- This is an individual assignment, not a group project. Refer to the course syllabus for the collaboration policies.
- All problems below use base-10 logarithm unless otherwise specified.

1. [0] The world population roughly doubled from 3 billion in 1960 to 6 billion in 1999. Suppose it continued at that rate, i.e., doubling every 39 years after that.

- Write an equation relating population p to year y.
- What type of plot would yield a straight line for this type of population growth?
- Determine the slope and intercept for that plot.

Caution: year y is on the horizontal axis here!
Hint. Try this yourself first, then check your work with the answer below.
2. [2] A student drops a ball from the top of the Eiffel tower and measures the distance the ball has traveled (in meters) after $1,2,3,5$, and 7 seconds. She plots the data using a log-log plot. Determine an expression for and a numerical value for the intercept on that plot.
3. [4] If you put $\$ 100$ in a bank that pays a (compound) annual interest rate of 5% (you wish), then after one year (assuming no withdrawals, which is unlikely) your balance will be $100 \times 1.05=\$ 105$, and after two years your balance will be $100 \times 1.05 \times 1.05=\$ 110.25$, etc.

- Write an equation that relates the balance b to the number of years n that the money is in the bank earning 5% interest.
- If you want to plot balance (on the vertical axis) versus number of years and have the data points lie along a line, do you use a $\log -\log$ or a semi-log plot?
- Determine the slope for the appropriate plot.

4. [4] If a bank pays a (compound) annual interest rate of 2%, then each your balance increases by a factor of 1.02 . Let's call this factor " f." You are comparing several banks with different interest factors (e.g., 1.02, 1.05, etc.), and you are examining what your balance will be (assuming an initial deposit of $\$ 100$) after 20 years.

- Write an equation that relates the balance b after 20 years to interest factor f.
- If you want to plot balance after 20 years (on the vertical axis) versus the interest factor f and have the data points lie along a line, do you use a log-log or a semi-log plot?
- Determine the slope for the appropriate plot.

5. [2] An engineer numbers the 88 keys on a piano from 1 to 88 (from lowest to highest) and measures the (fundamental) frequency of each key. (The lowest note on a piano is an "A" with frequency 27.5 Hz , and this piano has the usual tuning.) She plots frequency versus key number using a semi-log plot. Determine the slope of the line in that plot.
6. [3] Based on the numerical data shown in the following plot, determine a formula relating y and x.
(Simplify as much as possible.)

7. [3] Based on the numerical data shown in the following plot, determine a formula relating y and x. (Simplify as much as possible.)

Answer to $\# 1$:

- $p=3 \times 2^{(y-1960) / 39}$ (in billions)

Note that for $y=1960: p=3 \times 2^{0}=3$ billion and for $y=1999: p=3 \times 2^{1}=6$ billion.
Also note that the expression in the exponent is unitless: $\frac{y \text { (in years) }-1960 \text { (year) }}{39 \text { (years) }}$.
(Any expression in an exponent must be unitless.)

- $\log _{10}(p)=\log _{10}(3)+\log _{10}\left(2^{(y-1960) / 39}\right)=\log _{10}(3)+\frac{y-1960}{39} \log _{10}(2)=\left(\log _{10}(3)-\frac{1960}{39} \log _{10}(2)\right)+\frac{\log _{10}(2)}{39} y$ So a semi-log plot is appropriate.
- The slope is $\frac{\log _{10}(2)}{39} \approx 0.00772$

The intercept is $\log _{10}(3)-\frac{1960}{39} \log _{10}(2) \approx-14.65$

