
Chapter 6

Alternating minimization
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6.0 Introduction

Although the proximal methods in the previous chapter are quite flexible and useful, there are many cost
functions of interest that are not smooth and also not “prox friendly.” So we need additional tools.

Furthermore, all of the methods discussed so far update all elements of the optimization variable simultane-
ously. For many optimization problems it can be easier to update just some of the variables at a time.

This chapter develops alternating minimization algorithms that are suitable for such problems.

These methods have a long history in both optimization and signal/image processing. In image processing,
an early approach was iterated conditional modes (ICM) [1].

These coordinate descent methods can be very useful, but also can have limitations for certain nonsmooth
cost functions.

This chapter illustrates the methods by focusing on SIMPL applications, drawing from Ch. 1 and Ch. 2.

6.1 Signal processing applications

We begin with signal and image processing applications.

http://en.wikipedia.org/wiki/Iterated_conditional_modes
http://en.wikipedia.org/wiki/Coordinate_descent
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Compressed sensing using synthesis sparsity models

Consider a linear measurement model assuming synthesis sparsity using a (usually wide) dictionary D:

y = Ax + ε, x ≈Dz, z is sparse.

(If A = I , then this is a denoising problem; if A is wide then it is compressed sensing.)

For these assumptions, two related but distinct ways to estimate x are:

x̂ = Dẑ, ẑ = arg min
z

1

2
‖ADz − y‖22 + β ‖z‖1 (6.1)

x̂ = arg min
x

1

2
‖Ax− y‖22 + βR(x), R(x) = min

z

1

2
‖x−Dz‖22 + α ‖z‖1 . (6.2)

A potential advantage of (6.2) is that x̂ need not be in the range of D.

We could write the second one (6.2) as this joint optimization problem:

(x̂, ẑ) = arg min
x,z

Ψ(x, z), Ψ(x, z) ,
1

2
‖Ax− y‖22 + β

(
1

2
‖x−Dz‖22 + α ‖z‖1

)
. (6.3)

http://en.wikipedia.org/wiki/Noise_reduction


© J. Fessler, March 23, 2020, 10:26 (class version) 6.5

There are at least 3 distinct ways to pursue this joint optimization problem.
• Rewrite the cost function in LASSO form (with diagonally weighted 1-norm) in terms of x̃ = (x, z)

Ψ(x̃) =
1

2
‖Bx̃− b‖22 + βα ‖Wx̃‖1 , B ,

[
A 0√
βI −

√
βD

]
, b ,

[
y
0

]
, W ,

[
0 0
0 I

]
, (6.4)

and then apply any proximal method from Ch. 5, e.g., POGM.
• If D is unitary, then we can solve analytically for the minimizer over z and substitute back in to get a

cost function in terms of x only, where the regularizer (in this case) involves a Huber function (as seen
in HW):

R(x) = 1′ ψ.(D
′x;α) .

Then we can apply any gradient-based method (such as line search OGM) to that cost function.
However, this approach is inapplicable in the general case of interest where D is wide (over-complete).
• Apply alternating minimization or alternating descent, aka block coordinate minimization (BCM) or

block coordinate descent (BCD) to the “two block” cost function Ψ(x, z).

Here, both BCM and BCD start with some initial guesses x0 and z0 and then alternate updates. Reasonable
initial guesses are application dependent, but one option is x0 = cA′y for some constant c and z0 = 0.
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BCM

For this “two block” cost function, the BCM algorithm is:
for k = 0:niter-1

xk+1 = arg min
x

Ψ(x, zk) (sequential)

zk+1 = arg min
z

Ψ(xk+1, z) =⇒ Ψ(xk+1, zk+1) ≤ Ψ(xk+1, z)∀z. (6.5)

If implemented as written above, then this approach decreases the cost function monotonically:

Ψ(xk+1, zk+1) ≤ Ψ(xk+1, zk) ≤ Ψ(xk, zk) .

For convenience, the joint cost function (6.3) is repeated here:

Ψ(x, z) =
1

2
‖Ax− y‖22 + β

(
1

2
‖x−Dz‖22 + α ‖z‖1

)
.

To apply BCM (6.5) to this cost function, the updates required are:

regularized LS : xk+1 = arg min
x

Ψ(x, zk) = (A′A + βI)−1(A′y + βDzk)

sparse coding : zk+1 = arg min
z

Ψ(xk+1, z) = arg min
z

1

2
‖xk+1 −Dz‖22 + α ‖z‖1 .
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The sparse coding step above involves a proximal operation. (?)
A: True B: False ??

For certain applications, the x update above is easy:
• image denoising: A = I
• single-coil MRI with Cartesian sampling: A′A is circulant
• image inpainting: A′A is diagonal
• image super-resolution: A′A is block diagonal with small blocks

In those cases, inverting A′A + βI is easy, i.e., O(N) or O(N logN).
But for general A that inverse is O(N3) to compute exactly and infeasible if A is large, so one would have
to apply an iterative method like CG for the x update.

However, regardless of A, the z update above is a LASSO problem that requires an iterative solution in
general, except for certain cases like when D happens to be unitary. We could use POGM to solve that inner
LASSO problem but then one might ask why not just apply POGM to the joint LASSO problem (6.4)? One
answer is that (6.4) involves A which can be very large and expensive, whereas the z update above involves
only D which might be much faster.
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BCD

For any finite number of inner iterations of CG for the x update, or a proximal method like POGM for the
z update, the BCM algorithm above does not provide an exact minimization, so the name BCM would then
seem inappropriate. When using a small number (perhaps just one) inner iteration for the x and/or z updates,
a more appropriate term is block coordinate descent (BCD), which, for a two-block problem, is:

for k = 0:niter

Find xk+1 s.t. Ψ(xk+1, zk) ≤ Ψ(xk, zk)

Find zk+1 s.t. Ψ(xk+1, zk+1) ≤ Ψ(xk+1, zk) . (6.6)

Clearly this algorithm monotonically decreases the cost function by design: Ψ(xk+1, zk+1) ≤ Ψ(xk, zk) .

Applying BCD (6.6) to (6.3) by using one GD update for x and one PGM update for z leads to the following
simple algorithm:

xk+1 = xk −
γ

|||A|||22 + β
(A′(Axk − y) + β(xk −Dzk))

zk+1 = soft.

(
zk −

1

L
D′(Dzk − xk+1);

α

L

)
, L = |||D|||22. (6.7)
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For any 0 < γ < 2, the above algorithm is appropriately named BCD. (?)
A: True B: False ??

Depending on the relative compute effort of working with A and D, one could apply multiple inner GD
iterations and/or PGM iterations and it will still be a BCD algorithm (for appropriate step sizes as shown
above). Alternatively one could use MM updates with diagonal majorizers to avoid computing the spectral
norms.

