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1 Introduction

The problem of forming cross-sectional or tomographic images of the attenuation characteristics of objects
arises in a variety of contexts, including medical X-ray computed tomography (CT) and nondestructive
evaluation of objects in industrial inspection. In the context of emission imaging, such as positron emission
tomography (PET) [1, 2], single photon emission computed tomography (SPECT) [3], and related methods
used in the assay of containers of radioactive waste [4], it is useful to be able to form “attenuation maps,”
tomographic images of attenuation coefficients, from which one can compute attenuation correction factors
for use in emission image reconstruction. One can measure the attenuating characteristics of an object by
transmitting a collection of photons through the object along various paths or “rays” and observing the
fraction that pass unabsorbed. From measurements collected over a large set of rays, one can reconstruct
tomographic images of the object. Such image reconstruction is the subject of this chapter.

In all the above applications, the number of photons one can measure in a transmission scan is limited. In
medical X-ray CT, source strength, patient motion, and absorbed dose considerations limit the total X-ray
exposure. Implanted objects such as pacemakers also significantly reduce transmissivity and cause severe
artifacts [5]. In industrial applications, source strength limitations, combined with the very large attenuation
coefficients of metallic objects, often result in a small fraction of photons passing to the detector unabsorbed.
In PET and SPECT imaging, the transmission scan only determines a “nuisance” parameter of secondary
interest relative to the object’s emission properties, so one would like to minimize the transmission scan
duration. All of the above considerations lead to “low-count” transmission scans. This chapter discusses
algorithms for reconstructing attenuation images from low-count transmission scans. In this context, we
define low-count to mean that the mean number of photons per ray is small enough that traditional filtered-
backprojection (FBP) images, or even methods based on the Gaussian approximation to the distribution of
the Poisson measurements (or logarithm thereof), are inadequate. We focus the presentation in the context of
PET and SPECT transmission scans, but the methods are generally applicable to all low-count transmission
studies. See [6] for an excellent survey of statistical approaches for the emission reconstruction problem.

Statistical methods for reconstructing attenuation images from transmission scans have increased in
importance recently for several reasons. Factors include the necessity of reconstructing 2D attenuation maps
for reprojection to form 3D attenuation correction factors in septaless PET [7, 8], the widening availability
of SPECT systems equipped with transmission sources [9], and the potential for reducing transmission noise
in whole body PET images and in other protocols requiring short transmission scans [10]. An additional
advantage of reconstructing attenuation maps in PET is that if the patient moves between the transmission
and emission scan, and if one can estimate this motion, then one can calculate appropriate attenuation
correction factors by reprojecting the attenuation map at the proper angles.

The traditional approach to tomographic image reconstruction is based on the non-statistical filtered
backprojection method [11, 12]. The FBP method and the data-weighted least-squares method [13, 14] for
transmission image reconstruction both lead to systematic biases for low-count scans [14–16]. These biases
are due to the nonlinearity of the logarithm applied to the transmission data. To eliminate these biases,
one can use statistical methods based on the Poisson measurement statistics. These method use the raw
measurements rather than the logarithms thereof [14, 17–19]. Statistical methods also produce images with
lower variance than FBP [14,16, 20]. Thus, in this chapter we focus on statistical methods.

The organization of this chapter is as follows. Section 2 first reviews the low-count tomographic re-
construction problem. Section 3 gives an overview of the principles underlying optimization algorithms for
image reconstruction. Section 4 through Section 7 describe in detail four categories of reconstruction algo-
rithms: expectation maximization, coordinate ascent, paraboloidal surrogates, and direct algorithms. All of
these algorithms are presented for the Poisson statistical model; Section 8 summarizes alternatives to that
approach. Section 9 briefly summarizes application of the algorithms to emission reconstruction. Section 10
gives an overview of some advanced topics. Section 11 presents illustrative results for real PET transmission
scans.

A few of the algorithms presented are “new” in the sense that they are derived here under more realistic
assumptions than were made in some of the original papers. And we have provided simple extensions to
some algorithms that were not intrinsically monotonic as previously published, but can be made monotonic
by suitable modifications.
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2 The Problem

In transmission tomography, the quantity of interest is the spatial distribution of the linear attenuation
coefficient, denoted µ(~x, E), where ~x = (x1, x2, x3) denotes spatial location in 3-space, and the argument E
parameterizes the dependence of the attenuation coefficient on incident photon energy [12]. The units of µ
are typically inverse centimeters (cm−1). If the object (patient) is moving, or if there are variations due to,
e.g., flowing contrast agent, then we could also denote the temporal dependence. For simplicity we assume
the object is static in this chapter. The ideal transmission imaging modality would provide a complete
description of µ(~x, E) for a wide range of energies, at infinitesimal spatial and temporal resolutions, at a
modest price, and with no harm to the subject. In practice we settle for much less.

Source

Detector

Collimator

Object

Translate

Rotate

µ(~x, E)

I0(E) η(E)

Li

Figure 1: Transmission scanning geometry for a 1st-generation CT scanner.

2.1 Transmission Measurements

The methods described in this chapter are applicable to general transmission geometries. However, the
problem is simplest to describe in the context of a first-generation CT scanner as illustrated in Fig. 1. A
collimated source of photons with intensity I0(E) is transmitted through the attenuating object and the
transmitted photons are recorded by a detector with detector efficiency η(E). The source and detector are
translated and rotated around the object. We use the letter i to index the source/detector locations, where
i = 1, . . . , NY . Typically NY is the product of the number of radial positions assumed by the source for each
angular position times the number of angular positions. For 2D acquisitions, in SPECT transmission scans
NY ≈ 104; in PET transmission scans, NY ≈ 105; and in modern X-ray CT systems NY ≈ 106.

For simplicity, we assume that the collimation eliminates scattered photons, which is called the “narrow
beam” geometry. In PET and SPECT transmission scans, the source is usually a monoenergetic radioisotope1

that emits gamma photons with a single energy E0, i.e.,
I0(E) = I0δ(E − E0),

where δ(·) is the Dirac delta function. For simplicity, we assume this monoenergetic case hereafter. (In the
polyenergetic case, one must consider effects such as beam hardening [21].)

The absorption and Compton scattering of photons by the object is governed by Beer’s law. Let bi denote
the mean number of photons that would be recorded by the detector (for the ith source-detector position,
hereafter referred to as a “ray”) if the object were absent. This bi depends on the scan duration, the source
strength, and the detector efficiency at the source photon energy E0. The dependence on i reflects the fact
that in modern systems there are multiple detectors, each of which can have its own efficiency. By Beer’s
law, the mean number of photons recorded for the ith ray ideally would be [12]

bi exp

(

−
∫

Li

µ0(~x) dl

)

, (1)

where Li is the line or strip between the source and detector for the ith ray, and where

µ0(~x) , µ(~x, E0)
1 Some gamma emitting radioisotopes produce photons at two or more distinct energies. If the detector has adequate energy

resolution, then it can separate photons at the energy of interest from other photons, or bin the various energies separately.
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is the linear attenuation coefficient at the source photon energy. The number of photons actually recorded
in practice differs from the ideal expression (1) in several ways. First, for a photon-counting detector2, the
number of recorded photons is a Poisson random variable [12]. Second, there will usually be additional
“background” counts recorded due to Compton scatter [22], room background, random coincidences in
PET [23, 24], or emission crosstalk in SPECT [9, 25–27]. Third, the detectors have finite width, so the
infinitesimal line integral in (1) is an approximation. For accurate image reconstruction, one must incorporate
these effects into the statistical model for the measurements, rather than simply using the idealized model
(1).

Let Yi denote the random variable representing the number of photons counted for the ith ray. A
reasonable statistical model3 for these transmission measurements is that they are independent Poisson
random variables with means given by

E[Yi] = bi exp

(

−
∫

Li

µ0(~x) dl

)

+ ri, (2)

where ri denotes the mean number of background events (such as random coincidences, scatter, and crosstalk).
In many papers, the ri’s are ignored or assumed to be zero. In this chapter, we assume that the ri’s are
known, which in practice means that they are determined separately by some other means (such as smooth-
ing a delayed-window sinogram in PET transmission scans [31]). The noise in these estimated ri’s is not
considered here, and is a subject requiring further investigation and analysis. In some PET transmission
scans, the random coincidences are subtracted from the measurements in real time. Statistical methods for
treating this problem have been developed [32–34], and require fairly simple modifications of the algorithms
presented in this chapter.

We assume the bi’s are known. In PET and SPECT centers, these are determined by periodic “blank
scans”: transmission scans with nothing but air in the scanner portal. Since no patient is present, these scans
can have fairly long durations (typically a couple of hours, run automatically in the middle of the night).
Thus the estimated bi’s computed from such a long scan have much less variability than the transmission
measurements (Yi’s). Therefore, we ignore the variability in these estimated bi’s. Accounting for the small
variability in the bi estimates is another open problem (but one likely to be of limited practical significance).

2.2 Reconstruction Problem

After acquiring a transmission scan, the tomographic reconstruction problem is to estimate µ0(~x) from a
realization {yi = Yi}NY

i=1, of the measurements. This collection of measurements is usually called a sinogram4

[35]. The conventional approach to this problem is to first estimate the ith line integral from the model (2)
and then to apply the FBP algorithm to the collection of line-integral estimates. Specifically, let

ltruei ,

∫

Li

µ0(~x) dl

denote the true line integral along the ith ray. Conventionally, one forms an estimate l̂i of l
true
i by computing

the logarithm of the measured sinogram as follows:

l̂i =

{

log
(

bi
Yi−ri

)

, Yi > ri

?, Yi ≤ ri.
(3)

One then reconstructs an estimate µ̂FBP from {l̂i}NY

i=1 using FBP [35]. There are several problems with
this approach. First, the logarithm is not defined when Yi ≤ ri, which can happen frequently in low-count
transmission scans. (Typically one must substitute some artificial value (denoted “?” above) for such rays,

2 For a current integrating detector, such as those used in commercial X-ray CT scanners, the measurement noise is a mixture
of Poisson photon statistics and gaussian electronic noise.

3 Due to the effects of detector deadtime in PET and SPECT, the measurement distributions are not exactly Poisson [28–30],
but the Poisson approximation seems adequate in practice.

4 When the ray measurements are organized as a 2D array according their radial and angular coordinates, the projection of
a point object appears approximately as a sinusoidal trace in the array.
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or interpolate neighboring rays [36], which can lead to biases.) Second, the above procedure yields biased
estimates of the line-integral. By Jensen’s inequality, since − log x is a concave function, for any random
variable X ,

E[− logX ] ≥ − logE[X ]

(see [37], p. 50), so when applied to (2) and (3)

E[l̂i] = E

[

log

(

bi
Yi − ri

)]

= E

[

− log

(

Yi − ri
bi

)]

≥ − log

(

E

[

Yi − ri
bi

])

=

∫

Li

µ0(~x) dl = ltruei . (4)

Thus, the logarithm in (3) systematically over-estimates the line integral on average. This over-estimation
has been verified empirically [14, 15]. One can show analytically that the bias increases as the counts
decrease [14], so the logarithm is particularly unsuitable for low-count scans. A third problem with (3) is

that the variances of the l̂i’s can be quite nonuniform, so some rays are much more informative than other
rays. The FBP method treats all rays equally, even those for which Yi−ri is non-positive, which leads to noisy
images corrupted by streaks originating from high variance l̂i’s. Noise is considered only as an afterthought
by apodizing the ramp filter, which is equivalent to space-invariant smoothing. (There are a few exceptions
where space-variant sinogram filtering has been applied, e.g., [38–40].) Fourth, the FBP method is poorly
suited to nonstandard imaging geometries, such as truncated fan-beam or cone-beam scans, e.g., [41–45].

Since noise is a primary concern, the image reconstruction problem is naturally treated as a statistical
estimation problem. Since we only have a finite number NY of measurements, it is natural to also represent
µ0(~x) with a finite parameterization. Such parameterizations are reasonable in practice since ultimately the
estimate of µ0 will be viewed on a digital display with a finite number of pixels. After one has parameterized
µ0, the reconstruction problem becomes a statistical problem: estimate the parameters from the noisy
measurements {Yi}NY

i=1.
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Figure 2: Illustration of 2D function µ0(x1, x2) parameterized using the pixel basis (6).

A general approach to parameterizing the attenuation map is to expand it in terms of a finite basis

6



expansion [46, 47]:

µ0(~x) =

Np
∑

j=1

µjχj(~x), (5)

where Np is the number of coefficients µj and basis functions χj(~x). There are many possible choices for
the basis functions. We would like to choose basis functions that naturally represent nonnegative functions
since µ0 ≥ 0. We would also like basis functions that have compact support, since such a basis yields a
very sparse system matrix A in (9) below. The conventional basis is just the “pixel” or “voxel” basis, which
satisfies both of these requirements. The voxel basis χj(~x) is 1 inside the jth voxel, and is 0 everywhere else.
In two-space, one can express the pixel basis by

χj(x, y) = rect

(

x− xj
∆

)

rect

(

y − yj
∆

)

, (6)

where (xj , yj) is the center of the jth pixel and ∆ is the pixel width. This basis gives a piecewise-constant
approximation to µ0, as illustrated in Fig. 2. With any parameterization of the form (5), the problem of
estimating µ0(~x) is reduced to the simpler problem of estimating the parameter vector µ = [µ1, . . . , µNp

]′

from the measurement vector Y = [Y1, . . . , YNY
]′, where “′” denotes vector and matrix transpose. Under

the parameterization (5), the line integral in (2) becomes the following summation:

∫

Li

µ0(~x) dl =

∫

Li

Np
∑

j=1

µjχj(~x) dl =

Np
∑

j=1

µj

∫

Li

χj(~x) dl =

Np
∑

j=1

aijµj ,

where

aij ,

∫

Li

χj(~x) dl

is the line integral5 along the ith ray through the jth basis function. This simplification yields the following
discrete-discrete measurement model:

Yi ∼ Poisson{ȳi(µtrue)}, i = 1, . . . , NY , (7)

where the ensemble mean of the ith measurement is denoted

ȳi(µ) , bi e
−[Aµ]i + ri (8)

[Aµ]i ,

Np
∑

j=1

aijµj , (9)

where A = {aij}. The remainder of this chapter will be based on the Poisson measurement model (7). (See
Appendix 14 for a review of Poisson statistics.)

2.3 Likelihood-based estimation

Maximum-likelihood (ML) estimation is a natural approach6 for finding µ from a particular measurement
realization Y = y when a statistical model such as (7) is available. The ML estimate µ̂ is defined as follows:

µ̂ = arg max
µ ≥ 0

L(µ), L(µ) , logP [Y = y;µ].

5 In practice, we use normalized strip integrals [48, 49] rather than line integrals to account for finite detector width [50].
Regardless, the units of aij are length units (mm or cm), whereas the units of the µj ’s are inverse length.

