Chapter 6

Alternating minimization

Contents (class version)

6.0Introductiont e e e e e e 6.3
6.1 Signal processing applications 0 0 o oo oo 6.3
Compressed sensing using synthesis sparsity models 6.4
Compressed sensing with analysis regularizer 6.10
Sparse coding revisited with multi-block BCM L. 6.15
Sparse coding for tight frames oL 6.21
Patch-based regularization: analysis form L oL, 6.23
Sparsifying transform learning L 6.29
Dictionary learning via two-block BCD L oo 6.41
Joint update of atom and coefficients oL oL 6.46
6.2 Machine learning applications 0 ittt e 6.47
Low-rank approximation for large-scale problems 6.47
Fused LASSO / generalized LASSO e 6.51
Alternating minimization for O-norm in biconvex form L. 6.52
6.3 Convergence PropertieS . . . v . v v o v v it v it et e e e e e e e e e e e 6.55

© J. Fessler, March 23, 2020, 10:26 (class version)

6. ASUMMATY ¢ v i vttt et e e e e e e e e e e e e e e e e e

6.2

© J. Fessler, March 23, 2020, 10:26 (class version) 6.3

6.0 Introduction |

Although the proximal methods in the previous chapter are quite flexible and useful, there are many cost
functions of interest that are not smooth and also not “prox friendly.” So we need additional tools.

Furthermore, all of the methods discussed so far update all elements of the optimization variable simultane-
ously. For many optimization problems it can be easier to update just some of the variables at a time.

This chapter develops alternating minimization algorithms that are suitable for such problems.

These methods have a long history in both optimization and signal/image processing. In image processing,
an early approach was iterated conditional modes (ICM) [1].

These coordinate descent methods can be very useful, but also can have limitations for certain nonsmooth
cost functions.

This chapter illustrates the methods by focusing on SIMPL applications, drawing from Ch. 1 and Ch. 2.

6.1 Signal processing applications

We begin with signal and image processing applications.

http://en.wikipedia.org/wiki/Iterated_conditional_modes
http://en.wikipedia.org/wiki/Coordinate_descent

© J. Fessler, March 23, 2020, 10:26 (class version) 6.4

Compressed sensing using synthesis sparsity models

Consider a linear measurement model assuming synthesis sparsity using a (usually wide) dictionary D:
y=Azx+e, x~ Dz, z is sparse.

(If A = I, then this is a denoising problem; if A is wide then it is compressed sensing.)

For these assumptions, two related but distinct ways to estimate x are:

2>
I

.. 1
Dz, z:argm1n§HADz—yHg-l-ﬁHZHl (6.1)

x

1
argmin - Az — y[; + BR(x), R(x) = (6.2)

A potential advantage of (6.2) is that & need not be in the range of D.

We could write the second one (6.2) as this joint optimization problem:

L . 1 1
(2,2) = argmin ¥ (x,2), VY(x, z)=2 5 Az — y|5 + B (5 |z — Dz| + « ||z|]1> . (6.3)

x,z

http://en.wikipedia.org/wiki/Noise_reduction

© J. Fessler, March 23, 2020, 10:26 (class version) 6.5

There are at least 3 distinct ways to pursue this joint optimization problem.
e Rewrite the cost function in LASSO form (with diagonally weighted 1-norm) in terms of & = (x, z)

VBI —/BD 0 0 I

and then apply any proximal method from Ch. 5, e.g., POGM.
e If D is unitary, then we can solve analytically for the minimizer over z and substitute back in to get a

cost function in terms of @ only, where the regularizer (in this case) involves a Huber function (as seen
in HW):

1 A A A
wa) =y |Be - bl palwal,, B2 o Sl ve U w00 6

R(x) =1"¢ (D'z;a).

Then we can apply any gradient-based method (such as line search OGM) to that cost function.
However, this approach is inapplicable in the general case of interest where D is wide (over-complete).

e Apply alternating minimization or alternating descent, aka block coordinate minimization (BCM) or
block coordinate descent (BCD) to the “two block™ cost function ¥ (z, z).

Here, both BCM and BCD start with some initial guesses @, and 2z, and then alternate updates. Reasonable
initial guesses are application dependent, but one option is xy = cA’y for some constant ¢ and zy = 0.

© J. Fessler, March 23, 2020, 10:26 (class version)

BCM

6.6

For this “two block” cost function, the BCM algorithm is:
fork= O:niter-1

1 = argmin V(x, z)
xr

Zk41 = argmin
z

If implemented as written above, then this approach decreases the cost function monotonically:

U(xpt1, 2k+1) <

For convenience, the joint cost function (6.3) is repeated here:
1 2 1 2
W(w,2) = 5 Az —yl3+ B 5 |z — Dz} +allz],)
To apply BCM (6.5) to this cost function, the updates required are:

regularized LS : @1 = argmin V(x, z;) =
x

sparse coding : z,y1 = argmin V(xg g, 2) =
z

(6.5)

© J. Fessler, March 23, 2020, 10:26 (class version) 6.7

The sparse coding step above involves a proximal operation. (?)
A: True B: False

For certain applications, the & update above is easy:
e image denoising: A =1
e single-coil MRI with Cartesian sampling: A’A is circulant
e image inpainting: A’ A is diagonal
e image super-resolution: A’A is block diagonal with small blocks

In those cases, inverting A’ A + 31 is easy, i.e., O(N) or O(N log N).
But for general A that inverse is O(N?) to compute exactly and infeasible if A is large, so one would have
to apply an iterative method like CG for the x update.

However, regardless of A, the z update above is a LASSO problem that requires an iterative solution in
general, except for certain cases like when D happens to be unitary. We could use POGM to solve that inner
LASSO problem but then one might ask why not just apply POGM to the joint LASSO problem (6.4)? One
answer is that (6.4) involves A which can be very large and expensive, whereas the z update above involves
only D which might be much faster.

© J. Fessler, March 23, 2020, 10:26 (class version) 6.8

BCD

For any finite number of inner iterations of CG for the x update, or a proximal method like POGM for the
z update, the BCM algorithm above does not provide an exact minimization, so the name BCM would then
seem inappropriate. When using a small number (perhaps just one) inner iteration for the & and/or z updates,
a more appropriate term is block coordinate descent (BCD), which, for a two-block problem, is:

fork=0:niter

Find @1 s.t. V(xpyr, zx) < U(xg, 25)
Find zj, 1 s.t. U(xpi1, 2p01) < U(@po1, 25) - (6.6)

Clearly this algorithm monotonically decreases the cost function by design: V(g 1, 2x11) < V(xg, 21) .

Applying BCD (6.6) to (6.3) by using one GD update for and one PGM update for z leads to the following
simple algorithm:

Tpy1 = Tp — m (A'(Azxy —y) + B(xr, — Dzy))

1
Zpt1 = soft. (Zk — ZD/(DZk — $k+1); %), L= (6.7)

© J. Fessler, March 23, 2020, 10:26 (class version) 6.9

For any 0 < v < 2, the above algorithm is appropriately named BCD. (?)
A: True B: False

Depending on the relative compute effort of working with A and D, one could apply multiple inner GD
iterations and/or PGM iterations and it will still be a BCD algorithm (for appropriate step sizes as shown
above). Alternatively one could use MM updates with diagonal majorizers to avoid computing the spectral
norms.

If we use multiple iterations of FGM or OGM for the x update, and/or multiple iterations of FISTA
or POGM for the z update in (6.7), then the resulting algorithm is appropriately named BCD. (?)

A: True B: False

The distinction between BCM and BCD is typically disregarded in the literature, but these notes will strive
to use the terms appropriately for clarity.

© J. Fessler, March 23, 2020, 10:26 (class version) 6.10

Compressed sensing with analysis regularizer

Assuming that y = Ax + € and T'x is sparse, for some sparsifying transform matrix 7', the most natural
formulation of analysis regularization is the following challenging optimization problem:

. 1
= arg min o Az -yl + B || T, . (6.8)

This is simple to solve only in special cases such as when the sparsifying transform 7" is unitary.
The literature is full of approximate solutions to (6.8), discussed next.