If we use multiple iterations of FGM or OGM for the x update, and/or multiple iterations of FISTA
or POGM for the z update in (6.7), then the resulting algorithm is appropriately named BCD. (?)
A: True B: False ??

One way to restore descent is to check the cost function after a few iterations to verify that it has descended;
if not, then “back-track” by using a non-momentum method for that update. There are many such variations
in the literature.

The distinction between BCM and BCD is typically disregarded in the literature, but these notes will strive
to use the terms appropriately for clarity.
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Compressed sensing with analysis regularizer

Assuming that y = Ax + ε and Tx is sparse, for some sparsifying transform matrix T , the most natural
formulation of analysis regularization is the following challenging optimization problem:

x̂ = arg min
x

1

2
‖Ax− y‖22 + β ‖Tx‖1 . (6.8)

This is simple to solve only in special cases such as when the sparsifying transform T is unitary.
The literature is full of approximate solutions to (6.8), discussed next.

Corner rounding

The non-differentiability of the 1-norm is the primary challenge of (6.8), so one “approximate” approach is
simply to replace the 1-norm with a smooth convex approximation ψ:

x̂ = arg min
x

Ψ(x), Ψ(x) =
1

2
‖Ax− y‖22 + β1′ ψ .(Tx). (6.9)

When ψ is smooth, we can apply fast methods like OGM and CG to Ψ easily. A reasonable choice for ψ
is the Fair potential function, or the hyperbola |z| ≈

√
z2 + ε2 − ε, and these can approximate the 1-norm

very closely by taking δ or ε small enough. However, as ε decreases the global Lipschitz constant of Ψ(x)
increases, leading to slow convergence of methods like OGM that depend on the global Lipschitz constant.
In contrast, CG can still work well because its step size is adaptive and depends only on the curvature along
the search direction.
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Variable splitting regularizer

Another option is to “split” the T matrix from the 1-norm term using a penalty function as follows:

x̂ = arg min
x

1

2
‖Ax− y‖22 + βR(x), R(x) = min

z

1

2
‖Tx− z‖22 + α ‖z‖1 . (6.10)

As α approaches 0, the solution more strongly enforces z ≈ Tz and the solution more closely approximates
the original formulation (6.8). As shown in a HW problem, this formulation is mathematically equivalent to
the corner rounding approach (6.9) with ψ chosen as a Huber function.

Balanced analysis/synthesis regularization (Read)

Recall that for the synthesis sparsity model, where we assume x̂ ≈Dẑ, a typical formulation is

x̂ = Dẑ, ẑ = arg min
z

1

2
‖ADz − y‖22 + β ‖z‖1 .

If D is a Parseval tight frame, for which DD′ = I , an alternative formulation that is called the balanced
model [2–6] is:

x̂ = Dẑ, ẑ = arg min
z

1

2
‖ADz − y‖22 + β ‖z‖1 + α

1

2
‖(I −D′D)z‖22 . (6.11)

This cost function is essentially equivalent to (5.1).
• When α = 0, this reverts to the synthesis model.
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• As α → ∞, the additional term enforces the constraint z = D′Dz =⇒ ‖z‖1 = ‖D′Dz‖1 = ‖D′x‖1 ,
which is a particular type of analysis regularizer ‖Tx‖1, where T = D′.
• For any finite α, this formulation is yet another approximation to the analysis regularizer formulation, and

even then only in the case of a Parseval tight frame.

Results in [6] for compressed sensing MRI using shift-invariant wavelets for D showed no empirical perfor-
mance advantages of the “balanced” approach over an analysis regularizer.

If D above is unitary, then the “balanced” formulation (6.11) is equivalent to a usual
synthesis (?) and/or analysis (?) formulations?
A: T,T B: T,F C: F,T D: F,F ??

Optimization strategies

We have at least three viable options for optimizing the variable split form (6.10).
• Rewrite as a joint cost function in terms of x̃ = (x, z) and apply any proximal method like POGM to

that joint cost function:

Ψ(x̃) =
1

2
‖Bx̃− b‖22 + βα ‖Wx̃‖1 , b ,

[
y
0

]
, W ,

[
0

I

]
, B ,

[
A 0√
βT −

√
βI

]
.
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• Minimize over z and plug back in leading to a Huber function regularizer in x. Then apply any gradient-
based method like line-search OGM to optimize over x.
Letting ψ denote that Huber function, so R(x) = 1′ ψ.(Tx;α), the gradient here is

∇Ψ(x) = A′(Ax− y) + βT ′ ψ̇.(Tx;α),

for which there is no non-iterative solution if set to zero, unless α = 0, so iterative method are required.
• Write a two-block cost function and apply BCD or BCM to it; here is that cost function:

Ψ(x, z) =
1

2
‖Ax− y‖22 + β

(
1

2
‖Tx− z‖22 + α ‖z‖1

)
.

The z update is “easy,” i.e., non-iterative even for large problems. (?)
A: True B: False ??

In general the z update is
zk+1 = soft .(Txk+1;α).

For the denoising case where A = I, the x update is typically “easy,” i.e., non-iterative even for
large problems. (?)
A: True B: False ??

In general the x update is
xk+1 = (A′A + βT ′T )−1(A′y + βT ′zk).
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This update is hard in general but we can always apply (P)CG to it.

One case where this update is easy is when both A′A and T ′T are circulant, because then we can use FFT
operations for the inverse. A′A is circulant, e.g., for denoising, for single-coil Cartesian MRI, for deblurring
with periodic boundary conditions. T ′T circulant when T is unitary and when T corresponds to finite
differences with periodic boundary conditions, Often the Hessian is Toeplitz, i.e., approximately circulant,
and we can use a circulant preconditioner for CG.



© J. Fessler, March 23, 2020, 10:26 (class version) 6.15

Sparse coding revisited with multi-block BCM

Recall that the sparse coding step of BCM for synthesis-based regularization is a LASSO problem:

ẑ = arg min
z∈FK

1

2
‖x−Dz‖22 + α ‖z‖1 ,

where D ∈ FN×K , for which there is no closed-form solution, so iterative methods like POGM are required.

Recall this inner minimization arose from a “two-block” joint cost function Ψ(x, z) with corresponding two-
way alternating minimization. Another approach is to think of the cost function as having K + 1 blocks:
Ψ(x, z1, . . . , zK), and to implement BCM or BCD by updating one of these (now much smaller) blocks at a
time:

for t = 0:niter (outer loop over iteration)

x(t+1) = arg min
x∈FN

Ψ
(
x, z

(t)
1 , . . . , z

(t)
K

)
for k = 1:K (inner loop over coefficients) (sequential)

z
(t+1)
k = arg min

zk∈F
Ψ
(
x(t+1), z

(t+1)
1 , z

(t+1)
2 , . . . , z

(t+1)
k−1 , zk, z

(t)
k+1, . . . , z

(t)
K

)
.