6 The usual rationale for the ML approach is that ML estimators are asymptotically unbiased and asymptotically efficient
(minimum variance) under very general conditions [37]. Such asymptotic properties alone would be a questionable justification
for the ML approach in the case of low-count transmission scans. However, ML estimators often perform well even in the
“non-asymptotic” regime. We are unaware of any data-fit measure for low-count transmission scans that outperforms the
log-likelihood, but there is no known proof of optimality of the log-likelihood in this case, so the question is an open one.
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For the Poisson model (7), the measurement joint probability mass function is

P [Y = y;µ] =

NY
∏

i=1

P [Yi = yi;µ] =

NY
∏

i=1

e−ȳi(µ)[ȳi(µ)]
yi/yi!. (10)

The ML method seeks finds the object (as described by the parameter vector µ) that maximizes the proba-
bility of having observed the particular measurements that were recorded. The first paper to propose a ML
approach for transmission tomography appears to be due to Rockmore and Macovski in 1977 [46]. However,
the pseudoinverse method described in [46] in general does not find the maximizer of the likelihood L(µ).

For independent transmission measurements, we can use (8) and (10) to express the log-likelihood in the
following convenient form:

L(µ) ≡
NY
∑

i=1

hi([Aµ]i) (11)

where we use “≡” hereafter for expressions that are equal up to irrelevant constants independent of µ, and
where the marginal log-likelihood of the ith measurement is

hi(l) , yi log
(

bie
−l + ri

)

−(bie
−l + ri). (12)

A typical hi is shown in Fig. 4 on page 13. For convenience later, we also list the derivatives of hi here:

ḣi(l) ,
d

dl
hi(l) =

[

1− yi
bie−l + ri

]

bie
−l (13)

ḧi(l) ,
d2

dl2
hi(l) = −

[

1− yiri
(bie−l + ri)2

]

bie
−l. (14)

The algorithms described in the following sections are based on various strategies for finding the maximizer
of L(µ). Several of the algorithms are quite general in the sense that one can easily modify them to apply to
many objective functions of the form (11), even when hi has a functional form different than the form (12)
that is specific to transmission measurements. Thus, even though the focus of this chapter is transmission
imaging, many of the algorithms and comments apply equally to emission reconstruction and to other inverse
problems.

Maximizing the log-likelihood L(·) alone leads to unacceptably noisy images, because tomographic image
reconstruction is an ill-conditioned problem. Roughly speaking, this means that there are many choices
of attenuation maps µ0(~x) that fit the measurements {Yi}NY

i=1 reasonably well. Even when the problem is

parameterized, there are many choices of the vector µ that fit the measurements {Yi}NY

i=1 reasonably well,
where the fit is quantified by the log-likelihood L(µ). Not all of those images are useful or physically
plausible. Thus, the likelihood alone does not adequately identify the “best” image. One effective remedy
to this problem is to modify the objective function by including a penalty function that favors reconstructed
images that are piecewise smooth. This process is called regularization since the penalty function improves
the conditioning of the problem7. In this chapter we focus on methods that form an estimate µ̂ of the true
attenuation map µtrue by maximizing a penalized-likelihood objective function of the following form:

µ̂ , arg max
µ≥ 0

Φ(µ), Φ(µ) , L(µ)− βR(µ), (15)

where the objective function Φ includes a roughness penalty R(µ) discussed in more detail below. The
parameter β controls the tradeoff between spatial resolution and noise: larger values of β generally lead to
reduced noise at the price of reduced spatial resolution. Solving (15) is the primary subject of this chapter.

One benefit of using methods that are based on objective functions such as (15) is that for such methods,
image quality is determined by the objective function rather than by the particular iterative algorithm,
provided the iterative algorithm converges to the maximizer of the objective function. In particular, from
the objective function one can analyze spatial resolution properties and bias, variance, and autocorrelation
properties [16, 20, 53–58].

7 For emission tomography, a popular alternative approach to “regularization” is simply to post-smooth the ML reconstruc-
tion image with a Gaussian filter. In the emission case, under the somewhat idealized assumption of a shift-invariant Gaussian
blur model for the system, a certain commutability condition ((12) of [51] holds, which ensures that Gaussian post-filtering is
equivalent to Gaussian sieves. It is unclear whether this equivalence holds in the transmission case, although some authors have
implied that it does without proof, e.g., [52].
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2.3.1 Connection to Bayesian perspective

By letting β = 0 in (15) and in the algorithms presented in the following sections, one has ML algorithms as
a special case. Bayesian image reconstruction formulations also lead to objective functions of the form (15).
Suppose one considers µ to be a random vector drawn from a prior distribution f(µ) that is proportional
to e−βR(µ). (Such priors arise naturally in the context of Markov random field models for images [59].) One
computes the maximum a posteriori (MAP) estimate of µ by maximizing the posterior distribution f(µ|Y ).
By Bayes rule:

f(µ|Y ) = f(Y |µ)f(µ)/f(Y )

so the log posterior is
log f(µ|Y ) ≡ log f(Y |µ) + log f(µ) ≡ L(µ)− βR(µ).

Thus MAP estimation is computationally equivalent to (15).

2.4 Penalty Function

It has been considered by many authors to be reasonable to assume that the attenuation maps of interest
are piecewise smooth functions. An extreme example of such assumptions is the common use of attenuation
map segmentation in PET imaging to reduce the noise due to attenuation correction factors [60–62]. Under
the piecewise smooth attenuation map assumption, it is reasonable for the penalty function R(µ) to discour-
age images that are too “rough.” The simplest penalty function that discourages roughness considers the
discrepancies between neighboring pixel values:

R(µ) =

Np
∑

j=1

1

2

Np
∑

k=1

wjkψ(µj − µk), (16)

where wjk = wkj . Ordinarily wjk = 1 for the four horizontal and vertical neighboring pixels, wjk = 1/
√
2

for diagonal neighboring pixels, and wjk = 0 otherwise. One can also adopt the modifications described
in [20,53–56], to provide more uniform spatial resolution. The potential function ψ assigns a cost to µj −µk.

For the results presented in Section 11, we used a penalty function of the form (16). However, the
methods we present all apply to much more general penalty functions. Such generality is needed for penalty
functions such as the weak-plate prior of [63] or the local averaging function considered in [64]. One can
express most8 of the penalty functions that have been used in tomographic reconstruction in the following
very general form:

R(µ) =

K
∑

k=1

ψk([Cµ]k) (17)

where C is a K ×Np penalty matrix and

[Cµ]k =

Np
∑

j=1

ckjµj .

We assume throughout that the functions ψk are symmetric and differentiable.
The pairwise penalty (16) is the special case of (17) where K ≈ 2Np and each row of C has one +1 and

one −1 entry corresponding to some pair of pixels.
In this chapter we focus on quadratic penalty functions where ψk(t) = ωkt

2/2 for ωk ≥ 0, so

R(µ) =

K
∑

k=1

ωk

1

2
([Cµ]k)

2 =
1

2
µ′C ′ΩCµ, (18)

where Ω , diag{ωk}. The second derivative of such a penalty is given by

∂2

∂µ2
j

R(µ) =

K
∑

k=1

c2kjωk. (19)

8 One exception is the median root prior [65].
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This focus is for simplifying the presentation; in practice nonquadratic penalty functions are often preferable
for transmission image reconstruction e.g., [66, 67].

2.5 Concavity

From the second derivative expression (14), when ri = 0, ḧi(l) = −bie−l, which is always nonpositive, so hi
is concave over all of R (and strictly concave if bi > 0). From (11) one can easily verify that the Hessian
matrix (the Np ×Np matrix of second partial derivatives) of L(·) is:

∇2L(µ) = A′ diag
{

ḧi([Aµ]i)
}

A, (20)

where diag{di} is a NY × NY diagonal matrix with ith diagonal element di. Thus the log-likelihood is
concave over all of RNp when ri = 0 ∀i. If the ψk’s are all strictly convex and L(·) is concave, then the
objective Φ is strictly concave under mild conditions on A [68]. Such concavity is central to the convergence
proofs of the algorithms described below. In the case ri 6= 0, the likelihood L(·) is not necessarily concave.
Nevertheless, in our experience it seems to be unimodal. (Initializing monotonic iterative algorithms with
different starting images seems to lead to the same final image.) In the non-concave case, we cannot guarantee
global convergence to the global maximum for any of the algorithms described below. For the monotonic
algorithms we usually can prove convergence to a local maxima [69]; if in addition the objective function is
unimodal, then the only local maximum will be the global maximum, but proving that Φ is unimodal is an
open problem.

3 Optimization Algorithms

Ignoring the nonnegativity constraint, one could attempt to find µ̂ analytically by zeroing the gradient of
Φ. The partial derivatives of Φ are

∂

∂µj

Φ(µ) =

NY
∑

i=1

aij ḣi([Aµ]i)− β
∂

∂µj

R(µ), j = 1, . . . , Np, (21)

where ḣi was defined in (13). Unfortunately, even disregarding both the nonnegativity constraint and the
penalty function, there are no closed-form solutions to the set of equations (21), except in the trivial case
when A = I. Even when A = I there are no closed-form solutions for nonseparable penalty functions. Thus
iterative methods are required to find the maximizer µ̂ of such objective functions.

3.1 Why so many algorithms?

Analytical solutions for the maximizer of (15) appear intractable, so one must use iterative algorithms. An
iterative algorithm is a procedure that starts with an initial guess µ(0) of µ, and then recursively generates
a sequence µ(1),µ(2), . . ., also denoted {µ(n) }. Ideally, the iterates {µ(n) } should rapidly approach the
maximizer µ̂. When developing algorithms for image reconstruction based on penalized-likelihood objective
functions, there are many design considerations, most of which are common to any problem involving iterative
methods. In particular, an algorithm designer should consider the impact of design choices on the following
characteristics.
• Monotonicity (Φ (µ(n)) increases every iteration)
• Nonnegativity constraint (µ ≥ 0)
• Paralellization
• Sensitivity to numerical errors
• Convergence rate (as few iterations as possible)
• Computation time per iteration (as few floating point operations as possible)
• Storage requirements (as little memory as possible)
• Memory bandwidth (data access)
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Generic numerical methods such as steepest ascent do not exploit the specific structure of the objective
function Φ, nor do they easily accommodate the nonnegativity constraint. Thus for fastest convergence, one
must seek algorithms tailored to this type of problem. Some of the relevant properties of L include:
• L(θ) is a sum of scalar functions hi(·).
• The hi’s have bounded curvature, and are concave when ri = 0.
• The arguments of the functions hi are inner products.
• The inner product coefficients are all nonnegative.
The cornucopia of algorithms that have been proposed in the image reconstruction literature exploit these
properties (implicitly or explicitly) in different ways.

3.2 Optimization transfer principle

Before delving into the details of the many algorithms that have been proposed for maximizing Φ, we first
describe a very useful and intuitive general principle that underlies almost all the methods. The principle
is called optimization transfer . This idea was described briefly as a majorization principle in the limited
context of 1D line searches in the classic text by Ortega and Rheinbolt [70, p. 253]. It was rediscovered and
generalized to inverse problems in the recent work of De Pierro [71,72] and Lange [68,73]. Since the concept
applies more generally than just to transmission tomography, we use θ as the generic unknown parameter
here.

The basic idea is illustrated in Fig. 3. Since Φ is difficult to maximize, at the nth iteration we can replace
Φ with a surrogate function φ(θ; θ(n)) that is easier to maximize, i.e., the next iterate is defined as:

θ(n+1) , argmax
θ

φ(θ; θ(n)). (22)

The maximization is restricted to the valid parameter space (e.g., θ ≥ 0 for problems with nonnegative
constraints). Maximizing φ(·; θ(n)) will usually not lead directly to the global maximizer µ̂. Thus one
repeats the process iteratively, finding a new surrogate function φ at each iteration and then maximizing
that surrogate function. If we choose the surrogate functions appropriately, then the sequence {θ(n) } should
eventually converge to the maximizer µ̂ [74].

Fig. 3 does not do full justice to the problem, since 1D functions are usually fairly easy to maximize.
The optimization transfer principle is particularly compelling for problems where the dimension of θ is large,
such as in inverse problems like tomography.

It is very desirable to use algorithms that monotonically increase Φ each iteration, i.e., for which
Φ(θ(n+1)) ≥ Φ(θ(n)). Such algorithms are guaranteed to be stable, i.e., the sequence {θ(n) } will not
diverge if Φ is strictly concave. And generally such algorithms will converge to the maximizer µ̂ if it is
unique [69]. If we choose surrogate functions that satisfy

Φ(θ)− Φ(θ(n)) ≥ φ(θ; θ(n))− φ(θ(n); θ(n)), ∀θ, θ(n), (23)

then one can see immediately that the algorithm (22) monotonically increases Φ. To ensure monotonicity, it is
not essential to find the exact maximizer in (22). It suffices to find a value θ(n+1) such that φ(θ(n+1); θ(n)) ≥
φ(θ(n); θ(n)), since that alone will ensure Φ(θ(n+1)) ≥ Φ(θ(n)) by (23). The various algorithms described
in the sections that follow are all based on different choices of the surrogate function φ, and on different
procedures for the maximization in (22).

Rather than working with (23), all the surrogate functions we present satisfy the following conditions:

φ(θ(n); θ(n)) = Φ(θ(n)) (24)

∇θφ(θ; θ
(n))
∣

∣

∣

θ=θ(n)
= ∇Φ(θ)|θ=θ(n) (25)

φ(θ; θ(n)) ≤ Φ(θ) ∀θ ≥ 0. (26)

Any surrogate function that satisfies these conditions will satisfy (23). (The middle condition follows from
the outer two conditions when Φ and φ are differentiable.)
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Figure 3: Illustration of optimization transfer in 1D.
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3.3 Convergence rate

The convergence rate of an iterative algorithm based on the optimization transfer principle can be analyzed
qualitatively by considering Fig. 3. If the surrogate function φ has low curvature, then it appears as a
“broad” graph in Fig. 3, which means that the algorithm can take large steps (θ(n+1) − θ(n) can be large)
which means that it reaches the maximizer faster. Conversely, if the surrogate function has high curvature,
then it appears as a “skinny” graph, the steps are small, and many steps are required for convergence. So in
general we would like to find low curvature surrogate functions, with the caveat that we want to maintain
φ ≤ Φ to ensure monotonicity [75]. And of course we would also like the surrogate φ to be easy to maximize
for (22). Unfortunately, the criteria “low curvature” and “easy to maximize” are often incompatible, so we
must compromise.

3.4 Parabola surrogate
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Figure 4: Ray log-likelihood hi(l) and parabola surrogate qi(l; l
(n)
i ) for yi = 50, bi = 100, ri = 5, and l

(n)
i = 3.

Throughout this chapter we struggle with the ray log-likelihood function hi defined in (12), which we
rewrite here without the i’s for simplicity:

h(l) = y log
(

b e−l + r
)

−(b e−l + r),

where y, b, r ≥ 0 are known constants. Of the many possible surrogate functions that could replace h(·) in
an optimization transfer approach, a choice that is particularly convenient is a parabola surrogate:

q(l; l
(n)
i ) , h(l

(n)
i ) + ḣ(l

(n)
i )(l − l

(n)
i )− c

2
(l − l

(n)
i )2, (27)

for some choice of the curvature c ≥ 0, where

l
(n)
i = [Aµ(n)]i (28)

is the ith line integral through the estimated attenuation map at the nth iteration. The choice (27) clearly

satisfies conditions (24) and (25), but we must carefully choose c = c(l
(n)
i , y, b, r) to ensure that q(l; l

(n)
i ) ≤
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h(l) ∀l ≥ 0 so that (26) is satisfied. On the other hand, from the convergence rate description in the preceding
section, we would like the curvature c to be as small as possible. In other words, we would like to find

c(l
(n)
i , y, b, r) ,

min
{

c : h(l
(n)
i ) + ḣ(l

(n)
i )(l − l

(n)
i )− c

2
(l − l

(n)
i )2 ≤ h(l), ∀l ≥ 0

}

.

