and uncorrected reconstructions.

However, the mean regression coe�cients for the iterative reconstruction were lower

than those from the standard reconstruction methods. Our measure of BOLD SNR

showed no signi�cant di�erences between the three reconstruction methods examined

over the six subjects in this study.

In regions of the brain with signi�cant non-smooth �eld inhomogeneity and func-

tional correlation with the task, we expect that the iterative reconstruction will give

better results than the conjugate phase method. The iterative reconstruction is
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not limited by the smoothly-varying �eld inhomogeneity assumption and will pro-

duce more complete artifact correction in these cases, see [13, 33]. In the present

study, the uncorrected reconstruction resulted in a BOLD SNR that was not signif-

icantly di�erent from the �eld-inhomogeneity-corrected reconstructions. Therefore,

the gains of �eld-inhomogeneity artifact removal may be more apparent when exam-

ining accuracy of localization of the task region, alignment of functional results to

anatomical scans, or motion correction on the time series of images.

The �eld maps for this study were determined using a delayed echo acquisition

at the beginning of the time series. This image along with the second image in the

time series were used to form the estimate of the �eld map. Both of these images

were distorted, similar to the uncorrected image shown in Figure 4.3. Therefore, the

resulting �eld map is also distorted and the �eld-corrected images su�er from this

error. Additional errors in the �eld map estimate can result from physiologically-

induced phase variations between the reference scans and subject motion between the

reference scans. These are the usual problems associated with the standard �eld map

estimation technique. More accurate �eld maps will decrease the residual artifacts

in �eld corrected image reconstruction for both the conjugate phase and iterative

methods [72,79].

4.5 Conclusion

We have shown that the iterative reconstruction algorithm presented in [13] gives

an accurate and stable, �eld-corrected image reconstruction in the presence of �eld

inhomogeneities. In this study, the iterative method resulted in a similar number
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of activated voxels compared to the conjugate phase method over a range of thresh-

olds of correlation maps. The iterative reconstruction and standard reconstruction

methods resulted in similar measures of BOLD SNR. We conclude that the iterative

reconstruction method is stable for fMRI studies.



CHAPTER 5

Joint Estimation of Image, Field Map, and T ∗
2

Relaxation1

Functional imaging using blood-oxygenation level dependent (BOLD) contrast

is performed by acquiring T ∗
2 -weighted images using gradient-echo acquisitions dur-

ing task and rest [21]. The gradient-echo acquisitions typically are fast, single-shot

techniques such as EPI or spirals. Single-shot techniques allow high temporal res-

olution and avoid the mixing of respiratory phases or subject motion between the

shots in a multi-shot acquisition. However, the long readout times of single-shot

acquisitions make them sensitive to magnetic �eld inhomogeneities that can lead to

severe distortions in the images. Magnetic �eld inhomogeneities exist around re-

gions where materials with di�erent magnetic susceptibility come into contact, for

example at air/tissue interfaces. When uncorrected, these e�ects can cause geomet-

ric distortions when EPI scans are used and blurring with spiral acquisitions. The

artifacts due to �eld inhomogeneity can cause problems when obtaining functional

results from areas near air/tissue interfaces. Spatial distortions can also degrade the

accuracy of registering images from di�erent time points for motion correction and
1This chapter based primarily on work submitted to Mag. Res. Med. and found in [73,79]
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registering functional results to anatomical scans.

In this chapter we examine a joint estimation procedure whereby the undistorted

image, �eld map, and T ∗
2 -relaxation map are simultaneously estimated from an ex-

tended readout acquisition. In Section 5.1 we discuss an implementation of our

algorithm to the simultaneous estimation of the image and �eld map from a sin-

gle spiral-in/ spiral-out acquisition. In Section 5.2, we extend this joint estimation

algorithm to include T ∗
2 -relaxation and apply it to a multi-echo spiral-out acquisition.

5.1 Joint Estimation of Image and Field Map

Many image reconstruction methods have been proposed to correct for �eld dis-

tortions in spiral imaging, see Section 1.4.1. There are two steps involved in most

�eld inhomogeneity correction schemes. The �rst is to measure the spatial variation

of the magnetic �eld, this is referred to as estimating a �eld map. The second step is

to use that �eld map to compensate for �eld inhomogeneities during the reconstruc-

tion. Some methods have been presented that by-pass the �rst step, for example

Noll et al. [28] use an auto-focusing criteria based on the assumption that the phase

is locally smoothly varying in a �eld-corrected image. However, most �eld correction

methods rely on obtaining a good estimate of the �eld map.

Conventionally, the �eld map is measured by acquiring two images at slightly

di�erent echo times and dividing their phase di�erence by the di�erence in echo

times [2], see Section 1.4.2. That method assumes implicitly that all of the o�-

resonance phase accrual occurs at the echo time, ignoring dephasing during the data

readout which may be longer than the echo time. If the images used to measure
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the �eld map are taken with the same acquisition parameters that are to be used in

the imaging study, then they are distorted by �eld inhomogeneities and the resulting

�eld map su�ers from the image distortions. A multi-shot, short echo time scan

can be used to obtain a less-distorted �eld map, but such �eld maps require extra

acquisitions and may su�er from mixing of respiratory and cardiac phases [80].

For standard �eld map estimation, the echo time of the two reference images

must be within a few milliseconds of each other to avoid ambiguity in the �eld

map measurement that would result from 2π phase wraps. Given that the total

acquisition time for an single-shot image is tens of milliseconds, one must use two

separate acquisitions (TR intervals) to acquire two images with slightly di�erent

echo times, see panel a. of Figure 5.1. Respiration-induced phase variations in

the two reference images, other physiological noise, or subject motion between the

two scans can lead to errors in the standard �eld map estimate. For example, in

our scans, the center frequency of an axial slice can vary by 1 Hz depending on the

position in the respiratory cycle. This could result in a phase di�erence of as much as

(2πTE×1 Hz)radians between the two acquisitions even in the absence of additional

�eld inhomogeneity. This phase di�erence divided by the di�erence in echo times

would induce a 15 Hz error in the �eld map estimate for an echo time of 30 ms and

a echo time delay of 2 ms. Using the spiral-in/ spiral-out sequence along with our

proposed joint estimation algorithm, we are able to estimate the �eld map during

one TR interval. The spiral-in sequence is followed by a short rest or gap of 1 ms

before the spiral-out portion of the sequence is executed. Panel b. in Figure 5.1
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shows the proposed spiral-in/ spiral-out trajectory. Section 5.1.3 gives an example

showing that the standard �eld map estimation technique is not applicable to �eld

map estimation using the spiral-in and spiral-out images within a single acquisition.

Field maps resulting from standard estimates are usually assumed to be static

over the course of the functional study because an additional scan with a delayed

echo time is required. This additional scan is usually performed at the beginning or

the end of a functional study. This one measured �eld map is used for correcting the

entire time series of images. Dynamic changes in the �eld map for a slice can occur

during the course of a functional study. These changes can be due to respiratory-

cycle induced phases, main �eld drift, and subject motion. When �eld-corrected

image reconstruction algorithms are used, these dynamic changes can lead to further

distortions in the images for a time series. Nayak et al. presented a method to form

standard, dynamic estimates of a low-resolution �eld map by delaying echo times of

subsequent shots in a multi-shot experiment [81, 82]. However, these estimates are

sensitive to the di�erences in reference images discussed in the previous paragraph,

whereas the method we propose here will estimate the �eld map within a single

acquisition.

This section describes a new way to combine the two steps used for �eld inho-

mogeneity correction used in conjunction with a certain pulse sequence. We propose

to reconstruct an undistorted image and its associated, dynamic, undistorted �eld

map from a spiral-in/ spiral-out acquisition. This method retains the time resolution

and other bene�ts of single-shot methods while correcting for distortions caused by
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a.

b.

Figure 5.1: Gradient Waveforms (Gx(t)) for the acquisition of a �eld map. a.) Stan-
dard �eld map acquisition requires two separate acquisitions to get a
close spacing of echo times. b.) The spiral-in/ spiral-out sequence allows
for a close sampling of echo times during a single acquisition.
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the changing �eld map. The spiral-in/ spiral-out pulse sequence can acquire the

same number of slices per TR as a spiral-out sequence [83] and therefore should not

change the setup of current fMRI studies. Also, Glover and Law have reported that

the presence of the spiral-in trajectory before the spiral-out trajectory does not sig-

ni�cantly increase �uctuation noise due to motion sensitivity and no moment nulling

was required [83].

In Section 5.1.1, we derive our nonlinear least-squares joint �eld map and image

estimation algorithm and discuss some implementation issues. Our �eld-inhomogeneity-

corrected image reconstruction method was discussed in [13] which included methods

to speed computation: time segmentation and the Nonuniform Fast Fourier Trans-

form (NUFFT) [35]. Both of those methods are used extensively in this work. Sim-

ulation, phantom, and human data experiments are described in Section 5.1.2 with

the results given in Section 5.1.3.

5.1.1 Theory: Joint Estimation of Image and Field Map

We approach the simultaneous estimation problem by forming a cost function

based on the signal equation for MRI and then minimizing it over the image and

�eld map simultaneously. Section 5.1.1 presents our cost function based on the signal

equation in terms of the unknown image and �eld map. Section 5.1.1 discusses our

minimization process.
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Nonlinear Least-Squares Joint Estimation

In MRI, the equation for the complex baseband signal, ignoring relaxation e�ects,

is given by Equation (1.26), repeated here,

s(t) =

∫
f(r)e−iω(r)te−i2π(k(t)·r)dr, (5.1)

where s(t) is the signal at time t during the readout, f(r) is a function of the object's

transverse magnetization at location r, ω(r) is the �eld inhomogeneity, and k(t) is

the k-space trajectory. In an MR scan, the raw measurements are noisy samples of

this signal,

ym = s(tm) + εm, m = 1, . . . ,M, (5.2)

and from these samples we would like to simultaneously estimate the image, f(r),

and the �eld map, ω(r).

This is clearly an ill-posed problem since there is an in�nite collection of solu-

tions, f(r) and ω(r), that closely match the data y = (y1, . . . , ym). We proceed by

parameterizing both the object and �eld map in terms of basis functions as follows:

f(r) ≈
N−1∑
n=0

fnφ1(r − rn)

ω(r) ≈
N−1∑
n=0

ωnφ2(r − rn). (5.3)

For the results presented in this chapter, we will use the voxel indicator function:

φ1(r) = φ2(r) = rect(r1/∆r1) · · · rect(rP /∆rP
) for the P -dimensional problem. This

choice is natural for the object, f(r), since the display device will use square areas

of nearly constant luminance, but better choices for the �eld map, ω(r), may exist
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that would allow for the modeling of within-voxel nonuniformity of the magnetic �eld

intensity. Alternative basis functions will be explored in Chapter 6. Substituting Eq.

(5.3) in Eq. (5.1), yields

s(t) ≈ Φ(k(t))
N−1∑
n=0

fne
−iωnte−i2π(k(t)·rn), (5.4)

where Φ(k(t)) results from the Fourier Transform of φ(r), i.e.

sinc(k1(t)∆r1) · · · sinc(kP (t)∆rP
).

We approach the joint estimation of image and �eld map in a manner similar

to the image reconstruction problem in Section 2.2. We parameterize the signal

equation for MRI ignoring relaxation e�ects for now, Equation (2.4), with the voxel

indicator basis functions used in Equation (2.6). We express the noisy measured

samples of this signal in matrix-vector form as follows

y = A(ω)f + ε, (5.5)

where f is the parameterized image and ω is the parameterized �eld map. The

entries of the M × N matrix A(ω) are written to re�ect the fact that they depend

on the current estimate of the �eld map,

am,n(ω) = Φ(k(tm))e−iωntme−i2πk(tm)·rn . (5.6)

Our goal is to estimate the image, f , and the �eld map, ω, from the k-space data y,

accounting for the statistics of the noise ε.