Corner rounding

The non-differentiability of the 1-norm is the primary challenge of (6.8), so one “approximate” approach is
simply to replace the 1-norm with a smooth convex approximation v:

& =argminU(xz), U(x)= % | Az — y||5 + B1' ¢ .(Tx). (6.9)
When v is smooth, we can apply fast methods like OGM and CG to ¥ easily. A reasonable choice for v
is the Fair potential function, or the hyperbola |z| ~ /22 + €2 — ¢, and these can approximate the 1-norm
very closely by taking § or € small enough. However, as € decreases the global Lipschitz constant of ¥(x)
increases, leading to slow convergence of methods like OGM that depend on the global Lipschitz constant.
In contrast, CG can still work well because its step size is adaptive and depends only on the curvature along
the search direction.

© J. Fessler, March 23, 2020, 10:26 (class version) 6.11

Variable splitting regularizer

Another option is to “split” the T" matrix from the 1-norm term using a penalty function as follows:
. 1 1
a::argm1n§||A:B—y||§+f3R(a:), R(x) :m1n§||Ta:—z||§—|—osz||l. (6.10)
@x z

As « approaches 0, the solution more strongly enforces z ~ T'z and the solution more closely approximates
the original formulation (6.8). As shown in a HW problem, this formulation is mathematically equivalent to
the corner rounding approach (6.9) with ¢/ chosen as a Huber function.

Balanced analysis/synthesis regularization (Read)

Recall that for the synthesis sparsity model, where we assume & ~ D2z, a typical formulation is
A . . 1
x =Dz, z:argm1n§|]ADz—yH§+ﬁHZ||1.
z

If D is a Parseval tight frame, for which DD’ = I, an alternative formulation that is called the balanced
model [2-6] is:

. . . 1 1
=Dz, zzargmmi|]ADZ—yH§+f5HZH1+a§ (I - D'D)z|3. (6.11)

This cost function is essentially equivalent to (5.1).
e When o = 0, this reverts to the synthesis model.

© J. Fessler, March 23, 2020, 10:26 (class version) 6.12

e As o« — 00, the additional term enforces the constraint z = D'Dz = ||z||, = ||[D'Dz||, = |D'z||, ,
which is a particular type of analysis regularizer || Tx||,, where T' = D’.

e For any finite «, this formulation is yet another approximation to the analysis regularizer formulation, and
even then only in the case of a Parseval tight frame.

Results in [6] for compressed sensing MRI using shift-invariant wavelets for D showed no empirical perfor-
mance advantages of the “balanced” approach over an analysis regularizer.

If D above is unitary, then the “balanced” formulation (6.11) is equivalent to a usual
synthesis (?) and/or analysis (?) formulations?
A:T.T B: T,F C:ET D: EF

Optimization strategies

We have at least three viable options for optimizing the variable split form (6.10).
e Rewrite as a joint cost function in terms of € = (x, z) and apply any proximal method like POGM to
that joint cost function:

N 1 N N 0
W) = 5 |Ba - b3+ awal, 02 |8 w2 |0] B

© J. Fessler, March 23, 2020, 10:26 (class version) 6.13

e Minimize over z and plug back in leading to a Huber function regularizer in . Then apply any gradient-
based method like line-search OGM to optimize over .
Letting 1) denote that Huber function, so R(x) = 1" ¢ (T'x; «), the gradient here is

VU(z) = A(Az —y) + BT .(Tz; o),

for which there is no non-iterative solution if set to zero, unless o = 0, so iterative method are required.
e Write a two-block cost function and apply BCD or BCM to it; here is that cost function:

1 1
¥e.5) = 5 4w~ i+ B (G170~ +all=l,)

The z update is “easy,” i.e., non-iterative even for large problems. (?)
A: True B: False
In general the z update is

k41 =

For the denoising case where A = I, the x update is typically “easy,” i.e., non-iterative even for
large problems. (?)

A: True B: False
In general the x update is

Lr+1 =

© J. Fessler, March 23, 2020, 10:26 (class version) 6.14

One case where this update is easy is when both A’ A and T'T are circulant, because then we can use FFT
operations for the inverse. A’A is circulant, e.g., for denoising, for single-coil Cartesian MRI, for deblurring
with periodic boundary conditions. T"T circulant when T is unitary and when 7" corresponds to finite
differences with periodic boundary conditions, Often the Hessian is Toeplitz, i.e., approximately circulant,
and we can use a circulant preconditioner for CG.

© J. Fessler, March 23, 2020, 10:26 (class version) 6.15

Sparse coding revisited with multi-block BCM
Recall that the sparse coding step of BCM for synthesis-based regularization is a LASSO problem:

. 1
2 = argmin g [|lz — Dz|2 + a1z,
ZEFK 2

where D € FN*K_ for which there is no closed-form solution, so iterative methods like POGM are required.

Recall this inner minimization arose from a “two-block™ joint cost function ¥(x, z) with corresponding two-
way alternating minimization. Another approach is to think of the cost function as having K + 1 blocks:
U(x, z1, ..., 2K), and to implement BCM or BCD by updating one of these (now much smaller) blocks at a
time:

fort= O:niter (outer loop over iteration)

2 = argmin U (:B, z%t), cee z?)
xzcFN
for k= 1:K (inner loop over coefficients)
Z]E:t+1) = argmin ¥ (m(t+1), zitﬂ), zétﬂ), - ,z,(ﬁrll), Zks z,(:ll, - ,zﬁ?) .
z,€F

As written, this algorithm is guaranteed to monotonically decrease V. (?)
A: True B: False

© J. Fessler, March 23, 2020, 10:26 (class version) 6.16

Note that Dz = Z]K:1 djz; where d; = D[, j].
Now focus on updating one z;, coefficient by defining

Zk

2
ra(Sl).
) ik

Define r £ « — Zle dkz,(:) andr, £ r + dkz,(f), then ignoring constants independent of z:

r — Z dej — dkijk
J#k

1
fk(zk‘,) = 9(217 sy Rk—1) Rk Rk41y - - - 7ZK) = 5

1
fe(zi) = 3 |7k — dkzng +alzi| +a
1 1
=3 [rell5 — real{rjdyz;} +5 2 ” lldell5 + o |24

Thus the update for z;, is
z,(fﬂ) = soft (ci;f'rk,oz/ ||dk||§) .

For an efficient implementation we keep r updated as a state vector, something like this:

t+1
r:’rk—dkz,(;r).

© J. Fessler, March 23, 2020, 10:26 (class version)

Here is JULIA code

argmin_x 0.5%|A x - y|*2 + reg |x]|_1
function sparse_code_cd(y, A, x0::AbstractVector{<:Number}, reg
N = length (x0)
vk =y — A * x0 # residual vector
norm2 = [norm(A[:,n])”2 for n=1:N] # normalize
D = hcat ([A[:,n]/norm2[n] for n=1:N]...) # normalize
X = copy (x0)

for iter=l:niter # outer loop over iteration
for n=1:N # inner loop over elements
an = A[:,n]
vr += an * x[n] # r k

x[n] = soft(D[:,n]'*vr, reg/norm2[n])
vr —= an x x[n] # full residual again
end

end
return x
end

6.17

: :Real)

© J. Fessler, March 23, 2020, 10:26 (class version) 6.18

Example. Same data as HW that compared POGM and CLS, where N = 50, K = 99 and 32/99 coefficients
are zero. CD converges faster than POGM in terms of reducing cost per iteration. But wall time?

