Homework $\# 3$, ENGR 100-430, W24. Due Fri. Feb. 23, 5PM

- This is an individual assignment, not a group project. Refer to the course syllabus for the collaboration policies.

1. [2] A periodic signal with period $1 / 2000 \mathrm{sec}$ is known to be band-limited with maximum frequency 12000 Hz . How many samples must be taken of this signal to be able to determine its Fourier series coefficients?
2. [2] A sinusoidal signal has amplitude 7 , frequency 440 Hz , and phase $\pi / 3$. How fast must we sample this signal to avoid aliasing?
3. [2] Sketch the spectrum of the signal $x(t)=5+3 \cos (2 \pi 200 t)+4 \cos (2 \pi 300 t)$.
4. [2] Sketch the spectrum of the signal $x(t)=6 \cos (2 \pi 200 t) \cos (2 \pi 300 t)$. Be careful!
5. [2] How fast must we sample the signal $x(t)=6 \cos (2 \pi 200 t) \cos (2 \pi 300 t)$ to avoid aliasing?
6. [2] The fundamental frequency of a signal that has frequencies f_{1}, f_{2}, \ldots is the greatest common divisor (GCD) of those frequency values.
For example, suppose a signal has frequencies $30 \mathrm{~Hz}, 1 \mathrm{kHz}$, and 2 kHz . The GCD of $f_{1}=30 \mathrm{~Hz}, f_{2}=1000$ Hz , and $f_{3}=2000 \mathrm{~Hz}$ is 10 Hz , because $f_{1} / 10 \mathrm{~Hz}=3, f_{2} / 10 \mathrm{~Hz}=100, f_{3} / 10 \mathrm{~Hz}=200$, and 3,100 , 200 have no common divisors. One can verify that in Julia using $\operatorname{gcd}(30,1000,2000)$.

Determine the fundamental period of the signal that has the following spectrum.

3	4	3	2	3	
1	1	1	1	1	$f[\mathrm{~Hz}]$
0	800	1200	1600	2400	