In Section 2.2 and [13], we used the formulation in Eq. (5.5) as part of an

inverse problem approach to �eld-inhomogeneity corrected image reconstruction, i.e.

estimate the image f given the �eld map, ω. We showed that in regions with large
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�eld inhomogeneity, the iterative reconstruction method results in more accurate

images than the standard conjugate phase approach. However, this accuracy may

be limited by errors in the estimated �eld map. In [13], a static �eld map from

an additional scan was used. Due to the size of the system matrix A, directly

calculating its inverse is impractical and it is usually ill-conditioned. Instead, we

used the iterative method of conjugate gradients (CG). The main operations involved

in the CG method are computing Ax and A?y, i.e. evaluating Eq. (5.4) and a

complex conjugate transpose version of that equation. We used the fast and accurate

approximations of the NUFFT and time segmentation to speed the computation of

these two matrix-vector products. In this work, we propose to estimate both the

image and the �eld map and we will use both of these speed-up methods extensively.

Since the dominant noise in MRI is white Gaussian [1], we can estimate f and ω

by minimizing the following penalized least-squares cost function,

Ψ(f , ω) =
1

2
‖y −A(ω)f‖2 + β1R(f) + β2R(ω) so that,

f̂ , ω̂ = arg min
f ,ω

Ψ(f , ω). (5.7)

The second half of the equation for Ψ(f , ω) includes regularization terms, R(f)

and R(ω), that penalize the roughness of the estimated image and �eld map. The

parameter β1 is chosen to control noise but not to signi�cantly a�ect the resolution

of the problem. For the regularization of the �eld map, β2 is chosen to result in

a relatively smooth �eld map, similar to the standard �eld map estimates after

smoothing (see Section 5.1.2). For simplicity, we used a quadratic regularization,

R(f) = 1
2
‖Cf‖2 for a matrix C that takes di�erences between neighboring pixels.
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Implementation: nonlinear estimation problem

The minimization problem, Eq. (5.7), requires an iterative algorithm. We al-

ternate between updating f̂ and ω̂. First we update the image given the current

estimate of the �eld map, then we update the �eld map given the new estimate

of the image. For updating the image, we exploit the linear relation between the

image and the data and apply the iterative conjugate gradient (CG) algorithm for

minimization of Eq. (5.7) over f . The CG algorithm, along with the fast methods

presented in [13], results in a quick convergence to the best �t image for this part of

the algorithm. Once we have updated our estimate of the image, f̂ , we use gradient

descent on the cost function Ψ from Eq. (5.7) to update the estimate of the �eld

map, ω̂. The gradient of Ψ with respect to ω is given by:

∂

∂ωn

Ψ(ω) =
1

2

M∑
m=1

(
− itmfn

?Φ?(k(tm))ei(2πk(tm)·rn+ωntm)(ym − [A(ω)f ]m)

+ itmfnΦ(k(tm))e−i(2πk(tm)·rn+ωntm)(ym − [A(ω)f ]m)?

)
+

∂

∂ωn

β2R(ω). (5.8)

De�ning gn by,

gn(ω) = −i
M∑

m=1

tmfn
?Φ?(k(tm))ei(2πk(tm)·rn+ωntm)(ym − [A(ω)f ]m), (5.9)

we can formulate the gradients based on the vector g given by,

g(ω) = −iD(f ?)A?(ω)D(t)(y −A(ω)f), (5.10)

where D(x) denotes a diagonal matrix with the elements of the vector x on its

diagonal. Inserting the vector g and using our chosen regularization function R(ω),
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we can express the gradient of Ψ with respect to ω as follows:

∇ωΨ =
1

2
(g(ω) + g?(ω)) + β2C

′Cω

= Real{g(ω)}+ β2C
′Cω, (5.11)

Using the gradient in Eq. (5.11), we update our estimate of the �eld map, ωk, by

gradient descent,

ωk+1 = ωk − α
(
Real{g(ωk)}+ β2C

′Cωk
)
. (5.12)

The step size α is chosen empirically such that the cost function, Ψ, decreases.

5.1.2 Experimental Methods for Joint Image and Field Map Estimation

In principle, one could apply the estimation method described above to any k-

space trajectory. However, the quality of the results will certainly be trajectory

dependent. The spiral-in/ spiral-out sequence was chosen because it provides e�-

cient coverage of k-space and a close spacing of echo times. A spiral-in/ spiral-out

pulse sequence was used in simulation, phantom, and human experiments with the

following parameters: TE/FA/FOV = 30ms/60o/24cm, Matrix size = 64 × 64, and

a 1 ms gap between the end of the spiral-in part of the pulse sequence and the

beginning of the spiral-out portion. All �eld-corrected image reconstructions were

performed using the fast, iterative technique of [13] on the entire spiral-in/ spiral-out

data. This was done so that di�erences in the reconstructed images can only be due

to di�erences in the �eld maps and not di�erences in the reconstruction or regular-

ization. The uncorrected images were reconstructed using a fast gridding operation

on the spiral-in and spiral-out portions separately. The resulting images were then
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combined via a square root of the average of the squares of the images. The compu-

tations of Ax and A?y in Eq. (5.10) were carried out using the NUFFT and time

segmentation algorithms described in [13, 35] with L = 8 for time segmentation and

a 5 × 5 neighborhood size and two times oversampling for the NUFFT. Standard

estimates for the �eld maps are usually smoothed to reduce noise. We performed

a small amount of smoothing of the standard �eld map estimates within the object

being imaged along with extending the �eld map beyond the object using a penal-

ized weighted least squares smoothing function [78]. A single iteration of our joint

estimation algorithm consisted of both an update of the image (15 iterations of CG

algorithm) and the �eld map (4 iterations of gradient descent).

Simulation Study

Simulation data sets were formed from a high resolution brain scan with its

associated �eld map at a matrix size of 256× 192× 128 and then reconstructed at a

lower resolution, a 64× 64 matrix size for the reconstructed slice. Noise was added

to the data to give an SNR (‖data‖/‖noise‖) of approximately 100. Two conditions

were tested to ensure that the simultaneous estimation algorithm resulted in stable,

accurate estimates of the �eld map. First, the algorithm was started with an initial

estimate of the �eld map of zero. This was used to test if the algorithm would

converge to the correct �eld map when starting from a distant point. Second, the

algorithm was initialized with the standard estimate of the �eld map. Section 5.1.3

shows that the standard method cannot produce an accurate �eld map estimate

using only the data from a single spiral-in/ spiral-out acquisition. For the standard
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estimate, an additional scan had to be simulated at an echo time delayed by 2 ms.

We used the average of the standard �eld maps from the spiral-in sequence at the

two echo times and the spiral-out sequence at the two echo times as the standard

�eld map. This convention was used both in the simulations and in the phantom

and human experiments. We examined the performance of our joint estimation over

iteration using the root-mean-squared (RMS) error from the true �eld map.

Phantom Study

Next we performed a phantom study using a GE 3T Signa Scanner (GE Med-

ical Systems, Milwaukee, WI). Since the true �eld map is not known for real data

experiments, we obtained a relatively undistorted estimate by acquiring two short

echo time four-shot spiral-out images and used the standard �eld map estimation.

This estimate was compared quantitatively to the estimates from the standard es-

timation and our joint estimation on the spiral-in/ spiral-out data. The resulting

images, reconstructed using either the standard �eld map or the jointly estimated

�eld map were compared qualitatively for reduction in artifact. Since our joint esti-

mation algorithm allows us to estimate a �eld map for each acquisition, we applied

our technique to a time series collected on the phantom using a TR of 2 s and 80

time points. We examined the time course of the �eld map for a pixel inside the

phantom to assess the stability of our estimates.

Human Studies

The human data sets were collected on a GE 3T Signa Scanner in accordance

with the Institutional Review Board of the University of Michigan. Three normal
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human subjects performed a functional task consisting of 4 cycles of on/o� bilateral

�nger tapping, each cycle lasting 40 seconds. The subjects were instructed to keep

their head still during the functional studies. One human study, Subject 1, was

performed with a TR of 2 s, yielding 80 time points. Two other human subjects,

Subjects 2 and 3, were acquired with a TR of 0.5 s to allow for good resolution of the

respiratory waveform which causes small shifts in the �eld map of axial slices. A res-

piratory bellows was used to acquire the respiratory waveform for these two subjects.

Reconstructions using the dynamic, jointly estimated �eld maps were qualitatively

compared to the reconstructions using the static, standard estimates of the �eld

maps. Also, functional results using the time series of images reconstructed with

each �eld map estimate were compared using the number of active voxels at a given

threshold, i.e. the number of voxels with a correlation coe�cient with the sinusoidal

task waveform that exceeded a given threshold. The time series of the �eld map

estimates were also examined for pixels inside the brain. A correlation test was

performed to see if the proposed joint estimation method accurately re�ected the

respiration-induced phase variations.

5.1.3 Results

Simulation Study

Figure 5.2 shows the axial and sagittal slices used in the simulations and their

associated �eld maps. Figures 5.3 and 5.4 show the root-mean square (RMS) error

over iteration for the axial study and sagittal study, respectively, for both initial-

ization conditions that were discussed in Section 5.1.2. Both of these sets of curves
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show that the simultaneous estimation algorithm converges quickly, in around 50

iterations. Stability of the joint estimation method is also shown by these �gures,

i.e. when the algorithm is started with an estimate close to the local minimum, it

stays near that minimum. This suggests that an e�cient way to implement the si-

multaneous estimation algorithm for time series data is to initialize the �eld map at

each time point with the standard, static estimate of the �eld map and run just a few

iterations to account for dynamic changes. When initialized with the standard esti-

mate, Figure 5.4 shows that the local minimum for the simultaneous estimation has

slightly higher RMS error than the standard estimate at convergence. This is due to

a local minimum. Figure 5.5 shows the map of the error in the estimate. Comparing

this error to the sagittal slice in Figure 5.2, we can see that the error occurs near

a peak in the �eld map at the edge of the object. A regularization scheme other

than quadratic, such as a Huber penalty [45] or a spatially varying penalty [84], may

improve estimation in those regions.

Phantom Study

A phantom data set was collected with 80 time points as described in Sec-

tion 5.1.2. To estimate the �eld map with little �eld-induced distortions, we ac-

quired an extra data set using a 4-shot spiral-out sequence with an echo time of

4.6 ms. The joint estimation algorithm was initialized at each time point with the

static, standard estimate of the �eld map from the spiral-in/ spiral-out data and

50 iterations were performed. Figure 5.6 shows the �eld map estimated from this

4-shot, short echo time acquisition along with the standard and jointly estimated
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a b

c d

Figure 5.2: Objects used for simulation study. a.) axial slice b.) axial �eld map (Hz)
c.) sagittal slice d.) sagittal �eld map (Hz)

�eld maps using the spiral-in/ spiral-out data. In this case, all three estimated �eld

maps should look similar since the phantom is immobile and has no physiologically

induced phase variations or motion. For this slice, we calculated root mean squared

di�erence between the 4 shot �eld map and the estimated �eld maps over the object

region as de�ned by the 4-shot image. The RMS di�erence for the standard estimate

was 2.9 Hz and for the jointly estimated �eld map was 4.3 Hz at time point 2. Recall

that the standard �eld map estimate is an average of the �eld maps determined from

the spiral-in and spiral-out portions of the data at both the �rst and second time

points in the acquisition (Section 5.1.2). However, the joint estimation used only

the data from a single spiral-in/ spiral-out acquisition, although in this case, we are



103

Figure 5.3: RMS error in Hz vs iteration number for the axial slice simulation. Solid
line (-) is the simultaneous estimation initialized with a zero �eld map,
Circles (o) are the simultaneous estimation initialized with the standard
�eld map, Plus (+) is the standard �eld map estimate, which is not
iterative but is shown as a constant value vs iteration.