Il POGM
800 | ® cb
—— CDinner

600 -
+—
(2]
o
o
400 -
u
|
[]
= = = =]
200 _ 1 1 1 1
0 4 8 12

iteration

© J. Fessler, March 23, 2020, 10:26 (class version) 6.19

CD approach to x update

Recall that the « update in general required inverting a large matrix involving A’ A for the synthesis form:
1 2 1 2
U(zy,...,xn,2) =¥(x,2) = 3 | Az —yll;+ B 3 |le — Dz|;+ oz, |-

A multi-block approach, aka coordinate descent, can also avoid this matrix inverse. The update for x,, is:

(:cgtﬂ), . ,ngll), T, xﬁil, o ,wg\t,)) = arg min f,(z,)

(t+1) _ ;
T, arg min ¥
zn€F

zn€F

fulx,) = % | Az + a,, (z, — =) — sz + B% |z + a,, (z, — 21)) — Dsz,

)

where a,, = A[:,n] and ™) = (m&”l), - xSff), 2, xffil, . ,:zzgv) contains all the most recent values.

In-class group work on @ update:

© J. Fessler, March 23, 2020, 10:26 (class version) 6.20

© J. Fessler, March 23, 2020, 10:26 (class version) 6.21

Sparse coding for tight frames
The sparse coding problem is:

Z = arg min1 |z — Dz|> + R(z),
z€FK 2
for some regularizer such as R(z) = «||z||, or R(z) = o ||z]|, -
So far we have discussed 2 ways to approach this optimization problem:
e proximal methods like POGM that update all coefficients z simultaneously,
e multi-block BCM where we update one coefficient z;, at a time, sequentially.

These two options represent two extremes of parallel versus sequential; there are also “in-between’ options.

Consider the case where the dictionary D is a tight frame consisting of two N X N unitary matrices:
D = [Dl Dg} . In the usual case where R is additively separable, we can rewrite the sparse coding
problem as:
(21, 22) = arg min
z1,29€FN
There is still no joint closed-form solution here. But because D; and D, are unitary, it is very easy to perform
two-block BCM where we alternate between updating z; and z,. The z; update is proxz (D] (x — D229)).

© J. Fessler, March 23, 2020, 10:26 (class version) 6.22

Example.

An in-class task will focus on a waves+spikes application for signals that are smooth + some impulses,
where D) is the (inverse) DCT matrix and D, = I, both of which are unitary matrices.

5 iDCT dictionary atoms

010 e, s .S LY s
N b3 . S .

1.00

<L 0.00f
)
025
005
o 0.0
h 256
0
‘ .
.
o
S ;
el 5
Y ‘e, .
Al ~
~
& 3 .
~ - J 0
-
. . °,
= oF s L2 ~° &
~
o
-‘ : s
.
ot
101
4 -15

T 128 1 128 256

© J. Fessler, March 23, 2020, 10:26 (class version)

6.23

Patch-based regularization: analysis form

Using TV regularizer R(x) = | Tx||,
where T is 1st-order finite-differences
= patches of size 2 x 1.

Larger patches provide more context
for distinguishing signal from noise.

cf- CNN approaches

Patch-based regularizers:
e synthesis models
e analysis methods

w

N

© J. Fessler, March 23, 2020, 10:26 (class version) 6.24

Especially for data-driven models, often it is more appropriate to analyze / regularize each patch of an image
rather than trying to model the entire image.

For the model “T'R,x tends to be sparse,” a typical patch-based analysis (or sparsifying transform) regular-
izer is:

P

. 1 2 : 1 2
T = aigeglvm 3 | Az — y||5 + BR(x), R(x) = min > 3 ITR,x — z,|; + ao(z,), (6.12)
where T is a K x d sparsifying transform matrix for vectorized patches and Z = [z; ... zk]. Often K ~ d.

Here ¢(-) is a sparsity regularizer such as |||, or ||-||; or ||[W-||, for some diagonal weighting matrix W like
we used with the wavelet transform.

Example. The most minimalist version would be d = 2 and K = 1l and T = [—1 1} , which essentially
ends up being very similar (but not identical) to a 1D TV regularizer. When we use (6.12), we are hoping to
outperform methods like TV. (In 2D we would need both 2 x 1 and 1 x 2 patches.)

We write R, as a matrix above, but 2, is yet another linear operation that we implement efficiently in code,
not as matrix-vector multiplication.

If X is a 2D image of size N, x N, and = vec(X) and we want to use a patch size p, X p,, for which
N = N;N, and d = d,d,, the code for computing R x is reshape (x, Nx, Ny) [l:px,1l:py] and
for Rox is reshape (x, Nx, Ny) [((l:px)+1),1:py] etc. (See Ch.2.)

http://en.wikipedia.org/wiki/Vectorization_(mathematics)

© J. Fessler, March 23, 2020, 10:26 (class version) 6.25

In practice one could use something like MATLAB’s im2col function to extract all the patches. (See next
page for more memory efficient way.) There are many versions online for JULIA:

https://discourse.julialang.org/t/what-is—julias—im2col/14066
https://github.com/pluskid/Mocha.jl/blob/master/benchmarks/native-im2col/im2col-bm. jl
https://github.com/outyang/MatlabFun. jl/blob/master/im2col. jl

BCD/BCM for patch-based analysis regularization

To perform the joint optimization problem (6.12), BCD/BCM are natural algorithm choices.
We alternate between updating the image x and updating the sparse coefficients z.
e The Hessian of (6.12) w.r.t. is A’A + D where D = 2521 RTTR,

If that Hessian does not happen to have an easy inverse, what algorithm is the most natural
choice for updating =?
A: GD B: (P)SD C: (P)CG D: OGM E: POGM
If T is unitary, then D = Z§=1 R,R,isa N x N diagonal, where the nth diagonal element is the number
of patches that contain the nth pixel. If we choose patches with stride=1 and periodic boundary conditions,
then that number is always d, the patch size, so D = dI. Otherwise it is at most d, and D < dI.
So if A’ A is also diagonal (e.g., denoising, inpainting, single-coil Cartesian MRI), then the « update is an
exact minimization.

https://discourse.julialang.org/t/what-is-julias-im2col/14066
https://github.com/pluskid/Mocha.jl/blob/master/benchmarks/native-im2col/im2col-bm.jl
https://github.com/outyang/MatlabFun.jl/blob/master/im2col.jl

© J. Fessler, March 23, 2020, 10:26 (class version) 6.26

e The z, updates are an embarrassingly parallel proximal operation:

(t+1) _
z, =
In JULIA this operation is simply: Z = mapslices (prox, TxXpatch, dims=1)
where Xpatch = [le e Rpw] € FP and prox isa Function that computes the proximity
operator of a¢(-).
If ¢ is additively separable, then the code simplifies further to Z = prox. (T«Xpatch)

Practical implementation (Read)

As written, this BCD/BCM approach would be memory intensive because it stores Z = [zl 2 p} :
Careful implementation can reduce the memory greatly, at least when 7" is unitary.

Consider the part of the regularizer in (6.12) involving « at iteration ¢:

P P
fl@) 2 3 L TR - 20— V@) = Y RT (TRe - #Y) - D (z - &)

p=1 p=1

P P
gV & DY RTz)=D") R,T prox,,(TR,z"").
p=1

p=1

This summation form means that we can extract one (or several) of the patches from !~ at time, apply the

http://en.wikipedia.org/wiki/Embarrassingly_parallel

© J. Fessler, March 23, 2020, 10:26 (class version) 6.27

transform, threshold, and inverse transform, and put the result into an accumulator 2@ that is the same size
as x, and finally apply D! (typically just 1/d). We never need to store all of Z.

Clearly V2f = D so we can also write

flx) = % |z — &0 +c,

I

so the « update is simply

1 1
2t — arg min 5 |Ax — y||§ + [35 Haz :I:(t)” (A’/A+BD) ' (Aly + BD:iz(t)).