In [76], we showed that the optimal curvature is as follows:

c(l
(n)
i , y, b, r) =















[

−2
h(0)− h(l

(n)
i ) + ḣ(l

(n)
i )l

(n)
i

(l
(n)
i )2

]

+

, l
(n)
i > 0

[

−ḧ(l(n)i )
]

+
, l

(n)
i = 0,

(29)

where [x]+ is x for positive x and zero otherwise. Fig. 4 illustrates the surrogate parabola q in (27) with the
optimal curvature (29).

One small inconvenience with (29) is that it changes every iteration since it depends on l
(n)
i . An alternative

choice of the curvature that ensures q ≤ h is the maximum second derivative of −h(l) over [0,∞). In [76]
we show that

max
l≥0

[

−ḧ(l)
]

+
=
[

−ḧ(0)
]

+
=

[(

1− y

b+ r

)

b

]

+

. (30)

We can precompute this curvature before iterating since it is independent of l
(n)
i . However, typically this

curvature is much larger than the optimal choice (29), so the flops saved by precomputing may be lost in
increased number of iterations due to a slower convergence rate.

The surrogate parabola (27) with curvature (29) will be used repeatedly in this chapter, both for the
derivation of recently developed algorithms, as well as for making minor improvements to older algorithms
that were not monotonic as originally proposed. A similar approach applies to the emission reconstruction
problem [77].

4 EM Algorithms

The emission reconstruction algorithm derived by Shepp and Vardi in [78] and by Lange and Carson in [17]
is often referred to as “the” EM algorithm in the nuclear imaging community. In fact, the expectation-
maximization (EM) framework is a general method for developing many different algorithms [79]. The
appeal of the EM framework is that it leads to iterative algorithms that in principle yield sequences of
iterates that monotonically increase the objective function. Furthermore, in many statistical problems one
can derive EM algorithms that are quite simple to implement. Unfortunately, the Poisson transmission
reconstruction problem does not seem to be such a problem. Only one basic type of EM algorithm has been
proposed for the transmission problem, and that algorithm converges very slowly and has other difficulties
described below. We include the description of the EM algorithm for completeness, but the reader who is
not interested in the historical perspective could safely skip this section since we present much more efficient
algorithms in subsequent sections.

We describe the general EM framework in the context of problems where one observes a realization y

of a measurement vector Y , and wishes to estimate a parameter vector θ by maximizing the likelihood or
penalized log-likelihood. To develop an EM algorithm, one must first postulate a hypothetical collection of
random variables called the “complete data space” X. These are random variables that, in general, were
not observed during the experiment, but that might have simplified the estimation procedure had they been
observed. The only requirement that the complete data space must satisfy is that one must be able to extract
the observed data from X, i.e., there must exist a function h(·) such that

Y = h(X). (31)

This is a trivial requirement since one can always include the random vector Y itself in the collection X of
random variables.

14



Having judiciously chosen X, an essential ingredient of any EM algorithm is the following conditional
expectation of the log-likelihood of X:

Q(θ; θ(n)) = E[log f(X; θ) | Y = y; θ(n)] =

∫

f(x | Y = y; θ(n)) log f(x; θ) dx, (32)

and, in the context of penalized-likelihood problems, the following function

φ(θ; θ(n)) , Q(θ; θ(n))− βR(θ), (33)

where R(θ) is a penalty function. We refer to φ as an EM-based surrogate function, since one replaces the
difficult problem of maximizing Φ with a sequence of (hopefully) simpler maximizations of φ. There are
often alternative surrogate functions that have advantages over the EM-based functions, as described in
Section 6.1. The surrogate function concept is illustrated in Fig. 3 on page 12.

An EM algorithm is initialized at an arbitrary point θ0 and generates a sequence of iterates θ1, θ2, . . ..
Under fairly general conditions [80], the sequence {θ(n) } converges to the maximizer of the objective function
Φ(θ) = L(θ)− βR(θ). The EM recursion is as follows:

E-step: find Q(θ; θ(n)) using (32) and φ(θ; θ(n)) using (33)
M-step: θ(n+1) = argmax

θ
φ(θ; θ(n)),

where the maximization is restricted to the set of valid parameters, as in (22). Many generalizations of this
basic framework have been proposed, see for example [81–85] and a recent review paper [86].

By applying Jensen’s inequality, one can show [79] that the EM-based surrogate function satisfies the
monotonicity inequality (23) for all θ and θ(n). Since the M-step ensures that

φ(θ(n+1); θ(n)) ≥ φ(θ(n); θ(n)),

it follows from (23) that the above EM recursion is guaranteed to lead to monotone increases in the objective
function Φ. Thus, the EM framework is a special case of the optimization transfer approach (22), where the
surrogate function derives from statistical principles (32).

4.1 Transmission EM algorithm

Although Rockmore and Macovski proposed ML transmission reconstruction in 1977 [46], it took until 1984
for the first practical algorithm to appear, when Lange and Carson proposed a complete data space for a
transmission EM algorithm [17]. Lange and Carson considered the case where ri = 0. In this section we
derive a transmission EM algorithm that generalizes that of [17]; we allow ri 6= 0, and we consider arbitrary
pixel orderings, as described below. The algorithm of [17] is a special case of what follows.

The “complete” data space that we consider for the case ri 6= 0 is the following collection of random
variables, all of which have Poisson marginal distributions:

X = {Yik : i = 0, 1, . . . , NY , k = 1, . . . , Np} ∪ {Ri : i = 1, . . . , NY }.

We assume that
Ri ∼ Poisson{ri}

and
Yi0 ∼ Poisson{bi}, i = 1, . . . , NY ,

and that the Ri’s are all mutually independent and statistically independent of all the Yik’s. Furthermore,
Yik and Ylk are independent for i 6= l. However, Yik and Yij are not independent. (The distributions of Ri

and Yi0 do not depend on µ, so are of less importance in what follows.)
For each i, let (ji,1, . . . , ji,Np

) be any permutation of the set of pixel indices j = 1, . . . , Np. Notationally,
the simplest case is just when ji,k = k, which corresponds to the algorithm considered in [87]. Lange
and Carson [17] assign ji,k to the physical ordering corresponding to the ray connecting the source to the
detector. Statistically, any ordering suffices, and it is an open (and probably academic) question whether
certain orderings lead to faster convergence. Given such an ordering, we define the remaining Yik’s recursively
by the following conditional distributions:

Yik | Yi,k−1, Yi,k−2, . . . , Yi0 ∼ Binomial
(

Yi,k−1, e
−λi,k

)

,
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where
λi,k , aiji,kµji,k .

Thus the conditional probability mass function (PMF) of Yik for k = 1, . . . , Np is given by:

p(yik |yi,k−1, yi,k−2, . . . , yi0;µ) = p(yik |yi,k−1;µ)

=

(

yi,k−1
yik

)

(

e−λi,k
)yik

(

1− e−λi,k
)yi,k−1−yik

, (34)

where

(

n
m

)

is the binomial coefficient. An alternative way of writing this recursion is

Yik =

Yi,k−1
∑

l=1

Zikl, k = 1, . . . , Np, i = 1, . . . , NY ,

where Zikl is a collection of independent 0-1 Bernoulli random variables with

P [Zikl = 1] = e−λi,k .

Since a Bernoulli-thinned Poisson process remains Poisson (see Appendix 14), it follows that each Yik has a
Poisson distribution:

Yik ∼ Poisson

{

bi

k
∏

l=1

e−λi,l

}

≡ Poisson
{

bie
−

∑
k
l=1 λi,l

}

. (35)

The special case k = Np in (35) yields

Yi,Np
∼ Poisson

{

bie
−

∑Np

l=1 λi,l

}

≡ Poisson
{

bie
−[Aµ]i

}

.

Therefore, the observed measurements are related to the complete data space by

Yi = Yi,Np
+Ri,

so the condition (31) is satisfied. As noted in [88], there are multiple orderings of the Yik’s that can be
considered, each of which would lead to a different update, but which would leave unchanged the limit if
there is a unique maximizer (and provided this EM algorithm is globally convergent, which has never been
established for the case ri 6= 0).

. . .

Yi0 Yi1 Yi2 Yi,Np−1 Yi,Np
Yi

Ri

aiji,1 aiji,2 aiji,Np

µji,1 µji,2 µji,Np

Figure 5: Pseudo-physical interpretation of transmission EM complete-data space.

Fig. 5 illustrates a loose physical interpretation of the above complete data space. For the ith order-
ing, imagine a sequence of layers of material with attenuation coefficients µji,1 , . . . , µji,,Np

and thicknesses
aiji,1 , . . . , aiji,Np

. Suppose a Poisson number Yi0 of photons is transmitted into the first layer. The number
that survive passage through that layer is Yi1, which then proceed through the second layer and so on. The
final number of photons exiting the sequence of layers is Yi,Np

, and this number is added to the random coin-
cidences Ri to form the observed counts Yi. This interpretation is most intuitive when the pixels are ordered
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according to the actual passage of photons from source to detector (as in [17]), but a physical interpretation
is not essential for EM algorithm development.

It follows from (35) and Appendix 14 that

Yi,Np
|Yik ∼ Binomial



Yik,

Np
∏

l=k+1

e−λi,l



 ,

since a cascade of independent Binomials is Binomial with the product of the success probabilities.
Having specified the complete-data space, the next step in developing an EM algorithm is to find the

surrogate function Q(µ;µ(n)) of (32). It follows from the above specifications that the joint probability mass
function (PMF) of X is given by

p(X;µ) =

NY
∏

i=1

p({Yik}Np

k=0;µ)

NY
∏

i=1

p(Ri).

By applying the chain rule for conditional probabilities [89] and using (34):

p({Yik}Np

k=0;µ) = p(Yi0)

Np
∏

k=1

p(Yik |Yi,k−1;µ)

so

log p(X;µ) ≡
NY
∑

i=1

Np
∑

k=1

log p(Yik |Yi,k−1;µ)

≡
NY
∑

i=1

Np
∑

k=1

Yik log
(

e−λi,k
)

+ (Yi,k−1 − Yik) log
(

1− e−λi,k
)

.

Thus, following [17,87], the EM-based surrogate function for the above complete data space has the following
form:

Q(µ;µ(n)) =

NY
∑

i=1

Np
∑

j=1

N̄
(n)
ij log

(

e−aijµj
)

+ (M̄
(n)
ij − N̄

(n)
ij ) log

(

1− e−aijµj
)

=

Np
∑

j=1

Qj(µj ;µ
(n)), (36)

where

Qj(µj ;µ
(n)) ,

NY
∑

i=1

N̄
(n)
ij log

(

e−aijµj
)

+ (M̄
(n)
ij − N̄

(n)
ij ) log

(

1− e−aijµj
)

(37)

N̄
(n)
ij , E[Yik |Yi = yi;µ

(n)]
∣

∣

∣

k : ji,k=j
(38)

M̄
(n)
ij , E[Yi,k−1 |Yi = yi;µ

(n)]
∣

∣

∣

k : ji,k=j
. (39)

To complete the E-step of the EM algorithm, we must find the preceding conditional expectations. Using
the law of iterated expectation [89]:

E[Yik |Yi = yi] = E [E[Yik |Ri, Yi = yi] | Yi = yi]

= E
[

E[Yik |Yi,Np
= yi −Ri] | Yi = yi

]

= E
[

E[Yik]− E[Yi,Np
] + yi −Ri | Yi = yi

]

= E[Yik]− E[Yi,Np
] + yi − yi

ri
ri + E[Yi,Np

]
(40)
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using results from [17] and Appendix 14. From (35)

E[Yij ;µ
(n)] = γ

(n)
ij , bi

k
∏

l=1

e
−aiji,l

µ
(n)
ji,l = bie

−
∑

k
l=1 aiji,l

µ
(n)
ji,l

∣

∣

∣

∣

∣

k:ji,k=j

, (41)

from which one can show using (40) that

M̄
(n)
ij − N̄

(n)
ij = γ

(n)
ij (eaijµ

(n)
j − 1) ≥ 0. (42)

Combining (36), (37), (40), and (41) yields an explicit expression for the EM surrogateQ(µ;µ(n)), completing
the E-step.

For the M-step of the EM algorithm, we must find the maximizer of Q(·;µ(n)). The function Q(·;µ(n))
is a separable function of the µj ’s, as shown in (36), so it is easier to maximize than Φ. Thus the M-step
reduces to the Np separable 1D maximization problems:

µ
(n+1)
j = argmax

µj≥0
Qj(µj ;µ

(n)). (43)

Unfortunately however, due to the transcendental functions in (36), there is no closed-form expression for the
maximizer of Qj(·;µ(n)). In fact, finding the maximizer of Qj(·;µ(n)) is no easier than maximizing Φ(µ) with
respect to µj while holding the other parameters fixed, which is the coordinate ascent algorithm described
in Section 5. Nevertheless, the EM algorithm is parallelizable, unlike the coordinate ascent algorithm, so we
proceed here with its description. Zeroing the derivative of Qj in (37) yields the following:

0 =
d

dµj

Qj(µj ;µ
(n)) =

NY
∑

i=1

−N̄ (n)
ij aij + (M̄

(n)
ij − N̄

(n)
ij )

aije
−aijµj

1− e−aijµj
, (44)

the solution to which is µ
(n+1)
j . Unfortunately, (44) can only be solved for µj analytically when the aij ’s are

all equal. However, Lange and Carson [17] noted that typically aijµj will be small (much less than unity),
so that the following Taylor-series expansion around zero should be a reasonable approximation:

xe−x

1− e−x
≈ 1− x

2
for x ≈ 0.

Applying this approximation to (44) with x = aijµj yields:

NY
∑

i=1

N̄
(n)
ij aij ≈

NY
∑

i=1

(M̄
(n)
ij − N̄

(n)
ij )

1

µj

(

1− aijµj

2

)

=

NY
∑

i=1

(M̄
(n)
ij − N̄

(n)
ij )

(

1

µj

− aij
2

)

.

Solving this equality for µj yields the final iterative form for the ML transmission EM algorithm [17]:

µ
(n+1)
j ≈

∑NY

i=1(M̄
(n)
ij − N̄

(n)
ij )

1
2

∑NY

i=1 aij(M̄
(n)
ij + N̄

(n)
ij )

. (45)

This algorithm is very slow to converge [68] and each iteration is very computationally expensive due to the
large number of exponentiations required in (41). One exponentiation per nonzero aij is required.