Figure 5.4: RMS error in Hz for the sagittal slice simulation. Solid line (-) is the
simultaneous estimation initialized with a zero �eld map, Circles (o) are
the simultaneous estimation initialized with the standard �eld map, Plus
(+) is the standard �eld map estimate, which is not iterative but is shown
as a constant value vs iteration.
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Figure 5.5: Error in Hz for the sagittal slice.

a b c

Figure 5.6: Field maps for the phantom study in Hz: a.) 4-shot short echo time
spiral-out with standard �eld map estimation, b.) standard �eld map
estimate c.) jointly estimated �eld map.

using the standard estimate to initialize the algorithm. Figure 5.7 shows the result-

ing images reconstructed with the 4-shot �eld map, the standard �eld map and the

jointly estimated �eld map. Since the 4-shot image had a much shorter echo time, it

has di�erent T ∗
2 -weighting. The jointly estimated image and standard image result

in similar reconstructions for this phantom study.

We can examine the time course of the dynamic, jointly estimated �eld map at

a pixel of interest to study the variance of our �eld map estimate and identify any

main �eld drift in the scanner. Figure 5.8 shows the time course of the �eld map

estimate of a point in the interior of the upper region of the phantom. From this
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Figure 5.7: Reconstructions from phantom experiment: a.) 4-shot short echo time
spiral-out, b.) spiral-in/ spiral-out using the standard �eld map estimate
c.) spiral-in/ spiral-out using the jointly estimated �eld map.

plot we can see that there is a smooth drift of the main magnetic �eld over the

course of the time series, around 2.5 Hz over the 160 s scan time. A similar drift in

the �eld map was seen for all pixels inside the phantom. Such �eld drifts are seen

routinely in our stability scans, possibly due to heating of the passive shim coils. If

this trend was known a priori, then it could be compensated in the data processing,

but the trend may depend on pulse sequence parameters, recent scan history, and

environmental factors and may be hard to characterize accurately. After regressing

out a second order polynomial �t to the curve, the residual standard deviation of the

estimate averaged over the phantom was 0.12 Hz. Thus our estimation algorithm is

fairly stable over the course of a time series and dynamic estimation allowed us to

track a 1 Hz/min drift in the main �eld strength.

Human Study

A data set was collected during a functional experiment as described for the hu-

man study in Section 5.1.2 with a TR of 2 s and 80 time points (Subject 1). Field

inhomogeneity distortions are generally worse for lower slices of the brain that are

closer to the air/tissue interfaces of the sinus cavities. We show results for both
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Figure 5.8: Time course of the jointly estimated �eld map for a pixel inside the
phantom.

a slice low in the brain and a slice containing pixels with signi�cant correlation to

the motor task. Figure 5.9 shows the uncorrected image, the standard and jointly

estimated �eld maps, and the reconstructions using those �eld maps for a low axial

slice at the tenth time point. The T1-weighted anatomical scan is given for reference.

Although the two �eld maps look similar, the arrows in the reconstructed images

indicate positions at which the images show di�erences in the degree to which in-

homogeneity correction was successful. The image reconstructed with the standard

�eld map shows blurring and signal loss at the indicated positions, whereas the in-

creased accuracy of the jointly estimated �eld map allows for adequate compensation

and artifact reduction.

Figure 5.10 gives the results for the �eld map estimations and the reconstructed

images for a slice containing pixels correlated to the bilateral �nger tapping task. The

results for the jointly estimated image and �eld map are shown for the tenth time

point. The standard �eld map di�ers considerably from the jointly estimated �eld

map for this slice. Along the edge indicated by the arrow, the reconstructed image
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d e f

Figure 5.9: Results of reconstruction and estimation on a slice lower in the brain of
Subject 1. a.) uncorrected image, b.) standard �eld map estimate, c.)
jointly estimated �eld map, d.) T1 anatomical image for reference e.) im-
age reconstructed using the standard �eld map, f.) image reconstructed
using the jointly estimated �eld map.

with the standard �eld map shows signi�cant blurring due to �eld inhomogeneity.

The jointly estimated �eld map and image are largely free of this distortion.

The reduced artifacts using the jointly estimated �eld map are also evident in the

functional results. Figure 5.11 shows the functional results from reconstructions using

the standard and dynamic �eld maps for all three human subjects examined. Panels

a.-f. show the functional activation maps thresholded at a correlation coe�cient of

0.5. The reference image shown under the functional map is the image reconstructed

using the corresponding method. For subject 1 in panels a. and d., both methods

show similar activation on the left-hand side, but only the joint-estimation method

shows a comparable number of active voxels on the right-hand side. The increased

bilateral detection corresponds with the increased artifact correction, see the arrow
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Figure 5.10: Results of reconstruction and estimation on slice of interest for func-
tional study for Subject 1. a.) uncorrected image, b.) standard �eld
map estimate, c.) jointly estimated �eld map, d.) T1 anatomical image
for reference e.) image reconstructed using the standard �eld map, f.)
image reconstructed using the jointly estimated �eld map.

in Figure 5.10. Panel g. in Figure 5.11 shows the number of pixels with correlation

coe�cients higher than various thresholds for the two reconstructions for Subject 1.

The trend seen in panels a. and d. for a threshold of 0.5 holds for all the other

thresholds examined, i.e. a larger number of activated pixels result from correctly

compensating for the undistorted, dynamic �eld map. Panels b. and d. in Figure 5.11

show the functional maps for Subject 2 (TR = 0.5 s) and panels c. and e. show

the functional maps for Subject 3 (TR = 0.5 s). All maps were thresholded at a

correlation coe�cient of 0.5. Again we see with both these subjects that accurate

compensation for the dynamic, jointly-estimated �eld map results in a larger number

of activated voxels. The plots of number of active voxels versus threshold level for

the two subjects are shown in panels h. and i., respectively.
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Figure 5.11: Functional results for the two reconstructions for all three human sub-
jects. Reconstruction using the standard �eld map for: a.) Subject 1,
b.) Subject 2, c.) Subject 3. Reconstruction using the jointly estimated
�eld map for d.) Subject 1, e.) Subject 2, f.) Subject 3. Plot of num-
ber of pixels with correlation coe�cients higher than the threshold for
various thresholds for g.) Subject 1, h.) Subject 2, i.) Subject 3.
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Figure 5.12: Time course of simultaneously estimated �eld map for a pixel within
the brain.

Figure 5.12 shows the estimated �eld map for a voxel inside the brain over the

the course of the functional study for Subject 1. A �eld drift over the course of the

time series exists in the human data that is similar to that from the phantom scan, a

positive shift in the �eld of about 2.5 Hz over the course of the scan. The �eld map

estimates here have higher oscillations than in the phantom study. Regressing out a

second order polynomial �t to the time course shown in Figure 5.12 gives a residual

standard deviation of 0.33 Hz, averaged over the brain.

The higher variance in the time series of the �eld map from the human study

vs the phantom study (Figure 5.12 vs. 5.8) could be due to respiration-induced

�eld changes during the course of the time series. To examine this e�ect further,

two of the subjects were scanned with a TR of 0.5 s to allow for good resolution of

the respiratory e�ect and a respiratory bellows was used to acquire the respiration

waveform, as described in Section 5.1.2. We performed a correlation analysis between

the measured respiratory waveform and that from the time course of the estimated

�eld map after regressing out a second order polynomial �t to remove the main
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Figure 5.13: Plot of time course of �eld map for a pixel inside the brain of Subject
3 after regressing out a second order polynomial �t to remove the main
�eld drift component. Shown also for reference is a scaled version of the
waveform measured from the respiratory bellows.

�eld drift component. We found that for Subject 2, there was a mean correlation

coe�cient of 0.39 over the brain region between the �eld map values (after removing

a second order polynomial �t) and the respiratory waveform. For Subject 3, the

mean correlation coe�cient over the brain was 0.43. A plot of the time course of

the �eld map for a pixel inside the brain of Subject 3 is shown in Figure 5.13. This

pixel was near the center of the brain and had the highest correlation coe�cient with

the respiratory waveform, 0.80. Also shown in this �gure for reference is a scaled

version of the respiratory waveform as measured from the respiratory bellows. The

variations in the �eld map values are a good �t to the scaled measurements from the

respiratory bellows.

Non-iterative Dynamic Estimation

At �rst glance, it might appear that a dynamic �eld map estimate could be

formed by �rst reconstructing uncorrected images from the spiral-in and spiral-out

parts of the sequence separately. These acquisitions were spaced by 1 ms in our

studies, so the �eld map could be formed by taking the phase di�erence of these two
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images and dividing by the di�erence in echo times. Figure 5.14 shows the �eld maps

estimated in this manner for the simulation and phantom experiments. These �eld

maps have shapes that are fairly consistent with the truth (refer to Figures 5.2 and

5.6), but the scaling is wrong, even resulting in phase wraps in the �eld map. The

problem with this non-iterative dynamic method is that the point spread function

of a spiral-in sequence with �eld inhomogeneity di�ers greatly from that of a spiral-

out acquisition. A possible explanation is o�ered in [34]: gradients in the �eld map

distort the local k-space trajectory which may cause a shift in the timing of the

sampling of the center of k-space, the e�ective echo time, that may di�er greatly

from the planned echo time. In the usual case, when comparing spiral-out sequences

of the same slice at two di�erent echo times, this e�ective echo time shift is the same

for both, keeping the di�erence in e�ective echo times the same as the planned echo

time delay. However, the time at which the origin of k-space is sampled for spiral-in

and spiral-out sequences is a�ected di�erently by gradients in the �eld map. This

results in an e�ective di�erence in echo time between the spiral-in and spiral-out

sequences that varies spatially. Hence, in addition to the usual problems associated

with the standard �eld map estimate discussed in the beginning of this chapter, the

�eld map estimates are also degraded by a space-variant scale factor.

5.1.4 Discussion

The simulation studies show that our joint estimation technique can estimate

a �eld map that is similar in accuracy to the standard �eld map estimate. The

standard �eld map estimate requires two acquisitions at slightly di�erent echo times
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a b

Figure 5.14: Field maps estimated from the phase di�erences of spiral-in and spiral-
out images reconstructed separately. a.) simulation �eld map (Hz), b.)
phantom �eld map (Hz).

and assumes that the �eld map remains static over the course of a time series.

Our joint estimation technique uses a spiral-in/ spiral-out sequence to estimate an

undistorted �eld map and image at each acquisition. This dynamic estimate was

formed using a penalized, least-squares joint-estimation algorithm and a spiral-in/

spiral-out acquisition, which does not decrease the scan e�ciency from a spiral-out

sequence.

The jointly estimated �eld map is very stable. For each time point, the dynamic

estimation is started with the static, standard estimate of the �eld map from the

�rst two time points and an initial estimate of zeros for the image. That means

that each time point is initialized with the same image and �eld map and is not

dependent on the time points around it. So, by looking at the variance in the time

series of the estimated �eld maps, we can examine the stability of the estimations.

In the phantom experiment, the average standard deviation for the time course of

the �eld map was only 0.12 Hz after removing trends to account for the drift of the
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magnetic �eld. The mean standard deviation from the human results was 0.33 Hz.

This higher variation resulted from respiration-induced phase variations during the

time series. The time series of pixels inside the brain in a slice from two subjects

exhibited signi�cant correlation with the respiratory waveform as measured with a

respiratory bellows. A mean correlation coe�cient of 0.4 was observed for the time

course of the �eld map with the measured respiratory waveform in a slice high in the

brain in two subjects. This respiration e�ect should be even greater for slices lower

in the brain.

For this work, the accurate measurement of respiratory e�ects in the time course

of the �eld map attests to the stability and sensitivity of our method. In subsequent

work, the ability of our proposed method to accurately estimate and correct for respi-

ratory noise should be compared to other physiological noise correction schemes. For

example, a technique called �dynamic o�-resonance in k-space� or DORK assumes

that respiration-induced phase is constant over the slice [85]. This assumption essen-

tially restricts the application of DORK to axial slices. Although our method does

use spatial regularization, it does not enforce a uniform shift for the slice. Therefore,

our method is applicable to any slice orientation.