As written, this algorithm is guaranteed to monotonically decrease Ψ. (?)
A: True B: False ??
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Note that Dz =
∑K

j=1 djzj where dj = D[:, j].
Now focus on updating one zk coefficient by defining

fk(zk) = g(z1, . . . , zk−1, zk, zk+1, . . . , zK) =
1

2

∥∥∥∥∥x−∑
j 6=k

djzj − dkzk

∥∥∥∥∥
2

2

+ α

(∑
j 6=k

|zj|+ |zk|

)
.

Define r , x−
∑K

k=1 dkz
(t)
k and rk , r + dkz

(t)
k , then ignoring constants independent of zk:

fk(zk) =
1

2
‖rk − dkzk‖22 + α |zk|+ c1

=
1

2
‖rk‖22 − real{r′kdkzk}+

1

2
|zk|2 ‖dk‖22 + α |zk|

=
1

2
‖dk‖22

∣∣∣zk − d̃′krk

∣∣∣2 + α |zk|+ c2, d̃k ,
dk

‖dk‖22
.

Thus the update for zk is
z
(t+1)
k = soft

(
d̃′krk, α/ ‖dk‖

2
2

)
.

For an efficient implementation we keep r updated as a state vector, something like this:

r = rk − dkz
(t+1)
k .
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Here is JULIA code

# argmin_x 0.5*|A x - y|^2 + reg |x|_1
function sparse_code_cd(y, A, x0::AbstractVector{<:Number}, reg::Real)

N = length(x0)
vr = y - A * x0 # residual vector
norm2 = [norm(A[:,n])^2 for n=1:N] # normalize
D = hcat([A[:,n]/norm2[n] for n=1:N]...) # normalize
x = copy(x0)

for iter=1:niter # outer loop over iteration
for n=1:N # inner loop over elements

an = A[:,n]
vr += an * x[n] # r_k
x[n] = soft(D[:,n]'*vr, reg/norm2[n])
vr -= an * x[n] # full residual again

end
end
return x

end
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Example. Same data as HW that compared POGM and CLS, where N = 50, K = 99 and 32/99 coefficients
are zero. CD converges faster than POGM in terms of reducing cost per iteration. But wall time?

0 4 8 12

200

400

600

800

iteration

co
st

POGM
CD
CD inner
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CD approach to x update

Recall that the x update in general required inverting a large matrix involving A′A for the synthesis form:

Ψ(x1, . . . , xN , z) = Ψ(x, z) =
1

2
‖Ax− y‖22 + β

(
1

2
‖x−Dz‖22 + α ‖z‖1

)
.

A multi-block approach, aka coordinate descent, can also avoid this matrix inverse. The update for xn is:

x(t+1)
n = arg min

xn∈F
Ψ
(
x
(t+1)
1 , . . . , x

(t+1)
n−1 , xn, x

(t)
n+1, . . . , x

(t)
N

)
= arg min

xn∈F
fn(xn)

fn(xn) =
1

2

∥∥Ax(t,n) + an (xn − x(t)n )− y
∥∥2
2

+ β
1

2

∥∥x(t,n) + an (xn − x(t)n )−Dz
∥∥2
2
,

where an = A[:, n] and x(t,n) =
(
x
(t+1)
1 , . . . , x

(t+1)
n−1 , x

(t)
n , x

(t)
n+1, . . . , x

(t)
N

)
contains all the most recent values.

In-class group work on x update:

∂

∂xn
f(xn) = a′n(Ax(t,n) + an (xn − x(t)n )− y) + β (xn − vn), v = Dz
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x(t+1)
n =

a′n(y −Ax(t,n) + anx
(t)
n ) + βvn

‖an‖22 + β

=
1

‖an‖22 + β

(
a′n

(
y −

n−1∑
j=1

ajx
(t+1)
j −

N∑
j=n+1

ajx
(t)
j

)
+ βvn

)
.

Again, for efficiency keep a running state vector r = y −Ax(t,n).
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Sparse coding for tight frames

The sparse coding problem is:

ẑ = arg min
z∈FK

1

2
‖x−Dz‖22 +R(z),

for some regularizer such as R(z) = α ‖z‖1 or R(z) = α ‖z‖0 .
So far we have discussed 2 ways to approach this optimization problem:
• proximal methods like POGM that update all coefficients z simultaneously,
• multi-block BCM where we update one coefficient zk at a time, sequentially.

These two options represent two extremes of parallel versus sequential; there are also “in-between” options.

Consider the case where the dictionary D is a tight frame consisting of two N × N unitary matrices:
D =

[
D1 D2

]
. In the usual case where R is additively separable, we can rewrite the sparse coding

problem as:

(ẑ1, ẑ2) = arg min
z1,z2∈FN

1

2
‖D1z1 + D2z2 − x‖22 +R(z1) +R(z2).

There is still no joint closed-form solution here. But because D1 and D2 are unitary, it is very easy to perform
two-block BCM where we alternate between updating z1 and z2. The z1 update is proxR(D′1(x−D2z2)).
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Example.

An in-class task will focus on a waves+spikes application for signals that are smooth + some impulses,
where D1 is the (inverse) DCT matrix and D2 = I , both of which are unitary matrices.
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Patch-based regularization: analysis form

Using TV regularizer R(x) = ‖Tx‖1
where T is 1st-order finite-differences
≡ patches of size 2× 1. 1-1

1

-1

Larger patches provide more context
for distinguishing signal from noise.

cf. CNN approaches

Patch-based regularizers:
• synthesis models
• analysis methods

-1

0

1

2

3
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Especially for data-driven models, often it is more appropriate to analyze / regularize each patch of an image
rather than trying to model the entire image.

For the model “TRpx tends to be sparse,” a typical patch-based analysis (or sparsifying transform) regular-
izer is:

x̂ = arg min
x∈FN

1

2
‖Ax− y‖22 + βR(x), R(x) = min

Z∈FK×P

P∑
p=1

1

2
‖TRpx− zp‖22 + αφ(zp), (6.12)

where T is a K×d sparsifying transform matrix for vectorized patches and Z = [z1 . . . zK ]. Often K ≈ d.
Here φ(·) is a sparsity regularizer such as ‖·‖0 or ‖·‖1 or ‖W ·‖0 for some diagonal weighting matrix W like
we used with the wavelet transform.

Example. The most minimalist version would be d = 2 and K = 1 and T =
[
−1 1

]
, which essentially

ends up being very similar (but not identical) to a 1D TV regularizer. When we use (6.12), we are hoping to
outperform methods like TV. (In 2D we would need both 2× 1 and 1× 2 patches.)

We write Rp as a matrix above, but Rpx is yet another linear operation that we implement efficiently in code,
not as matrix-vector multiplication.