Lange and Carson [17] also describe an update based on a second-order Taylor series, and they note
that one can use their expansion to find upper and lower bounds for the exact value of µj that maximizes
Qj(·;µ(n)).
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4.2 EM algorithms with approximate M-steps

Since the M-step of the transmission EM algorithm of [17] did not yield a closed form for the maximizer,
Browne and Holmes [90] proposed a modified EM algorithm that used an approximate M-step based on image
rotations using bilinear interpolation. Kent and Wright made a similar approximation [88]. An advantage
of these methods is that (after interpolation) the aij ’s are all equal, which is the case where one can solve
(44) analytically. Specifically, if aij = a0 for all i and j, then (44) simplifies to

NY
∑

i=1

Ñ
(n)
ij =

NY
∑

i=1

(M̃
(n)
ij − Ñ

(n)
ij )

1

ea0µj − 1
,

where Ñ
(n)
ij and M̃

(n)
ij replace M̄

(n)
ij and N̄

(n)
ij respectively in rotated coordinates. When solved for µj , this

yields the iteration

µ
(n+1)
j =

1

a0
log

(

∑NY

i=1 M̃
(n)
ij

∑NY

i=1 Ñ
(n)
ij

)

, (46)

which is the logarithm of the ratio of (conditional expectations of) the number of photons entering the jth
pixel to the number of photons leaving the jth pixel, divided by the pixel size. However, the interpolations

required to form Ñ
(n)
ij and M̃

(n)
ij presumably destroy the monotonicity properties of the EM algorithm.

Although bookkeeping is reduced, these methods require the same (very large) number of exponentiations
as the original transmission EM algorithm, so they are also impractical algorithms.

4.3 EM algorithm with Newton M-step

Ollinger [91,92] reported that the M-step approximation (45) proposed in [17] led to convergence problems,
and proposed a 1D Newton’s method for maximizing Q in the context of a generalized EM (GEM) algorithm
[79] for the M-step. Since Newton’s method is not guaranteed to converge, the step length was adjusted by
a halving strategy to ensure a monotone increase in the surrogate function:

µ
(n+1)
j = µ

(n)
j + αj,n

d
dµj

Qj(µj ;µ
(n))
∣

∣

∣

µj=µ
(n)
j

d2

dµ2
j

Qj(µj ;µ(n))
∣

∣

∣

µj=µ
(n)
j

, (47)

where one ensures that Qj(µ
(n+1)
j ;µ(n)) ≥ Qj(µ

(n)
j ;µ(n)) by choosing αj,n via a line-search. This line-search

can require multiple evaluations of Qj as each pixel is updated, which is relatively expensive. The large

number of exponentiations required to compute M̄
(n)
ij and N̄

(n)
ij also remains a drawback.

From (44) and (42),

d

dµj

Qj(µj ;µ
(n))

∣

∣

∣

∣

µj=µ
(n)
j

=

NY
∑

i=1

aij

[

M̄
(n)
ij − N̄

(n)
ij

1− e−aijµ
(n)
j

e−aijµ
(n)
j − N̄

(n)
ij

]

=

NY
∑

i=1

aij

(

γ
(n)
ij −

[

γ
(n)
ij − bie

−l
(n)
i +

yibie
−l

(n)
i

bie−l
(n)
i + ri

])

=

NY
∑

i=1

aij

(

1− yi

bie−l
(n)
i + ri

)

bie
−l

(n)
i =

d

dµj

L(µ)

∣

∣

∣

∣

µ=µ(n)

,

so (25) is indeed satisfied. From (44) and (42),

− d2

dµ2
j

Qj(µj ;µ
(n)) =

NY
∑

i=1

(M̄
(n)
ij − N̄

(n)
ij )

a2ije
−aijµj

(1− e−aijµj )2
, (48)
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so

− d2

dµ2
j

Qj(µj ;µ
(n))

∣

∣

∣

∣

∣

µj=µ
(n)
j

=

NY
∑

i=1

a2ijγ
(n)
ij /(1− e−aijµ

(n)
j ).

Thus, the ML EM Newton-Raphson (EM-NR) algorithm (47) becomes

µ
(n+1)
j = µ

(n)
j + αj,n

∑NY

i=1 aij

(

1− yi

bie
−l

(n)
i +ri

)

bie
−l

(n)
i

∑NY

i=1 a
2
ijγ

(n)
ij /(1− e−aijµ

(n)
j )

. (49)

From (48), the curvature of Qj becomes unbounded as µj → 0, which appears to preclude the use of
parabola surrogates as described in Section 4.5.2 to form an intrinsically monotonic M-step (43).

Variations on the transmission EM algorithm continue to resurface at conferences, despite its many
drawbacks. The endurance of the transmission EM algorithm can only be explained by its having “rode on
the coat tails” of the popular emission EM algorithm. The modern methods described in subsequent sections
are entirely preferable to the transmission EM algorithm.

4.4 Diagonally-scaled gradient-ascent algorithms

Several authors, e.g., [93], noted that the emission EM algorithm can be expressed as a diagonally-scaled,
gradient-ascent algorithm, with a particular diagonal scaling matrix that (almost miraculously) ensures
monotonicity and preserves nonnegativity. (The EM-NR algorithm (49) has a similar form.) Based on
an analogy with that emission EM algorithm, Lange et al. proposed a diagonally-scaled gradient-ascent
algorithm for transmission tomography [94]. The algorithm can be expressed as the following recursion:

µ(n+1) = µ(n) +D(µ(n))∇′L(µ(n)), (50)

where D(·) is some iteration-dependent diagonal matrix and where ∇′ denotes the column gradient operator
(cf. (21)):

[∇′L(µ)]j =
∂

∂µj

L(µ) =

NY
∑

i=1

aij

[

1− yi
bi e−[Aµ]i + ri

]

bi e
−[Aµ]i . (51)

Since the gradient of the objective function is evaluated once per iteration, the number of exponentiations
required is roughly NY , far fewer than required by the transmission EM algorithm (45).

The choice of the Np×Np diagonal scaling matrix D(µ) critically affects convergence rate, monotonicity,
and nonnegativity. Considering the case ri = 0, Lange et al. [94] suggested the following diagonal scaling
matrix, chosen so that (50) could be expressed as a multiplicative update in the case ri = 0:

D(µ)jj =
µj

∑NY

i=1 aijyi
. (52)

(This was reinvented by Reader et al. [95].) The natural generalization of this choice to the general case
where ri 6= 0 is the diagonal matrix with the following expression for the jth diagonal element:

D(µ)jj =
µj

∑NY

i=1 aijyibi e
−[Aµ]i /(bi e−[Aµ]i + ri)

. (53)

Using (51) and (53) one can rewrite the diagonally-scaled gradient ascent (DS-GA) algorithm (50) as follows:

µ
(n+1)
j = µ

(n)
j

∑NY

i=1 aijbie
−l

(n)
i

∑NY

i=1 aijyibie
−l

(n)
i /(bie−l

(n)
i + ri)

. (54)

This is a multiplicative update that preserves nonnegativity, and at least its positive fixed points are sta-
tionary points of the log-likelihood. However, the particular choice of diagonal scaling matrix (53) does
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not guarantee intrinsically monotone increases in the likelihood function. In Section 6.2 below, we present
one form of a paraboloidal surrogates algorithm that has the same general form as (50) but overcomes the
limitations of (54) by choosing D appropriately.

Lange et al. also proposed modifications of the iteration (50) to include a separable penalty function and
a line-search to enforce monotonicity [94] (for ri = 0 case, but the ideas generalize easily to the ri 6= 0 case).

Lange proposed another diagonally-scaled gradient-ascent algorithm in [96], based on the following diag-
onal scaling matrix:

D(µ)jj =
µj

∑NY

i=1 aijbi e
−[Aµ]i [Aµ]i

. (55)

Although the rationale for this choice was not given in [96], Lange was able to show that the algorithm
has local convergence properties, but that it may not yield nonnegative estimates. Lange further modified
the scaled-gradient algorithm in [97] to include nonseparable penalty functions, and a practical approximate
line-search that ensures global convergence for ri = 0.

Considering the case ri = 0, Maniawski et al. [98] proposed the following over-relaxed unregularized
version of the diagonally-scaled gradient-ascent algorithm (50):

µ
(n+1)
j = µ

(n)
j

[

ω

∑NY

i=1 aijbie
−l

(n)
i

∑NY

i=1 aijyi
+ (1− ω)

]

, (56)

where ω was selected empirically to be 4 · 10−8 times the total number of measured counts in a SPECT
transmission scan. Like (54), this is a multiplicative update that preserves nonnegativity. One can also
express the above algorithm more generally as follows:

µ(n+1) = (1− ω)µ(n) + ωD(µ(n))∇′L(µ(n)),

where D(µ) is chosen as in (52). No convergence analysis was discussed for the algorithm (56), although
“fast convergence” was reported.

4.5 Convex algorithms

De Pierro [71] described a non-statistical derivation of the emission EM algorithm using the concavity
properties of the log-likelihood for emission tomography. Lange and Fessler [68] applied a similar derivation to
the transmission log-likelihood for the case ri = 0, yielding a “convex9 algorithm” that, like the transmission
EM algorithm, is guaranteed to monotonically increase L(µ) each iteration. As discussed in Section 2.5,
the transmission log-likelihood is concave when ri = 0, so De Pierro’s convexity method could be applied
directly in [68]. In the case ri 6= 0, the log-likelihood is not concave, so De Pierro’s convexity argument does
not directly apply. Fessler [14] noted that even when ri 6= 0, the marginal log-likelihood functions (the hi’s
in (11)) are concave over a (typically) large interval of the real line, and thereby developed an “approximate”
convex algorithm. However, the “convex algorithm” of [14] is not guaranteed to be globally monotonic.

Rather than presenting either the convex algorithm of [68], which is incomplete since it did not consider
the case ri 6= 0, or the algorithm of [14], which is non-monotone, we derive a new “convex” algorithm here.
The algorithm of [68] falls out as a special case of this new algorithm by setting ri = 0. The idea is to first
use the EM algorithm to find a concave surrogate function Q1 that “eliminates” the ri terms, but is still
difficult to maximize directly; then we apply De Pierro’s convexity argument to Q1 to find another surrogate
function Q2 that is easily maximized. The same idea was developed independently by Kim [99].

Consider a “complete” data space that is the collection of the following statistically independent random
variables:

X = {{Ni}NY

i=1, {Ri}NY

i=1},
where

Ni ∼ Poisson
{

bi e
−[Aµ]i

}

Ri ∼ Poisson{ri}
9 The algorithm name is unfortunate, since the algorithm itself is not convex, but rather the algorithm is derived by exploiting

the concavity of the log-likelihood.
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and where the observed measurements are related to the elements of X by

Yi = Ni +Ri,

so the condition (31) is satisfied. The complete-data log-likelihood is simply:

log p(X;µ) ≡
NY
∑

i=1

Ni log
(

bi e
−[Aµ]i

)

−
(

bi e
−[Aµ]i

)

,

since the distribution of the Ri’s is a constant independent of µ, so can be ignored. Since by Appendix 14

N̄
(n)
i , E[Ni |Yi = yi;µ

(n)] = yi
bie

−l
(n)
i

bie−l
(n)
i + ri

, (57)

the EM surrogate function is the following concave function:

Q1(µ;µ
(n)) =

NY
∑

i=1

−N̄ (n)
i [Aµ]i − bi e

−[Aµ]i =

NY
∑

i=1

g
(n)
i ([Aµ]i) (58)

where
g
(n)
i (l) , −N̄ (n)

i l − bi e
−l . (59)

The form of (58) is identical to the form that (11) would have if all the ri’s were zero. Therefore, by this
technique we can generalize any algorithm that has been derived for the ri = 0 case to the realistic case

where ri 6= 0 simply by replacing yi in the algorithm with N̄
(n)
i . However, in general the convergence of

an algorithm derived this way may be slower than methods based on direct maximization of L(µ) since the

curvatures of the Q1 components are smaller than those of L since N̄
(n)
i ≤ yi. For rays where the randoms

fraction is large, N̄
(n)
i ≪ yi, leading to slow convergence rates. In statistical terms, the complete-data space

X is much more informative than the observed data Y [100].
We could attempt to naively perform the M-step of the EM algorithm:

µ(n+1) = arg max
µ ≥ 0

Q1(µ;µ
(n)),

except that maximizing Q1 is (almost10) as difficult as maximizing the original log-likelihood.

By differentiating twice, one can easily show that each g
(n)
i is a concave function and that Q1(·;µ(n)) is

a concave function. Therefore, rather than maximizing Q1 directly, we find a surrogate function for Q1 by
applying the convexity method of De Pierro [71]. The essence of De Pierro’s method is the following clever
expression for matrix-vector multiplication:

[Aµ]i =

Np
∑

j=1

αij

[

aij
αij

(µj − µ
(n)
j ) + l

(n)
i

]

+ ᾱil
(n)
i (60)

where the projection of the current attenuation map estimate is given by

l
(n)
i , [Aµ(n)]i

and where

ᾱi , 1−
Np
∑

j=1

αij ≥ 0.

The expression (60) holds for any collection of αij ’s, provided αij = 0 only if aij = 0. (The sum in (60)
should really be over the set of j’s for which aij is nonzero). If we choose nonnegative αij ’s, then because

10 Q1 is concave, unlike L.
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each g
(n)
i is concave, by (60):

g
(n)
i ([Aµ]i) = g

(n)
i





Np
∑

j=1

αij

[

aij
αij

(µj − µ
(n)
j ) + l

(n)
i

]

+ ᾱil
(n)
i





≥
Np
∑

j=1

αij g
(n)
ij (µj ;µ

(n)) + ᾱig
(n)
i (l

(n)
i ), (61)

where

g
(n)
ij (µj ;µ

(n)) , g
(n)
i

(

aij
αij

(µj − µ
(n)
j ) + l

(n)
i

)

.

Thus, a suitable surrogate function for Q1(µ;µ
(n)) is

Q2(µ;µ
(n)) ,

NY
∑

i=1

Np
∑

j=1

αij g
(n)
ij (µj ;µ

(n)) =

Np
∑

j=1

Q2,j(µj ;µ
(n)) (62)

where

Q2,j(µj ;µ
(n)) ,

NY
∑

i=1

αij g
(n)
ij (µj ;µ

(n)) =

NY
∑

i=1

αijg
(n)
i

(

aij
αij

(µj − µ
(n)
j ) + l

(n)
i

)

. (63)

Since Q2 is a separable function, its maximization reduces to Np simultaneous maximization problems:

µ
(n+1)
j = argmax

µj≥0
Q2,j(µj ;µ

(n)). (64)

Unfortunately, for general choices of the αij ’s, there is not a closed-form analytical solution for the maximizer.
So for general αij ’s, one must apply approximations, line searches, or the optimization transfer principle, as
described next. Closed-form solutions do exist for special choices of the αij ’s, as described in Section 4.5.3.

4.5.1 Convex-NR algorithms

A simple “solution” to (64) is to apply one or more Newton-Raphson steps, as in (47). Such an algorithm
should be locally convergent, and can presumably be made globally convergent by a line-search modification
of the type proposed by Lange [97]. From (63), (58), and (13):

d

dµj

Q2,j(µj ;µ
(n))

∣

∣

∣

∣

µj=µ
(n)
j

=

NY
∑

i=1

aij ġ
(n)
i (l

(n)
i )

=

NY
∑

i=1

aij

[

bie
−l

(n)
i − N̄

(n)
i

]

=

NY
∑

i=1

aij

[

bie
−l

(n)
i − yi

bie
−l

(n)
i

bie−l
(n)
i + ri

]

=

NY
∑

i=1

aij

(

1− yi

bie−l
(n)
i + ri

)

bie
−l

(n)
i =

∂

∂µj

L(µ)

∣

∣

∣

∣

µ=µ(n)

,

so
∇′Q2(µ;µ

(n))
∣

∣

∣

µ=µ(n)
= ∇′L(µ;µ(n))

∣

∣

∣

µ=µ(n)
.