Besides the fact that the proposed method is able to track dynamic changes in the

�eld map, the human experiments suggest that our method results in a more accurate

estimate of a single �eld map. Although the dynamic changes in the �eld maps over

the time series were relatively small (<5 Hz), the functional results were dramatically

di�erent when using the jointly estimated �eld map instead of the standard �eld
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map. The jointly estimated �eld map resulted in an image with less artifact and

a higher number of activated voxels in the functional studies. The standard �eld

map estimation method su�ers from the use of reference images that are distorted

by �eld inhomogeneity e�ects, physiologically-induced phase di�erences, and motion

between the reference images.

The joint estimation algorithm can accurately and dynamically track and correct

for changes in the �eld map during the course of the functional study. These changes

may be due to respiration-induced phase changes, head movement, and drifts in the

center frequency of the magnetic �eld. These e�ects will become even more signi�cant

at higher �eld strengths, so dynamic estimation of the �eld map may be crucial for

success of fMRI at high �elds. In this work, the subject was instructed to hold their

head still. In patient and pediatric populations, the subject may not be able to

remain still for the time required for a functional study. In these cases, dynamic

�eld map estimation may be necessary for adequate artifact correction and proper

estimation of motion-correction parameters. In our future work, we will examine the

impact of dynamic �eld map estimation on motion correction.

Our proposed joint estimation algorithm can be used with any pulse sequence

that provides adequate sampling of k-space with a diversity in echo times to give

information about phase accrual. It has also been used with a four-echo spiral-out

sequence to estimate the image, �eld map and T ∗
2 relaxation map [73]. The spiral-in/

spiral-out sequence was chosen for this work because it provides an e�cient coverage

of k-space and allows for a close spacing of echo times. Sub-sampling strategies,
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such as those using variable-density spirals [81] or radial lines [82], may allow for a

reduction in the acquisition time.

One drawback to the proposed method is computation time. On a 2 GHz Pentium

workstation running Matlab, 50 iterations of the proposed method to estimate an

image and a �eld map took approximately 20 minutes. Recall that one iteration

of our proposed method includes 15 iterations of CG on the image and 4 iterations

of gradient descent, see Section 5.1.2. Some improvement in computation time will

result from optimizing the number of sub-iterations for the image and �eld map

updates. Also, we are using steepest descent for the nonlinear problem of minimizing

over the �eld map, a di�erent minimization algorithm may reduce the total number

of iterations required.

5.1.5 Summary

We have presented a method to accurately estimate an undistorted image and

�eld map for each acquisition of a spiral-in/ spiral-out sequence. This method results

in stable �eld map estimates that are able to track �eld drift and respiration-induced

phase variations over the course of an fMRI time series. In addition to producing

dynamic estimates, we have shown that our method can result in better single �eld

map estimates in humans than the standard estimation technique, which is sensitive

to di�erences between the reference images due to subject motion and respiration.

5.2 Estimation of T ∗
2

Functional imaging using blood-oxygenation level dependent (BOLD) contrast

is performed by acquiring T ∗
2 -weighted images using gradient-echo acquisitions dur-
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ing task and rest. Macroscopic changes in tissue T ∗
2 result in echo time dependent

changes in the magnitude of the T ∗
2 -weighted images. Functional maps can then be

formed by correlating the magnitude deviations with task paradigms. Wennerberg

et al. [86] point out that using the T ∗
2 -weighted images results in a functional map

whose contrast-to-noise ratio depends on echo time. Posse et al. [87] discuss ways to

combine data from T ∗
2 weighted images at di�erent echo times to try to remove some

of this dependence. The results from combinations of data at di�erent echo times

may increase statistical signi�cance [87], but they lack a quantitative nature desir-

able for comparisons between subjects and experiments. The desire for quantitative

information from BOLD studies has led to the use of T ∗
2 mapping (or the inverse of

this time constant, R∗
2) as a means of detecting functional activity [86�89].

Methods to measure R∗
2 on the same temporal resolution (within a single TR) and

spatial resolution as standard gradient echo imaging have been proposed [86,87] using

a multiple echo readout. The standard method to form the R∗
2 map is to reconstruct

the images at each of the multiple echo times and �t an exponential decay to the

magnitude of the pixel values [87], assuming that all of the decay occurs at the echo

times. The exponential �t gives an initial intensity value, fo, in addition to the R∗
2

value. In this section, we will compare our joint estimation method to two standard

methods: a nonlinear least-squares �tting and a linear �t to the natural log of the

data. The R∗
2 maps obtained in this manner can be noisy as the �t is performed on

relatively few time points (i.e. 2 to 10).

T ∗
2 -weighted imaging, while sensitive to the BOLD e�ect, su�ers from sensitivity
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to macroscopic e�ects of R∗
2 decay and magnetic �eld inhomogeneity. These e�ects

cause degradations and distortions in single-shot gradient echo images, such as as

spiral acquisitions. If uncorrected, the distortions in these images can a�ect the R∗
2

and fo estimates. Correcting these distortions can lead to more accurate gradient-

echo imaging in general, and more accurate R∗
2 maps for functional studies.

To account for interactions between the estimates of R∗
2, fo, and �eld inhomo-

geneities, in this section we propose to perform a regularized nonlinear least-squares

joint estimation of the undistorted fo image, R∗
2 map and �eld map based on mod-

eling the signal equation with these e�ects included. In Section 5.2.1 we present a

derivation of our joint estimation algorithm. In Section 5.2.3 we will apply our si-

multaneous estimation method, along with the nonlinear �tting and ln-linear �tting

methods, to simulation data to compare their accuracy and ability to detect changes

in R∗
2. We then look at the performance on a human functional study.

5.2.1 Theory: Joint Estimation of Image, Field Map, and T ∗
2 Map

In this section we give the derivation of our nonlinear least-squares joint estima-

tion algorithm and present a method to increase the speed of computation of our

algorithm. This development proceeds similar to the development in Section 5.1.1.

Nonlinear Least-Squares Joint Estimation

In MRI the signal equation with T ∗
2 -relaxation is given by Equation (5.13), refer

to (1.25)

s(t) =

∫
f(r)e−(iω(r)+R∗

2(r))te−i2π(k(t)·r)dr, (5.13)
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where s(t) is the signal at time t during the readout, f(r) is a function of the

object's magnetization at location r, ω(r) is the �eld inhomogeneity, R∗
2(r) is the R∗

2

relaxation, and k(t) is the k-space trajectory. In an MR scan, the raw measurements

are noisy samples of this signal,

yi = s(ti) + εi, i = 1, . . . ,M, (5.14)

and from these samples we would like to simultaneously estimate f(r) (which is a

complex-valued fo), ω(r), and R∗
2(r).

This is clearly an ill-posed problem since there is an in�nite collection of solutions,

f(r), ω(r), and R∗
2(r), that exactly match the data y = (y1, . . . , ym). Similar to the

procedure followed for the iterative reconstruction in Section 2.2, we proceed by

parameterizing the object, �eld map, and R∗
2 map in terms of basis functions, φ(r),

so that

f(r) ≈
N−1∑
n=0

fnφ1(r − rn)

ω(r) ≈
N−1∑
n=0

ωnφ2(r − rn)

R∗
2(r) ≈

N−1∑
n=0

νnφ3(r − rn). (5.15)

For this section, we will once again use

φ1(r) = φ2(r) = φ3(r) = rect(r1/∆r1) · · · rect(rP /∆rP
) for the P -dimensional prob-

lem, the voxel indicator function. Regardless of what basis one chooses, (5.15) is

only an approximation and we explore other choices of basis functions in Chapter 6.
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Substituting (5.15) in (5.13), yields

s(t) ≈ Φ(k(ti))
N−1∑
n=0

fne
−(νn+iωn)te−i2π(k(t)·rn), (5.16)

where Φ(u) results from the Fourier Transform of φ(r), i.e. product of sinc(u) func-

tions. We express the noisy measured samples of this signal in matrix-vector form

as follows

y = A(ω, ν)f + ε, (5.17)

where the elements of the M ×N matrix A(ω, ν) are written to re�ect their depen-

dence on both the parameterized �eld map and R∗
2-relaxation map.

ai,j = Φ(k(ti))e
−(νj+iωj)tie−i2πk(ti)·rj . (5.18)

Our goal is to estimate the image f , the �eld map ω, and R∗
2 map ν from the k-

space data y, accounting for the statistics of the noise ε. This will be an ill-posed

problem if N > M , and is usually ill-conditioned even if N ≤ M for non-cartesian

trajectories.

Since the dominant noise in MRI is Gaussian, we estimate f , ω, and ν by mini-

mizing the following penalized least-squares cost function,

Ψ(f , ν, ω) =
1

2
‖y −A(ν, ω)f‖2 + β1R(f) + β2R(ω) + β3R(ν) so that,

f̂ , ω̂, ν̂ = arg min
f ,ω,ν

Ψ(f , ω, ν). (5.19)

The second half of the equation for Ψ(f) includes a regularization function, R, that

penalizes the roughness of the estimated image, �eld map and R∗
2 map. This regu-

larization can be used to decrease the condition number of the image reconstruction
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problem and, therefore, control noise. The parameters β1, β2, β3 are chosen by ex-

amining the point spread function of the estimates [44], β must be small enough

not to signi�cantly a�ect the resolution of the problem for the image reconstruction

and R∗
2 map. However, smoother �eld maps are sought to improve conditioning of

the joint estimation problem. Once again, a quadratic regularization has been used,

βR(f) = 1
2
‖Cf‖2 for a matrix C that takes di�erences between neighboring pixels

(for simplicity
√

β has been absorbed into C).

Here, just as in Section 5.1.1, the joint estimation is split into 2 parts. First we

estimate the image given the current estimates of the R∗
2 and ω maps, then we update

ν and ω given the new estimate of the image, f . For the estimation of the image

given R∗
2 and ω, we take advantage of the linear relation between the image and the

data and apply the iterative conjugate gradient (CG) algorithm for minimization of

(5.19) over f , taking advantage of the fast method presented in [13]. Once we have

updated our estimate of the image, f , we use gradient descent on the cost function

Ψ from (5.19) to update the estimates of ν and ω. The gradient of Ψ with respect

to νn is given by:

∂

∂νn

Ψ(ω, ν) =
1

2

M∑
m=1

(
− itmfn

?Φ?(k(tm))ei(2πk(tm)·rn+ωntm)e−νntm(ym − [A(ω)f ]m)

+ itmfnΦ(k(tm))e−i(2πk(tm)·rn+ωntm)e−νntm(ym − [A(ω)f ]m)?

)
+

∂

∂νn

β3R(ν). (5.20)
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And the gradient with respect to the �eld map is given by:

∂

∂ωn

Ψ(ω, ν) =
1

2

M∑
m=1

(
− itmfn

?Φ?(k(tm))ei(2πk(tm)·rn+ωntm)e−νntm(ym − [A(ω)f ]m)

+ itmfnΦ(k(tm))e−i(2πk(tm)·rn+ωntm)e−νntm(ym − [A(ω)f ]m)?

)
+

∂

∂ωn

β2R(ω). (5.21)

which is Equation (5.8) with the R∗
2-relaxation term added

Now, if we let gn be given by,

gn =
M∑

m=1

tmfn
?ei(2πk(tm)·rn+ωntm)e−νntm(ym − [A(ω, ν)f ]m), (5.22)

we can formulate the gradients based on the vector g given by,

g(ω, ν) = −iD(f ?)A?(ω, ν)D(t)(y −A(ω, ν)f) (5.23)

we can express the gradient of Ψ with respect to ωn and νn as follows:

∇ωΨ =
1

2
(g(ω) + g?(ω)) + β2C

′Cω

= Real{g(ω, ν)}+ β2C
′Cω, (5.24)

and

∇νΨ =
1

2
(ig(ν)− ig?(ν)) + β2C

′Cν

= −Imag{g(ω, ν)}+ β3C
′Cν. (5.25)

Given the gradients in (5.24) and (5.25), we can update our estimates of the �eld

and R∗
2 maps, with a suitable choice of α, by the following,

νn+1 = νn − α (Real{g}+ βC ′Cν)

ωn+1 = ωn − α (Imag{g}+ βC ′Cω) . (5.26)

The step size α is chosen empirically such that the cost function Ψ decreases.
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Algorithm Speed

In the CG algorithm for the estimation of the image f and in the gradient de-

scent for the estimation of ν and ω, we frequently need to evaluate A(ω, ν)f and

A?(ω, ν)y, for some f and y. Previously, we used the NUFFT and time segmenta-

tion to speed the computation for A(ω). We will extend this method here to include

R∗
2 maps. We computed the min-max temporal interpolator for the case where R∗

2

and �eld maps were included in the signal equation.