When D = dI this simplifies to

Y = (A’A + BdI) 7 (A'y + Bdz). (6.13)

© J. Fessler, March 23, 2020, 10:26 (class version) 6.28

(Read)

Example. For single-coil Cartesian MRI, where A = PF where F! = %F’ and where P is the K x N
sample selection matrix, for which P’ P is diagonal, the update (6.13) further simplifies to

d
2(*) = (F'P'PF + pdI) *(F'P'y + Bd"") = (F'P'PF + BF'F)" (F'P'y + pdz")
d
= F_l(P/P + B]il[I)_l(F/)—l(F/P’y + Bdii?(t)) — F—I(P/P + BiI)—l(P/y + BNFi:(t))

N
“pn e (Pl + (BA/N)[FE0L), & €0

[Fz"]y, k¢ Q.

From this expression, small 3 seems desirable, i.e., Bd/N < 1.
(Read)

If T is not unitary, then in general the matrix D above is not diagonal but we still have that

P
/ /
Dz =) RTTR,x
p=1
and this summation could be done incrementally (one or several patches at a time) instead of extracting all

patches at once, to save memory.

Nonlinear models for patches based on artificial neural networks are a recent trend [7].

© J. Fessler, March 23, 2020, 10:26 (class version) 6.29

Sparsifying transform learning

So far we have considered a dictionary D or a sparsifying transform 7' to be “given,” but often we want to
learn T from training data. Given a set of training examples (typically image patches) X £ [a:l R L} €
F4*L we want to find a transform T' € FX*? guch that the transform coefficients {z; = Tz} are typically
sparse. This process is called sparsifying transform learning. Often X' = d but we also consider other
cases here. Let Z = [zl e zL] € F&*L denote the transform coefficient matrix. A typical transform
learning optimization problem is [8, 9]:

T = i in U(T.Z U(T.Z) 2 6.14
ar%é?ngﬁ% (T, Z), (T, Z) (6.14)

where the “arg min” and “min” above are deliberately different and ¢ is some sparsity regularizer like ||-||,.
An alternative formulation that looks simpler (no « choice), but perhaps harder to optimize, is:

L

T = argeanlin\I!(T), U(T) = ; o(Txy).

For transform learning, we need to avoid a scale ambiguity and and we would like to ensure that the rows of
T are not redundant. So one natural approach is to use the following (row) orthonormality constraint:

T={T eF*": TT =1Ix}. (6.15)

© J. Fessler, March 23, 2020, 10:26 (class version) 6.30

With this choice of 7T the problem (6.14) is always nonconvex, even if ¢ is the convex 1-norm.

For the constraint (6.15) to hold, we must have (choose most general correct condition):
At K <d B:K >d C:K=d D: K #d E:d,K €N

Some authors consider tall 7', called an “over-complete” transform [10].

Example. The following matrix T" € T satisfies the constraint for K = 2 and d = 5:

r_ L[-10 0 0
T 2100 00 -1 1]

Think of each row as a filter that we hope can sparsify patches extracted from images.

This example 75 is in 7, but still has some redundancy in it from a filtering perspective. If we use this T5 as
part of a regularizer where we we extract signal patches of size 5 x 1 with a stride of 1 pixel (see Ch. 2), then
we would get the same results using this simpler sparsifying transform

leip -1 0 0 0],

V2

with 3 adjusted by a factor of 2.
How to design 7 to encourage less redundancy is an active research topic. See [11] for a Fourier approach.

© J. Fessler, March 23, 2020, 10:26 (class version)

Two-block BCM for transform learning

6.31

There is no closed-form joint solution for 7" and Z in the transform learning problem (6.14), but its form

suggests applying two-block BCM. Repeating (6.14) here for convenience:
W(T,Z) 20 3Tz — 25 + ag(z), st. T €T.
e The Z update is an embarrassingly parallel proximal operation:

zl(t+1) _
In JULIA this operation is simply: Z = mapslices (prox, TxX, dims=1)
where prox isa Function that computes the proximity operator of a¢(-).
If ¢ is additively separable, then the code simplifies further to Z = prox. (T*X)
e Now consider the T update:

L
T = argminz | Tx; — 2|5 =
TeT 15
Because of the X multiplying T, this is not a proximal operator.

It is almost a problem you have solved already!
What is the name of this problem?

Why Why almost?

(6.16)

http://en.wikipedia.org/wiki/Embarrassingly_parallel

© J. Fessler, March 23, 2020, 10:26 (class version) 6.32

Square transform learning: 7" update

The solution for the T" update (6.16) in the square case (K = d) uses the following SVD:

T=UV', Z X =U ¥ V. (6.17)
dx L L xd dxddxddxd

As a sanity check: TT' = UV'VU’ = I,.

Does the use of an SVD here preclude large-scale problems?

Typically K = d < L, e.g., K = d = 8 for 8 x 8 patches whereas L can greatly exceed 10°.

The most expensive part is the matrix multiplication Z X" that is O(d?L), whereas the d x d SVD is O(d?).
For 8 x 8 patches doing a 8% x 8% SVD is trivial.

Here is a summary of the BCM algorithm for (square) transform learning with K = d:

e Apply the proximal operator (e.g., soft or hard thresholding) to each column of T'X to get new Z.
e Apply orthogonal Procrustes method using SVD of the product Z X" to get new T'.

e Repeat until convergence.

See [8] for some convergence theory for this alternating method, even for ¢(z) = || z|,.

This method for updating T',Z should be named BCD instead of BCM. (?)
A: True B: False

© J. Fessler, March 23, 2020, 10:26 (class version) 6.33

Non-square transform learning

In the non-square case, specifically where K < d, the generalized orthogonal Procrustes solution from EECS
551 and HWI#9 (stiefl) is inapplicable. Those solutions were for the case where T is tall (K > d
here), with the constraint T'T = I,.

The derivation there does not generalize readily to handle T'T" = Ix. To synopsize the issue, consider:
ITX - Z||; = trace{(TX — Z) (TX - Z)}
= trace{ X'"T'T X } —2real{trace{T X Z'}} +trace{Z'Z} .
The previous solution used the constraint T"T" = I, to simplify the first term. Here we have the constraint

TT' = Ik that does not help simplify the first term in general.
In the square case, T'T = I <= TT’ = I, so the previous solution applies, but not more generally.

One possible approach is to use the trace circular commutative property to write the first term as
trace{ X'T'T X } = trace{T X X'T"} < trace{TTIT'} + trace{(T — T})(pI, — II)(T — T})'}
= —2real{trace{T (pI; — I1)T}}} + trace{Ty(pI, — I1)T}} +ptrace{TT"},
K

where IT £ X X' is the d x d data covariance matrix and p is its spectral radius and T}, is the current transform
estimate. This inequality can be the basis for a (possibly novel) MM approach.

© J. Fessler, March 23, 2020, 10:26 (class version) 6.34

Here is an alternative approach that seems simpler.

Suppose we want to learn K < d filters. We can still estimate a d x d matrix T', but ignore the last d — K
“dummy” rows of the matrix. To truly ignore those rows, we need to ignore the corresponding rows of Z that
correspond to the products of the dummy rows of T'[(K + 1) : d,:] with X, i.e., we want the first K rows of
Z to be sparse, but we do not care about the remaining rows. Thus, we define the following (possibly novel)
cost function

1
W(T, Z) = ITX = Z||; + o (6.18)

(The idea here is somewhat similar to the HW problem where we apply sparsity regularization to the wavelet
detail coefficients only.)

With this approach, the Z update applies hard thresholding to the first X' < d rows of T'X and leaves
untouched the remaining rows: Z[1:K, :] .= hard. (T[1l:K, :]*X)

Then the T" update is simply the standard orthogonal Procrustes solution in (6.17).

The potential advantage of the MM approach is that the matrix Z requires storing only a A X L matrix
whereas the dummy rows approach appears to require storing a d x L matrix. If d = 83 for a 3D imaging
problem and we are content learning, say, 32, filters, that is a 16-fold difference in storage that could be
significant. The advantage of the dummy rows approach is that we can easily reuse the stiefl code
instead of writing a new MM algorithm.

