Continuous-Time Random Processes
EECS 501, J. Fessler, November 28, 1995

A continuous-time random process is an indexed collection of random variables X (¢,w) defined for each ¢ in
an index set 7. The ingredients are the following.
o A probability space (Q,F, P).
e An index set 7 C IR.
e lLor each #y € 7, a random variable X () defined such that {w : X(t{p,w) < 2z} € F for all z € RR.
Formally: X : (7 x Q) — R.
There are two ways of looking at random processes.
e Hold t; fixed, then as w varies, z(f,w) is simply a random variable (a function that maps each outcome
w into a real number).
o Hold wy fixed, then as ¢ varies, X (¢,w) is called a sample path or realization of the random process.
Example (random telegraph). Here is one way to create a continuous-time random process from a random
sequence. Assume {Y;} is an i.i.d. random sequence with P[Y; > 0] = 1. Define

)((t) _ (_1)min{n:2:.l=1 Yi>t}‘

A typical sample path looks like:

Unlike random sequences, which are countable collections of random variables, continuous-time random
processes are uncountable collections of random variables. Thus the finite-dimensional distribution functions
are in general insufficient to completely describe all probabilities of events of interest. We restrict attention
to the class of random processes that are “sufficiently continuous” that their finite-dimensional distribution
functions are adequate. This class is called separable random processes. In this class, probabilities, events,
etc. can be described by (possibly limits of) finite collections of random variables, so we can apply all the
tools we have already developed for such finite collections, (i.e. random vectors).
A random process X (t), ¢t € 7 is separable iff for any countable set T that is dense in 7', and for any
indexed collection of Borel sets By, t € 7, if we define N = ;7 [X: € Bt] — (;e7[X: € By, then

e N e F, and

e P(N)=0.

Note that if these conditions hold, then since

([X:€ B]C () [X:€ B,

teT tETC
we can define: -
P(()1X: € By)) = P([[Xy, € B)),
teT i=1

where, being countable, T = {t1,13,...}.



The nth-order finite-dimensional distribution functions is defined as:

FX(%l,...,$n;t17...,tn) = P[X(tl) S $1,X(t2) S $2,...,X(tn) < $n],

for appropriate values of the arguments, i.e. z1,...,2, € IR and distinct #1,...,t, € 7, for i = 1,...

Alternative shorthand notation with “double-duty” subscripts:
1*—1)((ZC1517 .. .,ZCtn) = P[X(tl) S ZCtl,X(tQ) S Tty 7X(tn) S $tn]
We can then define the nth-order finite-dimensional density function:
87L
fX(;Z‘l, .. .,;fn;tl, .. .,tn) = mFX($1, .. .,mn;tl, .. .,tn).

MOMENTS

e Mean function:
px(t) = EIX()] = [ afx(ait) do

e Autocorrelation function:
RX(tl,tQ) = E[X(tl)X*(tg)] = // .fl;r;fx(;rl,;ﬁz;tl,tg) d$1d$2
e Autocovariance function:

Kx(ti,t2) = E[(X(t1) — px (1)) (X (t2) — px (t2))"]

PROPERTIES OF MOMENTS

e Hermitian:
RX(tlth) :R;((t27t1)7 I(X(t17t2) = I(}}(t27t1)

e Variance Function:

Var(X (1)) = Kx(1,1)

e Autocovariance and autocorrelation relationship:

Kx(t1,t2) = Rx(t1,12) — px (t1)px (f2)

¢ Nonnegative definiteness:
g E aia§ﬁ'X(ti,tj) >0, E E aia;Rx(ti,t]') >0, Va;

e Schwarz:

[Rx(t1,12)] < \/Rx(tr, ) Rx(12,12) since [E[X (1) X (12)]] < /EIIX (1) PIE[ X (12)]2]



CLASSES OF RANDOM PROCESSES

e Markov
fX(mn;tnLrn—la NP S 2 '7t1) = fX(xn;tnlxn—l;tn—l) for ty >lp—1>...>10

or in shorthand:
Ix(@e, |2ty 2n) = fx (2|, )

e Independent Increments
X(t1), X(t2) — X(t1), ..., X(tn) — X(tn—1) mutually independent for ¢, > ¢,_1 > ...> t;
e Strict-Sense Stationary
fx(z1, .. znit, oo t) = fx(@1, .z T+, ., T+ 1), VT ER
In particular, for 7 = —ty:
fx(@y, . o xnty,. o tn) = fx(1, .., 20;0,t0 — ty, .00ty — 11)
o Wide-Sense Stationary
E[X(t)]=px, Vt € R, Rx(t1,t2) = Rx(t+t,7+13), VT € R

In particular, for 7 = —ty:
AN
Rx(t1,t2) = Rx(0,t3 —t1) = Rx(t2 — 1)

¢ (Gaussian
X(tl) E[X(tl)] I(X(tl s tl) s I(X(tl s tn)
: ~N : ; : :
X(tn) E[X(t,)] Kx(tn,t1) -+ Kx(tn,tn)
Fact: if X(¢) is SSS, then it is WSS.

