
Course Notes for

Engineering 100

Music Signal Processing

College of Engineering

The University of Michgan

Professor Andrew E. Yagle1

Dept. of Electrical Engineering and Computer Science

The University of Michigan, Ann Arbor, MI 48109-2122
c©2010 by Andrew E. Yagle. All rights reserved.

1Prof. Fessler made a few edits. He fixed a few typos and probably created some others. The reader is
cautioned that these notes are still in “draft” form. Please report errors to Prof. Fessler.

Contents

1 Introduction to Musical Signals and to Engineering 100 Technical Material 4

1.1 Introduction to the Course . 4

1.2 Musical Signals . 5

1.2.1 Tonal Signals . 5

1.2.2 Trumpet Signal . 6

1.3 Sinusoidal Signals . 6

1.4 Sampling Signals . 6

1.5 Reconstruction of Signals from Their Samples . 7

1.6 Two Useful Trig Identities . 8

2 Computing and Interpreting the Frequencies of a Sampled Sinusoid 10

2.1 Overview . 10

2.2 Computing Frequency of a Sinusoid from its Samples 10

2.2.1 Derivation of the Formulae . 10

2.2.2 Example Use of the Formula . 11

2.2.3 Issues with the Formula . 11

2.3 Tuning a Piano . 12

2.4 Interpreting Data . 13

2.4.1 Problem Statement . 13

2.4.2 Semi-Log Plots . 13

2.4.3 Log-Log Plots . 14

2.4.4 Semi-Log and Log-Log Scales . 14

2.4.5 Missing Single Value . 15

2.4.6 Missing Multiple Values . 16

3 Fourier Series and Musical Signals 17

3.1 Overview . 17

3.2 Fourier Series . 17

3.2.1 Basics of Fourier Series . 17

3.2.2 Fourier Series of a Trumpet . 18

3.2.3 Line Spectrum . 19

3.2.4 Another Form of Fourier Series . 19

3.3 Sampling Theorem . 20

3.3.1 Sampling Theorem: Derivation . 20

3.3.2 Sampling Theorem: Example . 21

3.4 Formulae for ak and bk . 22

3.4.1 Formulae for ak and bk . 22

2

CONTENTS 3

3.4.2 Formulae for ak and bk: Example . 22
3.4.3 Computing Line Spectra . 23

3.5 Noisy Periodic Signals . 23
3.6 Low-Pass Filtering . 24

3.6.1 Basic Concept . 24
3.6.2 Low-Pass Filtering Example . 24

4 Spectrogram: Time-Varying Spectra 26
4.1 Overview . 26
4.2 Motivation . 26
4.3 Spectrogram . 27

4.3.1 Presentation . 27
4.3.2 Discussion . 27

4.4 Time-Frequency Plots:
Resolution Tradeoff . 28

4.5 Chirp Signal . 28
4.5.1 Interpretation . 29

4.6 Removing Interference . 29

5 Transcriber Approaches 31
5.1 Overview . 31
5.2 Note Identification . 31

5.2.1 Spectrogram . 31
5.2.2 Fundamental Identification . 32
5.2.3 Harmonic Product Spectrum . 33
5.2.4 Autocorrelation . 33

5.3 Other Concepts . 34
5.3.1 Additive Synthesis . 34
5.3.2 Reverb(eration) . 35
5.3.3 Signal-to-Noise Ratio (SNR) . 35

Chapter 1

Introduction to Musical Signals and
to Engineering 100 Technical Material

1.1 Introduction to the Course

These are a set of course notes for the freshman
engineering course Engineering 100 (Music Sig-
nal Processing) at the University of Michigan,
Ann Arbor. No prior knowledge of calculus is
assumed; the highest level of mathematics used
consists of logarithms and the cosine addition
formula. However, some very basic familiarity
with Matlab is needed (the required level of fa-
miliarity is provided in Lab #1). No program-
ming skill is needed or provided; the entire course
can be completed without using a programming
loop or a conditional statement.

The goal of this course is to provide students
with the engineering background necessary to
analyze and synthesize simple musical signals.
In the first half of the course, three labs teach
students the necessary skills. These labs are:

1. Basic Matlab skills (mostly plotting)

2. Determining musical frequencies:

• Using a simple digital signal processing
(DSP) algorithm to compute frequen-
cies present in a tonal version of “The
Victors” (the University of Michigan
fight song);

• Interpreting the computed frequencies
using log-log and semi-log plots;

• Inferring the existence of accidental
notes (sharps and flats) from these log-
log and semi-log plots.

3. Fourier series, spectrogram and spectra:

• Computing the spectra of various sig-
nals using the FFT;

• Filtering out noise using the FFT;

• Visualizing “The Victors” plus some
interference using a spectrogram;

• Using this spectrogram and the FFT
to remove the interference.

Also during the first half of the course, stu-
dents complete two one-week projects:

1. Tone synthesizer and transcriber:

• Programming in Matlab a simple tone
synthesizer that generates tonal music
from an on-screen keyboard;

• Programming in Matlab a simple tone
transcriber that accepts a tonal music
signal from the synthesizer and outputs
a pseudo-musical notation using Mat-
lab’s stem command.

2. Reverse-engineer touch-tone phone signals:

• Computing the spectra of touch-tone
phone signals using the FFT;

• Programming in Matlab a touch-tone
synthesizer that generates touch tones
from an on-screen keyboard;

• Programming in Matlab a touch-tone
transcriber that accepts a touch-tone
signal and outputs the phone number;

4

1.2. MUSICAL SIGNALS 5

• Analyzes the performance (error rate
vs. SNR) of the transcriber in noise.

During the second half of the course, students
program in Matlab a simple music synthesizer
that outputs any of four instruments (guitar,
trumpet, clarinet, and one generated by the stu-
dents using additive synthesis) playing whole,
half, or quarter notes in a one-octave range, from
an on-screen keyboard. Reverb for the trum-
pet signal is also included. Students also pro-
gram in Matlab a music transcriber that accepts
musical signals from the synthesizer and out-
puts a pseudo-musical notation using Matlab’s
stem command. Performance of the transcriber
in noise is evaluated.

Technical communication and working in
teams constitute half of the course grade, and
are prominent in grading the final project. Ethi-
cal issues involved in copyrighting and sampling
digital music are also addressed. Important as
these topics are, these notes focus on only the
technical material of the course. (Technical com-
munication is covered in a separate textbook.)

1.2 Musical Signals

A signal is a function of time that carries infor-
mation. A musical signal is a function of time
that represents the output of a musical instru-
ment playing musical notes. Polyphonic music
and vocals are beyond the scope of this course.
What one hears with their ears can be considered
an auditory signal, consisting of time-varying
changes of air pressure. However, we shall as-
sume that the music has been played into a mi-
crophone and converted into an electrical signal.

• I will use this font for Matlab commands;

• I will give the Matlab code used for all plots;

• You can copy Matlab programs directly
from the .pdf file of these notes to the Mat-
lab command window;

1.2.1 Tonal Signals

The simplest type of musical signal is a pure
tone, or tonal signal. This is simply a sinu-

soidal signal; when listened to, it is perceived as
a simple tone. A tonal signal of note B looks like

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
−3

−1

−0.5

0

0.5

1

sec

Figure 1.1: Tonal note B signal

This is a sinusoid with a period of about 0.0020
seconds (2.0 ms), so that its frequency is about

1
0.0020 = 500 Hertz. We will discover in Lab #2
that the actual frequency of a tonal note B is 494
Hertz.
This plot was generated in Matlab using

t = linspace(0,0.005,1000);

x = cos(2*pi*494*t);

subplot(211), plot(t,x)

To listen to a tonal B signal, run Matlab and
type in the following at the Matlab prompt >>
(you will need earphones in a CAEN lab):

t = linspace(0,1,10000);

x = cos(2*pi*494*t); soundsc(x,10000)

Tonal music isn’t very interesting, although it
is easy to analyze. We will use this fact in Chap-
ter 2 to compute the frequencies of the musical
tones in a tonal version of “The Victors.” When
analyzing a phenomenon, such as music, it is
usually a good idea to start with the simplest
possible form of the phenomenon, gain some un-
derstanding of it, and then proceed to more com-
plicated forms of the phenomenon.

6CHAPTER 1. INTRODUCTION TOMUSICAL SIGNALS AND TO ENGINEERING 100 TECHNICALMATERIAL

1.2.2 Trumpet Signal

The musical signal of a trumpet playing note B:

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
−3

−0.4

−0.2

0

0.2

0.4

Figure 1.2: Trumpet playing note B

This signal is clearly much more complicated
than the pure tonal signal, but one feature stands
out: it is clearly periodic with a period of about
0.0020 seconds (2.0 msec), just like the pure tone
signal. The period of the signal specifies the note
played, whatever the instrument.

This plot was generated in Matlab using

load trumpet.mat;

t = linspace(0, 32767/44100, 32768);

subplot(211), plot(t(1:200), X(1:200))

To listen to the trumpet, run Matlab, down-
load the file trumpet.mat from the course web
site, copy it to the working directory and type

load trumpet.mat; soundsc(X,44100)

Although the trumpet signal looks compli-
cated, we will see in Chapter 3 that it is actually
well-approximated by the sum of nine sinusoids
at frequencies that are multiples of 494 Hertz.
This makes it easy to analyze and to synthesize.

1.3 Sinusoidal Signals

It is already clear that sinusoids will play a cen-
tral role in the study of musical signals. The
basic form of a sinusoidal signal is

x(t) = A cos(2πft+ θ) (1.1)

where

• A=amplitude=the maximum value of x(t);

• f=frequency in Hertz of x(t);

• θ=phase (shift) in radians of x(t);

• P = 1
f=period in seconds of x(t);

• x(t) = x(t+ P) for all times t.

The period of any signal is the amount of time
P before it repeats. If the signal is not periodic,
then the period P → ∞. The musical signal gen-
erated by a musical instrument playing a single
note (indefinitely) is periodic.

The sinusoid x(t) is periodic with period P =
1
f because (using fP = 1)

x(t+ T) = A cos(2πf(t+ P) + θ)

= A cos(2πft+ θ + 2πfP)

= A cos(2πft+ θ + 2π)

= x(t). (1.2)

This is why we need the 2π multiplying f .