Convergence properties of both approaches would require investigation, but most likely the proofs in [8]
could be adapted.

© J. Fessler, March 23, 2020, 10:26 (class version) 6.35

BCM for non-square transform learning

Here is a summary of a BCM algorithm for transform learning with K < d.
e Apply the proximal operator (e.g., soft or hard thresholding) to the first K" rows of T'X to update Z.
e Apply the orthogonal Procrustes method using SVD of the product Z X’ to update T'.
e Repeat until convergence, then perhaps keep just T[l c K

Why perhaps? Because to use T asa patch-based regularizer, we might want to use the same trick:

L
1 1~ 2
& = arg min 3 |Az — y||s + BR(z), R(x) = min 3 HTRlas — le2 +ap(Wz), (6.19)

xcFN ZEcRaxL =1

where W = Diag{w}, w = [L } .
04—k

This way TT = 1, simplifying the update, while we essentially ignore the last d — K rows of Z by not
enforcing sparsity there. To be explicit, for the above W we have:

L L
. L+ 2 , 1. 2
R(x) = ZreIIlFldriL l 5 HTle — ZZHQ +ap(Wz) = Zg%}(n“ 2 5 HT[l K| Ry — le2 + ao(z).
_1 —

This dummy-row trick may be novel. (If you see it in the literature please let me know.)

© J. Fessler, March 23, 2020, 10:26 (class version) 6.36

Example. Here we consider an ensemble of 2! 1D piecewise-constant signals of length N = 32, several of
which are illustrated in the left figure below.

From these signals I extracted all 5 - 10* patches of size d = 8 x 1, and then discarded all patches that are
completely uniform because they seem to contain little useful information. There were about L = 3 - 10*
“interesting” patches for training. The right figure shows the cost function (6.18) decreasing with each BCM
update, for the case K = 1.

L]
’ @ cost, K=3, d=8, init=random|
1.0x10
75x1d -
5.0x1¢"
2.5x1d
L]
0 L] L] L] L) . ’
0 5 10 15 20

iteration

© J. Fessler, March 23, 2020, 10:26 (class version) 6.37

Here are learned filters 7" for K = 1 For the left figure T}, was randomly initialized, and for the right figure
the first row of T, was [—1 1 0. ..0]. The consistency of the shape (up to a sign flip) is interesting.

K=1 best filter(s), random init., cost 1024.07 K=1 best filter(s), [0 1 - 1 0] init., cost 1024.07
10 10
0.5 05
15 I
s 5
£ °
% 00 % 0.0
3 8
g 3
-05} -0.5F
-1.0F I I I I -1.0 I I I I
2 4 6 8 2 4 6 8
n n

The filter values T are [-0.0 -0.05 0.7 -0.71 0.07 0.0 -0.01 0.0]
Iused o = 0.4, for which about 5% of the Z[1, :] values were nonzero.

Because all the training signals are piecewise-constant (by design), it is unsurprising that the learned filter is
close to a finite difference filter. But it is not exactly [1 —1], so it would be interesting to compare denoising
using a regularizer based on this learned filter to that based on TV. Increasing L did not change the filter
estimates.

© J. Fessler, March 23, 2020, 10:26 (class version) 6.38

Here is the case where we learn K = 3 filters:

best filter(s), random init., cost 3435.36

10}
05F
i)
C
Q
©
=
S 00} /A S
o
[S]
g \/
E
0.5 e T[]
® T[,2]
T[:,3]
10f |
2 4 6 8

© J. Fessler, March 23, 2020, 10:26 (class version) 6.39

Memory efficient implementation of transform learning (Read)

The BCM algorithm for transform learning on p. 6.32 is elegant in its simplicity, but as written it is memory
inefficient because it must store both the d x L matrix X and the K x L matrix Z, where L can be enormous.
Furthermore, typically we form the columns of X from overlapping patches from training images, and the
patch extraction process (with stride=1) increases the memory of an image with /V pixels to a set of patches
with dN elements, so by a factor of d. Careful implementation can avoid these memory issues. First we
rewrite the two BCM steps:

z(tH) = proxm(T(t)azl) l=1,...,L
T+ — arg mm |TX — Z+ HF UV, ZWX =UxV'"

The key is to implement the matrix product Z ¢+ X’ with an accumulator:
L L
ZUH X = Z 2l = Z prox,, (T V) ;. (6.20)

In this form, we never need to store all of the {z;} coefficients. Furthermore, if we are extracting each patch
x; from a set of training images, then we never need to store the individual patches; we just loop over each
training image, then loop over each patch in those images; we extract one patch, multiply it by T®), apply
the proximal operator, make the outer product with the patch, and accumulate using +=.

© J. Fessler, March 23, 2020, 10:26 (class version) 6.40

One small drawback of using (6.20) is that without all of X and Z available, one cannot compute the cost
function W(T', Z) for any T" and Z. However, if T is unitary, then the key term in cost is

f(T,Z) = —2real{trace{Z(T X)'}} + trace{ZZ'}

L L
=9 real{trace{z zl(T:cl)’}} +trace{z zlzl’}
=1 =1
L L L
= —2real{z (z, Tzcl>} +3 lzlls =) Nz — Tall +c.
=1 =1

=1

If needed, we can use this expression to evaluate f(T®, Z(*+1)) while computing (6.20).

For an extension to multi-layer transform learning see [12].

© J. Fessler, March 23, 2020, 10:26 (class version) 6.41

Dictionary learning via two-block BCD

Problem statement: Given training data X = [a:l N L] € FV*L typically patches extracted from
images, find a dictionary D € F?X such that &; ~ Dz; where z; € F¥ is (typically) a sparse coefficient
vector. Optimization formulation:

~

D =argmin min ¥(D,Z), ¥(D,Z)=

DeD ZeFEx!

where | Z||, = 32, ||z]|, is the aggregate non-sparsity, i.e., the total number of nonzero coefficients.
This cost function ¥ is nonconvex due to the product D Z.
(It would be biconvex if we used ||vec(Z)||,.)

To avoid the scale ambiguity, we focus on this typical choice for the set admissible dictionaries:

D={DeF"" : |ldi|,=1k=1,...,K}.

To minimize W, one could attempt two-block BCD, alternating between updating D and Z.

e The D update is a (nonconvex) constrained problem and one could apply gradient projection for it (see
HW). If we replace ||di||, = 1 with ||di||, < 1 then the D update would be a convex constrained
problem.

e The Z update is a set of L separate sparse coding problems, If we used the 1-norm, then it would be
convex and one could apply POGM in parallel to each column of Z. This is a simple use of parallel

© J. Fessler, March 23, 2020, 10:26 (class version) 6.42

processing. For the 0-norm, there is no convergence guarantee of momentum methods like POGM (to my
knowledge), so it seems safer to use PGM, corresponding to iterative hard thresholding:

1
zl(t+1)=hard_ Zl(t)_ 2D’(Dzl—ml),i2 yI=1,..., L.
I I DI

Both of these updates require 1 or more inner iterations, so overall it is a BCD approach.

Dictionary learning via multi-block BCM (SOUP-DIL)

Instead of updating the entire dictionary D and the entire coefficient vector Z simultaneously, we can instead
think of the multi-block cost function ¥(dy, . ..,dg,ci,...,cx) where C = Z' = [c; ... cx] € FL*K and
write the product in the following sum-of-outer-products (SOUP) form:

[DZl DZL]:DZ:DC/:

With this formulation, a useful multi-block BCM approach is to update one atom dj, at a time, and then
update the corresponding coefficient vector ¢, and loop sequentially through £ =1,... K.

Updating the variables in matched pairs, e.g., in the order: di,c;,ds, co, ..., dg, Cck, seems to accelerate
convergence. The next pages describe those updates.