The converse is not true in general; an exception is when X (¢) is a Gaussian r.p.

PAIrRs oF RANDOM PROCESSES

e Joint finite-dimensional distribution function:
Fxy (1,29, .., Tk, Y1, Y2, - - Y3 tsto, oo oy thy S1,82, -+, S1)
= P[X(t1) <@y, X () <25, Y(81) S yny--, Y(s1) Syl
e Mutual Independence:
Fxy (@1, . %p, 01, U5t - tey S50 0081) = Fx(za, . zety, o ) By (ya, - W13 15+ -4, 81)
e Jointly strict-sense stationary. V7 € IR:
Fxy (@1, . @k Y1, U5t ooty 150 0081) = Fxv(@1, oo Tk, Y1y - - Y TG, oo THE, THST, .o, THST)

o If X(¢) and Y (t) are jointly strict-sense stationary, then they are individually strict-sense stationary.

The reverse is not true in general.



MOMENTS OF PAIRs OF RANDOM PROCESSES

o Cross-correlation Function
Rxv(tt2) = EX(0)Y*(12)] = [ [ 2y fxrv(e,yt,12) dody
e Cross-covariance Function

Kxy(ti,t2) = E[(X(t1) — px(t1))(Y(t2) — py (t2))"]

PROPERTIES OF MOMENTS OF PAIRS OF RANDOM PROCESSES

¢ Hermitian symmetry:

Rxy(ti,t2) = Ry x(t2,t1), Kxvy(ti,t2) = Ky x(t2,t1)

e Autocorrelation function from cross-correlation function

Rx(t1,t2) = Rxx(t1,12)

e Cross-covariance / cross-correlation relationship:
Kxy(t,t2) = Rxy(t,t2) — E[X(0)]E[Y™(15)]

e Schwarz inequality for cross-correlation:

| Ry (t1,12)] < /Rx(t1,t1) Ry (ta, t2)
e Mutual independence and cross-covariance:
Kxy(t1,t2) = 0if X(t) and Y (¢) mutually independent

We say X (t) and Y () are jointly Gaussian random processes iff all of their joint finite-dimensional density
functions have the normal form with the appropriate mean and covariance, i.e.

I X(tl) i I E[X(tl)] i ( I(X(tlytl) cee ](X(tl, tk) I(Xy(tl, 81) cee I(Xy(tl, 81) i
X('tk) ~ N E[X(tk)] I()((lgk,tl) s I()((lgk,tk) I()(y(‘tk,sl) s ](XY(.tk,SZ)
Y(Sl) E[Y(Sl)] ’ I(YX(Slatl) cee I(YX(Sl,tk) I(Y(Sl, 81) s I(Y(Sl, S[)

L Y(.Sl) ] L E[Y(S;)] 1 L I(YX(.SZ, tl) cee I(yx(.sl, tk) f(y((;l, 81) cee ffy(:sl, 81)

for all appropriate values of the indices.
We say X(t) and Y () are jointly wide-sense stationary iff
e Fach of X(t) and Y(¢) are individually WSS, and

o Rxy(li,12) = Rxy(r + 11,7 +12), Vi1,t5,7 € R, ie. Rxy(t1,12) = Rxy(t2 —t1)
If X(¢) and Y (%) are jointly strict-sense stationary, then they are jointly wide-sense stationary. In general,
the reverse is not true. An exception is jointly Gaussian, jointly WSS random processes.




PROPERTIES OF AUTOCORRELATION FuNcTION FOR WSS RANDOM PROCESSES

Rx(r) = Rx(-7)

Rx(0) = E[|X (1))

|Rx(7)| < Rx(0) since |Rx(7,0)| < /Rx(7,7)Rx(0,0)

If Rx(7) is continuous at 7 = 0, then Rx(7) is continuous over all of IR.
Proof: |Rx(r +6) — Rx(r)| = [E[(X(7+6) — X(7))X(0)]] < VE[[X(r+8) - X()PIE[X(0)]7] =
V2(Rx(0)— Rx(6))Rx(0),s0if |[Rx(0)— Rx(8)] — 0as § — 0, then |[Rx(74+68)— Rx(7)| = 0asé — 0

for any .

WSS RaNnDOM PRrRocCESSES AND LSI SYSTEMS

e For BIBO LSI system, WSS input yields WSS output, and input and output are jointly WSS.
e Power spectral density: Sx(w) = [ Rx(t)e™?“* dt. (Fourier transform of autocorrelation function.)

e Tor LSI system with impulse response h(t) and transfer function H(w) = [h(t)e 7! dt, the input-
output relationship is Sy (w) = |H (w)[29x (w).