5.2.2 Methods

A multi-echo spiral pulse sequence with 4 echo times

(TE=4.8/25.28/45.76/66.24 ms TR/FA/FOV=500ms/45/20cm, matrix size=62, 400

time points) was implemented on a GE 3T Signa scanner (GE Medical Systems,

Milwaukee, WI). The �rst readout in the time series had echo times delayed by an

additional 2.5ms in order to form a �eld map in the standard way, using images

reconstructed from just the �rst spiral of the sequence at the two di�erent echo

times. This �eld map was used as an initial estimate in our iterative algorithm and

was also used to correct the time-series images, via a time-segmented conjugate phase

reconstruction [30,31], for the standard R∗
2 estimations.

We used the NUFFT and time segmentation of Chapter 2 to speed up the joint

estimation algorithm. The NUFFT parameters were optimized Kaiser-Bessel inter-

polator with two times oversampling and a neighborhood size of 5×5. The temporal

interpolator used eight time segments.
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5.2.3 Results

Simulation Study

An ellipsoid object was simulated with a known R∗
2 and �eld inhomogenity to

compare the three estimation methods, nonlinear least-squares, log linear �t, and

simultaneous estimation. Typical values for gray and white matter R∗
2 were used

[90]. The resulting estimation errors for using a linear �t on the natural log of

the data, a nonlinear �t using the Gauss-Newton method, and our simultaneous

estimation method are shown in Figure 5.15. The simultaneous estimation method

has reduced the error to around 10% in both R∗
2 and fo by the 100th iteration, which

is dramatically better than the standard �t methods, especially for R∗
2. This is further

seen in the R∗
2 pro�les in Figure 5.16, where error in the �eld map estimation has

resulted in overestimation of R∗
2. Figure 5.17 shows the resultant estimations for the

simulation study.

The target application for our proposed simultaneous estimation is to estimate

R∗
2 values from a time series BOLD data set. For computational e�ciency, we will

use the fo, R∗
2, and �eld maps estimated from the �rst time point to initialize our

method on all subsequent time points. To determine how many iterations need

to be run on all subsequent data points, we increased the R∗
2 value on a region

of pixels by 10% (from 22 to 24 1/sec) and decreased the �eld map in the whole

image by 10% and ran the estimation on the new data set. Figure 5.18 shows the

three R∗
2 estimation methods for a pixel inside the R∗

2 changed area and for a pixel

that didn't get changed. As you can see in this �gure, the simultaneous estimation
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Figure 5.15: NRMSE in R∗
2 and fo maps along with RMS (in Hz) for the �eld map.

The three estimators are shown: log linear (triangles), nonlinear (cir-
cles), and simultaneously estimated (solid line). The results from all
three estimators are shown in R∗

2 and fo, but both the nonlinear and
log linear estimators use the standard �eld map estimate and its error
is shown in the middle plot.

procedure accurately estimates the new value within 10 iterations. We chose to run

25 iterations on each update to account for any large changes that may take place

during the course of the functional study. Note that the log-linear estimation of R∗
2

resulted in underestimating both the changed and unchanged pixels, but did re�ect

the 10% change in pixel value.
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Human Study

A human study was performed according to the paradigm explained in Sec-

tion 5.2.2. A correlation analysis was performed between the timecourses of each

pixel and the task paradigm (block) waveform. The task paradigm was shifted by

5 s to account for the delay in the onset of the BOLD response. The results of the

correlation analysis are shown in Figure 5.19 for the log linear R∗
2 estimation, the non-

linear R∗
2 estimation, the T ∗

2 -weighted magnitude images from the second and third

echos and the simultaneously estimated R∗
2 map. The number of activated pixels is

given in the title of each image and the simultaneously estimated fo image is given

for reference. The pixel timecourse of the three R∗
2 estimation methods is shown in

Figure 5.20 for an activated pixel. The estimates given by the standard methods are

signi�cantly higher than that given by our simultaneous estimation method. This

could be due to the R∗
2 decay compensating for error in the �eld map correction.

Notice also that the variance of the standard estimators is higher than that for our

simultaneous estimation method. We quanti�ed this variance by regressing out the

task waveform and �nding the variance of the residual signal. We summed these

variance in each pixel inside a mask of the image from the second echo. The values

for the variance are 2.6 for log linear �t, 1.7 for the nonlinear �tting and 1.3 for the

simultaneous estimation of R∗
2. Our variance is 23% lower than that of the nonlinear

�tting procedure.
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5.2.4 Discussion

Our regularized nonlinear least-squares joint estimation method shows increased

accuracy in determining R∗
2, �eld map, and fo. The method uses the whole time-

course of the k-space acquisition and models the signal equation using current es-

timates of the parameters. This will aid in accurate quantitation and detection of

BOLD R∗
2 modulation.
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Figure 5.16: Pro�les from the simulation study for a horizontal line through the sim-
ulated object, �eld map, and R∗

2 map. The three estimators are shown:
log linear ( green triangles), nonlinear (blue circles), and simultaneously
estimated (red square).
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Figure 5.17: Result in fo R∗
2 and �eld maps from the simulation study for all three

estimators. The images, �eld, and relaxation maps are scaled the same
for each estimation method. Colorbar is given only for the simulation
objects.
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Figure 5.18: Estimation of R∗
2 values for two pixels, one was changed from 22 to

24.2 1/sec and the other pixel remained unchanged. The simultaneous
estimation method accurately estimates both values.
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Figure 5.19: Correlation maps of timecourses correlated with the task waveform
(block paradigm) using a threshold of 0.5. Shown is the simultane-
ous estimated fo for reference. Correlation maps are shown for the log
linear, nonlinear estimation procedures, the magnitude images from the
second and third echos, and the simultaneously estimated R∗

2 map.
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Figure 5.20: R∗
2 estimated time courses for the log linear (triangles), nonlinear (cir-

cle), and simultaneously estimated (squares). Note that both standard
methods estimate higher R∗

2 values than the iterative method.



CHAPTER 6

Through Voxel Gradients

6.1 Introduction

In Chapter 2 we parameterized the image and �eld map with the voxel indicator

or �rect� function. This choice is shown graphically in panel a. of 6.1. Although this

choice makes sense for the image as it will be displayed as voxels, better choices for the

parameterization of the �eld map exist. By modeling the �rst-order gradient of the

�eld map between voxels, we can account for some intravoxel dephasing that would

otherwise lead to apparent signal loss. Of the possible parameterizations of the object

that would include �rst-order gradient terms, �triangle� basis functions seem like a

logical choice. This parameterization is shown graphically in panel b. of Figure 6.1.

However, this parameterization of the �eld map is complicated and does not appear

to o�er a computationally feasible solution, see Appendix A. Instead, we pursue two

alternatives to this approach that are easily included in our iterative reconstruction:

piecewise linear basis functions (see panel c. in Figure 6.1 and oversampled �rect�

basis functions.

This chapter begins with the continuous signal equation, Equation (2.4), and ex-

133
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a. b. c.

Figure 6.1: Graphical representations of the basis functions explored for parameteri-
zation of the object and �eld map. a.) �rect� b.) �triangle� c.) piecewise
linear. Dashed line for �triangle� basis function is the piece-wise linear
continuous object represented by the expansion.

plores various parameterizations of the object and �eld map, including delta, �rect�,

piecewise linear, and oversampling. Results are given in Section 6.5 for a simu-

lation and phantom study. These parameterizations can be extended to include

T ∗
2 -relaxation maps by utilizing the complex �eld map notation of Chapter 5.

6.2 Theory

The two-dimensional signal equation is given in Equation (2.4) as

s(t) =

∫ ∫
f(x, y)e−itω(x,y)e−i2π(kx(t)x+ky(t)y)dxdy, (6.1)

where f(x, y) is the object's magnetization at t = 0 and ω(x, y) is the inhomogeneity

�eld map. We would like to replace the continuous time signal with a parameterized

model and the continuous space integrals with summations, but we must be careful

making these substitutions. To model this continuous function in space, we must

discretize the signal by expanding the object and �eld map using a �nite-series. For

the object, this expansion is given by:

f(x, y) ≈
N∑

n=1

fnb

(
x− xn

∆x

,
y − yn

∆y

)
, (6.2)
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where xn is the x-coordinate of the nth pixel, and yn is the y-coordinate. The

xn and yn's de�ne a uniform Cartesian grid with spacing ∆x and ∆y, respectively.

The basis function b(x) can be a simple impulse function, a 2D �rect� function, a

triangle function, or something more complicated. Plugging (6.2) into (6.1), we get

the following,

s(t) ≈
∫ ∫ ∑

n

fnb

(
x− xn

∆x

,
y − yn

∆y

)
e−itω(x,y)e−i2π(kx(t)x+ky(t)y)dxdy

=
∑

n

fnan(t), (6.3)

where

an(t) =

∫ ∫
b

(
x− xn

∆x

,
y − yn

∆y

)
e−itω(x,y)e−i2π(kx(t)x+ky(t)y)dxdy. (6.4)

If we let x′ = x−xn

∆x
, y′ = y−yn

∆y
, then x = ∆xx

′ + xn, y = ∆yy
′ + yn and

an(t) = ∆x∆y

∫
x′

∫
y′

b(x′, y′)e−itω(∆xx′+xn,∆yy′+yn)

·e−i2π(kx(t)(∆xx′+xn)+ky(t)(∆yy′+yn))dx′dy′

= ∆x∆ye
−i2π(kx(t)xn+ky(t)yn)αn(t), (6.5)

where,

αn(t) =

∫ ∫
b(x, y)e−itω(∆xx+xn,∆yy+yn)e−i2π(kx(t)∆xx+ky(t)∆yy)dxdy. (6.6)

Substituting an(t) into (6.3) we get,

s(t) ≈ ∆x∆y

∑
n

fne
−i2π(kx(t)xn+ky(t)yn)αn(t). (6.7)

Now we turn our attention to evaluating αn(t) . If ω(x, y) = 0

αn(t) = B(kx(t)∆x, ky(t)∆y), (6.8)
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where B(u, v) is the Fourier transform of the basis function b(x, y). This gives the

familiar form of the signal equation without inhomogeneity e�ects,

s(t) ≈ ∆x∆yB(kx(t)∆x, ky(t)∆y)
∑

n

fne
−i2π(kx(t)xn+ky(t)yn) (6.9)

Three main cases with inhomogeneity e�ects will be considered: an object basis

of delta functions with a continuous inhomogeneity function, an object and inhomo-

geneity basis of �rect� functions, and an object basis of �rect� and a piecewise linear

basis for the �eld map. The parameterization of the object and �eld map using a

�triangle� basis function is considered in Appendix A. It is a complex analysis and

does not o�er a computationally feasibly solution, hence, it will not be considered

here. An approximation to the piecewise linear �eld map will also be considered,

using a high-resolution, oversampled �eld map with �rect� basis functions for the

object and �eld map.