Thus the new convex algorithm (64), based on one 1D Newton-Raphson step for each pixel, has the same form
as the diagonally-scaled gradient-ascent algorithm (50), except that it uses the following diagonal scaling
matrix:

[D(µ(n))]jj =
1

− d2

dµ2
j

Q2,j(µj ;µ(n))
∣

∣

∣

µj=µ
(n)
j

,
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where from (63) and (59)

− d2

dµ2
j

Q2,j(µj ;µ
(n))

∣

∣

∣

∣

∣

µj=µ
(n)
j

= −
NY
∑

i=1

a2ij
αij

g̈
(n)
i (µj ;µ

(n)) =

NY
∑

i=1

a2ij
αij

bie
−l

(n)
i . (65)

In [68] and [14], the following choice for the αij ’s was used, following [71]

αij =
aijµ

(n)
j

∑Np

k=1 aikµ
(n)
k

=
aijµ

(n)
j

l
(n)
i

. (66)

Substituting into (65) etc. yields the Convex-NR-1 algorithm:

µ
(n+1)
j = µ

(n)
j + µ

(n)
j

∑NY

i=1 aij

(

1− yi

bie
−l

(n)
i +ri

)

bie
−l

(n)
i

∑NY

i=1 aij l
(n)
i bi e−l

(n)
i

. (67)

The diagonal scaling matrix of this Convex-NR-1 algorithm is identical to (55), which is interesting since
(55) was presented for the case ri = 0. There are potential problems with the choice (66) when the µj ’s
approach zero [68], so the following alternative choice, considered in [72] and [101], may be preferable:

αij =
aij

∑Np

k=1 aik
=
aij
ai·
, (68)

where ai· ,
∑Np

j=1 aij , for which (65) leads to

[D(µ)]jj =
1

∑NY

i=1 aijai·bi e
−l

(n)
i

.

A small advantage of the choice (68) over (66) is that the ai·’s in the denominator of (68) are independent
of µ so can be precomputed, unlike the denominator of (66).

Substituting the above into (50) yields the following “Convex-NR-2” algorithm

µ
(n+1)
j = µ

(n)
j +

∑NY

i=1 aij

(

1− yi

bie
−l

(n)
i +ri

)

bie
−l

(n)
i

∑NY

i=1 aijai·bi e
−l

(n)
i

. (69)

Each iteration requires one forward projection (to compute the l
(n)
i ’s) and two backprojections (one each for

the numerator and denominator). In general a line search would be necessary with this algorithm to ensure
monotonicity and convergence.

4.5.2 Convex-PS algorithm

The function Q2,j in (63) cannot be maximized analytically, but we can apply the optimization transfer
principle of Section 3.2 to derive the first intrinsically monotonic algorithm presented in this chapter. Using
the surrogate parabola (27):

g
(n)
i (l) ≥ q

(n)
i (l; l

(n)
i ) , g

(n)
i (l

(n)
i ) + ġ

(n)
i (l

(n)
i )(l − l

(n)
i )− c

(n)
i

2
(l − l

(n)
i )2, ∀l ≥ 0 (70)

where from (29) the optimal curvature is

c
(n)
i = c(l

(n)
i ; N̄

(n)
i , bi, 0) =







[

2(bi − l
(n)
i bi e

−l
(n)
i − l

(n)
i )/(l

(n)
i )2

]

+
, l

(n)
i > 0

bi, l
(n)
i = 0.

(71)
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This suggests the following quadratic surrogate function

Q3,j(µj ;µ
(n)) ,

NY
∑

i=1

αijq
(n)
i

(

aij
αij

(µj − µ
(n)
j ) + l

(n)
i ; l

(n)
i

)

,

with corresponding algorithm

µ
(n+1)
j = argmax

µj≥0
Q3,j(µj ;µ

(n)). (72)

Since Q3,j is quadratic, it is trivial to maximize analytically. Furthermore, since this is a 1D maximization
problem for a concave function, to enforce the nonnegativity constraint we simply reset any negative pixels
to zero. The derivatives of Q3,j are:

d

dµj

Q3,j(µj ;µ
(n))

∣

∣

∣

∣

µj=µ
(n)
j

=

NY
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(n)
i (l

(n)
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∑
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(n)
i

=

NY
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(n)
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−l
(n)
i =

d

dµj

L(µ)

∣

∣

∣

∣

µ=µ(n)

,

− d2

dµ2
j

Q3,j(µj ;µ
(n))

∣

∣

∣

∣

∣

µj=µ
(n)
j

=

NY
∑

i=1

a2ij
αij

c
(n)
i .

Using the choice (68) for the αij ’s yields the following Convex-PS algorithm:

µ
(n+1)
j =









µ
(n)
j +

∑NY

i=1 aij

(

1− yi

bie
−l

(n)
i +ri

)

bie
−l

(n)
i

∑NY

i=1 aijai·c
(n)
i









+

. (73)

Thus [·]+ operation enforces the nonnegativity constraint. Since this is the first intrinsically monotonic
algorithm presented in this chapter, we provide the following more detailed description of its implementation.

for n = 0, 1, . . . {

l
(n)
i := [Aµ(n)]i, i = 1, . . . , NY

ḣ
(n)
i :=

(

1− yi

bie−l
(n)
i + ri

)

bie
−l

(n)
i , i = 1, . . . , NY (74)

compute c
(n)
i using (71), i = 1, . . . , NY

e
(n)
i := ai·c

(n)
i , i = 1, . . . , NY

for j = 1, . . . , Np {

µ
(n+1)
j :=

[

µ
(n)
j +

∑NY

i=1 aij ḣ
(n)
i

∑NY

i=1 aije
(n)
i

]

+

(75)

}
}.

This ML algorithm monotonically increases the log-likelihood function L(µ(n)) each iteration.
To derive (73), we have used all three of the optimization transfer principles that are present in this

chapter: the EM approach in (58), the convex separability approach in (62), and the parabola surrogate
approach in (70). Undoubtably there are other algorithms awaiting discovery by using different combinations
of these principles!
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4.5.3 Convex-Log algorithm

Recently, O’Sullivan et al. [102–104] have found a remarkable family of cases for which (64) has a closed-form
solution. Consider the following types of choices for the αij ’s in (60):

αij =
aij
fj
, where

Np
∑

j=1

aij
fj

≤ 1, i = 1, . . . , NY . (76)

One can choose any (positive) fj ’s that satisfy the above inequality. A simple choice is

fj = amax, where amax , max
i

Np
∑

j=1

aij , (77)

but we will see below that this choice is conservative and leads to suboptimal convergence rates. Another
choice is

fj = c0a·j, where c0 , max
i

Np
∑

j=1

aij
a·j

, and a·j ,

NY
∑

i=1

aij . (78)

These choices are based generically on the αij values; many other choices are possible, such as using ge-
ometrical considerations, or convergence rate considerations as described below. Note that both of the
above choices require a forward projection and a backprojection to evaluate. However, this computation is
object-independent so only needs to be done once for a given scan geometry.

Substituting the more general choice (76) into (63) yields

Q2,j(µj ;µ
(n)) =

NY
∑

i=1

aij
fj
g
(n)
i

(

fj(µj − µ
(n)
j ) + l

(n)
i

)

.

For this type of αij ’s, we can solve (64) by zeroing its derivative:

0 =
∂

∂µj

Q2,j(µj ;µ
(n)) =

NY
∑

i=1

aij ġ
(n)
i

(

fj(µj − µ
(n)
j ) + l

(n)
i

)

=

NY
∑

i=1

aij

[

bi e
−fj(µj−µ

(n)
j

)+l
(n)
i − N̄

(n)
i

]

.

Solving yields the following iteration, which we call the Convex-Log algorithm for lack of a better name:

µ
(n+1)
j = µ

(n)
j +

1

fj
log

(

∑NY

i=1 aijbi e
−l

(n)
i

∑NY

i=1 aijN̄
(n)
i

)

, j = 1, . . . , Np. (79)

Being based on a separable surrogate, one can include box constraints in the usual way. Being derived
by optimization transfer principles, this algorithm monotonically increases the likelihood each iteration,
provided that (76) holds. And one can easily verify that this iteration has the proper fixed points.

4.5.4 Convergence-rate comparison

We have described two monotonic algorithms: the Convex-PS algorithm (73), and the Convex-Log algo-
rithm (79). Both algorithms require one forward projection and two backward projections per iteration.
The remaining operations are negligible in comparison, so the computational requirements are essentially
equivalent. The Convex-Log algorithm is slightly easier to implement since it avoids the messy formula for
the surrogate curvatures of the Convex-PS algorithm. So the natural comparison becomes one of convergence
rates.
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As the algorithm (79) approaches convergence, the ratio within the logarithm approaches unity, and using
the Taylor series log x ≈ x− 1 for x ≈ 1, we have

µ
(n+1)
j ≈ µ

(n)
j +

1

fj

[

∑NY

i=1 aijbi e
−l

(n)
i

∑NY

i=1 aijN̄
(n)
i

− 1

]

= µ
(n)
j +

1

fj
∑NY

i=1 aijN̄
(n)
i

NY
∑

i=1

aij

[

bi e
−l

(n)
i − N̄

(n)
i

]

= µ
(n)
j +

1

fj
∑NY

i=1 aijN̄
(n)
i

∂

∂µj

L(µ)

∣

∣

∣

∣

µ=µ(n)

.

Thus, the convergence rates of the Convex-Log algorithm (79) and of Convex-PS (73) are governed by the
step sizes 1/bLOG

j and 1/bPS
j , respectively, where

bLOG
j , fj

NY
∑

i=1

aijN̄
(n)
i , bPS

j ,

NY
∑

i=1

aijai·c
(n)
i .

For faster convergence, we would like large step sizes, as formalized in [75], meaning we would like the bj’s
to be small.

If ri = 0 then from (57) N̄
(n)
i = yi. And as a rough estimate, c

(n)
i ≈ yi, since the second derivative of

g
(n)
i is approximately −yi. Thus the “denominators” are approximately

bLOG
j ≈ fj

NY
∑

i=1

aijyi, bPS
j ≈

NY
∑

i=1

aijai·yi.

Using the inequality in (76), we can show that, in a certain weighted sense, the bPS
j ’s are smaller than the

bLOG
j ’s, to within the preceding approximations:

Np
∑

j=1

bPS
j

fj
=

NY
∑

i=1





Np
∑

j=1

aij
fj



 ai·yi ≤
NY
∑

i=1

ai·yi =

Np
∑

j=1

NY
∑

i=1

aijyi =

Np
∑

j=1

bLOG
j

fj
,

with equality if and only if one can choose fj ’s in (76) to have equality for all i. Thus, to within these
approximations, the step sizes of the Convex-Log algorithm are “smaller” than the step sizes of the Convex-
PS algorithm (in a weighted average sense of questionable meaningfulness), which may correspond to slower
convergence.

Once again we see the classical tradeoff with optimization transfer methods: surrogate functions that are
easier to maximize usually yield slower convergence. There is no free lunch.

4.5.5 Empirical comparison

To explore the preceding theoretical predictions empirically, we generated a simulated noisy sinogram y from
a digital phantom, and then ran several iterations of four intrinsically monotonic algorithms: the separable
paraboloidal surrogate (SPS) method of (99), the Convex-PS method (73), and the Convex-Log method
(79) using both the suboptimal choice (77) (called Convex-Log1) as well as the better choice (78) (called
Convex-Log2) for the αij ’s. Fig. 6 shows that the SPS algorithm converges faster than all of the Convex
algorithms, at least in the early iterations, and the Convex-Log1 converges the slowest in the early iterations,
as expected since it has the smallest step sizes. In this particular example, we used a regular parallel-beam
geometry, and hence the a·j ’s and the fj ’s in (78) are constants, and it turned out that equality held exactly
in (76), so our theory would predict comparable convergence rates for Convex-PS and Convex-Log2. As
expected, the curves for Convex-PS and Convex-Log2 are comparable, even crossing a few times. (CPU
times for all methods were equivalent as predicted.)

Examining the images each iteration, the largest differences between the Convex-PS and Convex-Log1
algorithms were towards the edge of the object. These are the places where amax exceeds a typical ai· the
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most, slowing convergence. In summary, taking the maximum over i may slightly simplify the algorithm
implementation, but unnecessarily degrades the convergence rate, so we recommend (78) over (77).

Further investigation is needed to compare the convergence rates of the SPS algorithm and the Convex-
Log2 algorithm. These two monotonic algorithms seem to be the current contenders for the fastest converging
simultaneous updates with intrinsic monotonicity.

An advantage of SPS over Convex-Log2 is that when a quadratic penalty function (or a quadratic surro-
gate of a nonquadratic penalty function) is included, it remains trivial to compute the maximization step in
SPS, whereas the remarkable existence of the closed-form solution in the Convex-Log method given by (79)
does not appear to generalize to the case of regularized cost functions.
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Of course, once ordered subsets are applied, the convergence-rate differences between these monotonic
algorithms become somewhat academic since standard OS algorithms do not converge.

4.6 Ordered-subsets EM algorithm

Hudson and Larkin [105] proposed an “ordered subsets” modification of the emission EM algorithm in which
one updates the image estimate using a sequence of subsets of the measured data, subsampled by projection
angle, rather than using all the measurements simultaneously. Manglos et al. [43] applied this concept to
the transmission EM algorithm (45), yielding the iteration:

µ
(n+1)
j ,

∑

i∈Sn
(M̄

(n)
ij − N̄

(n)
ij )

1
2

∑

i∈Sn
aij(M̄

(n)
ij + N̄

(n)
ij )

, (80)

where Sn is a subset of the ray indices {1, . . . , NY } selected for the nth subiteration. This type of modification
destroys the monotonicity properties of the EM algorithm, and typically the sequence of images asymptoti-
cally approaches a limit cycle [106–108]. However, at least in the emission case, the OSEM algorithm seems
to produce visually appealing images fairly quickly and hence has become very popular.

Any of the algorithms described in this chapter could be easily modified to have a block-iterative form
akin to (80) simply by replacing any ray summations (those over i) with partial summations over i ∈ Sn.
Since (80) requires the same number of exponentiations per iteration as the transmission EM algorithm
(45), it is still impractical. However, block-iterative forms of some of the other algorithms described in this
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chapter are practical. In particular, Nuyts et al. proposed a block-iterative modification of a gradient-based
method [109] (only in the case ri = 0). Kamphius and Beekman [110] proposed a block-iterative version
of (67) (only in the case ri = 0). Erdoğan and Fessler propose a block-iterative version of the separable
paraboloidal surrogates algorithm of Section 6.2 in [111, 112].

