
Eng. 100: Music Signal Processing W24 ©J. Fessler
February 15, 2024 22:18

Project 2: Touch-tone synthesizer and analyzer

1 Abstract

Now that you have acquired some tools for analyzing frequencies and using Julia, you will apply them to a
small engineering project: touch-tone phone tones. The goals of this lab are: (1) To analyze touch-tone phone
signals and determine their spectral content; (2) to use Julia to create a GUI synthesizer that functions as
a touch-tone keypad and that generates the proper tones when pressed with the mouse; (3) to write a Julia
transcriber program that accepts as input a touch-tone phone signal, determines the phone number, and prints
it out on the screen; and (4) to analyze the effect of noise on this transcriber. In addition to applying the tools
you have acquired, this project also helps prepare you for the final project.

2 Background

Touch-tone phones create a multi-frequency tone when a button is pressed. That tone is sent over a phone line
(or wirelessly) as a signal. The goal of this project is to “reverse engineer” the touch-tone system and build
your own Julia-based touch-tone synthesizer and transcriber from scratch. The only things you are allowed
to use are: (1) the techniques you have learned so far in Engin 100; and (2) the 12 signals corresponding to
each button in the keypad of your touch-tone or cell phone, as given in the file project2.wav on Canvas.
The correlation method used in the transcriber in Section 3.3 below uses matrix-vector and matrix-matrix
multiplication. Wikipedia has a thorough description of matrix multiplication. Many students will need to
review the definition to understand the correlation method.

3 Project 2: What you have to do

The results of this project will be three jl-files, one implementing a touch-tone synthesizer, and one imple-
menting a touch-tone transcriber, and one that evaluates that transcriber’s robustness to noise. You also must
demonstrate to your lab instructor that they work.
You will use the first program to write a signal to a file touch.wav using the command wavwrite in the
WAV package, as well as to produce a sound using soundsc from the Sound package. Then your transcriber
will use wavread (see Lab 2) to read in and then decode the signal stored in touch.wav . You will also use
the spectral analysis techniques that you have learned to analyze the touch-tone signals in the first place, like
you did with the musical tones in Lab 2. Finally, you will investigate the effect of noise in the touch-tone
signal on your transcriber.
We encourage your team to create a private repository on https://github.com for your code, and to use git
software for collaborative code editing. An effective approach is the github-flow process, and a useful tool is
the (free) GitHub Desktop app. None of this is required for Project 2, but these are industry standard tools
and starting to learn them here will help your team be more efficient for Project 3. A private github repo also
ensures your code is backed up. Here is a github tutorial for getting started.

3.1 Touch-tone signal analysis

Use the techniques you have learned to analyze the 12 signals generated by the 12 keys on a touch-tone phone
keypad. Download project2.wav from the Canvas; this file contains, in succession, the signals produced by
pressing keys “1,2,3,4,5,6,7,8,9,*,0,#” (in that order) for half a second each (total duration=6 seconds). Use

1

https://umich.instructure.com/courses/646958
http://en.wikipedia.org/wiki/Matrix_multiplication
http://en.wikipedia.org/wiki/Matrix_multiplication#Definition
https://github.com/dancasimiro/WAV.jl
https://github.com
http://en.wikipedia.org/wiki/Git
https://docs.github.com/en/get-started/quickstart/github-flow
https://desktop.github.com
https://docs.github.com/en/get-started/quickstart/hello-world
https://umich.instructure.com/courses/646958

the wavread function to read the signal and sampling rate from this file. All you will be told here is that you
have learned the tools necessary to do this. Go to it!

3.2 Touch-tone synthesizer

Write a Julia program (and save it as an jl-file) that:
• Creates an on-screen keyboard using a sequence of Gtk functions that resembles the 12-key keypad on a

touch-tone phone or a cell phone (similar to what you did in Project 1);
• Produces the appropriate sound, lasting half a second, when pressed by clicking the mouse on it;
• Writes the signal to a file touch.wav using wavwrite for subsequent decoding by your transcriber.

