Eng. 100: Music Signal Processing DSP Lecture 9

Music synthesis techniques

Curiosity:

- Let a thousand analog oscillators sing
https://doi.org/10.1109/MSPEC. 2020.9205540
https://www.youtube.com/watch?v=c3wk9WWTfNs
https://www.youtube.com/watch?v=M12kjjmD02E
- http://www.image-line.com/plugins/Synths/Harmor

Announcements:

- https://web.eecs.umich.edu/~fessler/course/100/p/synthesis.pdf

Outline

- Part 1: Julia functions and loops
- Part 2: Additive synthesis via Fourier series
- Part 3: FM synthesis
- Part 4: Nonlinearities
- Part 5: Envelope: analysis and synthesis
- Part 6: P3 Q/A

Learning objectives

- Understand effective coding principles
- use functions and loops (don't repeat yourself)
- separate data from code
- Understand additive synthesis and efficient implementation
- Awareness of FM synthesis
- Awareness of nonlinear effects
- Understand envelope

Part 1: Julia functions and loops

Julia functions (1)

Tedious way to write a 4 -note song in Julia (violates DRY principle):
using Sound: sound
S = 8192
sound(0.9cos. $(2 \pi * 660 *(0: 1 / \mathrm{S}: 0.5)), \mathrm{S})$; sleep(0.5)
sound (0.9cos. $(2 \pi * 880 *(0: 1 / \mathrm{S}: 0.5)), \mathrm{S})$
sound(0.9cos. $(2 \pi * 660 *(0: 1 / \mathrm{S}: 0.5)), \mathrm{S})$
sound (0.9cos. $(2 \pi * 440 *(0: 1 / \mathrm{S}: 1.0)), \mathrm{S})$

Q0.1 What is the duration of this song (in seconds)?

Q0.2 Why the sleep call?
??
Can we streamline this code (e.g., for longer songs)? [7]

Julia functions (2)

Using a function can simplify and clarify:
using Sound: sound
S = 8192
playnote $=(f, d)$-> sound ($0.9 \cos .(2 \pi * f *(0: 1 / S: d)), S)$
playnote(660, 0.5); sleep(0.5)
playnote (880, 0.5)
playnote (660, 0.5)
playnote(440, 1.0)

Caution: if we change S, then how playnote works will change.

- Functions defined dynamically and function closure s are very useful (in languages that support them).
- Simpler (less typing for coder)
- Easier to see the key elements of the song (notes and duration).
- Easier to make global changes (such as amplitude 0.9).
- But still tedious if the song is longer than 4 notes...

Julia loops (1)

Using a for loop is the most concise and elegant:
using Sound: sound
S = 8192 \# data
fs $=[660,880,660,440]$ \# frequencies
ds $=[0.5,0.5,0.5,1.0]$ \# note durations
rs $=[0.5,0.0,0.0,0.0]$ \# rest durations
\# code (separated from data):
playnote $=(f, d)$-> sound $(0.9 \cos .(2 \pi * f *(0: 1 / S: d)), S)$
for index in 1:length(fs)
playnote(fs[index], ds[index])
sleep(rs[index])
end

Another principle illustrated here: separate code and data.
Complete separation?

Julia loops (2)

Here is another loop version that sounds better:
using Sound: sound
S = 8192 \# "data"
fs $=$ [660, 880, 660, 440] \# frequencies
ds $=[0.5,0.5,0.5,1.0]$ \# note durations
rs $=[0.5,0.0,0.0,0.0]$ \# rest durations
x = Float32[] \# "code"
for (f,d,r) in zip(fs, ds, rs) append! (x, 0.9cos. $(2 \pi * f *(0: 1 / \mathrm{S}: \mathrm{d}))$, S) \# note append!(x, zeros(round(Int, r/S))) \# rest
end
sound (x, S)

Loops (and functions) are ubiquitous in software.

Julia functions

Exercise. Create a function playsong that has two inputs, an array of frequencies and an array of durations, and plays the corresponding song.
edit playsong.jl
Then test it:
playsong(220 * [3, 4, 3, 2, 3, 4, 3] , [1, 1, 1, 1, 1, 1, 2]/3)