4.7 EM algorithms with nonseparable penalty functions

All of the algorithms described above were given for the ML case (where β = 0). What happens if we want
to include a nonseparable penalty function for regularization, for example in the Convex-PS algorithm?
Considering (33), it appears that we should replace (72) with

µ(n+1) = argmax
µ≥0

Q3(µ;µ
(n))− βR(µ). (81)

Unfortunately, this is a nontrivial maximization since a nonseparable penalty R(µ) leads to coupled equa-
tions. One approach to circumventing this problem is the generalized EM (GEM) method [79, 113–115],
in which one replaces the maximization in (81) with a few cycles of, for example, the coordinate ascent
algorithm.

A clever alternative is to replace R(µ) in (81) with a separable surrogate function using a similar trick
as in (61), which was proposed by De Pierro [72]. We discuss this approach in more detail in Section 6.2:
see (97).

5 Coordinate-ascent algorithms

A simple and natural approach to finding the maximizer of Φ(µ) is to sequentially maximize Φ(µ) over each
element µj of µ using the most recent values for all other elements of µ. A general coordinate ascent method
has the following form:

for n = 0, 1, . . . {
for j = 1, . . . , Np {

µ
(n+1)
j := argmax

µj≥0
Φ(µ

(n+1)
1 , . . . , µ

(n+1)
j−1 , µj , µ

(n)
j+1, . . . , µ

(n)
Np

) (82)

}
}

The operation in (82) is performed “in place,” i.e., the new value of µj replaces the old value, so that the
most recent values of all elements of µ are always used. An early use of such a method for tomography was
in [116].

Sauer and Bouman analyzed such algorithms using clever frequency domain arguments [13], and showed
that sequential algorithms yield iterates whose high frequency components converge fastest. This is often
ideal for tomography, since we can use a low-resolution FBP image as the initial guess, and then iterate to
improve resolution and reduce noise, which is mostly high frequency errors. (Using a uniform or zero initial
image for coordinate ascent is a very poor choice since low frequencies can converge very slowly.)

The long string of arguments in (82) is quite notationally cumbersome. For the remainder of this section,
we use

µ̃ , [µ
(n+1)
1 . . . µ

(n+1)
j−1 µ

(n)
j µ

(n)
j+1 . . . µ

(n)
Np

] (83)

as shorthand for the vector of the most recent parameter values. For simplicity, this notation leaves implicit
the dependence of µ̃ on iteration n and pixel index j.

The general method described by (82) is not exactly an “algorithm,” since the procedure for performing
the 1D maximization is yet unspecified. In practice it is impractical to find the exact maximizer, even in the
1D problem (82), so we settle for methods that increase Φ.
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5.1 Coordinate-ascent Newton-Raphson

If Φ(µ) were a quadratic functional, then the natural approach to performing the maximization in (82)
would be Newton’s method. Since Φ(µ) in (15) is nonquadratic, applying Newton’s method to (82) does
not guarantee monotonic increases in Φ, but one might still try it anyway and hope for the best. In practice
monotonicity usually does not seem to be a problem, as suggested by the success of Bouman et al. with this
approach [18,117]. For such a coordinate-ascent Newton-Raphson (CA-NR) algorithm, we replace (82) with
the following update:

µ
(n+1)
j =






µ
(n)
j +

∂
∂µj

Φ(µ)
∣

∣

∣

µ=µ̃

− ∂2

∂µ2
j

Φ(µ)
∣

∣

∣

µ=µ̃







+

. (84)

The [·]+ operation enforces the nonnegativity constraint. The first partial derivative is given by (21), and
the second is given by:

∂2

∂µ2
j

Φ(µ) =

NY
∑

i=1

a2ij ḧi([Aµ]i)− β
∂2

∂µ2
j

R(µ), (85)

where ḧi is given by (14).
Specifically, using (13), (14), (21), and (85), the update (84) of the CA-NR algorithm becomes

µ
(n+1)
j =









µ
(n)
j +

∑NY

i=1 aij

(

1− yi
bi e−[Aµ̃]i + ri

)

bi e
−[Aµ̃]i − β ∂

∂µj
R(µ̃)

∑NY

i=1 a
2
ij

(

1− yiri
(bi e−[Aµ̃]i + ri)2

)

bi e−[Aµ̃]i + β ∂2

∂µ2
j

R(µ̃)









+

. (86)

Literally interpreted, this form of the CA-NR algorithm appears to be extremely inefficient computationally,
because it appears to require that Aµ̃ be recomputed after every pixel is updated sequentially. This would
lead to O(N2

p ) flops per iteration, which is impractical.

In the following efficient implementation of CA-NR, we maintain a copy of l̃ , Aµ̃ as a “state vector,”
and update that vector after each pixel is updated.

Initialization: l̃ := Aµ0

for n = 0, 1, . . . {
for j = 1, . . . , Np {

µ
(n+1)
j :=













µ
(n)
j +

∑NY

i=1 aij
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1− yi

bie−l̃i + ri

)

bie
−l̃i − β ∂
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R(µ̃)

∑NY

i=1 a
2
ij

(

1− yiri

(bie−l̃i + ri)2

)

bie−l̃i + β ∂2

∂µ2
j

R(µ̃)






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



+

(87)

l̃i := l̃i + aij(µ
(n+1)
j − µ

(n)
j ), ∀i : aij 6= 0 (88)

}
}

The computational requirements per iteration are summarized in [76].
Bouman et al. also present a clever method to search for a zero-crossing to avoid using Newton-Raphson

for the penalty part of the objective function [19].
The numerator in (87) is essentially a backprojection, and appears to be quite similar to the back-

projection in the numerator of (69). One might guess then that coordinate ascent and an algorithm like
Convex-NR in (69) would have similar computational requirements, but they do not. We can precompute

the entire expression

(

1− yi

bie
−l

(n)
i +ri

)

bie
−l

(n)
i for each i in the numerator of (69) before starting the back-

projection, which saves many flops and nonsequential memory accesses. In contrast, the numerator of (87)
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contains l̃i’s that change after each pixel is updated, so that expression cannot be precomputed. During the
“backprojection” step, one must access four arrays (nonsequentially): the yi’s, bi’s, ri’s, and l̃i’s, in addition
to the system matrix elements aij . And one must compute an exponentiation and a handful of addition and
multiplications for each nonzero aij . For these reasons, coordinate ascent is quite expensive computationally
per iteration. On the other hand, experience shows that if one considers the number of iterations required
for “convergence,” then CA-NR is among the best of all algorithms. The PSCA algorithm described in
Section 6.4 below is an attempt to capture the convergence rate properties of CA-NR, but yet guaranteeing
monotonicity and greatly reducing the flop counts per iteration.

An alternative approach to ensuring monotonicity would be to evaluate the objective function Φ after
updating each pixel, and impose an interval search in the (hopefully relatively rare) cases where the objective
function decreases. Unfortunately, evaluating Φ after every pixel adds considerable computational overhead.

5.2 Variation 1: Hybrid Poisson/polynomial approach

One approach to reducing the flops required by (87) is to replace some of the nonquadratic hi’s in the
log-likelihood (11) with quadratic functions. Specifically, any given measured sinogram is likely to contain a
mixture of high and low count rays. For high-count rays, a quadratic approximation to hi should be adequate,
e.g. a Gaussian approximation to the Poisson statistics. For low count rays, the Poisson hi function (12)
can be retained to avoid biases. This “hybrid Poisson/polynomial” approach was proposed in [14], and was
shown to significantly reduce CPU time. However, implementation is somewhat inelegant since the system
matrix A must be stored by sparse columns, and those sparse columns must be regrouped according to the
indices of low and high count rays, which is a programming nuisance.

5.3 Variation 2: 1D parabolic surrogates

Besides CPU time, another potential problem with (87) is that it is not guaranteed to monotonically increase
Φ, so divergence is possible. One can ensure monotonicity by applying the optimization transfer principle to
the maximization problem (82). One possible approach is to use a parabolic surrogate for the 1D function

f(µj) = Φ(µ
(n+1)
1 , . . . , µ

(n+1)
j−1 , µj , µ

(n)
j+1, . . . , µ

(n)
Np

). For the fastest convergence rate, the optimal parabolic
surrogate would have the lowest possible curvature, as discussed in Section 6.2 below. The surrogate parabola
(27) with optimal curvature (29) can be applied to (82) to yield an algorithm of the form (87) but with a
different expression in the denominator. Ignoring the penalty function, the ML coordinate-ascent parabola
surrogate (CA-PS) algorithm is

µ
(n+1)
j :=



µ
(n)
j +

∑NY

i=1 aij

(

1− yi

bie
−l̃i+ri

)

bie
−l̃i

∑NY

i=1 a
2
ij c(l̃i, yi, bi, ri)





+

, (89)

where c(·) was defined in (29). Unfortunately, this algorithm suffers from the same high CPU demands
as (87), so is impractical. To incorporate a penalty function, one could follow a similar procedure as in
Section 6.2 below.

Another approach to applying optimization transfer to (82) was proposed by Saquib et al. [118] and
Zheng et al. [119], called “functional substitution.” That method also yields a monotonic algorithm, for the
case ri = 0 since concavity of hi is exploited in the derivation. The required flops are comparable to those of
CA-NR. We can generalize the functional substitution algorithm of [119], to the case ri 6= 0 by exploiting the
EM surrogate described in Section 4.5 to derive a new monotonic algorithm. Essentially one simply replaces

yi with yibie
−l̃i/(bie

−l̃i + ri) in the curvature terms in [119], yielding an algorithm that is identical to (87)
but with a different denominator.

6 Paraboloidal surrogates algorithms

Coordinate ascent algorithms are sequential update algorithms because the pixels are updated in sequence.
This leads to fast convergence, but requires column access of the system matrix A, and makes parallelization
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quite difficult. In contrast, simultaneous update algorithms can update all pixels independently in parallel,
such as the EM algorithms (45), (46), and (49), the scaled gradient ascent algorithms (50), (54), and (56),
and the Convex algorithms (67), (69), and (73). However, a serious problem with all the simultaneous
algorithms described above, except Convex-PS (73), is that they are not intrinsically monotonic. (They can
all be forced to be monotonic by adding line searches, but this is somewhat inconvenient.) In this section we
describe an approach based on the optimization transfer principle of Section 3.2 that leads to a simultaneous
update algorithm that is also intrinsically monotonic, as well as a sequential algorithm that is intrinsically
monotonic like CA-PS (89), but much more computationally efficient.

As mentioned in Section 3.4, a principal difficulty with maximizing (15) is the fact that the hi’s in (12)
are nonquadratic. Maximization is much easier for quadratic functions, so it is natural to use the surrogate
parabola described in (27) to construct a paraboloidal surrogate function for the log-likelihood L(µ) in (11).

Using (29), define

c
(n)
i = c(l

(n)
i , yi, bi, ri),

where l
(n)
i = [Aµ(n)]i was defined in (28). For this choice of curvatures, the parabola

qi(l; l
(n)
i ) = hi(l

(n)
i ) + ḣi(l

(n)
i )(l − l

(n)
i )− 1

2
c
(n)
i (l − l

(n)
i )2

is a surrogate for hi(·) in the sense that hi(l) ≥ qi(l; l
(n)
i ) for all l ≥ 0. Summing these 1D surrogate functions,

as in (11), leads to the following surrogate function for the log-likelihood:

Q1(µ;µ
(n)) ,

NY
∑

i=1

qi([Aµ]i; [Aµ(n)]i). (90)

This is a surrogate for the log-likelihood in the sense that if we define

φ1(µ;µ
(n)) = Q1(µ;µ

(n))− βR(µ), (91)

then φ1 satisfies (24), (25), and (26).
When expanded, the paraboloidal surrogate function Q1 in (90) has the following quadratic form:

Q1(µ;µ
(n)) ≡ ∇L(µ(n))(µ− µ(n))− 1

2
(µ− µ(n))′A′ diag

{

c
(n)
i

}

A(µ− µ(n)). (92)

Maximizing a quadratic form like (92) is potentially much easier than the log-likelihood (11).

6.1 Paraboloidal surrogate with Newton Raphson

For a quadratic penalty R(µ) = µ′Rµ/2, as in (18), the surrogate function φ1 in (91) above is a quadratic
form. Disregarding the nonnegativity constraint, in principle we can maximize φ1 (as in (22)) by zeroing the
gradient of φ1:

∇′φ1(µ;µ
(n)) = [∇′L(µ(n))− βRµ(n)]− [A′ diag

{

c
(n)
i

}

A+ βR]−1(µ− µ(n)).

This leads to the following paraboloidal surrogates Newton-Raphson (PS-NR) algorithm:

µ(n+1) = µ(n) +

[

−∇2φ1(µ;µ
(n))
∣

∣

∣

µ=µ(n)

]−1
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∣
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∣

µ=µ(n)
,

µ(n+1) = µ(n) +
[

A′ diag
{

c
(n)
i

}

A+ βR
]−1 [

∇′L(µ(n))− βRµ(n)
]

. (93)

There are three problems with this algorithm. The matrix inverse is impractical, the method appears only
to apply to quadratic penalty functions, and nonnegativity is not enforced. Fortunately all three of these
limitations can be overcome, as we describe next.
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6.2 Separable paraboloidal surrogates algorithm

In this section we derive an intrinsically monotonic algorithm that we believe to be the current “method of
choice” for cases where one desired a simultaneous update without any line searches.

A difficulty in maximizing (91) is that in general both Q1 and R are nonseparable functions of the
elements of the parameter vector µ. However, since each qi in (90) is concave, we can apply precisely the
same convexity trick of De Pierro used in (60) and (61) to form a second separable surrogate function. Since

qi([Aµ]i; l
(n)
i ) = qi





Np
∑

j=1

αij

[

aij
αij

(µj − µ
(n)
j ) + l

(n)
i

]

; l
(n)
i





≥
Np
∑

j=1

αijqi

(

aij
αij

(µj − µ
(n)
j ) + l

(n)
i ; l

(n)
i

)

,

the natural separable surrogate function for the log-likelihood is

L(µ) ≥ Q2(µ;µ
(n)) ,

Np
∑

j=1

Q2,j(µj ;µ
(n)) (94)

where

Q2,j(µj ;µ
(n)) ,

NY
∑

i=1

αijqi

(

aij
αij

(µj − µ
(n)
j ) + l

(n)
i ; l

(n)
i

)

. (95)

Since Q2 is a separable function, it is easily maximized.
We need to apply a similar trick to separate the penalty function. We assume that R has the form (18).

Similar to (60) we have

[Cµ]k =

Np
∑

j=1

γkj

[

ckj
γkj

(µj − µ
(n)
j ) + [Cµ(n)]k

]

, (96)

where γkj ≥ 0 and
∑Np

j=1 γkj = 1. So since t2/2 is a convex function:

R(µ) =

K
∑

k=1

ωk

1

2
([Cµ]k)

2

=

K
∑

k=1

ωk

1

2





Np
∑

j=1

γkj

[

ckj
γkj

(µj − µ
(n)
j ) + [Cµ(n)]k

]





2

≥
K
∑

k=1

Np
∑

j=1

γkjωk

1

2

(

ckj
γkj

(µj − µ
(n)
j ) + [Cµ(n)]k

)2

, (97)

so the natural surrogate function is

R(µ;µ(n)) ,

Np
∑

j=1

Rj(µj ;µ
(n)),

where

Rj(µj ;µ
(n)) ,

K
∑

k=1

γkjωk

1

2

(

ckj
γkj

(µj − µ
(n)
j ) + [Cµ(n)]k

)2

.