The phase shift θ can be interpreted as a time
delay of − θ

2πf since

A cos(2πft+ θ) = A cos(2πf [t+
θ

2πf
]). (1.3)

However, we will not spend any more time on
phase shifts since a sinusoid delayed by a small
amount of time sounds just like the same sinusoid
without the delay. For audio, phase shift is im-
portant when adding sinusoids at the same fre-
quency, but not when adding sinusoids at differ-
ent frequencies. Phase shift affects x(t) greatly,
but not how the human ear perceives it, as you
will discover in Chapter 3 (some music scientists
disagree with this).

1.4 Sampling Signals

Musical signals are inherently functions x(t) of
continuous time t, where t is a member of the
set of real numbers. This makes them unsuit-
able for processing on digital computers (analog
computers are hard to find outside museums).
So it is necessary to convert musical signals into

1.5. RECONSTRUCTION OF SIGNALS FROM THEIR SAMPLES 7

sequences of numbers that can be stored and pro-
cessed on computers. This is done by sampling.

To sample a signal x(t), we simply take its
values at times t that are integer multiples n

S , of
some small number 1

S , where S is the sampling
rate in SAMPLE

SECOND and n is an integer. The result
is a sequence of numbers that we label x[n]. This
sequence of numbers x[n] is what we store and
process on a digital computer.

You can think of the physical act of sampling
a continuous-time voltage signal x(t) as closing
a switch for an instant every 1

S seconds, or at
a rate of S times per second, and storing those
values of x(t). Or you can think of the physical
act of sampling as multiplying x(t) by a train of
very narrow pulses separated by 1

S seconds. The
pulse at time t = n

S is multiplied by x(nS). All
other values of x(t) are multiplied by zero. The
result of this multiplication is a train of pulses of
separated by 1

S seconds, where the height of the
nth pulse is x(nS) = x[n].

Let the sinusoid x(t) = cos(2π1000t) be sam-
pled at 8000SAMPLE

SECOND . The result is

x[n] = x

(
t =

n

8000

)

= cos

(
2π1000

n

8000

)

= cos

(
2πn

1000

8000

)

= cos([π/4]n). (1.4)

The sequence of numbers x[n] is

n 0 1 2 3 4

x[n] 1 .71 0 –.71 –1

The act of sampling this sinusoidal signal is
illustrated in the next figure. The heights of the
circles indicate the values of x[n], and the stems
connect them to the times t = n

S at which they
are sampled.

This plot was generated in Matlab using

t1 = linspace(0,0.005,1000);

x1 = cos(2*pi*1000*t1);

subplot(211), plot(t1, x1)

hold on % Overlay two plots

t2 = linspace(0,0.005,41);

x2 = cos(2*pi*1000*t2);

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
−3

−1

−0.5

0

0.5

1

sec

Figure 1.3: Sampling a sinusoidal signal

subplot(211), stem(t2, x2)

The number of points to use was computed
as (8000SAMPLE

SECOND)(0.005 sec.)=40 samples. Since
both 0 and 0.005 seconds were plotted, we used
40+1=41 samples.

1.5 Reconstruction of Signals

from Their Samples

A major issue is how to reconstruct the
continuous-time signal x(t) from its samples
x[n]. How can we go from the sequence of num-
bers x[n] = {. . . 1, .71, 0,−.71,−1 . . .} back to
x(t) = cos(2π1000t)? We can try “connecting
the dots” with straight lines:

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
−3

−1

−0.5

0

0.5

1

Figure 1.4: Linear interpolation of a 1000 Hertz
sinusoid sampled at 8000SAMPLE

SECOND .

This operation is called linear interpolation.
That does not look very much like a sinusoid!

This plot was generated in Matlab using

8CHAPTER 1. INTRODUCTION TOMUSICAL SIGNALS AND TO ENGINEERING 100 TECHNICALMATERIAL

t = linspace(0,0.005,41);

x = cos(2*pi*1000*t);

subplot(211), plot(t,x)

Matlab’s plot “connects the dots” with
straight lines, i.e., performs linear interpolation.

If we sample the sinusoid faster, at
40000SAMPLE

SECOND , then linear interpolation gives

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
−3

−1

−0.5

0

0.5

1

Figure 1.5: Linear interpolation of a 1000 Hertz
sinusoid sampled at 40000SAMPLE

SECOND .

That does look more like a sinusoid. And it
also sounds much like a sinusoid.

The number of points to use was computed as
(40000SAMPLE

SECOND)(0.005 sec.)=200 samples. Since
both 0 and 0.005 seconds were plotted, we used
200+1=201 samples.

In fact, in Chapter 3 we will derive a re-
markable theorem called the sampling theorem.
This theorem states that if the sampling rate
S SAMPLE

SECOND exceeds double the maximum fre-
quency of the signal x(t) (which we will define
in Chapter 3), then x(t) can be reconstructed
exactly from its samples x[n]! Here, as long as
we know that the maximum frequency of the si-
nusoid is 1000 Hertz, then sampling faster than
just 2000SAMPLE

SECOND allows x(t) to be reconstructed
from its samples x[n]. This will not be done by
“connecting the dots” with straight lines!

1.6 Two Useful Trig Identities

Finally, we derive two trig identities that we will
use over and over in this course. These are the
only trig identities we will need!

Recall cosine addition and subtraction laws

cos(a+ b) = cos(a) cos(b)− sin(a) sin(b)

cos(a− b) = cos(a) cos(b) + sin(a) sin(b).

Adding these gives

2 cos(a) cos(b) = cos(a+ b) + cos(a− b) (1.5)

This identity allows us to convert the product of
two cosines into the sum of two cosines. We will
use this formula extensively.
The other trig identity is obtained by setting

a = 2πf and b = θ in the cosine subtraction

formula and multiplying by A. This gives

A cos(2πft− θ) = A cos(2πft) cos(θ) (1.6)

+ A sin(2πft) sin(θ)

= C cos(2πft) +B sin(2πft)

where B and C are defined as

B = A sin(θ)

C = A cos(θ). (1.7)

From the following picture, it is clear that

A =
√
B2 + C2

θ = arctan(B/C). (1.8)

arctan is the arctangent or inverse tangent.

�
�

�
�
�
�
�
�

C = A cos(θ)

B = A sin(θ)A

θ

As an example, this identity states that

5 cos(2πft) + 12 sin(2πft)

= 13 cos(2πft− arctan(2.4)).

since
√
52 + 122 = 13 and 12

5 = 2.4. Note the
sign of the phase is negative. Also note that if
C < 0 then add 180o to the phase, since the
output of the arctan function is restricted to
|θ| < 90o.
To see the problem, this formula gives

− cos(2πft) = cos(2πft+ 0) unless we add 180o

to the phase since C = −1 < 0.

1.6. TWO USEFUL TRIG IDENTITIES 9

This formula shows that a cosine with a phase
shift is equal to the sum of a pure sine and a pure
cosine, all at the same frequencies. It will prove
useful in Chapter 3.

Chapter 2

Computing and Interpreting the
Frequencies of a Sampled Sinusoid

2.1 Overview

In this chapter we lay the groundwork necessary
to compute and interpret the frequencies present
in the sampled tonal version of “The Victors”:

1. We will derive a simple digital signal pro-
cessing (DSP) algorithm for computing the
frequency of a sinusoid from three consecu-
tive samples;

2. We will examine the issues in the implemen-
tation of this simple formula;

3. We will derive the concepts of log-log and
semi-log plots for interpretation of data.
These will be useful in many fields of en-
gineering, not just music signal processing;

4. We will see how missing data values can be
discerned and computed. This will allow us
to infer the existence of accidental (sharp
and flat) notes, even though they are not
present in “The Victors.”

2.2 Computing Frequency of a

Sinusoid from its Samples

2.2.1 Derivation of the Formulae

We are given samples x[n] = x(t = n
S) of a

continuous-time sinusoid sampled at S SAMPLE
SECOND .

We do not know the frequency, amplitude, or
phase of the sinusoid; all we know is:

• x(t) is a sinusoid; and

• Its frequency f < S
2=half sampling rate.

The latter condition is the sampling theorem
requirement that we sample faster than twice
the maximum (here, the only) frequency of x(t).
Here we will get a first glimpse of where that
condition comes from.
Since x(t) is a sinusoid, we know that its sam-

ples x[n] are

x[n] = x

(
t =

n

S

)

= A cos

(
2πf

n

S
+ θ

)

= A cos

(
2π

f

S
n+ θ

)
. (2.1)

Replacing n with n+ 1 throughout gives

x[n+ 1] = A cos

(
2π

f

S
(n+ 1) + θ

)

= A cos(2π
f

S
n+ θ

︸ ︷︷ ︸
X

+2π
f

S︸ ︷︷ ︸
Y

)

= A cos(X + Y). (2.2)

Replacing n with n− 1 throughout gives

x[n− 1] = A cos

(
2π

f

S
(n− 1) + θ

)

= A cos(2π
f

S
n+ θ

︸ ︷︷ ︸
X

− 2π
f

S︸ ︷︷ ︸
Y

)

= A cos(X − Y). (2.3)

Now substitute

10

2.2. COMPUTING FREQUENCY OF A SINUSOID FROM ITS SAMPLES 11

• X = 2π f
Sn+ θ and Y = 2π f

S

into the trig identity

2 cos(X) cos(Y) = cos(X + Y) + cos(X − Y).

and multiply by A. This gives

2A cos
(
2π f

Sn+ θ
)
cos

(
2π f

S

)

= A cos
(
2π f

S (n+ 1) + θ
)

+ A cos
(
2π f

S (n− 1) + θ
)
. (2.4)

Looking at each term, this becomes

2x[n] cos

(
2π

f

S

)
= x[n+ 1] + x[n− 1] (2.5)

which can be rearranged into

f =
S

2π
arccos

[
x[n+ 1] + x[n− 1]

2x[n]

]
. (2.6)

where arccos is the arccosine or inverse cosine.
This is clearly a formula for computing the fre-

quency of a sinusoid from any three consecutive
samples {x[n−1], x[n], x[n+1]} and the sampling
rate S SAMPLE

SECOND used to obtain those samples.

2.2.2 Example Use of the Formula

Let us use this formula on the sampled sinusoid
in Chapter 1. Recall that sampling a sinusoid at
S = 8000SAMPLE

SECOND resulted in

n 0 1 2 3 4

x[n] 1 .71 0 –.71 –1

Setting n = 1 in the formula gives

f =
S

2π
arccos

[
x[1 + 1] + x[1− 1]

2x[1]

]

=
8000

2π
arccos

[
0 + 1

2(0.71)

]

=
8000

2π
arccos[0.71]

=
8000

2π

π

4
= 1000 Hertz. (2.7)

which was the frequency of the sinusoid.
You will use this formula in Lab #2 to com-

pute the frequencies of the tones in a tonal ver-
sion of “The Victors.”