6.2.1 Object basis is delta functions

With b(x, y) = δ(x, y), (6.6) becomes,

αn(t) = e−itω(xn,yn). (6.10)

Using (6.5) and plugging this back into (6.3), we get,

s(t) ≈ ∆x∆y

∑
n

fne
−itω(xn,yn)e−i2π(kx(t)xn+ky(t)yn). (6.11)

For this object model, the �eld map ω(x, y) can be any continuous function.
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6.2.2 Object and inhomogeneity basis are �rect� functions

If b(x, y) = rect(x, y) and

ω(x, y) =
∑
n′

ωn′rect

(
x− xn′

∆x

,
y − yn′

∆y

)
(6.12)

then,

ω(∆xx + xn, ∆yy + yn) =
∑
n′

ωn′rect(
∆xx + xn − xn′

∆x

,
∆yy + yn − yn′

∆y

). (6.13)

From (6.6) we get the following for αn(t),

αn(t) =

∫ 1/2

−1/2

∫ 1/2

−1/2

e
−it

P
n′ ωn′ rect(

∆xx+xn−xn′
∆x

,
∆yy+yn−yn′

∆y
)

·e−i2π(kx(t)∆xx+ky(t)∆yy)dxdy

=

∫ 1/2

−1/2

∫ 1/2

−1/2

e−itωne−i2π(kx(t)∆xx+ky(t)∆yy)dxdy

= e−itωnsinc(kx(t)∆x, ky(t)∆y). (6.14)

Using (6.5) and plugging this back into (6.3), we get the approximation to the signal

equation as,

s(t) ≈ ∆x∆ysinc(kx(t)∆x, ky(t)∆y)

·
∑

n

fne
−itωne−i2π(kx(t)xn+ky(t)yn). (6.15)

This model generalizes (6.9) to account for uniform within-voxel o�-resonance.
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6.2.3 Piecewise Linear Field Map

Now we consider the following parameterization of the object and �eld map:

f(r) ≈
N−1∑
n=0

fnrect(
x− xn

∆x

)rect(
y − yn

∆y

)

ω(r) ≈
N−1∑
n=0

(
ωn + Xn

x− xn

∆x

+ Yn
y − yn

∆y

)
·rect

(
x− xn

∆x

)
rect

(
y − yn

∆y

)
, (6.16)

where ωn is the �eld map value at rn = (xn, yn) and Xn and Yn are the x and y

gradients of the �eld map at rn in units of rad/(pixel·s). This expansion gives a

piecewise linear approximation to the �eld map instead of the piecewise constant

approximation used in (6.12). The use of triangular basis functions would give a

continuous piecewise linear �eld map and may be a superior choice, although the

analysis is more complicated, see Appendix A. Substituting (6.16) into (6.1) yields:

s(t) =
∑

n

fn

∫ ∫
rect

(x− xn

∆x

,
y − yn

∆y

)

·e
−it

P
n′

(
ωn′+Xn′

(
x−xn′

∆x

)
+Yn′

(
y−yn′

∆y

))
rect
(

x−xn′
∆x

,
y−yn′

∆y

)
·e−i2π(kx(t)x+ky(t)y)dxdy

=
∑

n

fn

∫ ∫
rect

(x− xn

∆x

,
y − yn

∆y

)

·e
−it

(
ωn+Xn

(
x−xn
∆x

)
+Yn

(
y−yn
∆y

))

·e−i2π(kx(t)x+ky(t)y)dxdy. (6.17)
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If we substitute x′ = (x− xn)/∆x and y′ = (y − yn)/∆y

s(t) =
∑

n

fne
−i2π(kx(t)xn+ky(t)yn)

∫ 1/2

−1/2

∫ 1/2

−1/2

[
e−it
(

ωn+Xnx′+Yny′
)

e−i2π(kx(t)x′∆x+ky(t)y′∆y)

]
dx′dy′

=
∑

n

fne
−i2π(kx(t)xn+ky(t)yn)e−itωn

∫ 1/2

−1/2

∫ 1/2

−1/2

e−i
[
(2πkx(t)∆x+Xnt)x+(2πky(t)∆y+Ynt)y

]
dx′dy′

=
∑

n

fne
−i2π(kx(t)xn+ky(t)yn)e−itωn

sinc((2πkx(t)∆x + Xnt)/2π)sinc((2πky(t)∆y + Ynt)/2π).

(6.18)

Reexpressing this result as:

s(t) =
∑

n

fne
−itωne−i2π(k(t)·rn)Φ(kx(t), ky(t), Xn, Yn, t), (6.19)

where,

Φ(kx(t), ky(t), Xn, Yn, t)
4
= sinc((2πkx(t)∆x + Xnt)/2π)sinc((2πky(t)∆y + Ynt)/2π).(6.20)

In [13], the use of voxel indicator function as the basis enabled the development of

a fast iterative algorithm. The form of (6.19), however, appears to restrict the appli-

cation of fast methods since the weighting function Φ(kx(t), ky(t), Xn, Yn, t) depends

on both spatial position and time. Trying to approximate this weighting by a time-

segmented interpolation is likely to fail as the term is rapidly varying. Therefore, we

will evaluate this method via a slow DFT-like summation. In the next section we
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will look at an alternate approach to including sub-voxel gradients that will allow

the use of the fast methods.

6.2.4 Through-Plane Gradients

Note that if through-plane gradients of the �eld map are included in the model,

then the parameterization of (6.16) must be replaced with:

f(r) ≈
N−1∑
n=0

fnrect(
x− xn

∆x

)rect(
y − yn

∆y

)rect(
z − zn

∆z

)

ω(r) ≈
N−1∑
n=0

(
ωn + Xn

x− xn

∆x

+ Yn
y − yn

∆y

+ Zn
z − zn

∆z

)
·rect

(
x− xn

∆x

)
rect

(
y − yn

∆y

)
rect

(
z − zn

∆z

)
, (6.21)

where ∆z is the slice thickness and Zn is the through-plane gradient of the �eld map

at (xn, yn). Substituting (6.21) into (6.1) and including the integration over the slice

thickness gives,

s(t) =
∑

n

fne
−i2π(kx(t)xn+ky(t)yn)e−itωn

sinc((2πkx(t)∆x + Xnt)/2π)sinc((2πky(t)∆y + Ynt)/2π)sinc(Znt/2π).(6.22)

This result is similar to (6.19), but with an additional scaling factor due to the

through-plane gradient. We can rede�ne Φ from (6.20) as,

Φ(kx(t), ky(t), Xn, Yn, Zn, t) =

sinc (kx(t)∆x + Xnt/2π) sinc (ky(t)∆y + Ynt/2π) sinc (Znt/2π) . (6.23)

6.3 Alternative Approach: Oversampling the Field Map

Instead of modeling the through voxel gradients in the �eld map as piecewise

linear, we could simply reconstruct an oversampled slice while enforcing the piecewise
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constant constraint imposed by the object parameterization. For example, in the in-

plane dimension, we split a single pixel into a m1×m2 block of pixels of uniform

intensity, where m1, m2 are the oversampling factors in the x and y directions. We

then perform the operation Ãf using a system matrix, Ã, corresponding to the

oversampled slice. In matrix-vector form this corresponds to:

s(t) ≈ ÃHf , (6.24)

where H corresponds to an m1N1m2N2×N1N2 matrix and N1, N2 is the original re-

constructed image size. The entries of H are 1
m1m2

in the m1m2 places corresponding

to the parent pixels in the original image, which was placed in lexicographical order

as a column vector. The matrix Ã is the system matrix corresponding to (2.9) for

an image that is m1, m2 times larger, i.e. the �eld map ωn is now an oversampled

version. The same idea holds for oversampling in the through-plane direction. We

can construct a 3-D object by breaking single pixels into m1m2m3 cubes of pixels

and add the signals from each sub-slice together to get the signal from the total

slice. Iterative methods also require the complex conjugate transpose of the above

operations which are straightforward to build.

Note that formation of the oversampled system matrix Ã requires knowledge of

the high spatial resolution �eld map and its gradients. For this work, multi-shot spiral

sequences were used to keep readout times and �eld inhomogeneity distortions small

on the high resolution reference scans for �eld map estimation. A better method that

includes joint estimation of the high resolution �eld map from multi-echo multi-shot

readouts may give more accurate high-resolution estimates and will be examined in
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our future work.

6.4 Methods

Simulation and phantom experiments were performed to examine the bene�t of

including the piecewise linear �eld map model in the �eld-corrected iterative image

reconstruction algorithm. We examined both the inclusion of the gradient terms us-

ing Equation (6.19) and the fast, upsampled version of Equation (6.24). Speci�cally,

we looked at the slow DFT-like implementation of Equation (6.19) including just the

in-plane gradients (xy), just the through-plane gradients (z), and both the in-plane

and through-plane gradients (xyz). We also used the oversampling approximation

of Equation (6.24), oversampling by factors of 2 and 3 in each dimension.

Simulations were performed using reconstructed magnitude images and acquired

�eld maps from a high resolution scan of a human volunteer. The parameters for

the acquired brain data were: FOV = 16.5 × 22 cm, matrix size of 192 × 256, slice

thickness = 1 mm. Simulation data was formed by adding Gaussian noise (SNR =

100) to the evaluation of the signal equation using rect basis functions and a single-

shot spiral k-space trajectory. Reconstructions were performed on slice thickness of

3 mm at a matrix size of 64×64.

A phantom scan was performed using single-shot spirals with 1.6 mm and 4.8 mm

slice thicknesses. Both scans were with a matrix size of 64×64 and FOV 22 cm. The

thin slices had an echo time of 10 ms while the thick slices used an echo time of

30 ms. A �eld map was obtained from the thin slices and this was used to calculate

gradients in the in-plane (x, y), and through-plane (z) directions. This �eld map and
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gradient information was used to reconstruct the thick slice data. For the in-plane

gradients, di�erences were taken between neighboring pixels and averaged.

6.5 Results and Discussion

6.5.1 Simulation Study

Data was created as described in 6.4 from 3 slices with the averaged slice and

�eld map shown in Figure 6.2. The reconstructions performed on the data were:

no correction for �eld inhomogeneities, a conjugate phase reconstruction to correct

for the average �eld map across the 3 slices, an iterative reconstruction using rect

basis functions and the average �eld map across the slices (Iter. Rect. basis), an

iterative method implemented using Equation (6.19) with in-plane gradients included

(Iter. MR wtxy), an iterative method using Equation (6.19) including only the

through-plane gradient of the �eld map (Iter. MR wt z), an iterative method using

Equation (6.19) with both in-plane and through-plane gradients of the �eld map

(Iter. MR wt xyz), and an iterative method using the fast reconstruction algorithm

of [13] where the image was upsampled in both in-plane directions and in the through-

plane direction by a factor of 2 (Iter. fast wt. 2) and upsampled by a factor of 3

(Iter. fast wt. 3). The results of the reconstructions are shown in Figure 6.3. The

resulting NRMS errors are given in Table 6.1 along with the reconstruction times of

each method. For this simulation object, inclusion of both the in-plane and through-

plane gradients for the �eld map, i.e. the slow xyz gradient method and the fast

oversampled methods, resulted in lower NRMS errors for both the complex image

subtractions and the magnitude subtractions. Those images also show recovery of
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signal in the region above the frontal sinus. The fast, oversampled methods performed

similar to the slow xyz-gradient method, but took only a fraction of the time.

Figure 6.2: Simulation object and �eld map (Hz) averaged over 3 slices.

Table 6.1: Computation time and NRMSE between various reconstructions and the
simulation object.

6.5.2 Phantom Study

The results for the various reconstructions in the phantom study are shown for

one slice in Figure 6.4. The conjugate phase and iterative reconstructions �x some of

the �eld distortions, but signal voids remain in their reconstructions. The iterative

reconstruction including only the through-plane, z, gradient does not recover these

signal voids. Much of the signal void is recovered when the in-plane gradients are

included in the reconstruction as they are for the xy- and xyz-weighted slow iterative
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Figure 6.3: Various reconstructions of simulated data.

method and the two and three times fast upsampling iterative methods. Note that a

�swirl� artifact exists in the reconstructed images. This could be due to errors in the

�eld map estimate. In our future work, we will explore better methods to estimate

the high resolution �eld map and gradient parameters. This will likely result from

a joint estimation algorithm on a multi-shot, multi-echo sequence acquired prior to

the low resolution scan to be corrected.