Part 2: Additive synthesis via Fourier series

Additive Synthesis: Mathematical formula

Simplified version of Fourier series for monophonic audio:

$$
x(t)=\sum_{k=1}^{K} c_{k} \cos \left(2 \pi \frac{k}{T} t\right)
$$

- No DC term for audio: $c_{0}=0$.
- Phase unimportant for monophonic audio, so $\theta_{k}=0$.
- Which version is this? ? ${ }^{2}$
(Sinusoidal form? trigonometric form? complex exponential form?)
Example:

$$
x(t)=0.5 \cos (2 \pi 400 t)+0.2 \cos (2 \pi 800 t)+0.1 \cos (2 \pi 2000 t)
$$

Example: Why we might want harmonics


```
play play
Same pitch, different timbre.
\[
\begin{aligned}
& y(t)=0.5 \cos (2 \pi 400 t) \\
& x(t)=0.5 \cos (2 \pi 400 t)+0.2 \cos (2 \pi 800 t)+0.1 \cos (2 \pi 2000 t)
\end{aligned}
\]
```

```
# fig_why1.jl example of additive synthesis
```


fig_why1.jl example of additive synthesis

using Measures: mm
using Measures: mm
using Plots
using Plots
default(linewidth=2, size = (600,200), left_margin = 2mm, bottom_margin = 4mm)
default(linewidth=2, size = (600,200), left_margin = 2mm, bottom_margin = 4mm)
S = 44100
S = 44100
N = Int(0.5 * S) \# 0.5 sec
N = Int(0.5 * S) \# 0.5 sec
t = (0:N-1)/S \# time samples: t = n/S
t = (0:N-1)/S \# time samples: t = n/S
y = 0.5 * cos. (2\pi * 400 * t)
y = 0.5 * cos. (2\pi * 400 * t)
x = y + 0.2 * cos.(2\pi * 800 * t) + 0.1 * cos.(}2\pi*2000 * t
x = y + 0.2 * cos.(2\pi * 800 * t) + 0.1 * cos.(}2\pi*2000 * t
plot(1000t, x, label="x(t)", xlabel="t [ms]", xlims=(0,10), xticks=1000*(0:4)/400)
plot(1000t, x, label="x(t)", xlabel="t [ms]", xlims=(0,10), xticks=1000*(0:4)/400)
plot!(1000t, y, label="y(t)", ylabel="x(t), y(t)", ylims = (-1, 1), yticks=-1:1)
plot!(1000t, y, label="y(t)", ylabel="x(t), y(t)", ylims = (-1, 1), yticks=-1:1)
\#savefig("fig_why1.pdf")

```
#savefig("fig_why1.pdf")
```


Julia implementation: "Simple"

Example: $x(t)=0.5 \cos (2 \pi 400 t)+0.2 \cos (2 \pi 800 t)+0.1 \cos (2 \pi 2000 t)$

- A simple Julia version looks a lot like the mathematical formula:

```
S = 44100
N = Int(0.5 * S) # 0.5 sec
t = (0:N-1)/S # time samples: t = n/S
x = 0.5*\operatorname{cos. ( }2\pi*400* t) +
    0.2 * cos.(2\pi * 800 * t) +
    0.1 * cos.(2\pi * 2000 * t)
```

- There are many "hidden" for loops above. Where? ??
- Julia saves us from the tedium of writing out those loops, thereby making the syntax look more like the math.
- In "traditional" programming languages like C, one would have to code all those loops.
- This "simple" implementation is still somewhat tedious, particularly for signals having many harmonics.

C99 implementation

```
#include <math.h>
void my_signal(void)
{
    float S = 44100;
    int N = 0.5 * S; // 0.5 sec
    float x[N]; // signal samples
    for (int n=0; n < N; ++n)
    {
        float t = n / S;
        x[n] = 0.5 * cos(2* M_PI * 400* t)
            + 0.2 * cos(2 * M_PI * 800 * t)
            + 0.1 * cos(2 * M_PI * 2000 * t);
    }
}
```


Example revisited: Square wave

$\sin (t)$

$$
\sin (t)+\ldots+\sin (49 t) / 49
$$

$\sin (t)+\sin (3 t) / 3$

$$
\sin (t)+\ldots+\sin (15 t) / 15
$$

$$
\sin (t)+\ldots+\sin (999 t) / 999
$$

Many dozens of harmonics needed to get a "good" square wave approximation.

Julia implementation: Loop over harmonics

Example: $x(t)=0.5 \cos (2 \pi 400 t)+0.2 \cos (2 \pi 800 t)+0.1 \cos (2 \pi 2000 t)$

```
S = 44100
N = Int(0.5 * S) # 0.5 sec
t = (0:N-1)/S # time samples: t = n/S
c = [0.5, 0.2, 0.1] # amplitudes
f = [1, 2, 5] * 400 # frequencies
x = zeros(N)
for k in 1:length(c)
    global x += c[k] * cos.(2\pi * f[k] * t)
end
```

Q0.3 How many loops over N in this version?