2.2.3 Issues with the Formula

One obvious issue arises if we set n = 2 in the
formula. We get

f =
S

2π
arccos

[
x[2 + 1] + x[2− 1]

2x[2]

]

=
8000

2π
arccos

[
.71 − .71

2(0)

]
. (2.8)

We obtain the indeterminate form 0
0 ! In real

life we would seldom be so unlucky as to sample
the sinusoid at a time at which it is identically
zero. However, if {x[n− 1], x[n], x[n+1]} are all
very small, numerical issues (roundoff) can cause
problems in computing the arccosine.
Of course, in real life we would have far more

than three samples available. Then we use the
formula on each triplet {x[n − 1], x[n], x[n + 1]}
of samples. Most of the computed frequencies
will be identical; the few that are different due
to roundoff error can be discarded. Of course,
we should ensure that roundoff error is the cause
of the different values, called outliers.
Another issue arises if the sampling rate S

is too small, specifically, if S < 2f . To see
why this is a problem, suppose we sample the
7000 Hertz sinusoid y(t) = cos(2π7000t) at S =
8000SAMPLE

SECOND . The samples are

y[n] = y

(
t =

n

8000

)

= cos

(
2π7000

n

8000

)

= cos

(
2πn

7000

8000

)

= cos([7π/4]n). (2.9)

The sequence of numbers y[n] is

n 0 1 2 3 4

y[n] 1 .71 0 –.71 –1

But these are the same numbers as in the pre-
vious example for f=1000 Hertz! Indeed,

x(t) = cos(2π1000t) 6= y(t) = cos(2π7000t)

x[n] = cos([π/4]n) = y[n] = cos([7π/4]n)

since the sampled signal y[n] is

y[n] = cos([7π/4]n)

12CHAPTER 2. COMPUTINGAND INTERPRETING THE FREQUENCIES OF A SAMPLED SINUSOID

= cos([8π/4]n − [π/4]n)

= cos(−[π/4]n) = cos([π/4]n)

= x[n]. (2.10)

since cos(X) is periodic with period 2π and even.

So a 7000 Hertz cosine and a 1000 Hertz cosine
are identical after sampling at 8000SAMPLE

SECOND . The
formula assumes that the actual cosine is at 1000
Hertz, the frequency which is less than half the
sampling rate. So it will give the wrong answer
if f > S/2.

A more subtle issue occurs if the sampling rate
is too large! Then x[n] is slowly varying, so that

x[n− 1] ≈ x[n] ≈ x[n+1] and x[n+1]+x[n−1]
2x[n] ≈ 1.

The formula requires computation of the arcco-
sine of a number near one, and again roundoff
error can cause problems. To see why, examine
a zoom of cos(X) for tiny X:

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
0.9986

0.9988

0.999

0.9992

0.9994

0.9996

0.9998

1

Figure 2.1: cos(X) for tiny values of X

Computing the arccosine of 0.999 requires
solving cos(X)=0.999. It can be seen that a
small change in 0.999 will cause a big change in
X=arccos(0.999), and therefore in the computed
frequency f .

Finally, the formula was derived under the as-
sumption that x(t) is a pure sinusoid. If there is
any noise added to x(t), this is no longer true,
and the formula breaks down (in fact, it breaks
down quite badly!). In Chapter 3 we will learn
a much better way to compute frequencies from
samples of signals.

2.3 Tuning a Piano

As an aside, we note that trig identity (1.5)
shows how to tune a piano.

Suppose we desire to tune a specific piano key
to note A (440 Hertz). The piano key is actually
tuned to 442 Hertz. How can we correct the
piano key to 440 Hertz if we don’t know any of:

• What note A sounds like (we are tone-deaf);

• We want to tune the piano to 440 Hertz;

• The piano is actually tuned to 442 Hertz;

• What “Hertz” even means or what trig is.

Set X = 2π441t and Y = 2πt in (1.5). This gives

cos(2π440t)+cos(2π442t)=2 cos(2πt) cos(2π441t).

The left side is the sum of the desired signal
(the correctly tuned piano) and the actual signal
(the actual mistuned piano). The right side is
a sinusoid at the frequency halfway between the
desired and actual frequencies, multiplied by the
slowly-time-varying amplitude 2 cos(2πt). The
left side is plotted below.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−2

−1

0

1

2

Figure 2.2: cos(2π440t) + cos(2π442t).

The variation of 441 Hertz shows up as solid
black since the plot lines are all squeezed to-
gether. But the amplitude is varying slowly.

This suggests a procedure for tuning a piano,
if we have a tuning fork or sinewave generator
that generates a tone at the desired frequency:

• Strike the tuning fork and mistuned piano
key simultaneously;

2.4. INTERPRETING DATA 13

• The result will sound like a tone with a
slowly-varying amplitude;

• Tighten or loosen the piano string so that
the variation gets slower;

• When the variation has stopped, the piano
is correctly tuned.

• This works even if the amplitudes are differ-
ent and there is a phase difference between
the piano and the tuning fork;

• You can do this even if you are tone-deaf!

“You can Tune a Piano, But You Can’t Tuna
Fish”-title of REO Speedwagon’s first album.

2.4 Interpreting Data

2.4.1 Problem Statement

Suppose we have run an experiment and we ob-
tained the following data:

n 1 2 3 4 5

x[n] 2 4 8 16 32

Our goal is to interpret this data-what rule
or formula is generating it? (Likely you already
know the answer, but this is a deliberately simple
example, so that you can follow it easily.)

The first thing to do is plot the data, since
the human mind interprets pictures well, finding
patterns in them. Drawing a picture is a good
first step in many mathematical, scientific or en-
gineering problems. The result is shown next.

1 1.5 2 2.5 3 3.5 4 4.5 5
0

10

20

30

40

Figure 2.3: Plot of x[n] vs. n.

This plot was generated in Matlab using

x = [2 4 8 16 32];

subplot(211), plot(x,’+’), grid on

This looks like a parabolic or exponential
curve, but which is it? Is it a quadratic, cu-
bic, or something in between? Is the base of the
exponential two, three, or something else? How
can we answer all of these questions quickly?

2.4.2 Semi-Log Plots

Suppose the formula is exponential, so that
x[n] = ban for some constants a and b. Taking
the logarithm (base 10) of this equation gives

x[n] = ban (2.11)

log10(x[n]) = n log10(a) + log10(b).

This means that if we plot log10(x[n]) vs. n, we
will get a straight line with slope log10(a) and
y-intercept (where the line crosses the vertical
n = 0 axis) log10(b). So plotting log10(x[n]) vs.
n is a quick way to see whether the formula is
exponential, and if it is to find the values of a
and b. This is called a semi-log plot since we
only take the logarithm of x[n], not of n.
A plot of log10(x[n]) vs. n looks like

1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

Figure 2.4: Semi-log plot of x[n] vs n.

This plot was generated in Matlab using

x = [2 4 8 16 32];

plot(log10(x),’+’), grid on

• This is clearly a straight line, so the formula
is exponential;

14CHAPTER 2. COMPUTINGAND INTERPRETING THE FREQUENCIES OF A SAMPLED SINUSOID

• The slope is 1.5−0.3
5−1 =0.3.

• Hence log10(a) = 0.3 → a = 100.3 = 2.

• Note the y-intercept is not 0.3, since
0.3=log10(x[1]), not log10(x[0]). Extend the
line to n=0. Then the y-intercept is zero.

• Since we know the formula is x[n] = b2n, it
is easier to skip the y-intercept and simply
plug in b = x[1]

21 = 1.

• The formula is therefore x[n] = 1(2)n.

2.4.3 Log-Log Plots

Suppose we run a different experiment and we
obtain the following data:

n 1 2 3 4 5

y[n] 1 4 9 16 25

A plot of y[n] vs n looks very much like Fig.
2-3, so it is not shown. But a semi-log plot of
y[n] vs. n isn’t a straight line! What do we do?

Suppose the formula is polynomial, so that
y[n] = bna for some constants a and b. Taking
the logarithm (base 10) of this equation gives

y[n] = bna (2.12)

log10(y[n]) = a log10(n) + log10(b).

This means that if we plot log10(y[n]) vs.
log10(n) (not n), we will get a straight line with
slope a (not log10(a)) and y-intercept log10(b).
So plotting log10(y[n]) vs. log10(n) is a quick way
to see whether the formula is polynomial, and if
it is to find the values of a and b. This is called
a log-log plot since we take the logarithms of
both y[n] and n.

A plot of log10(y[n]) vs. log10(n) looks like
This plot was generated in Matlab using

N=[1:5];Y=[1 4 9 16 25];

plot(log10(N),log10(Y),’+’),grid on

• This is clearly a straight line, so the formula
is polynomial;

• The slope is 1.4−0.0
0.7−0.0=2.0. Hence a = 2.0;

• The y-intercept is 0.0 (n=0 is in the plot);

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.5

1

1.5

Figure 2.5: Log-log plot of y[n] vs n.

• Hence 0.0 = log10(b), and b = 100.0 = 1;

• The formula is therefore y[n] = 1(n)2.0.

2.4.4 Semi-Log and Log-Log Scales

We can save the trouble of computing and inter-
preting logarithms by plotting the data directly
using semi-log and log-log axis scales. Before cal-
culators were invented, it was a big time-saver to
be able to plot the data directly, without looking
up logarithms in a table!

Plots of x[n] and y[n] vs. n using semi-log and
log-log scaled axes are

1 1.5 2 2.5 3 3.5 4 4.5 5
10

0

10
1

10
2

Figure 2.6: Plot of x[n] vs n on Semi-Log Scale.

These plots were generated in Matlab using

x = [2 4 8 16 32];

n=[1:5]; y=[1 4 9 16 25];

subplot(211), semilogy(x,’+’), grid on

subplot(211), loglog(n,y), grid on

2.4. INTERPRETING DATA 15

10
0

10
1

10
0

10
1

10
2

Figure 2.7: Plot of y[n] vs n on Log-Log Scale.

A straight line is used for the log-log plot since
it is too hard to see the crosses otherwise.

2.4.5 Missing Single Value

Now we run still another experiment and obtain
the following data:

x[n] 2 4 8 32 64 128

Note we do not specify the values of n. The
reason is that we don’t know them! All we know
is that the six values of n are a subset of the
seven values {1, 2, 3, 4, 5, 6, 7}, but we don’t know
which values! In other words, there is a missing
x[n], but we don’t know the missing value or
where it belongs! What can we do?