If X is a 2D image of size Nx × Ny and x = vec(X) and we want to use a patch size px × py, for which
N = NxNy and d = dxdy, the code for computing R1x is reshape(x, Nx, Ny)[1:px,1:py] and
for R2x is reshape(x, Nx, Ny)[((1:px)+1),1:py] etc. (See Ch. 2.)

http://en.wikipedia.org/wiki/Vectorization_(mathematics)
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In practice one could use something like MATLAB’s im2col function to extract all the patches. (See next
page for more memory efficient way.) There are many versions online for JULIA:
https://discourse.julialang.org/t/what-is-julias-im2col/14066

https://github.com/pluskid/Mocha.jl/blob/master/benchmarks/native-im2col/im2col-bm.jl

https://github.com/outyang/MatlabFun.jl/blob/master/im2col.jl

BCD/BCM for patch-based analysis regularization

To perform the joint optimization problem (6.12), BCD/BCM are natural algorithm choices.
We alternate between updating the image x and updating the sparse coefficients z.
• The Hessian of (6.12) w.r.t. x is A′A + βD where D ,

∑P
p=1 R

′
pT
′TRp.

If that Hessian does not happen to have an easy inverse, what algorithm is the most natural
choice for updating x?
A: GD B: (P)SD C: (P)CG D: OGM E: POGM ??

If T is unitary, then D =
∑P

p=1R
′
pRp is aN×N diagonal, where the nth diagonal element is the number

of patches that contain the nth pixel. If we choose patches with stride=1 and periodic boundary conditions,
then that number is always d, the patch size, so D = dI . Otherwise it is at most d, and D � dI .
So if A′A is also diagonal (e.g., denoising, inpainting, single-coil Cartesian MRI), then the x update is an
exact minimization.

https://discourse.julialang.org/t/what-is-julias-im2col/14066
https://github.com/pluskid/Mocha.jl/blob/master/benchmarks/native-im2col/im2col-bm.jl
https://github.com/outyang/MatlabFun.jl/blob/master/im2col.jl
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• The zp updates are an embarrassingly parallel proximal operation:

z(t+1)
p = proxαφ

(
TRpx

(t)
p

)
, p = 1, . . . , P.

In JULIA this operation is simply: Z = mapslices(prox, T*Xpatch, dims=1)

where Xpatch =
[
R1x . . .RPx

]
∈ Fd×P and prox is a Function that computes the proximity

operator of αφ(·).
If φ is additively separable, then the code simplifies further to Z = prox.(T*Xpatch) (wavelets)

Practical implementation (Read)

As written, this BCD/BCM approach would be memory intensive because it stores Z =
[
z1 . . . zP

]
.

Careful implementation can reduce the memory greatly, at least when T is unitary.

Consider the part of the regularizer in (6.12) involving x at iteration t:

f(x) ,
P∑
p=1

1

2

∥∥TRpx− z(t)
p

∥∥2
2

=⇒ ∇f(x) =
P∑
p=1

R′pT
′ (TRpx− z(t)

p

)
= D

(
x− x̃(t)

)
x̃(t) , D−1

P∑
p=1

R′pT
′z(t)
p = D−1

P∑
p=1

R′pT
′ proxαφ

(
TRpx

(t−1)) .
This summation form means that we can extract one (or several) of the patches from x(t−1) at time, apply the

http://en.wikipedia.org/wiki/Embarrassingly_parallel
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transform, threshold, and inverse transform, and put the result into an accumulator x̃(t) that is the same size
as x, and finally apply D−1 (typically just 1/d). We never need to store all of Z.

Clearly∇2f = D so we can also write

f(x) =
1

2

∥∥x− x̃(t)
∥∥2
D

+ c,

so the x update is simply

x(t+1) = arg min
x

1

2
‖Ax− y‖22 + β

1

2

∥∥x− x̃(t)
∥∥2
D

= (A′A + βD)−1(A′y + βDx̃(t)).

When D = dI this simplifies to

x(t+1) = (A′A + βdI)−1(A′y + βdx̃(t)). (6.13)
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(Read)
Example. For single-coil Cartesian MRI, where A = PF where F−1 = 1

N
F ′ and where P is the K × N

sample selection matrix, for which P ′P is diagonal, the update (6.13) further simplifies to

x(t+1) = (F ′P ′PF + βdI)−1(F ′P ′y + βdx̃(t)) = (F ′P ′PF + β
d

N
F ′F )−1(F ′P ′y + βdx̃(t))

= F−1(P ′P + β
d

N
I)−1(F ′)−1(F ′P ′y + βdx̃(t)) = F−1(P ′P + β

d

N
I)−1(P ′y + β

d

N
F x̃(t))

= F−1v, vk =

{ 1
1+βd/N

([P ′/y]k + (βd/N)[F x̃(t)]k), k ∈ Ω

[F x̃(t)]k, k /∈ Ω.

From this expression, small β seems desirable, i.e., βd/N � 1.

(Read)
If T is not unitary, then in general the matrix D above is not diagonal but we still have that

Dx =
P∑
p=1

R′pT
′TRpx

and this summation could be done incrementally (one or several patches at a time) instead of extracting all
patches at once, to save memory.

Nonlinear models for patches based on artificial neural networks are a recent trend [7].
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Sparsifying transform learning

So far we have considered a dictionary D or a sparsifying transform T to be “given,” but often we want to
learn T from training data. Given a set of training examples (typically image patches) X ,

[
x1 . . . xL

]
∈

Fd×L, we want to find a transform T ∈ FK×d such that the transform coefficients {zl = Txl} are typically
sparse. This process is called sparsifying transform learning. Often K = d but we also consider other
cases here. Let Z =

[
z1 . . . zL

]
∈ FK×L denote the transform coefficient matrix. A typical transform

learning optimization problem is [8, 9]:

T̂ = arg min
T∈T

min
Z∈FK×L

Ψ(T ,Z), Ψ(T ,Z) ,
L∑
l=1

1

2
‖Txl − zl‖22 + αφ(zl), (6.14)

where the “arg min” and “min” above are deliberately different and φ is some sparsity regularizer like ‖·‖0.
An alternative formulation that looks simpler (no α choice), but perhaps harder to optimize, is:

T̂ = arg min
T∈T

Ψ(T ), Ψ(T ) =
L∑
l=1

φ(Txl).

For transform learning, we need to avoid a scale ambiguity and and we would like to ensure that the rows of
T are not redundant. So one natural approach is to use the following (row) orthonormality constraint:

T =
{
T ∈ FK×d : TT ′ = IK

}
. (6.15)
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With this choice of T the problem (6.14) is always nonconvex, even if φ is the convex 1-norm.

For the constraint (6.15) to hold, we must have (choose most general correct condition):
A: K ≤ d B: K ≥ d C: K = d D: K 6= d E: d,K ∈ N ??

Some authors consider tall T , called an “over-complete” transform [10].

Example. The following matrix T ∈ T satisfies the constraint for K = 2 and d = 5:

T2 =
1√
2

[
1 −1 0 0 0
0 0 0 −1 1

]
.