Combining Q2 and R(·;µ(n)) yields the following separable quadratic surrogate function:

φ2(µ;µ
(n)) , Q2(µ;µ

(n))− βR(µ;µ(n)) =

Np
∑

j=1

φ2,j(µj ;µ
(n))
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where
φ2,j(µj ;µ

(n)) , Q2,j(µj ;µ
(n))− βRj(µj ;µ

(n)).

Using the choice (68) for the αij ’s, the surrogate curvature is

d2

dµ2
j

Q2,j(µj ;µ
(n)) =

NY
∑

i=1

a2ij/αijc
(n)
i =

NY
∑

i=1

aijai·c
(n)
i .

Similarly, if we choose γkj = |ckj |/ck·, where ck· ,
∑Np

j=1 |ckj |, then

rj ,
d2

dµ2
j

Rj(µj ;µ
(n)) =

K
∑

k=1

c2kjωk/γkj =

K
∑

k=1

|ckj |ck·ωk. (98)

Since the surrogate φ2 is separable, the optimization transfer algorithm (22) becomes

µ
(n+1)
j = argmax

µj≥0
φ2,j(µj ;µ

(n)), j = 1, . . . , Np.

Since φ2,j(µj ;µ
(n)) is quadratic, it is easily maximized by zeroing its derivative, leading to the following

separable paraboloidal surrogates (SPS) algorithm:

µ
(n+1)
j =

[

µ
(n)
j +

∑NY

i=1 aij ḣ
(n)
i − β

∑K
k=1 ckjωk[Cµ(n)]k

∑NY

i=1 aijai·c
(n)
i + βrj

]

+

, (99)

where ḣ
(n)
i was defined in (74) and we precompute the rj ’s in (98) before iterating. This algorithm is highly

parallelizable, and can be implemented efficiently using the same structure as the Convex-PS algorithm (75).
It is also easy to form an ordered subsets version (cf. Section 4.6) of the SPS algorithm [112].

See [112,120] for the extension to nonquadratic penalty functions, which is based on a parabola surrogate
for ψk proposed by Huber [121].

6.3 Ordered subsets revisited

One can easily form an ordered subsets version (cf. Section 4.6) of the SPS algorithm (99) by replacing the
sums over i with sums over subsets of the rays, yielding the ordered subsets transmission (OSTR) algorithm
described in [112]. Since ordered subsets algorithms are not guaranteed to converge, one may as well further
abandon monotonicity and replace the denominator in the ordered subsets version of (99) with something

that can be precomputed. Specifically, as discussed in [112], we recommend replacing the c
(n)
i ’s in (99) with11

ci = −ḧi(l̂i) =
{

(yi−ri)
2

yi
, yi > ri ≥ 0, bi > 0

0 otherwise,
(100)

where l̂i , log bi
yi−ri

. For this “fast denominator” approximation, the OSTR-M algorithm becomes:

µnew
j =

[

µj +
M
∑

i∈S aij ḣ
(n)
i − β

∑K
k=1 ckjωk[Cµ(n)]k

dj + βrj

]

+

, (101)

where S is a cyclically chosen subset of the rays, formed by angular subsampling by a factor M , where ḣ
(n)
i

was defined in (74), and where we precompute

dj ,

NY
∑

i=1

aijai·ci, j = 1, . . . , Np.

The results in [112] show that this algorithm does not quite find the maximizer of the objective function Φ,
but the images are nearly as good as those produced by convergent algorithms in terms of mean squared
error and segmentation accuracy.

11 This trick is somewhat similar in spirit to the method of Fisher scoring [122, 123], in which one replaces the Hessian with
its expectation (the Fisher information matrix) to reduce computation in nonquadratic optimization problems.
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6.4 Paraboloidal surrogates coordinate-ascent (PSCA) algorithm

A disadvantage of simultaneous updates like (99) is that they typically converge slowly since separable
surrogate functions have high curvature and hence slow convergence rates (cf. Section 3.3). Thus, in [76,124]
we proposed to apply coordinate ascent to the quadratic surrogate function (91). (We focus on the quadratic
penalty case here; the extension to the nonquadratic case is straightforward following a similar approach as
in Section 6.2.) To apply CA to (91), we sequentially maximize φ1(µ;µ

(n)) over each element µj , using the
most recent values for all other elements of µ, as in Section 5. We again adopt the shorthand (83) here.
In its simplest form, this leads to a paraboloidal surrogates coordinate ascent (PSCA) algorithm having a
similar form as (87), but with the inner update being:

µ
(n+1)
j :=



µ
(n)
j +

∑NY

i=1 aij q̇
(n)
i − β ∂

∂µj
R(µ̃)

dj + β ∂2

∂µ2
j

R(µ̃)





+

, (102)

where, before looping over j in each iteration, we precompute

dj =

NY
∑

i=1

a2ijc
(n)
i , j = 1, . . . , Np, (103)

and the following term is maintained as a “state vector” (analogous to the l̃i’s in (88):

q̇
(n)
i , ḣi(l

(n)
i ) =

(

1− yi

bie−l
(n)
i + ri

)

bie
−l

(n)
i .

This precomputation saves many flops per iteration, yet still yields an intrinsically monotonic algorithm.
Even greater computational savings are possibly by a “fast denominator” trick similar to (100), although
one should then check for monotonicity after each iteration and redo the iteration using the monotonicity
preserving denominators (103) in those rare cases where the objective function decreases. There are several
“details” that are essential for efficient implementation; see [76].

6.5 Grouped coordinate ascent algorithm

We have described algorithms that update a single pixel at a time, as in the PSCA algorithm (102) above,
or update all pixels simultaneously, as in the SPS algorithm (99) above. A problem with the sequential
algorithms is that they are difficult to parallelize, whereas a problem with simultaneous algorithms is their
slow convergence rates. An alternative is to update a group of pixels simultaneously. If the pixels are well
separated spatially, then they may be approximately uncorrelated12, which leads to separable surrogate
functions that have lower curvature [101, 125, 126]. We call such methods grouped coordinate ascent (GCA)
algorithms. The statistics literature has work on GCA algorithms e.g. [127], which in turn cites related
algorithms dating to 1964! In tomography, one can apply the GCA idea directly to the log-likelihood
(11), [101, 120, 126], or to the paraboloidal surrogate (90), [76].

7 Direct Algorithms

The algorithms described above have all been developed, to some degree, by considering the specific form of
the log-likelihood (11). It is reasonable to hypothesize that algorithms that are “tailor made” for the form of
the objective function (15) in tomography should outperform (converge faster) general purpose optimization
methods that usually treat the objective function as a “black box” in the interest of greatest generality.
Nevertheless, general purpose optimization is a very active research area, and it behooves developers of
image reconstruction algorithms to keep abreast of progress in that field. General purpose algorithms that
are natural candidates for image reconstruction include the conjugate gradient algorithm and the quasi-
Newton algorithm, described next.

12 To be more precise: the submatrix of the Hessian matrix of Φ corresponding to a subset of spatially separated pixels is
approximately diagonal.
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7.1 Conjugate gradient algorithm

For unconstrained quadratic optimization problems, the preconditioned conjugate gradient (CG) algorithm
[128] is particularly appealing because it converges rapidly13 for suitably chosen preconditioners, e.g. [66].
For nonquadratic objective functions, or when constraints such as nonnegativity are desired, the CG method
is somewhat less convenient due to the need to perform line searches. It may be possible to adopt the
optimization transfer principles to simplify the line searches, cf. [66].

Mumcuoǧlu et al. [31, 129] have been particularly successful in applying diagonally preconditioned con-
jugate gradients to both transmission and emission tomography. Their diagonal preconditioner was based
on (52). They investigated both a penalty function approach to encourage nonnegativity [31,129], as well as
active set methods [130] for determining the set of nonzero pixels [131, 132].

An alternative approach to enforcing nonnegativity in gradient-based methods uses adaptive barriers
[133].

7.2 Quasi-Newton algorithm

The ideal preconditioner for the conjugate gradient algorithm would be the inverse of the Hessian matrix,
which would lead to superlinear convergence [134]. Unfortunately, in tomography the Hessian matrix is a
large non-sparse matrix, so its inverse is impractical to compute and store. The basic idea of the quasi-
Newton family of algorithms is to form low-rank approximations to the inverse of the Hessian matrix as the
iterations proceed [84]. This approach has been applied by Kaplan et al. [135] to simultaneous estimation
of SPECT attenuation and emission distributions, using the public domain software for limited memory,
bound-constrained minimization (L-BFGS-B) [136]. Preconditioning has been found to accelerate such
algorithms [135].

8 Alternatives to Poisson models

Some of the algorithms described above are fairly complex, and this complexity derives from the nonconvex,
nonquadratic form of the transmission Poisson log-likelihood (11) and (12). It is natural then to ask whether
there are simpler approaches that would give adequate results in practice. Every simpler approach that we
are aware of begins by using the logarithmic transformation (3), which compensates for the nonlinearity of
Beer’s law (2) and leads then to a linear problem

l̂i ≈ [Aµ]i, i = 1, . . . , NY . (104)

Unfortunately, for low-count transmission scans, especially those contaminated by background events of any
type (ri 6= 0), the logarithm (3) simply cannot be used since Yi − ri can be nonpositive for many rays. In
medium to high-count transmission scans, the bias described in (4) should be small, so one could work with

the estimated line integrals (the l̂i’s) rather than the raw transmission measurements (the Yi’s).

8.1 Algebraic reconstruction methods

A simple approach to estimating µ is to treat (104) as a set of NY equations in Np unknowns and try
to “solve” for µ. This was the motivation for the algebraic reconstruction technique (ART) family of
algorithms [11]. For noisy measurements the equations (104) are usually inconsistent, and ART “converges”
to a limit cycle for inconsistent problems. One can force ART to converge by introducing appropriate
strong underrelaxation [137]. However, the limit is the minimum-norm weighted least-squares solution for a
particular norm that is unrelated to the measurement statistics. The Gauss-Markov theorem [89] states that
estimator variance is minimized when the least-squares norm is chosen to be the inverse of the covariance
matrix, so it seems preferable to approach (104) by first finding a statistically-motivated cost function, and
then finding algorithms that minimize that cost function, rather than trying to “fix up” algorithms that
were derived under the unrealistic assumption that (104) is a consistent system of equations.

13 It is often noted that CG converges in Np iterations in exact arithmetic, but this fact is essentially irrelevant in tomography
since Np is so large. More relevant is the fact that the convergence rate of CG is quite good with suitable preconditioners.
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8.2 Methods to avoid

A surprising number of investigators have applied the emission EM algorithm to “solve” (104), even though

the statistics of l̂i are entirely different from those of emission sinogram measurements, e.g., [15, 138–140].
We strongly recommend avoiding this practice. Empirical results with simulated and phantom data show
that this approach is inferior to methods such as OSTR which are based on the transmission statistical model
(7).

Liang and Ye [141] present the following iteration for MAP reconstruction of attenuation maps without
giving any derivation:

µ
(n+1)
j = µj

∑NY

i=1 aij
∑NY

i=1 aij [Aµ(n)]i/ log(bi/yi)
.

The iteration looks like an “upside down” emission EM algorithm. The convergence properties of this
algorithm are unknown.

Zeng and Gullberg [142] proposed the following steepest ascent method with a fixed step-length param-
eter:

µ
(n+1)
j = µ

(n)
j + α

[

NY
∑

i=1

aij(yi/bi − e−l
(n)
i ) + β

∂

∂µj

R(µ(n))

]

,

for an interesting choice of penalty R(µ) that encourages attenuation values near those of air/lung, soft
tissue, or bone. Without a line search of the type studied by Lange [94,97], monotonicity is not guaranteed.
Even with a line search it is unlikely that this algorithm maximizes the objective function since its fixed
points are not stationary points of Φ.

8.3 Weighted least-squares methods

Rather than simply treating (104) as a system of equations, we can use (104) as the rationale for a weighted
least-squares cost function. There are several choices for the weights.

8.3.1 Model-weighted LS

By a standard propagation-of-errors argument, one can show from (3) and (7) that

Var
{

l̂i

}

≈ ȳi
(ȳi − ri)2

, (105)

where ȳi was defined in (8). A natural “model-weighted” least-squares cost function is then

Φ(µ) =

NY
∑

i=1

(l̂i − [Aµ]i)
2 (ȳi(µ)− ri)

2

ȳi(µ)
. (106)

This type of cost function has been considered in [143]. Unfortunately, the above cost function is non-
quadratic, so finding its minimizer is virtually as difficult as maximizing (15).

8.3.2 Data-weighted LS

A computationally simpler approach arises if we replace the estimate-dependent variance (105) with a data-
based estimate by substituting the data Yi for ȳi. This leads naturally the following data-weighted least-
squares cost function:

Φ(µ) =

NY
∑

i=1

(l̂i − [Aµ]i)
2wi, (107)

where wi =
(Yi−ri)

2

Yi
is a precomputed weight. Minimizing Φ is straightforward since it is quadratic, so one can

apply, for example, conjugate gradient algorithms or coordinate descent algorithms [13]. This approach gives
more weight to those measurements that have lower variance, and less weight to the noisier measurements.
This type of weighting can significantly reduce the noise in the reconstructed image relative to unweighted
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least squares. In fact, unweighted least squares estimates are essentially equivalent to FBP images. (The
shift-invariant FBP methods treat all data equally, since noise is ignored.) However, as mentioned below
(4), data-weighting leads to a systematic negative bias that increases as counts decrease [14,15]. So (107) is
only appropriate for moderate to high SNR problems.

One can also derive (107) by making a second-order Taylor expansion of the log-likelihood (12) about

l̂i [13, 14, 144, 145].

8.3.3 Reweighted LS

The two cost functions given above represent two extremes. In (107), the weights are fixed once-and-for-all
prior to minimization, whereas in (106), the weights vary continuously as the estimate of µ changes. A
practical alternative is to first run any inexpensive algorithm (such as OSTR) for a few iterations and then

reproject the estimated image µ(n) to form estimated line integrals l
(n)
i = [Aµ(n)]i. Then perform a second-

order Taylor expansion of the log-likelihood (12) around l
(n)
i to find a quadratic approximation that can be

minimized easily. This approach should avoid the biases of data-weighted least-squares, and if iterated is
known as reweighted least squares [146, 147].

9 Emission reconstruction

In emission tomography, the goal is to reconstruct an emission distribution λ(~x) from recorded counts of
emitted photons. We again parameterize the emission distribution in analogy with (5), letting λj denote the
mean number of emissions from the jth voxel. The goal is to estimate λ = [λ1, . . . , λNp

]′ from projection
measurements Y = [Y1, . . . , YNY

]′. The usual Poisson measurement model is identical to (7), except that
the measurement means are given by

ȳi =

Np
∑

j=1

aijλj + ri = [Aλ]i + ri, (108)

where aij represents the probability that an emission from the jth voxel is recorded by the ith detector,
and ri again denotes (the mean of) additive background counts such as random coincidences and scatter.
(Accurate models for the aij ’s can lead to significant improvements in image spatial resolution and accuracy,
e.g., [148, 149]. The log-likelihood has a similar form to (11):

L(λ) =

NY
∑

i=1

hi([Aλ]i),

where
hi(l) = yi log(l + ri)−(l + ri). (109)

This hi function is concave for l ∈ (−ri,∞), and is strictly concave if yi > 0. Since ȳi is linearly related to the
λj ’s (in contrast to the nonlinear relationship in (8) in the transmission case), the emission reconstruction
problem is considerably easier than the transmission problem. Many of the algorithms described above apply
to the emission problem, as well as to other inverse problems having log-likelihood functions of the general
form (11). We describe in this section a few algorithms for maximizing the emission log-likelihood L(λ).
Extensions to the regularized problem are similar to those described for the transmission case.