A semi-log plot of x[n] is illuminating:

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
0

0.5

1

1.5

2

2.5

Figure 2.8: Semi-Log Plot of x[n].

This plot was generated in Matlab using

x = [2 4 8 32 64 128];

plot(log10(x),’+’), grid on

Note the following about this plot:

• The first three points lie on a straight line
with slope=0.9−0.3

3−1 = 0.3;

• The third and fourth points lie on a straight
line with slope=1.5−0.9

4−3 = 0.6;

• The last three points lie on a straight line
with slope=2.1−1.5

6−4 = 0.3;

• The second slope is exactly twice the first
and third slopes.

Of course, any two points lie on a straight line,
but the slope values cannot be coincidence.

If there were a missing value between the third
and fourth points, they would be twice as far
apart, and the slope of the line connecting them
would match the other two slopes. That is,

1 2 3 4 5 6 7
0

0.5

1

1.5

2

2.5

Figure 2.9: Semi-Log Plot with Missing Value.

This plot was generated in Matlab using

x = [2 4 8 32 64 128];

n = [1 2 3 5 6 7];

plot(n,log10(x),’+’), grid on

It is now clear that

• The missing value is indeed at n = 4;

• The missing value is about log10(x[4]) = 1.2;

• The missing value is then x[4] = 101.2 = 16;

• The formula is therefore x[n] = 1(2)n.

We have discerned the existence, location, and
value of a missing data point!

16CHAPTER 2. COMPUTINGAND INTERPRETING THE FREQUENCIES OF A SAMPLED SINUSOID

2.4.6 Missing Multiple Values

Now we run one last experiment and obtain the
following data:

y[n] 1 4 16 32 128 512

A semi-log plot of y[n] is illuminating:

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
0

1

2

3

Figure 2.10: Semi-Log Plot of y[n].

This plot was generated in Matlab using

y = [1 4 16 32 128 512];

plot(log10(y),’+’), grid on

Note the following about this plot:

• The first three points lie on a straight line
with slope=1.2−0

3−1 = 0.6;

• The third and fourth points lie on a straight
line with slope=1.5−1.2

4−3 = 0.3;

• The last three points lie on a straight line
with slope=2.7−1.5

6−4 = 0.6;

• The second slope is exactly half the first
and third slopes.

This is like the previous example, except that
the middle slope is half, not double, the first
and third slopes. This means that the only place
where there is not a missing value is between 16
and 32! Inserting gaps between all other pairs
of points gives:

This plot was generated in Matlab using

y = [1 4 16 32 128 512];

n = [1 3 5 6 8 10];

plot(n,log10(y),’+’), grid on

1 2 3 4 5 6 7 8 9 10
0

1

2

3

Figure 2.11: Semi-Log Plot with Missing Values.

The formula is y[n] = 2(2)n. We have dis-
cerned the existence, locations, and values of
many missing data points!
In Lab #2 you will use this concept to infer the

existence of accidental notes (sharps and flats),
although they are not present in “The Victors.”

Chapter 3

Fourier Series and Musical Signals

3.1 Overview

In this chapter we introduce the concept of the
Fourier series expansion of a periodic signal. Any
real-world periodic signal can be written as a
sum of sinusoids whose frequencies (in Hertz) are
integer multiples of the reciprocal of the period
(in seconds). The amplitudes and phases of the
sinusoids are all that is needed to specify the
Fourier series expansion.

Musical signals are a natural application of
Fourier series, since musical signals (specifically,
an instrument playing a specific note) are peri-
odic. The sinusoid with the same period as the
music signal is called the fundamental; it is the
pure tone that sounds most like the signal.

To obtain the richer sound of an instrument
playing a note, we add in harmonics (musicians
call them overtones). Harmonics are sinusoids
at frequencies double, triple, etc. the frequency
of the fundamental. The amplitudes of the har-
monics determine the timbre (sound) of the in-
strument playing the note. The reason a violin
playing note B sounds different from a trumpet
playing note B is that the amplitudes of the har-
monics are different.

Why should you care about Fourier series?

1. The Fourier series representation of a musi-
cal signal is specified by only a few numbers
(the amplitudes and phases of the harmon-
ics, and the note);

2. Fourier series show that a continuous-time
signal can be reconstructed from its sam-
ples, provided the sampling rate exceeds

double the maximum frequency of the har-
monics (the sampling theorem);

3. Fourier series show how a noisy signal can
be filtered to remove almost all of the noise,
even if the noise drowns out the signal.

3.2 Fourier Series

We will make no attempt to prove the existence
of Fourier series. This topic is properly handled
in a graduate-level math course. There is quite
a history, as well as a lot of math, behind this
topic. But if we are willing to accept the ex-

istence of a Fourier series expansion of musical
signals, we can derive everything else we need.

3.2.1 Basics of Fourier Series

Let x(t) be a periodic real-world continuous-time
signal with period P , so that x(t) = x(t+P) for
all times t. Then x(t) can be written as a (usu-
ally infinite) sum of sinusoids with frequencies
that are integer multiples of 1

P Hertz. This is
called a Fourier series. We can write

x(t) =
∞∑

k=0

ck cos

(
2π

k

P
t− θ

)
. (3.1)

There are periodic functions x(t) that cannot be
so expanded, but they have bizarre properties
and are of interest only to mathematicians.
In practice, the infinite series is truncated to

a finite number K of terms, giving a finite
Fourier series. Finite Fourier series still give
good approximations to most periodic signals.
The larger K is, the better the approximation.

17

18 CHAPTER 3. FOURIER SERIES AND MUSICAL SIGNALS

A simple example of a finite Fourier series is

x(t) = cos(2π[1]t) +
cos(2π[3]t)

9
+

cos(2π[5]t)

25

+
cos(2π[7]t)

49
+

cos(2π[9]t)

81
. (3.2)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−2

−1

0

1

2

Figure 3.1: Finite Fourier Series Approximation
of a Triangle Wave with Period=1 second.

This plot was generated in Matlab using

t = linspace(0,2,1000);

x = zeros(1,1000);

for k=1:2:9

x = x + cos(2*pi*k*t) / (k*k);

end

subplot(211), plot(t,x)

x(t) is clearly a good approximation to a tri-
angle wave with period=1, except for the slight
rounding at the corners of the triangles. Note
that including more terms in the Fourier series
would sharpen these rounded corners.

3.2.2 Fourier Series of a Trumpet

Since instruments playing musical notes create
periodic signals, musical signals have Fourier se-
ries expansions. The Fourier series can be trun-
cated to a finite number of terms and still do a
good job of representing the musical signal. For
example, recall the trumpet signal in Chapter 1:

The trumpet is playing note B. The signal is
clearly periodic with a period of about 0.0020
seconds. In fact, we know from Lab #2 that
note B has a frequency of 494 Hertz, so the pe-
riod of note B is P = 1

494 seconds. Therefore,

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
−3

−0.4

−0.2

0

0.2

0.4

Figure 3.2: Actual Trumpet Signal.

the trumpet signal can be expanded as a Fourier
series which is a sum of sinusoids at frequencies
of {494, 2(494), 3(494) . . .} Hertz. Using values

c1 = 0.1155 θ1 = −2.1299 radians

c2 = 0.3417 θ2 = +1.6727 radians

c3 = 0.1789 θ3 = −2.5454 radians

c4 = 0.1232 θ4 = +0.6607 radians

c5 = 0.0678 θ5 = −2.0390 radians

c6 = 0.0473 θ6 = +2.1597 radians

c7 = 0.0260 θ7 = −1.0467 radians

c8 = 0.0045 θ8 = +1.8581 radians

c9 = 0.0020 θ9 = −2.3925 radians

the nine-term finite Fourier series approximation
to the trumpet signal is

x(t) = c0︸︷︷︸
DC

+ c1 cos(2π(1)494t − θ1)︸ ︷︷ ︸
FUNDAMENTAL

+ c2 cos(2π(2)494t − θ2)︸ ︷︷ ︸
HARMONIC

+ . . .

=
9∑

k=0

ck cos(2π(k)494t − θk). (3.3)

We will obtain ck and θk later. Note c0 = 0.

This plot was generated in Matlab using

t = linspace(0,1,44100);F=494;

C=[.1155 .3417 .1789 .1232 .0678];

C=[C .0473 .0260 .0045 .0020];

TH=[-2.13 1.67 -2.545 .661 -2.039];

TH=[TH 2.16 -1.0467 1.858 -2.39];

x = C*cos(2*pi*F*[1:9]’*t-TH’*ones(1,44100));

subplot(211), plot(t(1:200),x(1:200))

axis tight,grid on, sound(x,44100)

3.2. FOURIER SERIES 19

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
−3

−0.4

−0.2

0

0.2

0.4

0.6

Figure 3.3: Synthetic Trumpet Signal with θk.

Note the following about this Fourier series:

• The plots of the actual and synthetic trum-
pet signals are quite similar to each other;

• The actual and synthetic trumpet signals
sound almost (but not exactly) the same;

• There is no DC (zero frequency) term.
This makes sense: no one could hear it!

• The timbre (sound) of the trumpet is pro-
duced by the amplitudes {ck}. The funda-
mental alone would be just a pure 494 Hertz
tone; the overtones (harmonics) create the
richer sound of the trumpet;

• The synthetic trumpet signal has no har-
monics at 4940 Hertz or above, since these
are very small in the actual trumpet signal;

• If the trumpet were playing a different note,
494 would be replaced by the appropriate
frequency (in Hertz) given in the following
table. In a different octave, all of these fre-
quencies would be multiplied or divided by
a power of two, depending on the octave.

• If we want to store the synthetic trumpet
signal, we can store 44100 samples (num-
bers) for every second of trumpet sound, or
we can store the 18 values of ck and θk and
generate the trumpet signal at any desired
note by plugging in the frequency from the
following table. Which method will allow
you to store more tunes on your iPod?

Note: A A# B C C# D

Hertz: 440 466 494 523 554 587

Note: D# E F F# G G#

Hertz: 622 659 698 740 784 830

In fact, we may omit the phases θk in the syn-
thetic trumpet signal without affecting its sound,
although the plot of the signal looks quite differ-
ent. Using θk = 0 in the Fourier series gives

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
−3

−0.2

0

0.2

0.4

0.6

0.8

Figure 3.4: Synthetic Trumpet Signal: θk=0.