Think of each row as a filter that we hope can sparsify patches extracted from images.

This example T2 is in T , but still has some redundancy in it from a filtering perspective. If we use this T2 as
part of a regularizer where we we extract signal patches of size 5× 1 with a stride of 1 pixel (see Ch. 2), then
we would get the same results using this simpler sparsifying transform

T1 =
1√
2

[
1 −1 0 0 0

]
,

with β adjusted by a factor of 2.
How to design T to encourage less redundancy is an active research topic. See [11] for a Fourier approach.
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Two-block BCM for transform learning

There is no closed-form joint solution for T and Z in the transform learning problem (6.14), but its form
suggests applying two-block BCM. Repeating (6.14) here for convenience:

Ψ(T ,Z) ,
∑L

l=1
1
2
‖Txl − zl‖22 + αφ(zl), s.t. T ∈ T .

• The Z update is an embarrassingly parallel proximal operation:

z
(t+1)
l = proxαφ

(
T (t)xl

)
, l = 1, . . . , L.

In JULIA this operation is simply: Z = mapslices(prox, T*X, dims=1)

where prox is a Function that computes the proximity operator of αφ(·).
If φ is additively separable, then the code simplifies further to Z = prox.(T*X) (wavelet scales)
• Now consider the T update:

T̂ = arg min
T∈T

L∑
l=1

‖Txl − zl‖22 = arg min
T∈T

|||TX −Z|||2F. (6.16)

Because of the X multiplying T , this is not a proximal operator.
It is almost a problem you have solved already! ( HW1#9 )

What is the name of this problem? ??
Why generalized? ?? Why almost? ??

http://en.wikipedia.org/wiki/Embarrassingly_parallel
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Square transform learning: T update

The solution for the T update (6.16) in the square case (K = d) uses the following SVD:

T̂ = UV ′, Z︸︷︷︸
d× L

X ′︸︷︷︸
L× d

= U︸︷︷︸
d× d

Σ︸︷︷︸
d× d

V ′︸︷︷︸
d× d

. (6.17)

As a sanity check: T̂ T̂ ′ = UV ′V U ′ = Id.

Does the use of an SVD here preclude large-scale problems?
Typically K = d� L, e.g., K = d = 82 for 8× 8 patches whereas L can greatly exceed 106.
The most expensive part is the matrix multiplication ZX ′ that is O(d2L), whereas the d× d SVD is O(d3).
For 8× 8 patches doing a 82 × 82 SVD is trivial.

Here is a summary of the BCM algorithm for (square) transform learning with K = d:
• Apply the proximal operator (e.g., soft or hard thresholding) to each column of TX to get new Z.
• Apply orthogonal Procrustes method using SVD of the product ZX ′ to get new T .
• Repeat until convergence.

See [8] for some convergence theory for this alternating method, even for φ(z) = ‖z‖0.

This method for updating T ,Z should be named BCD instead of BCM. (?)
A: True B: False ??
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Non-square transform learning

In the non-square case, specifically where K < d, the generalized orthogonal Procrustes solution from EECS
551 and HW1#9 ( stief1 ) is inapplicable. Those solutions were for the case where T is tall (K ≥ d
here), with the constraint T ′T = Id.

The derivation there does not generalize readily to handle TT ′ = IK . To synopsize the issue, consider:

|||TX −Z|||2F = trace
{

(TX −Z)′ (TX −Z)
}

= trace{X ′T ′TX}−2 real{trace{TXZ ′}}+ trace{Z ′Z} .

The previous solution used the constraint T ′T = Id to simplify the first term. Here we have the constraint
TT ′ = IK that does not help simplify the first term in general.
In the square case, T ′T = I ⇐⇒ TT ′ = I, so the previous solution applies, but not more generally.

One possible approach is to use the trace circular commutative property to write the first term as

trace{X ′T ′TX} = trace{TXX ′T ′} ≤ trace{TΠT ′}+ trace{(T − Tk)(ρId −Π)(T − Tk)
′}

= −2 real{trace{T (ρId −Π)T ′k}}+ trace{Tk(ρId −Π)T ′k}+ρ trace{TT ′}︸ ︷︷ ︸
K

,

where Π , XX ′ is the d×d data covariance matrix and ρ is its spectral radius and Tk is the current transform
estimate. This inequality can be the basis for a (possibly novel) MM approach.
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Here is an alternative approach that seems simpler.

Suppose we want to learn K < d filters. We can still estimate a d × d matrix T , but ignore the last d − K
“dummy” rows of the matrix. To truly ignore those rows, we need to ignore the corresponding rows of Z that
correspond to the products of the dummy rows of T [(K + 1) : d, :] with X , i.e., we want the first K rows of
Z to be sparse, but we do not care about the remaining rows. Thus, we define the following (possibly novel)
cost function

Ψ(T ,Z) =
1

2
|||TX −Z|||2F + α ‖Z[1 : K, :]‖0 . (6.18)

(The idea here is somewhat similar to the HW problem where we apply sparsity regularization to the wavelet
detail coefficients only.)

With this approach, the Z update applies hard thresholding to the first K < d rows of TX and leaves
untouched the remaining rows: Z[1:K,:] .= hard.(T[1:K,:]*X)

Then the T update is simply the standard orthogonal Procrustes solution in (6.17).

The potential advantage of the MM approach is that the matrix Z requires storing only a K × L matrix
whereas the dummy rows approach appears to require storing a d × L matrix. If d = 83 for a 3D imaging
problem and we are content learning, say, 32, filters, that is a 16-fold difference in storage that could be
significant. The advantage of the dummy rows approach is that we can easily reuse the stief1 code
instead of writing a new MM algorithm.

Convergence properties of both approaches would require investigation, but most likely the proofs in [8]
could be adapted.
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BCM for non-square transform learning

Here is a summary of a BCM algorithm for transform learning with K < d.
• Apply the proximal operator (e.g., soft or hard thresholding) to the first K rows of TX to update Z.
• Apply the orthogonal Procrustes method using SVD of the product ZX ′ to update T .
• Repeat until convergence, then perhaps keep just T̂ [1 : K, :]

Why perhaps? Because to use T̂ as a patch-based regularizer, we might want to use the same trick:

x̂ = arg min
x∈FN

1

2
‖Ax− y‖22 + βR(x), R(x) = min

Z∈Fd×L

L∑
l=1

1

2

∥∥∥T̂Rlx− zl

∥∥∥2
2

+ αφ(Wzl), (6.19)

where W = Diag{w}, w =

[
1K

0d−K

]
.