6.6 Summary for Inclusion of the Through-Voxel Gradients

As shown in Table 6.1 for our simulation study, the NRMSE is much lower when

both the in-plane and through-plane gradients are taken into account by the system



146

Figure 6.4: Various reconstructions of phantom data.

model. As can be seen in this table, the gains of including these gradient terms are

realized by using a fast algorithm that oversamples the �eld map. Moreover, this

fast algorithm takes only a fraction of the computation time of the slow DFT-like

implementation required for inclusion of the gradients using Equation (6.19). For

the phantom study shown in Figure 6.4, inclusion of the in-plane gradient terms al-

lowed for recovery of signal in the signal void regions remaining after inhomogeneity-

corrected reconstruction. Including �rst order gradients of the �eld inhomogeneity

distribution in the iterative reconstruction model may allow for functional imaging

of regions close to air/tissue interfaces that are currently plagued by susceptibility-
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induced signal voids.

As higher order terms for the �eld inhomogeneity variations are included in the

system model, more accurate methods will have to be developed to measure the

�eld map and its gradients. Using a joint estimation procedure similar to that in

Chapter 5 may result in more accurate estimates.



CHAPTER 7

Summary and Future Work

7.1 Iterative Image Recontruction

As described in Chapter 2, we have developed an iterative image reconstruc-

tion framework that allows for easy inclusion of arbitrary k-space trajectories, �eld

inhomogeneity e�ects, and T ∗
2 -relaxation. Iterative image reconstruction has some

distinct advantages over the standard reconstruction algorithms. First, it does not re-

quire density compensation coe�cients for non-Cartesian sampling patterns. There

is still active research in the area of density compensation, including recent work

from our group on spatially-variant density compensation [91]. Another advantage

of iterative reconstruction is that the �eld inhomogeneity is not constrained to be

smoothly-varying as it is for the conjugate phase reconstruction. Finally, iterative

reconstruction becomes necessary for the complex aliasing patterns of non-Cartesian

SENSE reconstructions. In Chapter 3, we included coil sensitivities in our �eld-

corrected iterative image reconstruction framework and showed that, although ac-

quisition time is reduced using SENSE, signi�cant gains still exist from including

�eld-inhomogeneity e�ects in the SENSE reconstruction.

148
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In answer to the major drawback of iterative methods - computation time, we

have developed the non-uniform Fast Fourier Transform and a min-max optimal

time segmentation to allow for fast computation of the iterative reconstruction. We

examined the stability of the iterative reconstruction in Chapter 4 and concluded

that the iterative method is bene�cial for reconstructing time-series data from fMRI

studies. Iterative image reconstruction resulted in lower residual mean variance,

but also lower regression coe�cients with the task. Our BOLD SNR measure gave

similar results for both iterative and conjugate phase reconstructions. Our iterative

method was extended to allow for the simultaneous estimation of the image, �eld

map, and T ∗
2 -relaxation map in Chapter 5. There was both a static and dynamic

component to the improvement using simultaneous estimation of the image and �eld

map. Unlike standard �eld map estimation methods, the simultaneoues estimation

method does not su�er from di�erences in reference images that are not due to �eld

inhomogeneities, such as respiration-induced phase changes and subject motion. The

simultaneous estimation method allowed us to track and correct respiration-induced

phase variations and main �eld drift in the scanner.

Finally, in Chapter 6 we examined the bene�ts of modeling the e�ects of the �rst-

order gradients of the �eld map in the image reconstruction. We showed in simulation

and phantom studies that signal can be recovered from signal void regions using a

piece-wise linear parameterization of the �eld map.
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7.2 Future Work

The most palpable area of future work for this project is the integration of the

components presented. The methods presented in this thesis need to be combined

and applied to functional imaging studies in regions of the brain where susceptibility

e�ects and through-voxel gradients are severe. Some speci�c combinations are:

• Combining SENSE with simultaneous estimation of image, �eld map, and T ∗
2 -

relaxation may allow for quick, quantitative fMRI experiments.

• The simultaneous estimation algorithm could be extended to estimate the �eld

map and the �rst order gradients of the �eld map. Regularization could pro-

mote some level of continuity in the piece-wise linear �eld map.

As mentioned throughout the text, there are many opportunities to extend the

iterative image reconstruction framework. I list just a few:

• The signal equation was discretized in time by sampling the ideal expected

signal at a time ti. Including a better model of the temporal sampling into the

signal equation could result in more accurate image reconstructions [92]. Such

a model could include non-ideal aspects of the acquisition, i.e. e�ects from

the anti-aliasing �lter, non-linear phase properties of the �lters, and a possibly

non-constant group delay term.

• Time segmentation was performed in Section 2.3.3 using equally sized time

segments. There is no need to space the time segments evenly and allowing

this spacing to vary may result in lower approximation error.
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• Spatial regularization has been used for the iterative reconstruction throughout

this thesis. There may be bene�ts to regularizing across the temporal domain

and should be compared with the temporal �ltering of UNFOLD methods [93]

or other k-t sampling methods.

• We examined circulant preconditioning to accelerate convergence of the iter-

ative reconstruction. This has been shown to work well for shift-invariant

tomographic imaging problems [48], but we have not had much success in the

application to �eld-corrected iterative reconstruction for MRI. Preconditioners

have been designed for shift-variant problems [49] and such methods need to

be examined for application to MRI.

• The quality of the reconstructions in SENSE experiments depends on the ac-

curacy of sensitivity maps. Methods need to be developed to estimate accurate

sensitivity maps while smoothing them and extending them beyond the object

without destroying peak information. Also, subject motion could a�ect the sen-

sitivity of the coils dynamically during an fMRI time series, so auto-focusing

methods, such as [94], need to be examined.

• The dynamic estimation scheme of Chapter 5 needs to be optimized in terms

of iterative estimation method, number of sub-iterations, and choosing the

regularization parameters for the image, �eld map and R∗
2 map automatically.

Since joint estimation of image and �eld map allowed us to track respiration-

induced �eld changes, this method needs to be compared to other physiology-

correcting methods, such as DORK [85].
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• A goodness measure should be developed to allow for assessment and optimiza-

tion of k-space trajectory and sequence timing for speci�c estimation tasks, such

as simultaneous estimation of image and �eld map, and speci�c coil con�gura-

tions.

• A better parameterization of the �eld map to include higher-order terms may be

advantageous in regions near air/tissue interfaces, such as just above the frontal

sinus. This would include the development of a fast algorithm for including

the �triangle� basis functions of Appendix A in the system model. Accurately

measuring the parameterized �eld map becomes very important as more terms

are included. It becomes necessary to denoise the �eld map estimates while

preserving the high-frequency information.
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APPENDIX A

Object and inhomogeneity basis are triangle

functions

In Chapter 6, we looked at various basis expansions of the continuous object and

�eld map. While a piecewise constant model may be adequate for the object, some

gain may be had by taking a di�erent approach with the �eld map. In regions where

the magnetic �eld is rapidly changing, a piece-wise constant model does not allow

for modeling of intravoxel e�ects. In this appendix, we look at a triangular basis

function, ∧(x, y), in two-dimensions to attempt to �nd a continuous representation

for the �eld map with �rst-order gradients.

Let

b(x, y) = ∧(x, y) =

 (1− |x|)(1− |y|) for x, y ∈ [−1, 1]

0 else,
(A.1)

so that we expand the �eld inhomogeneity as ω(x, y) =
∑

n′,m′ ωn′,m′∧
(

x−xn′
∆x

,
y−ym′

∆y

)
and

ω(∆xx + xn, ∆yy + ym) =
∑
n′,m′

ωn′,m′ ∧ (
∆xx + xn − xn′

∆x

,
∆yy + ym − ym′

∆y

). (A.2)

Note that there is a slight change in notation here when compared to Chapter 6, we
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are speci�cally indexing ωn,m by its x and y indices, n and m. The spatial coordinate

r of Chapter 6 is a lexicographical ordering of the x and y indices, so rp = (xn, ym)

for n,m = 1, . . . , N and p = 1, . . . , N2. This time from (6.6) we get the following for

αn,m(t),

αn,m(t) =

∫ 1

−1

∫ 1

−1

(1− |x|) (1− |y|)

e−i2π(kx(t)∆xx+ky(t)∆yy) exp

(
− it

(
ωn−1,m−1 ∧ (x + 1, y + 1)

+ ωn−1,m ∧ (x + 1, y) + ωn−1,m+1 ∧ (x + 1, y − 1) + ωn,m−1 ∧ (x, y + 1)

+ ωn,m ∧ (x, y) + ωn,m+1 ∧ (x, y − 1) + ωn+1,m−1 ∧ (x− 1, y + 1)

+ ωn+1,m ∧ (x− 1, y) + ωn+1,m+1 ∧ (x− 1, y − 1)
))

dxdy. (A.3)
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We expand this in the four quadrants as,

αn,m(t) =

∫ 1

0

∫ 1

0

(1− x)(1− y)e−i2π(kx(t)∆xx+ky(t)∆yy)

exp

(
− it

(
ωn,m(1− x)(1− y) + ωn,m+1(1− x)(y) + ωn+1,m(x)(1− y)

+ωn+1,m+1(x)(y)
))

dxdy

+

∫ 1

0

∫ 0

−1

(1− x)(1 + y)e−i2π(kx(t)∆xx+ky(t)∆yy)

exp

(
− it

(
ωn,m−1(1− x)(−y) + ωn,m(1− x)(1 + y) + ωn+1,m−1(x)(−y)

+ωn+1,m(x)(1 + y)
))

dxdy

+

∫ 0

−1

∫ 1

0

(1 + x)(1− y)e−i2π(kx(t)∆xx+ky(t)∆yy)

exp

(
− it

(
ωn−1,m(−x)(1− y) + ωn−1,m+1(−x)(y) + ωn,m(1 + x)(1− y)

+ωn,m+1(1 + x)(y)
))

dxdy

+

∫ 0

−1

∫ 0

−1

(1 + x)(1 + y)e−i2π(kx(t)∆xx+ky(t)∆yy)

exp

(
− it

(
ωn−1,m−1(−x)(−y) + ωn−1,m(−x)(1 + y) + ωn,m−1(1 + x)(−y)

+ωn,m(1 + x)(1 + y)
))

dxdy

(A.4)
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Now we group the terms in the exponents,

αn,m(t) =

∫ 1

0

∫ 1

0

(1− x)(1− y) exp

(
− i
(
ωn,mt + x(2πkx(t)∆x + t(−ωn,m + ωn+1,m))

+y(2πky(t)∆y + t(−ωn,m + ωn,m+1))

+xyt(ωn,m − ωn,m+1 − ωn+1,m + ωn+1,m+1)
))

dxdy

+

∫ 1

0

∫ 0

−1

(1− x)(1 + y) exp

(
− i
(
ωn,mt + x(2πkx(t)∆x + t(−ωn,m + ωn+1,m))

+y(2πky(t)∆y + t(ωn,m − ωn,m−1))

+xyt(−ωn,m + ωn,m−1 + ωn+1,m − ωn+1,m−1)
))

dxdy

+

∫ 0

−1

∫ 1

0

(1 + x)(1− y) exp

(
− i
(
ωn,mt + x(2πkx(t)∆x + t(ωn,m − ωn−1,m))

+y(2πky(t)∆y + t(−ωn,m + ωn,m+1))

+xyt(−ωn,m + ωn,m+1 + ωn−1,m − ωn−1,m+1)
))

dxdy

+

∫ 0

−1

∫ 0

−1

(1 + x)(1 + y) exp

(
− i
(
ωn,mt + x(2πkx(t)∆x + t(ωn,m − ωn−1,m))

+y(2πky(t)∆y + t(ωn,m − ωn,m−1))

+xyt(ωn,m − ωn,m−1 − ωn−1,m + ωn−1,m−1)
))

dxdy. (A.5)

Notice that the x and y terms have a measure of the k-space trajectory plus a

gradient of the �eld map. The xy term has what could be considered the sum of the

cross-gradient terms. The integrals in (A.5) can all be expressed in the form,

e−itωn,m

∫ 1

0

∫ 1

0

(1− x)(1− y)e−i(Bx+Cy+Dxy)dxdy. (A.6)

Note here that B and C can be only two expressions, whereas D can be one of four

expressions. Another thing to note is that D is zero for steps in the �eld map that

occur in the x or y direction, it is also zero for ramps in the xy direction. The values
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for B, C, and D for the four integrals above are:

B1 = 2πkx(t)∆x + t(−ωn,m + ωn+1,m)

C1 = 2πky(t)∆y + t(−ωn,m + ωn,m+1)

D1 = t(ωn,m − ωn,m+1 − ωn+1,m + ωn+1,m+1

B2 = B1

C2 = −(2πky(t)∆y + t(ωn,m − ωn,m−1))

D2 = −t(−ωn,m + ωn,m−1 + ωn+1,m − ωn+1,m−1)

B3 = −(2πkx(t)∆x + t(ωn,m − ωn−1,m))

C3 = C1

D3 = −t(−ωn,m + ωn,m+1 + ωn−1,m − ωn−1,m+1)

B4 = B3

C4 = C2

D4 = t(ωn,m − ωn,m−1 − ωn−1,m + ωn−1,m−1).