3.3 Touch-tone transcriber

Write another Julia program (and save it as an jl-file) that does the following.
• Read a touch-tone signal (and sampling rate) produced using the program above and that was stored in

touch.wav using wavread .
• Determine which key was pressed for each signal.
• Print out on the screen (at the Julia REPL) the phone number that the signal represents (without the “-”

in 123-4567).
• Your transcriber need not be able to handle the “*” or “#” keys (these are not part of a phone number).

Hints
• You could use abs.(fft()) to look for peaks in the spectrum of each digit signal, but it is much faster to

look only for those frequencies
(
F1 , . . . , FM

)
that you expect to see in the signal.

• Given a vector of sampled signal x where N=length(x) and S = sampling frequency, and freqs a
vector of frequencies of interest, use the matrix-product implementation described in lecture:

c = cos.(2π/S * freqs * (0:N-1)') * x # check the size!
s = sin.(2π/S * freqs * (0:N-1)') * x
corr = c.^2 + s.^2
I = argmax(corr)

• The last statement determines the location (i.e., index) I of the maximum of corr .
• Note the use of the transpose operation ’ above. You should study what is the size of the array of signals

generated by the command z = cos.(2pi/S * freqs * (0:N-1)’)
• Here is an equivalent alternative approach that uses dot product and a Julia comprehension loop:

using LinearAlgebra: dot
c = [dot(cos.(2π/S * f * (0:N-1)), x) for f in freqs] # check the size!
s = [dot(sin.(2π/S * f * (0:N-1)), x) for f in freqs]
corr = c.^2 + s.^2
I = argmax(corr)
Julia comprehensions were described in Section 5.3 of the Julia tutorial. If needed for this project, review
that section or the Julia manual section on comprehensions.

• See the Julia tips section below for more about the argmax command.
• You can reshape a signal x consisting of multiple tones into a 2D array of size number of samples ×

number of tones to make a matrix where each column is one tone, and then perform correlation one column
at a time using a for loop or by using eachcol (see below) with a Julia comprehension.

• If you have an array B where you want to replace all the values that are 11 with the value 0, use
B[B .== 11] .= 0
There are many ways to do this part so not all of you may want to use this hint.

2

https://docs.julialang.org/en/v1/manual/arrays/#man-comprehensions

3.4 Transcriber test with mystery signal

Download the test signal project2test.wav from Canvas and use your transcriber to determine what phone
number corresponds to that signal. Include that number in your report.

3.5 Transcriber robustness to noise

Now investigate the effect of noise on your transcriber, as follows.
• Add noise to the signal produced by your touch-tone synthesizer for a single key press. Use the signal for

the “1” button from project2.wav , i.e., the first 4096 samples of that signal.
Use randn (not rand) to generate pseudo-random noise.
Use soundsc to listen to the signal before and after you add noise to it for the lowest and the highest noise
levels.

• Compute the Signal-to-Noise Ratio (SNR):

SNR = 10 log10

∑N
n=1 |signal[n]|

2∑N
n=1 |noise[n]|

2
.

This is the noise level figure-of-merit.
• For each of 10 different noise levels (multiply 5*randn by successively larger numbers), estimate the error

rate by counting the number of incorrectly-decoded digits out of 100. Plot the error rate (as a percentage)
versus SNR. Hint. The error rates should vary from quite large values (likely over 90%) to small values
(likely under 5%). Each group may get somewhat different plots because of randn .

3.6 Actual phone tones (optional)

• Press your own phone keypad keys and record the audio using a microphone and the record function in
the Sound package, as demonstrated in class with guitar sounds.

• Apply your transcriber to your recorded touch-tone phone signal.
• Does your transcriber work on this signal?
• Try to use your synthesizer to dial a number on your cell phone when held near the speaker.