© J. Fessler, March 23, 2020, 10:26 (class version) 6.43

Dictionary atom update

To update dj, define the residual matrix

R=X - dc (6.21)
#k
then the update is
1
"V = argmin C|R - did;l;

di€F9: [d]l,=1

where

© J. Fessler, March 23, 2020, 10:26 (class version) 6.44

Sparse coefficient update

The update for ¢ 1s group work:

o1
c;(:ﬂ) — argmin = | R — dpc, |2 + B ekl -
cpeFL

Because ||dy ||, = 1:
|||R — dkC;€|H12; = trace{(R — dkC;) (R — dkCZ)/} = ||Ck||§ — 2real{d§cRck} —|—Cl = HCk — R/dng + Co

Y = hard (R'dy, B).

The main drawback of this SOUP approach is that it is less parallelizable than the two-block BCD approach.

This SOUP alternating approach is:
A: BCD B: BCM C: Neither

© J. Fessler, March 23, 2020, 10:26 (class version) 6.45

Example. An in-class group activity will apply this SOUP dictionary learning method to signals consisting
of a smooth part and some added spikes. The left plot shows some example signals. The right plot shows the
true dictionary, the initial dictionary estimate D, (from PCA) and the estimated dictionary D.

Dtrue Dy D

050 1 1.00 1 - 1
. 0.75 0.50 0.75
S s L8 l o, A \ 0.25
! SHRB A \ alon Asion 050 0.50
-0. ’ \ 025
| \ 025
-0.25
-0.50 0
0
L L L f L L L -0.50
0 20 20 60 80 100 120 128 128
1 22 1 1

22

o
N
ol

2;[n] noisy
o
8

o

N

al
o

© J. Fessler, March 23, 2020, 10:26 (class version) 6.46

Joint update of atom and coefficients (Read)

Previously we focused on alternating between updating one atom dj, and the corresponding coefficient vector
ci, ala SOUP. Can we update them concurrently? Starting with the residual (6.21) and dropping subscript k
for simplicity, we want to solve (or descend)

) 1 ¢ 1
agmin f(d,e), f(d,e) £ J|de — RI; < S |d]3]lel)3 - d'Re.

ceFL, deFd :||d]|,<1

The Hessian of this cost function is

Vi =

2 /o
llel|” I, 2de R]. 6.22)

2¢d — R |d|*I,
c? 2dc
2cd d?

A= (> + A+ /(d® —)%+ 16d2c?) /2, so p(V2[) is unbounded as c increases. Thus the claim in [13]
that V f is jointly global Lipschitz is incorrect in general.

Consider the scalar case (d = L = 1) and suppose R = 0. Then V2f = { } which has eigenvalues

However, in practical problems it seems reasonable to assume (or impose) that the sparse coefficients are
bounded by some finite maximum value: ||c||. < Z, ¢f. [13, 14]. In the scalar case this leads to a simple
upper bound on the spectral radius of the Hessian.

Challenge: using ||d|l, < 1 and ||c||,, < Z, find an upper bound on the spectral radius of the Hessian in
(6.22). It is fine to assume 1 < Z. Perhaps using ||-||, could simplify.

© J. Fessler, March 23, 2020, 10:26 (class version) 6.47

6.2 Machine learning applications

Low-rank approximation for large-scale problems
Given Y = X + e € FM*N where € denotes a M x N noise matrix and we believe rank(X) < K.

EECS 551 used truncated/thresholded SVD methods requiring O(M N?) operations that do not scale to large
problems where both M and N are large, even if the rank K is very small. We can overcome this problem
using alternating minimization (two-block BCD/BCM) methods.

Matrix factorization approach

To overcome this limitation of SVD-based approaches, one can take a matrix factorization approach by
choosing a desired (maximum) rank / and expressing X directly as

X=U V,
~—
Mx KK xN

where now U and V' should be simply interpreted as factors, not as matrices with singular vectors.

http://en.wikipedia.org/wiki/Matrix_factorization_(recommender_systems)

© J. Fessler, March 23, 2020, 10:26 (class version) 6.48

With this formulation, a typical optimization problem for finding U and V', and hence X, looks like:
X=UV
(U, V)= arg min v(U,V)

(]eﬁr']MxK7 VE[FKXN

VU V) LY UV + B Ri(U) + BoRs(V),

where one must select appropriate regularizers for U and V. The data term here is biconvex.

Ambiguities

Scale ambiguity:

Factorization ambiguity for invertible P:

e These ambiguities might not matter if we just want the final X.
e They might matter for optimization where if the iterates do not converge.

Constraining U to have orthonormal columns resolves the above
scale (?) and factorization (?) ambiguity.
A:EF B:FT C: TF D: T.T

© J. Fessler, March 23, 2020, 10:26 (class version) 6.49

Two-block BCM with unitary constraint

One way to resolve the ambiguity is to constrain U to have orthonormal columns:
Ri(U) = Xy, ooy (U),

where the Stiefel manifold is Vi (F) = {Q cFMxXK . Q' Q=1 K} . The optimization problem becomes:

S 1
X=UV. (U.V)= agmin UUV), UU.V)2 Y -UV[;+ Xy, @ (U).

UE]F]MXK, VE]FKXN
A two-block BCM for this problem is:
U, = argmin |[Y -UV; =0V, Y V/ = Ux Zx V' . OMK?

. ! —
U:U'U=Ik MXN]V\;-;(MY K KxK

Vip =aigmin[[Y = Upi Vg = Vi [n] = Ul Y[on] = Vi = UJL Y, O(MNK)

VEFKxN
by solving separate LS problems for each column of V', because

N
IY = Ui VI = 1Y 0] = U VIl

n=1

© J. Fessler, March 23, 2020, 10:26 (class version) 6.50

e Convergence?
Cost function decreases every iteration, bounded below, => cost converges.
Convergence of iterates is an active research area.
Yes, Under some RIP conditions [15]
e Other regularizers or constraints?
Sparsity (even more structure than low-rank!) Ry(V') = ||vec(V)||;

group work: V update using PGM (because we have so many tools now)

© J. Fessler, March 23, 2020, 10:26 (class version) 6.51

Fused LASSO / generalized LASSO (Read)

The fused LASSO is a generalization of the LASSO problem used in machine learning for regression prob-
lems where some features are known to be related [17]. The cost function has the form

1
U(z) =5 [Az - ylls + B llll, + T, ,

for some special matrix 7" that involves finite differences between correlated features.
This is a challenging optimization problem.

A “dual path algorithm” [18] [19] [20] is available in R:
https://rdrr.io/cran/genlasso/man/fusedlasso.html

However, the documentation states: “Hence it is not advisable to run fusedlasso2d on image denoising prob-
lems of large scale, as the dual solution path is computationally infeasible. It should be noted that a faster
algorithm for the 2d fused LASSO solution path (when the predictor matrix is the identity), which begins at
the dense end of the path, is available in the £1sa package.”

A related cost function called generalized LASSO simply uses 3 = 0 above.
https://rdrr.io/cran/genlasso/man/genlasso.html

These challenges motivate the AL/ADMM methods described in Ch. 7.

https://rdrr.io/cran/genlasso/man/fusedlasso.html
https://rdrr.io/cran/genlasso/man/genlasso.html

© J. Fessler, March 23, 2020, 10:26 (class version) 6.52

Alternating minimization for 0-norm in biconvex form (Read)

Consider the very challenging sparsity-constrained optimization problem

argmin f(x) s.t. ||Tx||, < K. (6.23)

xzeFN

Nothing we have covered so far solves this type of problem for a general matrix 7'
If f has a Lipschitz gradient, then when T' = I we could make a proximal gradient method for (6.23), which
would involve a form of iterative hard thresholding.

For z € RY, we can write the 0-norm as the following (convex!) optimization problem solution [21]:

2l =, min |l st 2] = {u, 2).
The unique solution is u, = wu.(2z) = sign.(z), for which [|u.|; = ||z]|,.