(A.7)

So, αn,m(t) can be evaluated by summing up the results of evaluating (A.6) with all

4 sets of coe�cients. The integral in (A.6) can be rearranged as follow,

e−itωn,m

∫ 1

0

(1− y)e−iCy

(∫ 1

0

(1− x)e−ix(B+Dy)dx

)
dy. (A.8)

Evaluating the integral inside parenthesis, we get,

= e−itωn,m

∫ 1

0

(1− y)e−i(Cy)

(
− −e−i(B+Dy) − i(B + Dy) + 1

(B + Dy)2

)
dy

= e−itωn,m

∫ 1

0

e−i(Cy)

(
−e−i(B+Dy) − i(B + Dy) + 1

(B + Dy)2

)
dy

− e−itωn,m

∫ 1

0

ye−i(Cy)

(
−e−i(B+Dy) − i(B + Dy) + 1

(B + Dy)2

)
dy. (A.9)
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Letting,

γ(y) = e−itωn,m

∫ 1

0

e−i(Cy)

(
−e−i(B+Dy) − i(B + Dy) + 1

(B + Dy)2

)
dy,

= e−itωn,m

∫ 1

0

(
−e−i(B+(C+D)y)

(B + Dy)2
− i

e−iCy

B + Dy
+

e−iCy

(B + Dy)2

)
dy (A.10)

equation (A.9) becomes

γ(1)− γ(0)−
∫ 1

0

yγ′(y)dy

= γ(1)− γ(0)−
[
yγ(y)−

∫
γ(y)dy

]∣∣∣∣y=1

y=0

(A.11)

Now we turn our attention to evaluating the integral in γ(y). We will do this in

a term by term fashion as follows,∫
e−i(B+(C+D)y)

(B + Dy)2
dy = e−iB

∫
e−i(C+D)y

(B + Dy)2
dy.

Letting v = B + Dy, and hence y = (v −B)/D,

=
e−iB

D

∫
e−i(C+D)(v−B)/D

v2
dv

=
eiBC/D

D

∫
e−i(C+D)v/D

v2
dv

=
eiBC/D

D

[
− e−i(C+D)v/D

v
− i(C + D)

D

∫
e−i(C+D)v/D

v
dv

]
(A.12)

From a table of integrals [95], we know that,∫
eax

x
dx = ln(x) +

ax

1·1!
+

(ax)2

2·2!
+

(ax)3

3·3!

= ζ(a, x). (A.13)

Returning to our problem, (A.12), and plugging back in v = B + Dy,∫
e−i(B+(C+D)y)

(B + Dy)2
dy =

−e−i(B+(C+D)y)

D(B + Dy)
− i(C + D)

D2
ei(BC/D)ζ(−i(C + D)/D,B + Dy). (A.14)
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Continuing on with the next term in (A.10), and making the same substitution

for v as in (A.12),

i

∫
e−iCy

B + Dy
dy =

i

D

∫
e−i(C(v−B)/D

v
dv

=
ieiBC/D

D

∫
e−iCv/D

v
dv

=
ieiBC/D

D
ζ(−iC/D, B + Dy). (A.15)

For the �nal term in (A.10), we get,

∫
e−iCy

(B + Dy)2
dy = − e−iCy

D(B + Dy)
− i

C

D

∫
e−iCy

(B + Dy)
dy

= − e−iCy

D(B + Dy)
− i

CeiBC/D

D2
ζ(−iC/D, B + Dy), (A.16)

where the result for the integral
∫

e−iCy/(B + Dy)dy was taken from (A.15).

Combining these results,

γ(y) = e−itωn,m

∫ 1

0

(
−e−i(B+(C+D)y)

(B + Dy)2
− i

e−iCy

B + Dy
+

e−iCy

(B + Dy)2

)
dy

= e−itωn,m

(
e−i(B+(C+D)y)

D(B + Dy)

i(C + D)

D2
ei(BC/D)ζ(−i(C + D)/D,B + Dy)−

− ieiBC/D

D
ζ(−iC/D, B + Dy)− e−iCy

D(B + Dy)

− i
CeiBC/D

D2
ζ(−iC/D, B + Dy) + η

)
= e−itωn,m

(
e−i(B+(C+D)y) − e−iCy

D(B + Dy)
− i

eiBC/D

D
(1 + C/D)

·
[
ζ(−i(C + D)/D,B + Dy)− ζ(−iC/D, B + Dy)

]
+ η

)
, (A.17)

where η is the constant of integration. Examining (A.17), we can see that the

worrisome case of an x = 0 in the ln function of (A.13) will cancel out and not

cause problems. We now evaluate the integral of γ(y) to �nish the calculation in
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(A.11).

∫
γ(y) =

e−itωn,m

D

∫ (
e−i(B+(C+D)y)

B + Dy
− e−iCy

B + Dy
+ ieiBC/D(1 + C/D)

·
[
ζ(−i(C + D)/D,B + Dy)− ζ(−iC/D, B + Dy)

])
dy

=
e−itωn,meiBC/D

D2

(
ζ(−i(C + D)/D,B + Dy)− ζ(−iC/D, B + Dy)

+ i(1 + C/D)H(−i(C + D)/D,−iC/D, B + Dy)

)
, (A.18)

where

H(α1, α2, v) =
(α1 − α2)v

2

1 · 2!
+

(α2
1 − α2

2)v
3

2 · 3!
+ · · · . (A.19)

Returning to (A.11), we get the following for the generic integral in (A.6)

− γ(0)− γ(1) +

∫ 1

0

γ(y)dy

= e−itωn,m

(
− e−iB − 1

DB
+ i

eiBC/D

D
(1 + C/D)

[
ζ(−i(C + D)/D,B)− ζ(−iC/D, B)

]
− e−i(B+C+D) − e−iC

D(B + D)

+ i
eiBC/D

D
(1 + C/D)

[
ζ(−i(C + D)/D,B + D)− ζ(−iC/D, B + D)

])

+
e−itωn,meiBC/D

D2

(
ζ(−i(C + D)/D,B + D)− ζ(−iC/D, B + D)

+ i(1 + C/D)H(−i(C + D)/D,−iC/D, B + D)− ζ(−i(C + D)/D,B)

+ ζ(−iC/D, B)− i(1 + C/D)H(−i(C + D)/D,−iC/D, B)

)
(A.20)

We can evaluate the integral in (A.4) by plugging in the appropriate B, C, D

entries for each integral.
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A.1 Alternative Computation of Triangle basis functions

An alternative way to evaluate the above is as follows:

∫ 1

0

(1− x)e−ix(B+Dy)dx =

∫ ∞

−∞
rect(x− 1/2) ∧ (x)e−ix(B+Dy)dx

=
(
sinc(u)e−iπu ⊗ sinc2(u)

)
u=(B+Dy)/(2π)

= v

(
B + Dy

2π

)
, (A.21)

letting v(u) = sinc(u)e−iπu ⊗ sinc2(u). Returning to (A.8), we get

e−itωn,m

∫ 1

0

(1− y)v

(
B + Dy

2π

)
e−iyCdy

= e−itωn,m

∫ ∞

−∞
rect(y − 1/2) ∧ (y)v

(
B + Dy

2π

)
e−iyCdy

= e−itωn,m
(
sinc(u)e−iπu ⊗ sinc2(u)⊗ V (u)

)
u=C/2π

, (A.22)

where V (u) is the Fourier Transform of v
(

B+Dy
2π

)
. Letting V1(u) be the V (u) asso-

ciated with B1 and D1, and letting W 1
n,m(u) = sinc(u)e−iπu ⊗ sinc2(u) ⊗ V1(u) and

likewise W 2
n,m, W 3

n,m, and W 4
n,m, we get the following for αn,m(t),

αn,m(t) = e−itωn,m
(
W 1

n,m(C1/2π) + W 2
n,m(C2/2π)

+ W 3
n,m(C3/2π) + W 4

n,m(C4/2π)
)
. (A.23)

Plugging this back into the signal equation (6.7), we get,

s(t) ≈ ∆x∆y

∑
n,m

fn,me−i2π(kx(t)xn+ky(t)yme−itωn,m

·
(
W 1

n,m(C1/2π) + W 2
n,m(C2/2π) + W 3

n,m(C3/2π) + W 4
n,m(C4/2π)

)
.(A.24)

This result is promising and future work may lead to e�cient implementations.
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A.2 Conclusion

Both of these approaches to analyzing the signal equation with triangle basis

functions led to complex expressions that are not easily included in a quick iterative

reconstruction algorithm. Future work may lead to approximations or table lookup

methods of implementing this expansion.
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ABSTRACT

Physics Based Iterative Reconstruction for MRI: Compensating and Estimating

Field Inhomogeneity and T ∗
2 Relaxation

by

Bradley P. Sutton

Chairs: Je�rey A. Fessler and Douglas C. Noll

Functional magnetic resonance imaging (fMRI) using the Blood-Oxygenation Level

Dependent (BOLD) e�ect relies on microscopic susceptibility di�erences between

oxygenated and deoxygenated blood to image functional organization in the brain.

Higher magnetic �eld strengths and single-shot acquisitions give fMRI higher BOLD

contrast and better temporal resolution, but these same parameters make the scans

more sensitive to susceptibility-induced image distortions. Several noniterative image

reconstruction methods are currently used to compensate for �eld inhomogeneities,

but these methods assume that the �eld map that characterizes the o�-resonance fre-

quencies is spatially smooth, an assumption that is violated in areas near air/tissue

interfaces in the brain. In this thesis, I develop an iterative, inverse problem approach

to image reconstruction for MRI that takes into account �eld inhomogeneity and T ∗
2 -

relaxation during the signal acquisition, receiver coil sensitivities, arbitrary k-space



trajectories, and within-voxel gradients in the �eld map. The iterative reconstruction

is not limited by the smoothly-varying �eld map assumption and does not require

the sample density compensation of the non-iterative methods for non-Cartesian tra-

jectories. The iterative reconstruction was extended to simultaneously estimate the

image, �eld map, and T ∗
2 map for quantitative fMRI experiments. Also, using under-

sampled k-space trajectories and multiple receiver coils, the iterative reconstruction

was applied to SENSitivity Encoding (SENSE) experiments. In simulation, phantom,

and human experiments, I compare the quality and accuracy of the �eld-corrected re-

constructions using the iterative method versus the standard �eld-corrected method

of conjugate phase. I also examine the stability of the iterative method for re-

constructing time-series images from an fMRI study. I conclude that the iterative

method results in stable image reconstructions for time series data and results in

more accurate reconstructions when non-smooth �eld inhomogeneities are present.

Using the joint estimation algorithm during a fMRI time series, respiration-induced

phase variations and main �eld drift were accurately tracked and compensated. The

increased accuracy of the jointly estimated �eld maps resulted in a larger number of

activated voxels detected.