This way T̂ ′T̂ = I , simplifying the update, while we essentially ignore the last d − K rows of Z by not
enforcing sparsity there. To be explicit, for the above W we have:

R(x) = min
Z∈Fd×L

L∑
l=1

1

2

∥∥∥T̂Rlx− zl

∥∥∥2
2

+ αφ(Wzl) = min
Z∈FK×L

L∑
l=1

1

2

∥∥∥T̂ [1 : K, :]Rlx− zl

∥∥∥2
2

+ αφ(zl).

This dummy-row trick may be novel. (If you see it in the literature please let me know.)
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Example. Here we consider an ensemble of 211 1D piecewise-constant signals of length N = 32, several of
which are illustrated in the left figure below.

From these signals I extracted all 5 · 104 patches of size d = 8 × 1, and then discarded all patches that are
completely uniform because they seem to contain little useful information. There were about L = 3 · 104

“interesting” patches for training. The right figure shows the cost function (6.18) decreasing with each BCM
update, for the case K = 1.

1 32

-1

0

1

0 5 10 15 20
0

2.5×104

5.0×104

7.5×104

1.0×105

iteration

cost, K=3, d=8, init=random
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Here are learned filters T̂ for K = 1 For the left figure T0 was randomly initialized, and for the right figure
the first row of T0 was [−1 1 0 . . . 0]. The consistency of the shape (up to a sign flip) is interesting.
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The filter values T̂ are [-0.0 -0.05 0.7 -0.71 0.07 0.0 -0.01 0.0]

I used α = 0.4, for which about 5% of the Z[1, :] values were nonzero.

Because all the training signals are piecewise-constant (by design), it is unsurprising that the learned filter is
close to a finite difference filter. But it is not exactly [1 −1], so it would be interesting to compare denoising
using a regularizer based on this learned filter to that based on TV. Increasing L did not change the filter
estimates.
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Here is the case where we learn K = 3 filters:
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Memory efficient implementation of transform learning (Read)

The BCM algorithm for transform learning on p. 6.32 is elegant in its simplicity, but as written it is memory
inefficient because it must store both the d×L matrix X and the K×L matrix Z, where L can be enormous.
Furthermore, typically we form the columns of X from overlapping patches from training images, and the
patch extraction process (with stride=1) increases the memory of an image with N pixels to a set of patches
with dN elements, so by a factor of d. Careful implementation can avoid these memory issues. First we
rewrite the two BCM steps:

z
(t+1)
l = proxαφ

(
T (t)xl

)
, l = 1, . . . , L

T (t+1) = arg min
T∈T

∣∣∣∣∣∣TX −Z(t+1)
∣∣∣∣∣∣2
F

= UV ′, Z(t+1)X ′ = UΣV ′.

The key is to implement the matrix product Z(t+1)X ′ with an accumulator:

Z(t+1)X ′ =
L∑
l=1

z
(t+1)
l x′l =

L∑
l=1

proxαφ
(
T (t)xl

)
x′l. (6.20)

In this form, we never need to store all of the {zl} coefficients. Furthermore, if we are extracting each patch
xl from a set of training images, then we never need to store the individual patches; we just loop over each
training image, then loop over each patch in those images; we extract one patch, multiply it by T (t), apply
the proximal operator, make the outer product with the patch, and accumulate using += .
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One small drawback of using (6.20) is that without all of X and Z available, one cannot compute the cost
function Ψ(T ,Z) for any T and Z. However, if T is unitary, then the key term in cost is

f(T ,Z) = −2 real{trace{Z(TX)′}}+ trace{ZZ ′}

= −2 real

{
trace

{
L∑
l=1

zl(Txl)
′

}}
+ trace

{
L∑
l=1

zlz
′
l

}

= −2 real

{
L∑
l=1

〈zl, Txl〉

}
+

L∑
l=1

‖zl‖22 =
L∑
l=1

‖zl − Txl‖22 + c.

If needed, we can use this expression to evaluate f(T (t),Z(t+1)) while computing (6.20).

For an extension to multi-layer transform learning see [12].
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Dictionary learning via two-block BCD

Problem statement: Given training data X =
[
x1 . . . xL

]
∈ FN×L, typically patches extracted from

images, find a dictionary D ∈ Fd×K such that xl ≈ Dzl where zl ∈ FK is (typically) a sparse coefficient
vector. Optimization formulation:

D̂ = arg min
D∈D

min
Z∈FK×l

Ψ(D,Z), Ψ(D,Z) ,
1

2
|||X −DZ|||2F + β ‖Z‖0 ,

where ‖Z‖0 =
∑L

l=1 ‖zl‖0 is the aggregate non-sparsity, i.e., the total number of nonzero coefficients.
This cost function Ψ is nonconvex due to the product DZ.
(It would be biconvex if we used ‖vec(Z)‖1.)
To avoid the scale ambiguity, we focus on this typical choice for the set admissible dictionaries:

D =
{
D ∈ Fd×K : ‖dk‖2 = 1, k = 1, . . . , K

}
.

To minimize Ψ, one could attempt two-block BCD, alternating between updating D and Z.
• The D update is a (nonconvex) constrained problem and one could apply gradient projection for it (see

HW ). If we replace ‖dk‖2 = 1 with ‖dk‖2 ≤ 1 then the D update would be a convex constrained
problem.
• The Z update is a set of L separate sparse coding problems, If we used the 1-norm, then it would be

convex and one could apply POGM in parallel to each column of Z. This is a simple use of parallel
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processing. For the 0-norm, there is no convergence guarantee of momentum methods like POGM (to my
knowledge), so it seems safer to use PGM, corresponding to iterative hard thresholding:

z
(t+1)
l = hard.

(
z
(t)
l −

1

|||D|||22
D′ (Dzl − xl) ,

β

|||D|||22

)
, l = 1, . . . , L.

Both of these updates require 1 or more inner iterations, so overall it is a BCD approach.

Dictionary learning via multi-block BCM (SOUP-DIL)

Instead of updating the entire dictionary D and the entire coefficient vector Z simultaneously, we can instead
think of the multi-block cost function Ψ(d1, . . . ,dK , c1, . . . , cK) where C = Z ′ = [c1 . . . cK ] ∈ FL×K , and
write the product in the following sum-of-outer-products (SOUP) form:

[
Dz1 . . . DzL

]
= DZ = DC ′ =

K∑
k=1

dkc
′
k.

With this formulation, a useful multi-block BCM approach is to update one atom dk at a time, and then
update the corresponding coefficient vector ck, and loop sequentially through k = 1, . . . , K.