- This version is the easiest to read and debug.
- It looks the most like the Fourier series formula: $x(t)=\sum_{k=1}^{K} c_{k} \cos \left(2 \pi \frac{k}{T} t\right)$.
- In fact it is a slight generalization.
- In Fourier series, the frequencies are multiples: k / T.
- In this code, the frequencies can be any values we put in the f array.

Example: Square wave via loop, with sin

```
S = 44100
N = Int(0.5 * S) # 0.5 sec
t = (0:N-1)/S # time samples: t = n/S
c = 1 ./ (1:2:15) # amplitudes
f = (1:2:15) * 494 # frequencies
x = zeros(N)
for k in 1:length(c)
    global x += c[k] * sin.(2\pi * f[k] * t)
end
```

Q0. 4 How many (non-fundamental) harmonics in this example? ??

2011 example? Nyan cat

Example: Square wave via loop, with cos

```
S = 44100
N = Int(0.5 * S) # 0.5 sec
t = (0:N-1)/S # time samples: t = n/S
c = 1 ./ (1:2:15) # amplitudes
f = (1:2:15) * 494 # frequencies
x = zeros(N)
for k in 1:length(c)
    global x += c[k] * cos.(2\pi * f[k] * t)
end
```


Does it sound different? ??

Julia implementation: Concise

We can avoid writing any explicit for loops (and reduce typing) by using the following more concise (i.e., tricky) Julia version:

```
S = 44100
N = Int(0.5 * S) # 0.5 sec
t = (0:N-1)/S # time samples: t = n/S
c = [0.5, 0.2, 0.1] # amplitudes
f = [1, 2, 5] * 400 # frequencies
z = cos.(2\pi * t * f')
x = z * c
```

c is $3(\times 1)$ f , is 1×3
Z is??
x is??
Q0. 5 Where are the (hidden) loops in this version?
??

Use this approach or the previous slide for Project 3 additive synthesis.

Example: Square wave via sign

```
S = 44100
N = Int(0.5 * S) # 0.5 sec
t = (0:N-1)/S # time samples: t = n/S
f = 494 # (fundamental) frequency
x = sign.(cos.(2\pi * f * t))
```


Simplest code, but least customizable.

Wavetable synthesis

See synthesis.pdf document.

Part 3: FM synthesis

Additive synthesis review

Mathematical formula (Fourier series) for additive synthesis [wiki]:

$$
x(t)=\sum_{k=1}^{K} c_{k} \cos \left(2 \pi \frac{k}{T} t\right)=\sum_{k=1}^{K} c_{k} \cos (2 \pi k f t)
$$

- Parameters that control timbre: c_{1}, \ldots, c_{K}
- Parameter that controls pitch: [7]

play play

Frequency Modulation (FM) synthesis

In 1973, John Chowning of Stanford invented the use of frequency modulation (FM) as a technique for musical sound synthesis [1, 2].

The mathematical formula for FM synthesis is [wiki]:

$$
x(t)=A \sin (2 \pi f t+I \sin (2 \pi g t)),
$$

where I is the modulation index and f and g are both frequencies. (Yamaha licensed the patent for synthesizers and Stanford made out well.)

This is a simple way to generate periodic signals that are rich in harmonics. However, finding the value of I that gives a desired effect requires experimentation.

FM example 1: Traditional

```
S = 44100
N = Int(1.0 * S)
t = (0:N-1)/S # time samples: t = n/S
I = 7 # adjustable
x = sin.(2\pi*400*t + I * sin.(2\pi*400*t))
```

Very simple implementation (both in analog and digital hardware), yet can produce harmonically very rich spectra:

Spectrum of FM signal with $\mathrm{I}=7$

FM example 2: Time-varying

Time-varying modulation index: $x(t)=A \sin (2 \pi f t+\underbrace{I(t)} \sin (2 \pi g t))$.
Simple formula / implementation can make intriguing sounds. play

```
S = 44100
N = Int(1.0 * S)
t = (0:N-1)/S # time samples: t = n/S
I = 0 .+ 9*t/maximum(t) # slowly increase modulation index
x = sin.(2\pi*400*t + I .* sin.(2\pi*400*t))
```

Besides making the modulation index I a vector, how else did the code change? ?? Previous code for reference:

```
\(S=44100\)
\(N=\operatorname{Int}(1.0 * S)\)
\(\mathrm{t}=(0: \mathrm{N}-1) / \mathrm{S} \#\) time samples: \(\mathrm{t}=\mathrm{n} / \mathrm{S}\)
I \(=7\) \# adjustable
\(\mathrm{x}=\sin .(2 \pi * 400 * t+\mathrm{I} * \sin .(2 \pi * 400 * t))\)
```

Q0.6 What is the most informative graphical representation?
A: Time plot B: FFT spectrum C: Line spectrum D: Spectrogram E: None of these ??