But the synthetic trumpet with θk=0 sounds
just like the one with θk 6= 0.

3.2.3 Line Spectrum

Listing the ck in a table is not a good way to
specify the Fourier series. As noted in Chapter
2, humans think visually. So it makes sense to
make a bar graph of the ck against frequency k

P
Hertz (not vs. the index k). This is called the
line spectrum of the signal.

The line spectrum of the synthetic trumpet
signal is plotted below. Note that the amplitudes
ck can be read off of the heights of the bars.

We will show how to obtain this plot later in
this Chapter. A separate phase spectrum plot
of the θk vs.

k
P Hertz can also be made. However,

since phase cannot be heard, we will omit phase
spectrum plots in these notes.

3.2.4 Another Form of Fourier Series

The above depiction of the Fourier series uses
cosines with phase shifts. Using the trig identity

20 CHAPTER 3. FOURIER SERIES AND MUSICAL SIGNALS

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Figure 3.5: Synthetic Trumpet Line Spectrum.

(1.6), we can rewrite this using sines and cosines:

x(t) = c0 +
∞∑

k=1

ck cos

(
2π

k

P
t− θ

)

x(t) = a0 +
∞∑

k=1

ak cos

(
2π

k

P
t

)

+
∞∑

k=1

bk sin

(
2π

k

P
t

)
(3.4)

where the coefficients are related by

ak = ck cos(θk)

bk = ck sin(θk)

ck =
√
a2k + b2k

θk = arctan[bk/ak] + 0 if ak > 0

θk = arctan[bk/ak] + π if ak < 0 (3.5)

3.3 Sampling Theorem

We prove this remarkable result for periodic sig-
nals, but the period can be arbitrarily large, so
in practice it also applies to non-periodic signals.
This theorem was proved (using a different argu-
ment) by Claude Shannon (UM Class of 1936).
A bust of his head is on the left side of the Uni-
versity of Michigan North Campus Diag entrance
to the EECS Building.

3.3.1 Sampling Theorem: Derivation

• Let x(t) be a real-valued continuous-time
signal bandlimited to B Hertz. This
means that its largest frequency is B Hertz;

• Let x(t=n
S) be the sequence of numbers ob-

tained by sampling x(t) at a sampling rate
of S SAMPLE

SECOND , that is, every
1
S seconds;

• Then x(t) can be uniquely reconstructed

from its samples x(nS) if S > 2B

The minimum sampling rate 2B is called the
Nyquist sampling rate. Although the actual
units are 2B SAMPLE

SECOND , this is usually abbreviated
to 2B “Hertz,” which has the same dimensions.
All of digital signal processing exists because

of this theorem. It means that we can replace
analog signal processing, which requires induc-
tors, resistor and capacitors, with digital pro-
cessing on computers.
Why is there any reason to think a signal can

be reconstructed from its samples? Let x(t) be
a real-valued continuous-time signal that is

• Periodic with period P seconds;

• Bandlimited to B = K
P Hertz;

• Sampled at S = L
P

SAMPLE
SECOND .

Since x(t) is periodic, it can be written as a sum
of sinusoids at frequencies k/P for k = 0, 1, 2
Since x(t) is bandlimited, it has a maximum fre-
quency which must be K/P for some integer K.
So the Fourier series expansion of x(t) is finite:

x(t) = a0+
K∑

k=1

[
ak cos

(
2π

kt

P

)
+ bk sin

(
2π

kt

P

)]

(3.6)
So x(t) is completely characterized by 2K+1
numbers {a0, a1 . . . aK , b1 . . . bK}. If we can
somehow obtain these 2K+1 numbers, we know
x(t) for all t, since we have a formula for x(t).
But how can we obtain them?
An idea: sample the signal! Sampling the

signal at LSAMPLE
PERIOD is the same as sampling it

LSAMPLE
PERIOD /P SECOND

PERIOD=L
P

SAMPLE
SECOND=S SAMPLE

SECOND .

Setting t = n
S where n=0,1. . .L–1 gives L lin-

ear equations in 2K+1 unknowns

x

(
n

S

)
= a0+

K∑

k=1

[
ak cos

(
2π

kn

PS

)
+ bk sin

(
2π

kn

PS

)]
.

(3.7)

3.3. SAMPLING THEOREM 21

Note that PS is dimensionless. This system of
linear equations has a unique solution if L > 2K:

L > 2K → L/P > 2K/P → S > 2B. (3.8)

That is, the sampling rate must exceed the band-
width. But note that the period P has cancelled,
so this result is valid for any P . We can set
P = 101000 seconds and the result still holds!
This shows why exact recovery of a bandlimited
signal from its samples is possible.

3.3.2 Sampling Theorem: Example

A periodic signal x(t) with period=0.1 second
is bandlimited to 20 Hertz. It is sampled at
50SAMPLE

SECOND , i.e., every
1
50=.02 seconds, resulting

in the following samples:

t .00 .02 .04 .06 .08

x 11. 4.014 4.739 3.115 -2.868

Since x(t) has period=0.1 seconds, we have
x(.10) = x(.00), x(.12) = x(.02), etc. The goal
is to reconstruct x(t) from its samples.

SOLUTION:

• Since the period=0.1 second, the harmonics
have frequencies k

0.1=10k Hertz.

• Since the maximum frequency is 20 Hertz,
there are only two (K = 2) harmonics.

The Fourier series expansion of x(t) is

x(t) = b1 sin(2π10t) + b2 sin(2π20t)

+a0 + a1 cos(2π10t) + a2 cos(2π20t).(3.9)

Setting t = {.00, .02, .04, .06, .08} gives five linear
equations in five unknowns {a0, a1, a2, b1, b2}:

x(.00) = b1 sin(2π(.0)) + b2 sin(2π(.0))

+a0 + a1 cos(2π(.0)) + a2 cos(2π(.0)).

x(.02) = b1 sin(2π(.2)) + b2 sin(2π(.4))

+a0 + a1 cos(2π(.2)) + a2 cos(2π(.4)).

x(.04) = b1 sin(2π(.4)) + b2 sin(2π(.8))

+a0 + a1 cos(2π(.4)) + a2 cos(2π(.8)).

x(.06) = b1 sin(2π(.6)) + b2 sin(2π(1.2))

+a0 + a1 cos(2π(.6)) + a2 cos(2π(1.2)).

x(.08) = b1 sin(2π(.8)) + b2 sin(2π(1.6))

+a0 + a1 cos(2π(.8)) + a2 cos(2π(1.6)).

Setting t=.10 gives the same equation as t=.00.

Inserting the samples of x(t) and computing
the various sines and cosines gives the five linear
equations in five unknowns

11. = a0 + a1 + a2. (3.10)

4.014 = (.9511)b1 + (.5878)b2

+a0 + (.3090)a1 − (.8090)a2. (3.11)

4.739 = +(.5878)b1 − (.9511)b2

+a0 + −(.8090)a1 + (0.3090)a2 .(3.12)

3.115 = −(.5878)b1 + (.9511)b2

+a0 + −(.8090)a1 + (.3090)a2. (3.13)

−2.868 = −(.9511)b1 − (.5878)b2

+a0 + +(.3090)a1 − (.8090)a2 .(3.14)

Note how the same four numbers keep appearing.

To solve five linear equations in five unknowns,
we run the following Matlab program:

B=[11.,4.014,4.739,3.115,-2.868];

d=.3090;e=.5878;f=.8090;g=.9511;

A=[0 0 1 1 1;g e 1 d -f];

A=[A;e -g 1 -f d;-e g 1 -f d];

A=[A;-g -e 1 d -f]; A\B’

The answer is 3,1,4,2,5 which are
{b1, b2, a0, a1, a2} in that order. So the unique
x(t) satisfying all the conditions given above is:

x(t) = 3 sin(2π10t) + sin(2π20t)

+ 4 + 2 cos(2π10t) + 5 cos(2π20t).(3.15)

This was a lot of computation! Isn’t there an
easier way to do this? Read on. . .

22 CHAPTER 3. FOURIER SERIES AND MUSICAL SIGNALS

3.4 Formulae for ak and bk

Even apart from the trouble of setting up the
linear system of equations, solving them figures
to be time-consuming. Fortunately, we can solve
them in closed form (i.e., there are explicit for-
mulae for the solution).

3.4.1 Formulae for ak and bk

Let x(t) have the following properties:

• Periodic with period=P seconds;

• Sampled at S SAMPLE
SECOND so that

• N = PS is an integer, resulting in

• Samples x[n] = x(n/S) for n = 0, 1 . . . N−1.

• Note x[N]=x(NS)=x(PS
S)=x(P)=x(0)=x[0]

so x[n] is periodic with period=N .

Then we have these formulae:

a0 =
1

N

N−1∑

n=0

x[n]

ak =
2

N

N−1∑

n=0

x[n] cos(2πnk/N)

bk =
2

N

N−1∑

n=0

x[n] sin(2πnk/N). (3.16)

These formulae are derived in an Appendix of
Lab #3. You are not responsible for this deriva-
tion! But do try working through it, with a cup
of non-decaf coffee. It’s not as bad as it looks.

Note that the Fourier series coefficients
{ak, bk, ck} are at frequency (in Hertz)

f =
k

P
=

kS

N
. (3.17)

Sampling N times in a period P makes the sam-
pling rate S=N

P , equivalent to N=PS.

3.4.2 Formulae for ak and bk: Example

Applying these to the example we just did gives

a0 =
1

5

4∑

n=0

x[n] = 4.

a1 =
2

5

4∑

n=0

x[n] cos(2π(1n)/5) = 2.

a2 =
2

5

4∑

n=0

x[n] cos(2π(2n)/5) = 5.

b1 =
2

5

4∑

n=0

x[n] sin(2π(1)n/5) = 3.

a1 =
2

5

4∑

n=0

x[n] sin(2π(2)n/5) = 1.(3.18)

That is certainly a lot easier than setting up and
solving the linear system of equations!
An even easier way to compute the {ak} and

{bk} is to use Matlab’s fft, which computes

fft(x) =
N−1∑

n=0

x[n]e−j2πnk/N , k = 0, 1 . . . N − 1.

(3.19)
because this quantity can be computed very
quickly using the Fast Fourier Transform (FFT)
algorithm. You will learn about the FFT if you
take a DSP course in your junior or senior year.
To go from the output of fft to {ak} and {bk}

requires some attention. Proceed as follows:

• Form x = [x[0],x[1]. . .x[N–1]].