Updating the variables in matched pairs, e.g., in the order: d1, c1,d2, c2, . . . ,dK , cK , seems to accelerate
convergence. The next pages describe those updates.
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Dictionary atom update

To update dk, define the residual matrix

R = X −
∑
j 6=k

djc
′
j (6.21)

then the update is

d
(t+1)
k = arg min

dk∈Fd : ‖d‖2=1

1

2
|||R− dkc

′
k|||

2
F

where

|||R− dkc
′
k|||

2
F = trace

{
(R− dkc

′
k) (R− dkc

′
k)
′}

= ‖ck‖22 ‖dk‖
2
2 − 2 real{c′kR′dk}+c1

= ‖ck‖22

∥∥∥∥∥dk − Rck

‖ck‖22

∥∥∥∥∥
2

2

+ c2

=⇒ d
(t+1)
k =

Rck
‖Rck‖2

,

because the nearest point on the unit sphere {‖d‖2 = 1} to Rck is that point normalized.
If ck is zero, then we can pick any unit norm vector as d(t+1)

k .
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Sparse coefficient update

The update for ck is group work:

c
(t+1)
k = arg min

ck∈FL

1

2
|||R− dkc

′
k|||

2
F + β ‖ck‖0 .

Because ‖dk‖2 = 1:

|||R− dkc
′
k|||

2
F = trace

{
(R− dkc

′
k) (R− dkc

′
k)
′}

= ‖ck‖22 − 2 real{d′kRck}+c1 = ‖ck −R′dk‖22 + c2

c
(t+1)
k = hard.(R

′dk,β).

The main drawback of this SOUP approach is that it is less parallelizable than the two-block BCD approach.

This SOUP alternating approach is:
A: BCD B: BCM C: Neither ??
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Example. An in-class group activity will apply this SOUP dictionary learning method to signals consisting
of a smooth part and some added spikes. The left plot shows some example signals. The right plot shows the
true dictionary, the initial dictionary estimate D0 (from PCA) and the estimated dictionary D̂.
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Joint update of atom and coefficients (Read)

Previously we focused on alternating between updating one atom dk and the corresponding coefficient vector
ck, ala SOUP. Can we update them concurrently? Starting with the residual (6.21) and dropping subscript k
for simplicity, we want to solve (or descend)

arg min
c∈FL, d∈Fd : ‖d‖2≤1

f(d, c), f(d, c) ,
1

2
|||dc′ −R|||2F

c
=

1

2
‖d‖22 ‖c‖

2
2 − d′Rc.

The Hessian of this cost function is

∇2f =

[
‖c‖2 Id 2dc′ −R

2cd′ −R′ ‖d‖2 IL

]
. (6.22)

Consider the scalar case (d = L = 1) and suppose R = 0. Then ∇2f =

[
c2 2dc

2cd d2

]
which has eigenvalues

λ = (d2 + c2 +
√

(d2 − c2)2 + 16d2c2)/2, so ρ(∇2f) is unbounded as c increases. Thus the claim in [13]
that∇f is jointly global Lipschitz is incorrect in general.

However, in practical problems it seems reasonable to assume (or impose) that the sparse coefficients are
bounded by some finite maximum value: ‖c‖∞ ≤ z̄, cf. [13, 14]. In the scalar case this leads to a simple
upper bound on the spectral radius of the Hessian.

Challenge: using ‖d‖2 ≤ 1 and ‖c‖∞ ≤ z̄, find an upper bound on the spectral radius of the Hessian in
(6.22). It is fine to assume 1 ≤ z̄. Perhaps using |||·|||1 could simplify.
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6.2 Machine learning applications

Low-rank approximation for large-scale problems

Given Y = X + ε ∈ FM×N where ε denotes a M ×N noise matrix and we believe rank(X) ≤ K.

EECS 551 used truncated/thresholded SVD methods requiring O(MN2) operations that do not scale to large
problems where both M and N are large, even if the rank K is very small. We can overcome this problem
using alternating minimization (two-block BCD/BCM) methods.

Matrix factorization approach

To overcome this limitation of SVD-based approaches, one can take a matrix factorization approach by
choosing a desired (maximum) rank K and expressing X̂ directly as

X̂ = U︸︷︷︸
M ×K

V︸︷︷︸
K ×N

,

where now U and V should be simply interpreted as factors, not as matrices with singular vectors.

http://en.wikipedia.org/wiki/Matrix_factorization_(recommender_systems)
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With this formulation, a typical optimization problem for finding U and V , and hence X̂ , looks like:

X̂ = Û V̂

(Û , V̂ ) = arg min
U∈FM×K , V ∈FK×N

Ψ(U ,V )

Ψ(U ,V ) ,
1

2
|||Y −UV |||2F + β1R1(U) + β2R2(V ),

where one must select appropriate regularizers for U and V . The data term here is biconvex.

Ambiguities

Scale ambiguity: Ũ = cU , Ṽ = 1
c
V =⇒ Ũ Ṽ = UV , c 6= 0

Factorization ambiguity for invertible P : Ũ = UP , Ṽ = P−1V =⇒ Ũ Ṽ = UPP−1V = UV

• These ambiguities might not matter if we just want the final X̂ .
• They might matter for optimization where if the iterates do not converge.

Constraining U to have orthonormal columns resolves the above
scale (?) and factorization (?) ambiguity.
A: F,F B: F,T C: T,F D: T,T ??
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Two-block BCM with unitary constraint

One way to resolve the scale ambiguity is to constrain U to have orthonormal columns:

R1(U) = χVK(FM )(U),

where the Stiefel manifold is VK(FM) =
{
Q ∈ FM×K : Q′Q = IK

}
. The optimization problem becomes:

X̂ = Û V̂ , (Û , V̂ ) = arg min
U∈FM×K , V ∈FK×N

Ψ(U ,V ), Ψ(U ,V ) ,
1

2
|||Y −UV |||2F + χVK(FM )(U).

A two-block BCM for this problem is:

Ut+1 = arg min
U :U ′U=IK

|||Y −UVt|||2F = Ũ Ṽ ′, Y︸︷︷︸
M ×N

V ′t︸︷︷︸
N ×K

= ŨK︸︷︷︸
M ×K

ΣK Ṽ ′︸︷︷︸
K ×K

. O(MK2)

Vt+1 = arg min
V ∈FK×N

|||Y −Ut+1V |||2F =⇒ Vt+1[:, n] = U ′t+1Y [:, n] =⇒ Vt+1 = U ′t+1Y , O(MNK)

by solving separate LS problems for each column of V , because

|||Y −Ut+1V |||2F =
N∑
n=1

‖Y [:, n]−Ut+1V [:, n]‖22 .
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• Convergence?
Cost function decreases every iteration, bounded below, =⇒ cost converges.
Convergence of iterates is an active research area.
Yes, Under some RIP conditions [15]
• Other regularizers or constraints?

Sparsity (even more structure than low-rank!) R2(V ) = ‖vec(V )‖1
group work: V update using PGM (because we have so many tools now)
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Fused LASSO / generalized LASSO (Read)

The fused LASSO is a generalization of the LASSO problem used in machine learning for regression prob-
lems where some features are known to be related [17]. The cost function has the form

Ψ(x) =
1

2
‖Ax− y‖22 + β ‖x‖1 + γ ‖Tx‖1 ,

for some special matrix T that involves finite differences between correlated features.