Illustrations of previous FM signal

Q0. 7 What is the approximate fundamental frequency of the final 0.02 seconds?

Part 4: Nonlinearities

Nonlinearities

Another way to make signals that are rich in harmonics is to use a nonlinear function such as $y(t)=x^{9}(t)$.

```
S = 44100
N = Int(1.0 * S)
t = (0:N-1)/S # time samples: t =
x = cos.(2\pi*400*t)
y = x.^9
```

 play

Nonlinearities in amplifiers

- High quality audio amplifiers are designed to be very close to linear because any nonlinearity will introduce undesired harmonics (see previous slide).
- Quality amplifiers have a specified maximum total harmonic distortion (THD) that quantifies the relative power in the output harmonics for a pure sinusoidal input.

$$
\underbrace{\cos (2 \pi f t)}_{\text {input }} \rightarrow \text { Amplifier } \rightarrow c_{1} \cos (2 \pi f t)+c_{2} \cos (2 \pi 2 f t)+c_{3} \cos (2 \pi 3 f t)+\cdots
$$

- A formula for THD is: [wiki]

$$
\mathrm{THD}=\frac{c_{2}^{2}+c_{3}^{2}+c_{4}^{2}+\cdots}{c_{1}^{2}} \cdot 100 \%
$$

- What is the best possible value for THD? ??
- On the other hand, electric guitarists often deliberately operate their amplifiers nonlinearly to induce distortion, thereby introducing more harmonics than produced by a simple vibrating string.
- pure: play
- distorted: play

Part 5: Envelope of musical signals

Envelope has two applications

- Analyzing (processing) musical signals (e.g., to find note start/stop/duration, rhythms)
- Synthesizing (interesting or more realistic) musical signals

Envelope example: Train whistle

Envelope example: Plucked guitar

Compute envelope with moving average

Find envelope using moving average, aka "sliding window"

```
function envelope(x; w::Int = 201) # uses moving average
    h = (w-1) \div 2 # sliding window half-width (default 100)
    x = abs.(x) # absolute value is crucial!
    avg(v) = sum(v) / length(v) # function for (moving) average
    return [avg(x[max(n-h,1):min(n+h,end)]) for n in 1:length(x)]
end
using WAV: wavread
using Plots
x, S = wavread("train-whistle.wav")
env = envelope(x) # call moving-average function
plot((1:length(x))/S, env, label="envelope", xlabel="t [sec]")
```

The preceding two figures used this code.

Moving average

$y[10]=\frac{1}{3}(y[9]+y[10]+y[11])$
$z[n]=\frac{1}{9} \sum_{k=-4}^{4} x[n+k]$, for $5<n<N-5$

Find note durations using envelope

$\mathrm{w}=501$
env = envelope(x; w)
env /= maximum(env)
threshold = 0.1
playing = env .> threshold

play
Simple threshold sufficed for separated notes; legato notes need more effort

Envelope synthesis in Julia

```
S = 44100
N = Int(1 * S)
t = (0:N-1)/S
c = 1 ./ (1:2:15) # amplitudes
f = (1:2:15) * 494 # frequencies
x = +([c[k] * sin.(2\pi * f[k] * t) for k in 1:length(c)]...) # !!
env = (1 .- exp.(-80*t)) .* exp.(-3*t) # fast attack; slow decay
y = env .* x
```


x : play y : play

Attack, Decay, Sustain, Release (ADSR)

Programmable music synthesizers usually allow the user to control separately the time durations of these 4 components of the envelope.

- For synthesizers with a keyboard, the "sustain" portion lasts as long as the key is pressed.
- The "release" portion occurs after the key is released.
- In synthesizers with "touch control" the properties of the "attack" and "decay" portions may depend on how hard/fast one presses the key.
- Does duration of release portion depend on how quickly one releases the key? ??
- For a pipe organ, how long is the attack and decay?

Music synthesis summary

- There are numerous methods for musical sound synthesis
- Additive synthesis provides complete control of spectrum
- Other synthesis methods provide rich spectra with simple operations (FM, nonlinearities)
- Time-varying spectra can be particularly intriguing
- Signal envelope (time varying amplitude) also affects sound characteristics
- Other advanced synthesis methods:
- sound reversal
- physical modeling
- sampling

○...

- Ample room for creativity and originality!

Part 6: P3 Q/A?

References

[1] J. M. Chowning. The synthesis of complex audio spectra by means of frequency modulation. J. of the Audio Engineering Soc., 21(7):52634, September 1973.
[2] J. M. Chowning. The synthesis of complex audio spectra by means of frequency modulation. Computer Music J., 1(2):46-54, April 1977.