• Compute F=fft(x); in Matlab.

• a0=F(1)/N

• ak=2*real(F(k+1))/N for k ≥ 1.

• bk=-2*imag(F(k+1))/N

• ck=2*abs(F(k+1))/N

• θk=angle(F(k+1))

For the example we just did, use:

x = [11. 4.014 4.739 3.115 -2.868];

F=fft(x);A=2*real(F)/5;

B=-2*imag(F)/5;C=2*abs(F)/5;

The result of this program is:

A=[8 2 5 5 2]

B=[0 3 1 -1 -3]

C=[8 3.6 5.1 5.1 3.6]

I used this to get the ck and θk values from the
trumpet signal. Note the following:

3.5. NOISY PERIODIC SIGNALS 23

• A(1) is double a0, so a0=
8
2=4.

• A(2) and A(3) are a1=2 and a2=5.

• B(1) is zero, as it should (b0=0 always).

• B(2) and B(3) are b1=3 and b2=1.

• The second halves of A,B,C are the mirror
images of the first halves of A,B,C.

• IGNORE THE SECOND HALF OF
THE OUTPUT OF fft!

• For music signals, a0 = 0 anyway, so don’t
worry about the doubling.

Note there is an issue of indexing:

• Indexing of {ak, bk, ck} starts at k=0.

• Indexing of Matlab’s A,B,C starts at k=1.

• So ak=2*real(F(k+1))/N, etc.

• To compute the frequency f corresponding
to a peak in abs(fft(x)) at Matlab index

K, use f = (K− 1) S
N .

3.4.3 Computing Line Spectra

To compute the line spectrum of a signal using
fft, proceed as follows.

The signal has been sampled at S SAMPLE
SECOND , re-

sulting in samples stored in Matlab vector x =
{x[n], n = 0 . . . N − 1}. Now do this:

N=length(x);

F=linspace(0,S-S/N,N);

FX=2*abs(fft(x))/N;

plot(F(1:N/2),FX(1:N/2))

I used this to plot the line spectrum of the
synthetic trumpet signal shown in Fig. 3.5:

%Generate synthetic trumpet:

t = linspace(0,1,44100);F=494;

C=[.1155 .3417 .1789 .1232 .0678];

C=[C .0473 .0260 .0045 .0020];

x = C*cos(2*pi*F*[1:9]’*t);

%Compute its line spectrum:

F=linspace(0,43999,44100);

FX=2*abs(fft(x))/44100;

plot(F(1:5000),FX(1:5000))

3.5 Noisy Periodic Signals

So now we know how to compute the Fourier
series of a periodic signal. We also know that
we can plot the sinusoidal amplitudes {ck} vs.
frequency k

P to get its line spectrum. So what?

Consider the noisy trumpet signal formed by
adding noise to the synthetic trumpet signal:

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
−3

−2

−1

0

1

2

Figure 3.6: Noisy Synthetic Trumpet Signal.

It is hard to tell from the plot that there is
anything but noise! Listen to the signal: the
trumpet is only faintly audible over the noise.

Now look at the spectrum of the noisy signal:

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Figure 3.7: Line Spectrum of Noisy Trumpet.

The trumpet harmonics stick up over the
noise spectrum like dandelions sticking up over
a grassy lawn. It is clear that we can elimi-
nate most of the noise by simply setting all of
the spectrum values that are not trumpet signal
harmonics to zero. An easy way to do this is to
threshold the spectrum values by setting them
to zero unless they are large. The result is

24 CHAPTER 3. FOURIER SERIES AND MUSICAL SIGNALS

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Figure 3.8: Cleaned-Up Line Spectrum.

Note we have not completely eliminated the
noise, since harmonics themselves have noise
added to them. Also, the smallest two harmonics
were thresholded to zero, since they are smaller
than most of the noise and are now drowned in
noise. There is nothing we can do about that.

But most of the noise has been eliminated, us-
ing the fact that the synthetic trumpet spectrum
is zero except at frequencies kP Hertz.

We could read off the ck and θk from the out-
put of fft and plug them into the Fourier series.
However, it is easier to use Matlab’s ifft, as
shown below. The result is

20 40 60 80 100 120 140 160 180 200

−0.2

0

0.2

0.4

0.6

0.8

Figure 3.9: Cleaned-Up Noisy Trumpet.

We have eliminated most of the noise. And
listening to the cleaned-up signal, almost all of
the noise is gone! This is a simple example of
filtering a noisy signal: We allow only certain
frequencies to go through the filter, and we elim-
inate (filter out) all of the others.

These plots were all generated using this:

%Generate synthetic trumpet:

t = linspace(0,1,44100);F=494;

C=[.1155 .3417 .1789 .1232 .0678];

C=[C .0473 .0260 .0045 .0020];

x = C*cos(2*pi*F*[1:9]’*t);

%Add noise to it:

y = x + 0.8 * randn(1,44100);

%Compute spectra:

F = linspace(0,43999,44100);

FY = 2*abs(fft(y))/44100;

figure, plot(t(1:200),y(1:200))

figure, plot(F(1:5000),FY(1:5000))

%Threshold noisy spectrum:

FZ=FY; FZ(abs(FZ) < 0.025) = 0;

z = 44100/2*real(ifft(FZ));

figure, plot(t(1:200), z(1:200))

figure, plot(F(1:5000), FZ(1:5000))

3.6 Low-Pass Filtering

3.6.1 Basic Concept

A more general form of filtering to reduce noise
is low-pass filtering. The idea behind low-pass
filtering is that many real-world signals consist
primarily of low frequencies, while noise consists
of low and high frequencies. So if we simply
eliminate the high frequencies in a noisy signal,
we will be eliminating mostly noise. Keeping or
passing the low frequencies will preserve most of
the signal, while also keeping some of the noise.

Low-pass filtering shows where the term “fil-
tering” came from: passing small particles (fre-
quencies) while stopping large particles (frequen-
cies) is what a paper filter does. It does not work
as well as filtering periodic signals, since now we
know much less about the signal, and so we need
to pass all of the low frequencies, not just indi-
vidual harmonics frequencies.
The following example shows how to eliminate

frequencies above a cutoff frequency F Hertz:

3.6.2 Low-Pass Filtering Example

• A one-Hertz sinusoid has noise added to it.

• It is sampled at S = 1000SAMPLE
SECOND .

• The snippet of noisy signal is 1 second long.

3.6. LOW-PASS FILTERING 25

• Use a low-pass filter with cutoff F=2 Hertz.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

−4

−3

−2

−1

0

1

2

3

Figure 3.10: Noisy Sinusoidal Signal.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

−0.5

0

0.5

Figure 3.11: Low-Pass Filtered Sinusoid.

t = linspace(0,0.999,1000);

y = cos(2*pi*t) + randn(1,1000);

F=2;

S=1000; N=length(y); k=1+N*F/S;

plot(t,y) % From F=(k-1)S/N

FY = fft(y);

FZ = FY; FZ(k:1002-k) = 0;

z = real(ifft(FZ)); plot(t,z)

Chapter 4

Spectrogram: Time-Varying Spectra

4.1 Overview

In Chapter 3 we assumed that the signal x(t)
was periodic, so that x(t) = x(t+P) for some P
and for all time t. That is:

• A signal is periodic only if it is periodic for
all time −∞ < t < ∞.

• A signal is sinusoidal only if it is a sinusoid
for all time −∞ < t < ∞.

Of course, no signal, musical or otherwise, can
be known to have these properties (how can we
know what will happen in the infinite future?).

Musical signals (an instrument playing music)
actually have the form

x(t) =
∞∑

k=1

Ak1 cos

(
2π

k

P1
t+ θ1

)
, T0 < t < T1

x(t) =
∞∑

k=1

Ak2 cos

(
2π

k

P2
t+ θ2

)
, T1 < t < T2

x(t) =
∞∑

k=1

Ak3 cos

(
2π

k

P3
t+ θ3

)
, T2 < t < T3

...
...

... (4.1)

That is, the line spectrum of x(t) changes ev-
ery so often. The study of signals whose spectra
changes with time is time-frequency analysis.

Fortunately, for music signal processing, we
have three huge advantages:

1. The durations Ti+1–Ti are known. All
whole notes have the same duration; all half
notes have half the duration of whole notes,
etc. So we do not have the problem of seg-
menting the signal into different intervals;

2. The frequencies k
Pi

can only take on twelve
different values in an octave. So we are only
choosing from several possible frequencies;

3. The phases can be assumed to be zero for
both musical synthesis and for the musical
transcription from the synthesizer output.

This section introduces the lowest-level form of
the spectrogram, which is a way of visualizing
the time-varying line spectrum of a signal. The
spectrogram, like log-log and semi-log plots, is a
means of interpreting data.

4.2 Motivation

For example, we are given the signal in the file
victorstone.mat. All we know about it is that
it was sampled at 8192SAMPLE

SECOND . We wish to in-
tepret this signal-what’s going on?

We plot its line spectrum-not much help!

0 100 200 300 400 500 600 700 800 900
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Figure 4.1: Line Spectrum of Unknown Signal.

This plot was generated in Matlab using

26

4.3. SPECTROGRAM 27

load victorstone.mat

N=length(x);S=8192;

FX=2/N*abs(fft(x));

F=[0:N-1]*S/N;

plot(F(1:8000),FX(1:8000))

4.3 Spectrogram

4.3.1 Presentation

Now examine its spectrogram:

Figure 4.2: Spectrogram of Unknown Signal.

This plot was generated in Matlab using

load victorstone.mat

LX=length(x);L=26;N=LX/L;

XX = reshape(x’,N,L);

FXX = abs(fft(XX));

FXX = FXX(5*N/6:N,:);

subplot(211), imagesc(FXX)

colormap(gray), axis off

4.3.2 Discussion

• The height of each line is the frequency kPi

in Hertz of that time segment of the signal;

• The length of each line is the duration
Ti+1–Ti in seconds of that time segment;

• The brightness of each line is the ampli-
tude Aki of that time segment of the signal.

The line heights are at the frequency values used
by musical notes. The notes change as time pro-
gresses from left to right. You can now recognize
this as “The Victors.” Indeed, the spectrogram

can function as a crude type of musical notation,
indicating the pitch and duration of notes played
in succession. It could also function like a player
piano roll, moving from right to left.
Details of the spectrogram used here:

• x had length LX=78000. At 8192SAMPLE
SECOND

this is a duration of 78000
8192 =9.5215 seconds.