More generally (thanks to Katherine Banas for helping me see this), for z € FV, we can write the 0-norm as
the following (convex!) optimization problem solution:

Il =, min Tl st =l = (. 2). (624)

The unique solution is u, = u.(z) = sign .(z), for which ||u. |, = ||z,
The form (6.24) is general enough to cover both R and C cases.

© J. Fessler, March 23, 2020, 10:26 (class version) 6.53

Thus we can rewrite the original problem (6.23) as:

argmin min f(z) + Xeo (w) st |Tal, = (w, Ta), Cx= {weF : Jul, <1, [ul, < K}.
xelF u
(6.25)
One can verify that the constraint set || z||, = (u, 2) is convex, so (6.25) is biconvex [22].

When |lul| < 1, we have (u, z) < SN |z, = |||,

Thus {z : |2ll, = (w, 2)} = {= : =]}, < (u, 2}}.

Now if z and w are both in this set then oz + Sw is alsoin thissetfor0 < a <land f=1-— a,
because [z + fwl, < alz], + B w], < o (u, z)+5 (u, w) = (au + fw, 2).

Still, that constraint seems challenging, so one can replace the constraint in (6.25) with a penalty on the gap:

arg min min f(x) + Xe, (w) + p (|| Txll, — (u, Tx)). (6.26)

xcFN ueFN

This is a biconvex problem. One can increase p as the iterations proceed to (asymptotically) enforce the
constraint. The obvious approach here is alternating minimization and there are convergence results in
[21].

© J. Fessler, March 23, 2020, 10:26 (class version) 6.54

Interpretation (Read)

For any finite ¢+ > 0, we can rewrite the penalized formulation (6.26) as:

argmin f(z) + pR(Tz), R(z)= min (|z], — (u, 2)).

x weCk

We can simplify the expression for R as follows:

R(z) = |z||, —9(2), g(z)= max (u, z) = sum(sort (abs(z)) [1:K]) .

(This is related to the “order weighted L1” (OWL) regularizer [23].) Thus
R(z) = p sum(sort (abs(z)) [K+1l:end]) . (6.27)

So this regularizer penalizes the N — K smallest (in magnitude) values of z = T'x, so as i increases those
values will be thresholded to zero, which is what (6.23) requires! To help see this, note that

|z]lp £ K <= norm(sort (abs(z)) [K+l:end],1) == 0

This analysis is helpful for insight, but the sorting operation in (6.27) is very nonconvex and hard for opti-
mization. In contrast, the biconvex set up (6.26) seems much simpler for optimization.

© J. Fessler, March 23, 2020, 10:26 (class version) 6.55

‘6.3 Convergence properties ‘

BCD converges in 1 iteration in the rate cases where the cost function is block separable (decoupled):
B
U(xy,...,op) = szl Uy () -

Convergence results (for limit points) under weak assumptions are given in [24, p. 268]. See also [25-34].

Convergence of the coordinate descent method for strictly convex, twice-differentiable cost functions is an-
alyzed in detail in [35], including consideration of box constraints. Powell demonstrates that uniqueness of
the “arg min” step is important to ensure convergence [36].

Convergence rate analysis, including constrained cases, is given in [31, 37].

For “pure” coordinate descent (CD), where we update one parameter at a time in sequence, if the cost
function is twice differentiable then there is an asymptotic linear convergence rate. Specifically, when x,, is
near the minimizer &:

@i~ @l g2 < p(M) @, — &l g2, M =T—[D+L"H.

where H = V2U(&) = L + D + L’ where D is diagonal and L is lower triangular. The analysis is similar
to that of the Gauss-Seidel method for solving a linear system of equations.

http://en.wikipedia.org/wiki/Gauss-Seidel_method

© J. Fessler, March 23, 2020, 10:26 (class version) 6.56

Analysis of the convergence rate of “pure” CD is a special case of the analysis of SAGE in [38].
For a BPGM version with momentum see [34, 39].
For analysis of inexact proximal BCD see [40].

Generalizations for non-smooth and non-convex functions are in [29, 40, 41]. This is an evolving area because
of growing interest in BCD methods.

In particular, there is considerable recent focus on biconvex problems like those involving matrix factoriza-
tion X = UV. One can show that that some such problems have no spurious local minima [42—44].

Global convergence guarantees for dictionary learning appear in [45], despite many saddle points, for random
initialization.

For randomized block selection, see [46].

© J. Fessler, March 23, 2020, 10:26 (class version) 6.57

’ 6.4 Summary ‘

Alternating minimization methods have a multitude of applications. They also provide a nice context for
course review because they use many previous methods (gradient, MM, proximal) as intermediate steps.

Limitations of BCD methods are difficulty with parallelism (if one uses too many blocks with too small
sizes) and getting stuck at non-stationary points for non-smooth cost functions.

Bibliography

(1]
(2]

[3]

[4]

(3]
(6]

[7]

[8]

J. Besag. “On the statistical analysis of dirty pictures”. In: J. Royal Stat. Soc. Ser. B 48.3 (1986), 259-302 (cit. on p. 6.3).

J-F. Cai, R. H. Chan, and Z. Shen. “A framelet-based image inpainting algorithm”. In: Applied and Computational Harmonic Analysis 24.2 (Mar. 2008),
13149 (cit. on p. 6.11).

J-F. Cai, R. Chan, L. Shen, and Z. Shen. “Restoration of chopped and nodded images by framelets”. In: SIAM J. Sci. Comp. 30.3 (2008), 1205-27
(cit. on p. 6.11).

J-F. Cai, R. H. Chan, L. Shen, and Z. Shen. “Convergence analysis of tight framelet approach for missing data recovery”. In: Applied and Computational
Harmonic Analysis 31.1 (Oct. 2009), 87-113 (cit. on p. 6.11).

J-F. Cai and Z. Shen. “Framelet based deconvolution”. In: J. Comp. Math. 28.3 (May 2010), 289-308 (cit. on p. 6.11).

Y. Liu, J-F. Cai, Z. Zhan, D. Guo, J. Ye, Z. Chen, and X. Qu. “Balanced sparse model for tight frames in compressed sensing magnetic resonance
imaging”. In: PLoS One 10.4 (2015), 1-19 (cit. on pp. 6.11, 6.12).

D. Gilton, G. Ongie, and R. Willett. “Learned patch-based regularization for inverse problems in imaging”. In: Proc. Intl. Wkshp. Comp. Adp.
Multi-Sensor Adapt. Proc. 2019, 211-5 (cit. on p. 6.28).

S. Ravishankar and Y. Bresler. “lg sparsifying transform learning with efficient optimal updates and convergence guarantees”. In: IEEE Trans. Sig. Proc.
63.9 (May 2015), 2389404 (cit. on pp. 6.29, 6.32, 6.34).

http://en.wikipedia.org/wiki/Coordinate_descent#Limitations
http://en.wikipedia.org/wiki/Parallel_computing

© J. Fessler, March 23, 2020, 10:26 (class version) 6.58

[9]

(10]
(11]
[12]
[13]

(14]

[15]

(17]

(18]
(19]
(20]

(21]
[22]

(23]

[24]
[25]

B. Wen, S. Ravishankar, L. Pfister, and Y. Bresler. “Transform learning for magnetic resonance image reconstruction: from model-based learning to
building neural networks”. In: IEEE Sig. Proc. Mag. 37.1 (Jan. 2020), 41-53 (cit. on p. 6.29).

Z.Li, S. Xie, W. Chen, and Z. Yang. “Overcomplete transform learning with the log regularizer”. In: IEEE Access 6 (2018), 6523949 (cit. on p. 6.30).
L. Pfister and Y. Bresler. “Learning filter bank sparsifying transforms”. In: IEEE Trans. Sig. Proc. 67.2 (Jan. 2019), 504-19 (cit. on p. 6.30).
S. Ravishankar and B. Wohlberg. “Learning multi-layer transform models”. In: Allerton Conf. on Comm., Control, and Computing. 2018 (cit. on p. 6.40).