This is a challenging optimization problem.

A “dual path algorithm” [18] [19] [20] is available in R:
https://rdrr.io/cran/genlasso/man/fusedlasso.html

However, the documentation states: “Hence it is not advisable to run fusedlasso2d on image denoising prob-
lems of large scale, as the dual solution path is computationally infeasible. It should be noted that a faster
algorithm for the 2d fused LASSO solution path (when the predictor matrix is the identity), which begins at
the dense end of the path, is available in the flsa package.”

A related cost function called generalized LASSO simply uses β = 0 above.
https://rdrr.io/cran/genlasso/man/genlasso.html

These challenges motivate the AL/ADMM methods described in Ch. 7.

https://rdrr.io/cran/genlasso/man/fusedlasso.html
https://rdrr.io/cran/genlasso/man/genlasso.html


© J. Fessler, March 23, 2020, 10:26 (class version) 6.52

Alternating minimization for 0-norm in biconvex form (Read)

Consider the very challenging sparsity-constrained optimization problem

arg min
x∈FN

f(x) s.t. ‖Tx‖0 ≤ K. (6.23)

Nothing we have covered so far solves this type of problem for a general matrix T .
If f has a Lipschitz gradient, then when T = I we could make a proximal gradient method for (6.23), which
would involve a form of iterative hard thresholding.

For z ∈ RN , we can write the 0-norm as the following (convex!) optimization problem solution [21]:

‖z‖0 = min
−1N≤u≤1N

‖u‖1 s.t. ‖z‖1 = 〈u, z〉 .

The unique solution is u∗ = u∗(z) = sign .(z), for which ‖u∗‖1 = ‖z‖0.
More generally (thanks to Katherine Banas for helping me see this), for z ∈ FN , we can write the 0-norm as
the following (convex!) optimization problem solution:

‖z‖0 = min
u∈FN : ‖u‖∞≤1

‖u‖1 s.t. ‖z‖1 = 〈u, z〉 . (6.24)

The unique solution is u∗ = u∗(z) = sign .(z), for which ‖u∗‖1 = ‖z‖0.
The form (6.24) is general enough to cover both R and C cases.
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Thus we can rewrite the original problem (6.23) as:

arg min
x∈FN

min
u∈FN

f(x) + χCK (u) s.t. ‖Tx‖1 = 〈u, Tx〉, CK =
{
u ∈ FN : ‖u‖∞ ≤ 1, ‖u‖1 ≤ K

}
.

(6.25)

One can verify that the constraint set ‖z‖1 = 〈u, z〉 is convex, so (6.25) is biconvex [22].

When ‖u‖∞ ≤ 1, we have 〈u, z〉 ≤
∑N

n=1 |zn| = ‖z‖1.
Thus {z : ‖z‖1 = 〈u, z〉} = {z : ‖z‖1 ≤ 〈u, z〉} .
Now if z and w are both in this set then αz + βw is also in this set for 0 ≤ α ≤ 1 and β = 1− α,
because ‖αz + βw‖1 ≤ α ‖z‖1 + β ‖w‖1 ≤ α 〈u, z〉+β 〈u, w〉 = 〈αu + βw, z〉 .
Still, that constraint seems challenging, so one can replace the constraint in (6.25) with a penalty on the gap:

arg min
x∈FN

min
u∈FN

f(x) + χCK (u) + µ (‖Tx‖1 − 〈u, Tx〉) . (6.26)

This is a biconvex problem. One can increase µ as the iterations proceed to (asymptotically) enforce the
constraint. The obvious approach here is alternating minimization and there are convergence results in
[21].
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Interpretation (Read)

For any finite µ > 0, we can rewrite the penalized formulation (6.26) as:

arg min
x

f(x) + µR(Tx), R(z) , min
u∈CK

(‖z‖1 − 〈u, z〉) .

We can simplify the expression for R as follows:

R(z) = ‖z‖1 − g(z), g(z) , max
u∈CK

〈u, z〉 = sum(sort(abs(z))[1:K]) .

(This is related to the “order weighted L1” (OWL) regularizer [23].) Thus

R(z) = µ sum(sort(abs(z))[K+1:end]) . (6.27)

So this regularizer penalizes the N −K smallest (in magnitude) values of z = Tx, so as µ increases those
values will be thresholded to zero, which is what (6.23) requires! To help see this, note that

‖z‖0 ≤ K ⇐⇒ norm(sort(abs(z))[K+1:end],1) == 0

This analysis is helpful for insight, but the sorting operation in (6.27) is very nonconvex and hard for opti-
mization. In contrast, the biconvex set up (6.26) seems much simpler for optimization.



© J. Fessler, March 23, 2020, 10:26 (class version) 6.55

6.3 Convergence properties

BCD converges in 1 iteration in the rate cases where the cost function is block separable (decoupled):

Ψ(x1, . . . ,xB) =
∑B

b=1
Ψb(xb) .

Convergence results (for limit points) under weak assumptions are given in [24, p. 268]. See also [25–34].

Convergence of the coordinate descent method for strictly convex, twice-differentiable cost functions is an-
alyzed in detail in [35], including consideration of box constraints. Powell demonstrates that uniqueness of
the “arg min” step is important to ensure convergence [36].

Convergence rate analysis, including constrained cases, is given in [31, 37].

For “pure” coordinate descent (CD), where we update one parameter at a time in sequence, if the cost
function is twice differentiable then there is an asymptotic linear convergence rate. Specifically, when xn is
near the minimizer x̂:

‖xn+1 − x̂‖H1/2 ≤ ρ(M ) ‖xn − x̂‖H1/2 , M = I − [D + L]−1H ,

where H = ∇2 Ψ(x̂) = L + D + L′ where D is diagonal and L is lower triangular. The analysis is similar
to that of the Gauss-Seidel method for solving a linear system of equations.

http://en.wikipedia.org/wiki/Gauss-Seidel_method
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Analysis of the convergence rate of “pure” CD is a special case of the analysis of SAGE in [38].

For a BPGM version with momentum see [34, 39].

For analysis of inexact proximal BCD see [40].

Generalizations for non-smooth and non-convex functions are in [29, 40, 41]. This is an evolving area because
of growing interest in BCD methods.

In particular, there is considerable recent focus on biconvex problems like those involving matrix factoriza-
tion X = UV . One can show that that some such problems have no spurious local minima [42–44].

Global convergence guarantees for dictionary learning appear in [45], despite many saddle points, for random
initialization.

For randomized block selection, see [46].
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6.4 Summary

Alternating minimization methods have a multitude of applications. They also provide a nice context for
course review because they use many previous methods (gradient, MM, proximal) as intermediate steps.

Limitations of BCD methods are difficulty with parallelism (if one uses too many blocks with too small
sizes) and getting stuck at non-stationary points for non-smooth cost functions.
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