• x was segmented into L=26 segments of
length N=3000 samples each. This is a du-
ration of 3000

8192=0.3662 seconds.

• x was laid out by column in the array XX:

– x(1:3000) in the 1st column of XX;

– x(3001:6000) in the 2nd column of XX;

– x(75001:78000) in the 26th column.

• fft when applied to an array computes the
FFT of each column of the array. So FXX

is the array of line spectra of each segment
of x, only laid out vertically, rather than
horizontally.

• Only the bottom sixth of FXX is kept. The
top half is the mirror image of the lower half,
so it should not be shown.

• imagesc displays this array as an image.
The brightness of each image pixel is FXX

at that frequency and time.

If you really want to be lazy, you can plot the
spectrogram of a signal consisting of L segments
of lengths N each, where N=length(x)/L, using

imagesc(abs(fft(reshape(x,N,L))))

To get a 3-D plot of the spectrogram, use

waterfall(abs(fft(reshape(x,N,L))))

This is snazzy-looking, but hard to interpret.
Matlab’s signal processing toolbox (present on
all CAEN machines, but not on some Cen-
tral Campus computer labs) has the command
specgram, which allows you to do many things
beyond the scope of this course.
How did we know to segment x into 26 seg-

ments? If we know the signal is a musical signal
consisting of whole notes with durations 0.3662

28 CHAPTER 4. SPECTROGRAM: TIME-VARYING SPECTRA

seconds, we know that the number of notes is
9.5215
0.3662=26 since the duration of the signal is
9.5215 seconds.

4.4 Time-Frequency Plots:

Resolution Tradeoff

We do not have to know how many segments the
signal actually contains. In fact, varying

• The number of segments L and

• The length N of each segment so

• L*N = LX = total length of the signal.

trades off time and frequency resolution. The
larger L is, the shorter the length N of each seg-
ment, so changes in the spectrum as it changes in
time can be tracked faster. However, fft com-
putes line spectra at frequencies f at Matlab in-
dices k, where

f =
k − 1

P
= (k − 1)

S

N
(4.2)

since P = N
S is now the duration of each inter-

val. So the discretization, hence the resolution,
of frequency is coarser.

To illustrate this, recompute the above spec-
trogram using:

1. L=13 and N=length(x)/L=6000;

2. L=104 and N=length(x)/L=750.

Figure 4.3: Spectrogram with L=13 segments.

Each segment now contains two notes, and the
spectrogram plots both of them. If you were

playing “The Victors” from this, you would have
to guess which note to play in each segment!

Figure 4.4: Spectrogram with L=104 segments.

Each segment is only 750 samples long, and
the frequencies are smeared out. This improves
visibility, but is not so good for actually deter-
mining the frequencies.

4.5 Chirp Signal

A common test signal for time-frequency analysis
is the chirp, which does indeed sound like a bird
chirp. (Dolphin clicks are also chirps.)

x(t) = A cos(2πFt2) for t > 0. (4.3)

The chirp cos(t2) looks like

0 2 4 6 8 10 12 14 16 18 20
−1

−0.5

0

0.5

1

Figure 4.5: Chirp Signal cos(t2).

This looks like a sinusoid whose frequency is
steadily increasing in time. Fig. 4.6 shows its
spectrogram.
This clearly indicates a signal whose frequency

is increasing linearly with time. The spectro-
gram makes interpretation of the signal easy.

4.6. REMOVING INTERFERENCE 29

Figure 4.6: Spectrogram of Chirp.

These plots were generated in Matlab using

x = cos([0:8191].*[0:8191]/10000);

t = linspace(0, 19.99, 2000);

subplot(211), plot(t,x(1:2000))

FXX = abs(fft(reshape(x,256,32)));

FXX = FXX(129:256,:);

figure, subplot(211), imagesc(FXX)

axis off, colormap(gray)

4.5.1 Interpretation

How do we interpret exactly what is going on in
the spectrogram of the chirp?

• cos(t2) is sampled at S = 100SAMPLE
SECOND . Set-

ting t = n/100 in cos(t2) gives the samples
x[n] = cos(n2/1000), stored in x.

• The length of x is 8192 samples, so its dura-
tion is 8192

100 =81.92 seconds (almost a minute
and a half!).

• The height of the right-most line in the spec-
trogram is index k=67. This is frequency
f = (k − 1) S

N = (67− 1)100256 = 25.8 Hertz
since each segment is 256 samples long.

• The instantaneous frequency of cos(2πft2)
is 2ft, not just ft as you might expect from
writing cos(2πft2)=cos(2π(ft)t). Here, f =
1
2π , so the instantaneous frequency at t =

81.92 is 2(81.92)
2π =26.1 Hertz. This is slightly

higher than the spectrogram value since
the spectrogram averages over the final seg-
ment, instead of using the value at its end.

4.6 Removing Interference

To show how the spectrogram can help in remov-
ing an interfering signal, listen to the signal
load victorstone.mat

LX=length(x); S=8192;

y = x + cos(2*pi*700*[1:LX]/S);

soundsc(y,S)

0 100 200 300 400 500 600 700 800 900 1000
0

0.2

0.4

0.6

0.8

1

Figure 4.7: Spectrum: Victors+Interference.

Plotting its spectrum doesn’t help much.
But the spectrogram clarifies matters:

Figure 4.8: Spectrogram: Victors+Interference.

These plots were generated by adding these
lines to the above program:
F = [0:LX-1]*S/LX;

Fy = 2/LX*abs(fft(y));

plot(F(1:9000), Fy(1:9000))

LX=length(x); L=26; N=LX/L;

yy=reshape(y,N,L);

Fyy = abs(fft(yy));

Fyy = Fyy(5*N/6:N,:);

subplot(211), imagesc(Fyy)

colormap(gray),axis off

30 CHAPTER 4. SPECTROGRAM: TIME-VARYING SPECTRA

The spectrogram makes it clear that the inter-
ference consists of a tone at 700 Hertz.

To eliminate this interference, do this:
k = 1+round(LX*700/S);

kk = [k-100:k+100]; Fz=fft(y);

Fz(kk)=0; Fz(LX+2-kk)=0;

z = real(ifft(Fz));

soundsc(z,S)

• k=1+round(LX*700/S); comes from solving
f=(k-1)S/LX for k;

• We set not only Fz(k) to zero, but also all
Fz values whose indices are within 100 of k.
We also set to zero the mirror image values;

• Listen to z: The interference is gone!

In Lab #3 you will use the spectrogram to re-
move noxious interference from “The Victors.”

Chapter 5

Transcriber Approaches

5.1 Overview

This chapter presents four procedures for identi-
fying the note played by a musical instrument, a
major part of the main project transcriber:

• Spectrogram: We have already seen that
the spectrogram of an instrument playing
several notes in succession (i.e., of music)
depicts the frequencies and durations of the
notes, and so functions as a crude type of
musical notation. To map the spectrogram
to musical staff notation is not difficult.

• Fundamental: The simplest way of identi-
fying a musical note is to compute its FFT
and see at which of 392,414,440 etc. Hertz
a large peak (the fundamental) is present.

• Harmonic Product Spectrum (HPS):
Downsampling (omitting some frequencies)
the line spectrum of the note (computed us-
ing the FFT) and multiplying the resulting
spectra emphasizes the fundamental.

• Autocorrelation: The autocorrelation

(defined below) of a periodic signal is it-
self periodic, with the same period as the
original signal. The time lag at which the
autocorrelation peaks is the period.

This chapter also presents three other concepts
pertinent to the project:

• Additive synthesis creates a synthetic
musical instrument by creating and sum-
ming harmonics. The synthetic trumpet sig-
nal was generated using additive synthesis.
Your team will create its own instrument.

• Reverb(eration) makes any sound seem
richer by adding slightly delayed copies of
itself. You will use this to make the single
trumpet sound like the trumpet section of
the University of Michigan marching band.

• Signal-to-Noise Ratio (SNR) is a mea-
sure of noise strength relative to signal
strength. You will use this to evaluate the
performance of your transcriber.

5.2 Note Identification

We present four methods for identifying a musi-
cal note played by an instrument. All of these
methods have been used for musical transcrip-
tion. In each term of Engineering 100, three
of the four has been used by at least one team.
Your team will choose one method, and will be
required to justify your choice (there is no single
right answer; what works best for you?).

Demo codes that demonstrates each method.
They are not sufficient for your transcriber!

5.2.1 Spectrogram

The spectrogram is an obvious choice for iden-
tifying the notes played by a single instrument.
The spectrogram of an actual solo trumpet play-
ing “The Victors” looks like
The Matlab code used to generate this plot:

load proj2.mat

L=26; N=length(y)/L;

yy = reshape(y,N,L);

Fyy = abs(fft(yy));

Fyy = Fyy(N-2999:N,:);

31

32 CHAPTER 5. TRANSCRIBER APPROACHES

Figure 5.1: Spectrogram of Solo Trumpet Play-
ing “The Victors.”

imagesc(Fyy), colormap(gray), axis off

Note the following about this spectrogram:

• I used the synthesizer for the main project
to play “The Victors” on the trumpet.
proj2.mat is the synthesizer output file; it
contains variable y;

• The lowest 3000 rows are shown;

• Look at each column separately. The har-
monics of each note are equally spaced in
the vertical direction (frequency). They get
smaller with increasing frequency (upward);

• For the trumpet, the second harmonic has
roughly triple the amplitude of the funda-
mental. Some of the fundamentals are faint;

• Some harmonics of different notes are al-
most identical. For example, the fourth har-
monic of G and third harmonic of C are at
4(392) = 1568 ≈ 1569 = 3(523) Hertz.

The advantages of using the spectrogram are:

• Fundamentals and harmonics are apparent;

• Both frequencies and durations can be read.

The disadvantages of using the spectrogram are:

• The spectrogram has considerable clutter;

• A huge amount of computation is required.

5.2.2 Fundamental Identification

We have seen that the line spectrum of an in-
strument playing a single note consists of a fun-
damental frequency, and harmonic frequencies
that are integer multiples of the fundamental fre-
quency. Also, the fundamental frequency is one
of 392, 414, 440 etc. Hertz, so we only need to

choose which frequency. This suggests that we
compute the line spectrum at only those frequen-
cies, and see at which one the line spectrum is
large. In fact, the FFT is so fast that it is al-
most as fast to compute the entire line spectrum
as just its values at 13 frequencies.

The line spectrum of an actual trumpet note:

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0

0.05

0.1

0.15

0.2

Figure 5.2: Line Spectrum of Actual Trumpet.