G-J. Peng. “Joint and direct optimization for dictionary learning in convolutional sparse representation”. In: IEEE Trans. Neural Net. Learn. Sys. (2019)
(cit. on p. 6.46).

G-J. Peng. “Adaptive ADMM for dictionary learning in convolutional sparse representation”. In: IEEE Trans. Im. Proc. 28.7 (July 2019), 3408-422
(cit. on p. 6.46).

P. Jain, P. Netrapalli, and S. Sanghavi. “Low-rank matrix completion using alternating minimization”. In: ACM Symp. Theory Comp. 2013, 665-74
(cit. on p. 6.50).

R. Tibshirani, M. Saunders, S. Rosset, J. Zhu, and K. Knight. “Sparsity and smoothness via the fused LASSO”. In: J. Royal Stat. Soc. Ser. B 67.1 (Feb.
2005), 91-108 (cit. on p. 6.51).

H. Hoefling. A path algorithm for the Fused Lasso signal approximator. 2009 (cit. on p. 6.51).
R. J. Tibshirani and J. Taylor. “The solution path of the generalized LASSO”. In: Ann. Stat. 39.3 (June 2011), 1335-71 (cit. on p. 6.51).

T. B. Arnold and R. J. Tibshirani. “Efficient implementations of the generalized LASSO dual path algorithm”. In: J. Computational and Graphical Stat.
25.1 (2016), 1-27 (cit. on p. 6.51).

G. Yuan and B. Ghanem. Sparsity constrained minimization via mathematical programming with equilibrium constraints. 2018 (cit. on pp. 6.52, 6.53).

A. Bechensteen, L. Blanc-Feraud, and G. Aubert. “New methods for 12-10 minimization and their applications to 2D single-molecule localization
microscopy”. In: Proc. IEEE Intl. Symp. Biomed. Imag. 2019, 137781 (cit. on p. 6.53).

M. A. T. Figueiredo and R. D. Nowak. “Ordered weighted 11 regularized regression with strongly correlated covariates: Theoretical aspects”. In: aistats.
2016, 930-8 (cit. on p. 6.54).

D. P. Bertsekas. Nonlinear programming. 2nd ed. Belmont: Athena Scientific, 1999 (cit. on p. 6.55).

P. Tseng. “Convergence of a block coordinate descent methods for nondifferentiable minimization”. In: J. Optim. Theory Appl. 109 (2001), 475-94
(cit. on p. 6.55).

© J. Fessler, March 23, 2020, 10:26 (class version) 6.59

[26]
(27]

[28]
[29]

(30]

[31]
(32]
(33]
[34]

(35]

[36]
(37]

[38]

(391

[40]

Y. Nesterov. “Efficiency of coordinate descent methods on huge-scale optimization problems”. In: SIAM J. Optim. 22.2 (2012), 341-62 (cit. on p. 6.55).

M. W. Jacobson and J. A. Fessler. “An expanded theoretical treatment of iteration-dependent majorize-minimize algorithms”. In: /[EEE Trans. Im. Proc.
16.10 (Oct. 2007), 2411-22 (cit. on p. 6.55).

A. Beck and L. Tetruashvili. “On the convergence of block coordinate descent type methods”. In: SIAM J. Optim. 23.4 (2013), 2037-60 (cit. on p. 6.55).

Y. Xu and W. Yin. “A block coordinate descent method for regularized multiconvex optimization with applications to nonnegative tensor factorization
and completion”. In: SIAM J. Imaging Sci. 6.3 (2013), 1758-89 (cit. on pp. 6.55, 6.56).

J. Bolte, S. Sabach, and M. Teboulle. “Proximal alternating linearized minimization for nonconvex and nonsmooth problems”. In: Mathematical
Programming 146.1 (Aug. 2014), 459-94 (cit. on p. 6.55).

S. Yun. “On the iteration complexity of cyclic coordinate gradient descent methods”. In: SIAM J. Optim. 24.3 (2014), 1567-80 (cit. on p. 6.55).
K. Khare and B. Rajaratnam. Convergence of cyclic coordinatewise 11 minimization. 2015 (cit. on p. 6.55).
Z. Shi and R. Liu. A better convergence analysis of the block coordinate descent method for large scale machine learning. 2016 (cit. on p. 6.55).

Y. Xu and W. Yin. “A globally convergent algorithm for nonconvex optimization based on block coordinate update”. In: J. of Scientific Computing 72.2
(Aug. 2017), 1-35 (cit. on pp. 6.55, 6.56).

Z. Q. Luo and P. Tseng. “On the convergence of the coordinate descent method for convex differentiable minimization”. In: J. Optim. Theory Appl. 72.1
(Jan. 1992), 7-35 (cit. on p. 6.55).

M. J. D. Powell. “On search directions for minimization algorithms”. In: Mathematical Programming 4.1 (1973), 193-201 (cit. on p. 6.55).

Z-Q. Luo and P. Tseng. “On the convergence rate of dual ascent methods for linearly constrained convex minimization”. In: Math. Oper. Res. 18.4 (Nov.
1993), 846-67 (cit. on p. 6.55).

J. A. Fessler and A. O. Hero. “Space-alternating generalized expectation-maximization algorithm”. In: IEEE Trans. Sig. Proc. 42.10 (Oct. 1994),
2664-77 (cit. on p. 6.56).

I. Y. Chun and J. A. Fessler. “Convolutional analysis operator learning: acceleration and convergence”. In: IEEE Trans. Im. Proc. 29.1 (Jan. 2020),
2108-22 (cit. on p. 6.56).

E. Chouzenoux, J-C. Pesquet, and A. Repetti. “A block coordinate variable metric forward-backward algorithm”. In: J. of Global Optimization 66.3
(Nov. 2016), 457-85 (cit. on p. 6.56).

© J. Fessler, March 23, 2020, 10:26 (class version) 6.60

[41] M. Razaviyayn, M. Hong, and Z. Luo. “A unified convergence analysis of block successive minimization methods for nonsmooth optimization”. In:
SIAM J. Optim. 23.2 (2013), 1126-53 (cit. on p. 6.56).

[42] M. Hardt. “Understanding alternating minimization for matrix completion”. In: Foundations of Computer Science (FOCS). 2014, 651-60 (cit. on
p. 6.56).

[43] R.Ge,J.D.Lee, and T. Ma. “Matrix completion has no spurious local minimum”. In: Neural Info. Proc. Sys. 2016, 2973-81 (cit. on p. 6.56).

[44] R.Ge, C. Jin, and Y. Zheng. “No spurious local minima in nonconvex low rank problems: A unified geometric analysis”. In: Proc. Intl. Conf. Mach.
Learn. Vol. 70. 2017, 1233-42 (cit. on p. 6.56).

[45] D. Gilboa, S. Buchanan, and J. Wright. Efficient dictionary learning with gradient descent. 2018 (cit. on p. 6.56).

[46] J. Diakonikolas and L. Orecchia. “Alternating randomized block coordinate descent”. In: Proc. Intl. Conf. Mach. Learn. Vol. 80. 2018, 1224-32 (cit. on
p. 6.56).

	Alternating minimization
	6.0 Introduction
	6.1 Signal processing applications
	Compressed sensing using synthesis sparsity models
	Compressed sensing with analysis regularizer
	Sparse coding revisited with multi-block BCM
	Sparse coding for tight frames
	Patch-based regularization: analysis form
	Sparsifying transform learning
	Dictionary learning via two-block BCD
	Joint update of atom and coefficients

	6.2 Machine learning applications
	Low-rank approximation for large-scale problems
	Fused LASSO / generalized LASSO
	Alternating minimization for 0-norm in biconvex form

	6.3 Convergence properties
	6.4 Summary