3.7 Julia tips

To see whether a variable has a certain value or not, use an if statement like this:

a = rand(1,1)
if a < 0.5

println("a is smaller than 0.5")
else

println("a ≥ 0.5")
end

Or use the ternary operator with ? and : like this:

a < 0.5 ? println("a is smaller than 0.5") : println("a ≥ 0.5")

To check if a variable differs from some value, then use the “not equal to” symbol != like this:

3

https://umich.instructure.com/courses/646958
https://github.com/JeffFessler/Sound.jl
https://docs.julialang.org/en/v1/manual/control-flow/#man-conditional-evaluation
https://docs.julialang.org/en/v1/base/base/#?:
https://docs.julialang.org/en/v1/manual/mathematical-operations/#Numeric-Comparisons

a = 2
if a != 1

println("1 is not equal to 2, obviously")
end

The argmax and findmax functions are useful when working with correlations.

Try the following: a = [10, 20, 30, 15]
(big1, index1) = findmax(a)

The result is big1 = 30 and index1 = 3 because the largest value in a is its 3rd element.

If you only need the index, then use argmax(a) , which returns 3 here.

The argmax and findmax functions can also work with arrays.

Try the following: b = [10 20; 30 40; 50 15]
(big2, index2) = findmax(b, dims=1)

index2 = argmax(b, dims=1)

In this case big2 = [50 40] because the largest value in the first column of b =

 10 20
30 40
50 15

 is 50 and the

largest value in the second column is 40. The second output has type CartesianIndex which is useful for
multidimensional arrays but is a bit more complicated than we need here, so instead we simplify by combining
the useful map and eachcol functions:
index2 = map(argmax, eachcol(b))
This code loops over each column of b and collects the index of that column’s maximum value. It returns
index2 = [3, 2] because the largest value in the first column is in the 3rd row and the largest value in the
second column is in the 2nd row.
Here is Julia code that uses a comprehension with a double for loop to perform correlation of each column
of an array X with sinusoids of various frequencies:

[dot(cos.(2π/S * f * (0:N-1)), x) for f in freqs, x in eachcol(X)]

RQ Proj2.1. What value is displayed by the following Julia commands?
c = [3, 1, 4, 1, 5, 9, 2, 6, -10]; index = argmax(c); @show(index)

4

3.8 Project 2 deliverables

3.8.1 Project 2 report

Write the results of your lab as a short technical report, and upload a pdf file to Canvas. This project will be
graded on both the technical communications components and on the DSP / code components.
Include the following parts, along with the other components described in the TC report specifications.
• A short summary of how you determined the touch-tone frequencies.
• A diagram of the frequencies associated with each touch-tone key.

Think carefully about what type of diagram best describes the frequencies!
• The error rate versus SNR plot.

Think carefully about appropriate labels, including units, for this plot.
• The phone number of the test signal.

3.8.2 Project 2 code

Upload to Canvas (for grading) a zip file of your three jl-files, named
p2_teamname 1.jl and p2_teamname 2.jl and p2_teamname 3.jl
for your synthesizer, transcriber, and error rate versus SNR analysis, respectively. Replace teamname with
your assigned team name.
Clear comments in the code will improve the odds of earning partial credit. It is especially useful to comment
on the size of arrays involved in the transcriber. To earn full credit, you must submit code for:
• a working synthesizer
• a working transcriber, including reporting the phone number of the test signal
• a working error rate script.

The code part will be graded by your lab instructor(s) and Prof. Fessler.
If you created a private git repo for this project, please add Prof. Fessler and your lab instructor(s) to its
access list so that we can use it to see your work.
Do not post any of your project code publicly!

5

https://umich.instructure.com/courses/646958
https://umich.instructure.com/courses/646958

	Abstract
	Background
	Project 2: What you have to do
	Touch-tone signal analysis
	Touch-tone synthesizer
	Touch-tone transcriber
	Transcriber test with mystery signal
	Transcriber robustness to noise
	Actual phone tones (optional)
	Julia tips
	Project 2 deliverables
	Project 2 report
	Project 2 code