The Matlab code used to generate this plot,
and to identify the note from the largest peak is:

load trumpet.mat; LX=length(x);

Fx = 2*abs(fft(x))/LX;

F=[0:2999]*44100/LX;

subplot(211), plot(F, Fx(1:3000));

kmin=round(LX/44100*370);

kmax=round(LX/44100*850);

[G,k]=max(Fx(kmin:kmax));

f=(k+kmin-2)*44100/LX;

5.2. NOTE IDENTIFICATION 33

The program looks for the largest value of Fx
between frequencies 370 and 850 Hertz (Matlab
indices kmin and kmax). This occurs at Mat-
lab index k+kmin-1, from which the frequency in
Hertz of the peak is computed to be 491 Hertz.

The advantages of using the fundamental are:

• It is very fast, computationally;

• It works very well in additive noise.

The disadvantage of using the fundamental is
that it may mistake the first harmonic for the
fundamental. This will definitely happen for the
trumpet playing the low G (392 Hertz), since its
first harmonic is 2(392)=784 Hertz, which is also
the fundamental for the high G (784 Hertz). So
the low G will be identified as a high G!

This is an example of the octave problem,
which is a well-known problem in music tran-
scription. I leave it to you to figure it out.

5.2.3 Harmonic Product Spectrum

1. Compute spectrum Fx = abs(fft(x));

Fx has peaks at 494, 2(494), 3(494) . . .
Hertz.

2. Delete every other value of the spectrum:
Fx2 = Fx(1:2:length(Fx));

Fx2 has peaks at 1
2(494), 494,

3
2(494) . . .

3. Delete 2 out of every 3 spectrum values: Fx3
= Fx(1:3:length(Fx));

Fx3 has peaks at 1
3(494),

2
3(494), 494 . . .

4. Multiply these: FXH = Fx.*Fx2.*Fx3.;

Then
FXH will have a huge peak at 494 Hertz.

FXH is the Harmonic Product Spectrum (HPS).
The HPS of an actual trumpet playing note B:
There is a single huge peak at 494 Hertz.
The Matlab code used to generate this plot

(4, not 3, harmonic spectra are used here):

load trumpet.mat; LX=length(x);

Fx=abs(fft(x)); Fx2 = Fx(1:2:LX);

Fx3 = Fx(1:3:LX); Fx4 = Fx(1:4:LX);

L4=length(Fx4);

FH = Fx(1:L4) .* Fx2(1:L4);

0 200 400 600 800 1000 1200 1400
0

2

4

6

8

10
x 10

5

Figure 5.3: HPS of Actual Trumpet.

FH = Fx3(1:L4) .* Fx4(1:L4);

F=[0:999]*44100/LX;

subplot(211), plot(F, FH(1:1000))

The advantages of using HPS are:

• It eliminates the octave problem
if enough Fx’s are used;

• It is very fast, computationally;

• It works very well in additive noise.

The disadvantages of using HPS are:

• If one harmonic is very small, then FXH is
also small;

• It doesn’t work at all for pure tones, since
pure tones have no harmonics!

5.2.4 Autocorrelation

Unlike the other three methods, autocorrelation
does not use the concept of line spectrum at all.
It computes the period P of a periodic signal.
The autocorrelation r[n] of x[n] is defined as

r[n] =
∑

x[i]x[i+ n] =
∑

x[i]x[i − n]. (5.1)

In particular,

r[0] = x[0]x[0] + x[1]x[1] + x[2]x[2] . . .

r[1] = x[0]x[1] + x[1]x[2] + x[2]x[3] . . .

r[2] = x[0]x[2] + x[1]x[3] + x[2]x[4] . . .

r[3] = x[0]x[3] + x[1]x[4] + x[2]x[5] . . .(5.2)

The idea behind using autocorrelation is:

34 CHAPTER 5. TRANSCRIBER APPROACHES

• r[0] =
∑
(x[i])2 is very large;

• r[n] =
∑

x[i]x[i+n] is the sum of “random”
products, and so is relatively small;

• But if x[n] is periodic with period=N :

• r[N] =
∑

x[i]x[i + N] =
∑

x[i]x[i] = r[0]
large, since x[i+N] = x[i].

• So r[n] has large peaks at n = 0, N, 2N . . .

So to use autocorrelation to find a period:

1. Compute r[n] from x[n] (see below);

2. Compute r̃[n] = r[n]
r[0] . Then r̃[0]=1;

3. r̃[n] ≪ 1 except r̃[N] = 1;

4. Find the smallest n 6= 0 so r̃[n]=1;

5. That value of n is the sampled period N .

6. Period P = N/(sampling rate) seconds.

The autocorrelation of an actual trumpet playing
note B is shown below. Note this looks somewhat
like the synthetic trumpet.

0 20 40 60 80 100 120 140 160 180 200
−1000

−500

0

500

1000

1500

2000

2500

Figure 5.4: Autocorrelation of Actual Trumpet.

r[0] is 2352, and r[90] is slightly less at 2336.
The sampling rate is 44100SAMPLE

SECOND . The period
is P= 91−1

44100 , and the fundamental frequency is
f= 1

P=
44100
91−1=490 Hertz.

Note the peaks occur at Matlab indices 1 and
91, so the interval is 90. This should not be
confused with f=(K–1) S

N : we are not using the
line spectrum here!

Compare 490 Hertz with the 491 Hertz ob-
tained from fundamental frequency identifica-
tion. There is a discretization issue in the exact
peak location, so they don’t agree exactly. The
trumpet seems to be slightly out of tune.
The peak at r[90] (2336) is slighlty less than

r[0] (2352), and the peak at r[180] is slightly
smaller still (2312). The reason this happens is
that x[n] has finite length, and as n gets larger
r[n] is computing by summing fewer terms. This
could be corrected by dividing each r[n] by the
number of terms being summed, but it is hardly
necessary if we are only interested in the first
peak away from n = 0.

A fast algorithm for computing r[n] is

r=real(ifft(abs(fft(x,2*length(x)).̂ 2))

The Matlab code used to generate this plot:

load trumpet.mat; LX=length(x);

r=real(ifft(abs(fft(x,2*LX)). ̂ 2));

subplot(211), plot(r(1:200))

The advantages of using autocorrelation are:

• There are no fundamental versus harmonics
issues, unlike fundamental identification;

• Zero harmonics no problem, unlike HPS;

• It works well in noise, since the noise is con-
centrated in r[0]. But r[N] < r[0] in noise,
so the peak value of r[n] should be used.

5.3 Other Concepts

5.3.1 Additive Synthesis

A synthetic instrument playing a note at fre-
quency f can be created mathematically using

x(t) =
K∑

k=1

ck cos(2πkft) (5.3)

for some choice of harmonics amplitudes {ck}
that determine the timbre of the instrument.
The synthetic trumpet was created in this way.
Your team will create its own synthetic instru-

ment using additive synthesis by choosing some
{ck}. One way to do this is to find a sound you

5.3. OTHER CONCEPTS 35

like, compute its line spectrum using the FFT,
and read off the amplitudes of the largest lines
to get {ck}. Or you can just try different values
until you come up with a sound you like.

The criterion here is that your team has to
agree that the sound is “cool.” The Matlab pro-
gram used for the synthetic trumpet can be used
here; just replace C with your own choice.

5.3.2 Reverb(eration)

When you listen to the University of Michigan
marching band, you don’t hear just one trumpet
(unless they are playing a solo). You hear the
combined sum of many trumpets. Of course, this
makes their sound louder. But there is another
effect: reverb (short for reverberation).

Because the trumpet players do not occupy
the same exact point in space, you hear some
trumpets a fraction of a second later than oth-
ers. If the trumpet section is spread across 10
yards, and you are sitting in an end zone, you
hear some trumpets (30 feet)/[1050FEET

SEC.] =
1
35

second later.

You can get a similar sound by adding slightly
delayed copies of the trumpet signal. This is
the “singing in the shower” effect, or reverb. In
Matlab, you can do this as follows:

load trumpet.mat

LX=length(x); S=44100;

D=0.01; K=5;

N=round(S*D);

for I=1:K; M=N*I;

x = x + [zeros(1,M) x(1:LX-M)];

end; soundsc(x,S)

Try different values of the delay D and number
of trumpets K until you find one you like.

5.3.3 Signal-to-Noise Ratio (SNR)

To evaluate the performance of your transcriber,
you see how much noise you can add to it before
it starts to fail a significant fraction of the time.
The obvious performance metric to use is error
rate (percent of the time your transcriber gives
the wrong answer) vs. noise level.

But noise level by itself isn’t enough; what
counts is noise level vs. signal level. If your sig-
nal is a sinusoid with amplitude 100, noise with
maximum value of one is a small amount of noise.
But if your signal is a sinusoid with amplitude
0.01, then that same noise is a large amount.
So it is the ratio of noise strength to signal

strength that counts. Specifically,

• The “strength” of x[n] is its power
1
N

∑N
n=1(x[n])

2 where N is the length of
x[n]. If x[n] is periodic, then N is the pe-
riod.

• The signal-to-noise ratio for a signal x[n]

and noise v[n] is thus
1

N

∑
N

n=1
(x[n])2

1

N

∑
N

n=1
(v[n])2

.

• Signal-to-noise ratio is usually expressed in
decibels. A bel is the logarithm (base 10)
of something, so a decibel is 10log10 of it.
The Signal-to-noise ratio in decibels is

• SNR=10log10
1

N

∑
N

n=1
(x[n])2

1

N

∑
N

n=1
(v[n])2

.

To evaluate the performance of your transcriber,
generate a single signal (e.g., the trumpet play-
ing note B) and do the following:

1. Add some noise with fixed strength;

2. Run the transcriber; check its output;

3. If wrong, increase #errors by one;

4. Do this 100 times for different noises;

5. The error rate=#errors/100 at that SNR;

6. Do 10 times for different noise strengths.

The skeleton of a program that can be used to
evaluate the performance of your transcriber.

[generate signal]

for run=1:10; NS=0; ER=0;

for I=1:100;

noise = run*5*randn(1,length(x));

NS = NS + sum(noise.*noise);

y = x+noise;

[run transcriber]

if [transcriber wrong]; ER=ER+1; end

36 CHAPTER 5. TRANSCRIBER APPROACHES

E(run)=ER;

SNR(run) = 10*log10(sum(x.*x)/(NS/100));

end

plot(SNR,E)

See also the template file project3.m.