9.1 EM Algorithm

One can derive the classical EM algorithm for the emission problem by a formal complete-data exposition [17],
which is less complicated than the transmission case but still somewhat mysterious to many readers, or by
fixed-point considerations [78] (which do not fully illustrate the monotonicity of the emission EM algorithm).
Instead, we adopt the simple concavity-based derivation of De Pierro [71], which reinforces the surrogate
function concepts woven throughout this chapter.
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The key to the derivation is the following “multiplicative” trick, which applies if λ
(n)
j > 0:

[Aλ]i + ri =

Np
∑

j=1

(

aijλ
(n)
j

ȳ
(n)
i

)

λj

λ
(n)
j

ȳ
(n)
i +

(

ri

ȳ
(n)
i

)

ȳ
(n)
i . (110)

The Np+1 terms in parentheses are nonnegative and sum to unity, so we can apply the concavity inequality.

Since gi(l) , yi log l − l is concave on (0,∞), it follows that

L(λ) =

NY
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gi([Aλ]i + ri)
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ȳ
(n)
i

)

λj

λ
(n)
j

ȳ
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i ) , Q(λ;λ(n)).

The surrogate function Q is separable:

Q(λ;λ(n)) =

Np
∑

j=1

Qj(λj ;λ
(n)), Qj(λj ;λ

(n)) ≡
NY
∑

i=1

aijλ
(n)
j

ȳ
(n)
i
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(

λj

λ
(n)
j

ȳ
(n)
i

)

. (111)

Thus the the following parallelizable maximization step is guaranteed to monotonically increase the log-
likelihood L(λ) each iteration:

λ
(n+1)
j = argmax

λj≥0
Qj(λj ;λ

(n)). (112)

The maximization is trivial:

∂

∂λj
Qj(λj ;λ

(n)) =

NY
∑

i=1

aij ġi

(

λj

λ
(n)
j

ȳ
(n)
i

)

=

NY
∑
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aij

[

λ
(n)
j

λj

yi

ȳ
(n)
i

− 1

]

.

Equating to zero and solving for λj yields the famous update:

λ
(n+1)
j = λ

(n)
j

∑NY

i=1 aijyi/ȳ
(n)
i

∑NY

i=1 aij
, j = 1, . . . , Np. (113)

Unfortunately, the emission EM algorithm (113) usually converges painfully slowly. To understand this,
consider the curvatures of the surrogate functions Qj:

− ∂2

∂λ2j
Qj(λj ;λ

(n)) =
λ
(n)
j

λ2j

NY
∑

i=1

aij
yi

ȳ
(n)
i

. (114)

For any pixels converging towards zero, these curvatures grow without bound. This leads to very slow
convergence; even sublinear convergence rates are possible [75].

9.2 An improved EM algorithm

One can choose a slightly better decomposition than (110) to get slightly faster converging EM algorithms

[74]. First find any set of nonnegative constants {mj}Np

j=1 that satisfy

ri ≥
Np
∑

j=1

aijmj , ∀i. (115)
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Then an alternative to (110) is:

[Aλ]i + ri =

Np
∑

j=1

(

aij(λ
(n)
j +mj)

ȳ
(n)
i

)

λj

λ
(n)
j +mj

ȳ
(n)
i +

(

r̂i

ȳ
(n)
i

)

ȳ
(n)
i , (116)

where r̂i = ri −
∑Np

j=1 aijmj ≥ 0. Again the terms in parentheses in (116) are nonnegative and sum to unity.
So a similar derivation as that yielding (111) leads to a new surrogate function:

Qj(λj ;λ
(n)) =

NY
∑

i=1

aij(λ
(n)
j +mj)

ȳ
(n)
i

gi
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λj +mj

λ
(n)
j
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(n)
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)

.

Maximizing as in (112) leads to the following algorithm

λ
(n+1)
j =

[

(λ
(n)
j +mj)

∑NY

i=1 aijyi/ȳ
(n)
i

∑NY

i=1 aij
−mj

]

+

, j = 1, . . . , Np. (117)

This algorithm was derived by a more complicated EM approach in [74], and called ML-EM-3. The surrogate
function derivation is simpler to present and understand, and more readily generalizable to alternative
surrogates.

The curvatures of the second Qj ’s just derived are smaller than those in (111), due to the mj ’s (replace
λj with λj + mj in the denominator of (114)). The convergence rate improves as the mj ’s increase, but
of course (115) must be satisfied to ensure monotonicity. Since the EM algorithm updates all parameters
simultaneously, the mj values must be “shared” among all pixels, and typically are fairly small due to (115).
In contrast the SAGE algorithm [74] updates the pixels sequentially, which greatly relaxes the constraints
on the mj ’s, allowing larger values and hence faster convergence rates.

9.3 Other emission algorithms

Most of the other methods for developing reconstruction algorithms described in this chapter have counter-
parts for the emission problem. Monotonic acceleration is possible using line searches [93]. Replacing the
sums over i in (113) with sums over subsets of the projections yields the emission OSEM algorithm [105]; see
also the related variants RAMLA [150] and RBBI [106,107]. Although the OSEM algorithm fails to converge
in general, it often gives reasonable looking images in a small number of iterations when initialized with a
uniform image. Sequential updates rather than parallel updates leads to the fast converging SAGE algo-
rithms [74] and coordinate ascent algorithms [19], including paraboloidal surrogate variations thereof [77].
The conjugate gradient algorithm has been applied extensively to the emission problem and is particularly
effective provided one carefully treats the nonnegativity constraints [31].

10 Advanced Topics

In this section we provide pointers to the literature for several additional topics, all of which are active
research areas.

10.1 Choice of regularization parameters

A commonly critique of penalized-likelihood and Bayesian methods is that one must choose (subjectively?)
the regularization parameter β in (15). (In unregularized methods there are also free parameters that one
must select, such as the number of iterations or the amount of post-filtering, but fiddling these factors to
get visually pleasing images is perhaps easier than adjusting β, since each new β requires another run of the
iterative algorithm.) A large variety of methods for automatically choosing β have been proposed, based on
principles such as maximum likelihood or cross validation e.g. [151–160], most of which have been evaluated
in terms of mean-squared error performance, which equally weights bias (squared) and variance, even though
resolution and noise may have unequal importance in imaging problems.
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For quadratic regularization methods, one can choose both β and R(µ) to control the spatial resolution
properties and to relate the desired spatial resolution to an appropriate value of β by a predetermined
table [20, 53–56].

In addition to the variety of methods for choosing β, there is an even larger variety of possible choices
for the “potential functions” ψk in (17), ranging from quadratic to nonquadratic to nonconvex and even
nondifferentiable. See [161] for a recent discussion.

The absolute value potential (ψk(t) = |t|) is particularly appealing in problems with piecewise constant
attenuation maps. However, its nondifferentiability greatly complicates optimization [162–164].

10.2 Source-free attenuation reconstruction

In PET and SPECT imaging, the attenuation map is a nuisance parameter; the emission distribution is of
greatest interest. This has spawned several attempts to estimate the attenuation map from the emission
sinograms, without a separate transmission scan. See e.g. [135, 165, 166].

10.3 Dual energy imaging

We have focused on the case of monoenergetic imaging, by the assumption (23). For quantitative applications
such as bone densitometry, one must account for the polyenergetic property of X-ray source spectra. A
variety of methods have been proposed for dual energy image reconstruction, including (recently) statistical
methods [167–169].

10.4 Overlapping beams

Some transmission scan geometries involve multiple transmission sources, and it is possible for a given
detector element to record photons that originated in more than one of these sources, i.e., the beams of
photons emitted from the various sources overlap on the detector. The transmission statistical model (8)
must be generalized to account for such overlap, leading to new reconstruction algorithms [170–173].

10.5 Sinogram truncation and limited angles

In certain geometries, portions of the sinogram are missing due to geometric truncation (such as fan-beam
geometries with a short focal length). In such cases, prior information plays an essential role in regularizing
the reconstruction problem, e.g. [42]. Similarly, in limited angle tomography the sinograms are truncated
due to missing angles. Nonquadratic regularization methods have shown considerable promise for such
problems [67].

10.6 Parametric object priors

Throughout this chapter we have considered the image to be parameterized by the linear series expansion (5),
and the associated regularization methods have used only fairly generic image properties, such as piecewise
smoothness. In some applications, particularly when the counts are extremely low or the number of projection
views is limited, it can be desirable (or even essential) to apply much stronger prior information to the
reconstruction problem. Simple parametric object models such as circles and ellipses (with unknown location,
shape, and intensity parameters) have been used for certain applications such as angiography [174–178] or
for analysis of imaging system designs, e.g. [179,180]. Polygonal models have been applied to cardiac image
reconstruction, e.g. [181]. More general and flexible object models based on deformable templates have also
shown considerable promise and are a very active research area, e.g. [182–186].

11 Example Results

This section presents representative results of applying penalized likelihood image reconstruction to real
PET transmission scan data, following [112]. Many more examples can be found in the references cited
throughout this chapter.
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We collected a 12 minute transmission scan (yi’s) on a Siemens/CTI ECAT EXACT 921 PET scanner
with rotating rod sources of an anthropomorphic thorax phantom (Data Spectrum, Chapel Hill, NC). The
sinogram size was 160 radial bins by 192 angles (over 180◦), with 3mm radial spacing. The reconstructed
images were 128× 128 pixels that were 4.5mm on each side.

For the penalized-likelihood reconstructions we used a second order penalty function of the form (16)
with the following potential function proposed in [97]:

ψ(t) = δ2 [ |t/δ| − log (1 + |t/δ|) ] , (118)

where β = 210 and δ = 0.004cm−1 were chosen visually. This function approaches the quadratic ψ(t) = t2/2 as
δ → ∞, but provides a degree of edge preservation for finite δ. The derivative of ψ requires no transcendental
functions, which is desirable computationally.

Fig. 7 presents a representative example of performance on real PET transmission data. The FBP
image is noisy and blurry, since there are only 921K prompt coincidences in this scan [101]. In the upper
right is the emission OSEM algorithm applied to the logarithm (3) and (104). As discussed in Section 8.2,
this approach yields suboptimal images. The lower two images in Fig. 7 were reconstructed by penalized
likelihood methods based on (15) and (16) with the penalty described above. The lower left image used 2
iterations of the OSTR-16 algorithm (101) (modified for a nonquadratic penalty as described in [76]). The
lower right image used 10 iterations of the PSCA algorithm (102). Both penalized likelihood images have
lower noise and better spatial resolution than FBP and ML-OSEM-8, as quantified in [76]. There are small
differences between the non-convergent OSTR image and the image reconstructed by the monotonic PSCA
algorithm, but whether these differences are important in practice is an open question.

In PET the main purpose of the attenuation map is to form attenuation correction factors (ACFs) for the
emission scan. Fig. 8 shows sagittal views (47 slices) of a patient injected with FDG and scanned with PET.
In this case, a 2 minute transmission scan was emulated by binomial thinning of a 12 minute transmission
scan [112]. For the subfigures labeled “T-PL” and “T-FBP” the ACFs were computed from attenuation maps
reconstructed by penalized likelihood methods or by FBP respectively. For the subfigures labeled “E-PL”
and “E-FBP,” the emission data was reconstructed by penalized likelihood methods or by FBP respectively.
The best image (upper left) is formed when both the emission and transmission images are reconstructed
by statistical approaches. The second best image (upper right) is formed by using statistical reconstruction
of the attenuation map, but ordinary FBP for the emission data. Clearly for such low-count transmission
scans, reducing the noise in the ACFs is as important, if not more so, than how the emission images are
reconstructed.

12 Summary

We have summarized a wide variety of algorithms for statistical image reconstruction from transmission
measurements. Most of the ideas underlying these algorithms are applicable to emission tomography, as well
as to image recovery problems in general.

There are a wide variety of algorithms in part because there is yet to have been found any algorithm
that has all the desirable properties listed in Section 3.1. In cases where the system matrix A can easily be
precomputed and stored, and a non-parallel computer is to be used, we recommend the PSCA algorithm of
Section 6.4. For parallel computing, the conjugate gradient algorithm [31] is a reasonable choice, particularly
if exact nonnegativity constraints can be relaxed. If an inexact maximum is acceptable, the OSTR algorithm
of Section 6.3 is a very practical choice, and is likely to be widely applied given the popularity of the emission
OSEM algorithm. Meanwhile, the search continues for an algorithm with the simplicity of OSTR that is
parallelizable, monotone and fast converging, and can accommodate any form of system matrix.
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Figure 7: Reconstructed images of thorax phantom from 12 minute PET transmission scan.
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Figure 8: FDG PET emission images, reconstructed by both FBP (E-FBP) and penalized-likelihood (E-PL)
methods. Attenuation correction was performed using attenuation maps generated either by transmission
FBP (T-FBP) or transmission penalized-likelihood (T-PL) reconstructions. The use of statistical reconstruc-
tion methods significantly reduces image noise.

14 Appendix: Poisson Properties

Suppose a source transmits N photons of a certain energy along a ray passing through an object towards a
specified pixel on the detector. We assume N is a Poisson random variable with mean N0:

P [N = k] =
1

k!
e−N0Nk

0 .

Each of the N transmitted photons may either pass unaffected (“survive” passage) or may interact with the
object. These are Bernoulli trials since the photons interact independently. From Beer’s law we know that
the probability of surviving passage is given by

p = e−
∫
µ(z) dz.

The number of photons M that pass unaffected through the object is a random variable, and from Beer’s
law:

P [M = m|N = n] =

(

n
m

)

pm(1 − p)n−m, m = 0, . . . , n.

Using total probability:

P [M = m] =
∑

n

P [M = m|N = n]P [N = n]

=

∞
∑

n=m

(

n
m

)

pm(1− p)n−m 1

n!
e−N0Nn

0 =
1

m!
e−N0p(N0p)

m, m = 0, 1, . . . .

Therefore the distribution of photons that survive passage is also Poisson, with mean E[M ] = N0p.
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Furthermore, by applying Bayes’ rule, for n ≥ m ≥ 0:

P [N = n|M = m] =
P [M = m|N = n]P [N = n]

P [M = m]

=

(

n
m

)

pm(1− p)n−m 1
n!e

−N0Nn
0

1
m!e

−N0p(N0p)m

=
1

(n−m)!
(N0 −N0p)

n−me−(N0−N0p)

=
1

(n−m)!
(E[N ]− E[M ])n−me−(E[N ]−E[M ]).

Thus, conditioned on M , the random variable N −M has a Poisson distribution with mean E[N ]− E[M ].
In particular,

E[N −M |M ] = E[N ]− E[M ],

which is useful in deriving the transmission EM algorithm proposed in [17].
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