
1 Introduction

The first X-ray computed tomography (CT) prototypes by Cormack[1,2], Ambrose[3], and Hounsfield[4]

acquired a limited set of X-ray pencil beam measurements. This resulted in a number of linear
equations (line integrals) and a comparable number of unknowns (attenuation coefficients).These
equations were solved algebraically with the so-called algebraic reconstruction technique (ART).[5.6] The
basic ART scheme is an iterative reconstruction (IR) algorithm solving one measurement at a time
by updating all corresponding (image) pixels or voxels:

(1)

All symbols used in this paper are summarized in the following table:

linear attenuation coefficient filtered projection data

N,N iteration number, total number of iterations h(s) ramp filter kernel

j, J voxel index, total number of voxels qm view angle of view
number m

Iij interpolation coefficient or element of the � convolution
system matrix
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pi,pm(s) attenuation line integral measurement yi intensity measurement
or projection data

i,I line integral index, total number of line ei intensity measurement
integrals noise

x,y voxel coordinates intensity expected value

m,M view number, total number of views s,S sample index, total
number of samples

The introduction of filtered backprojection (FBP) by Shepp[7] in 1974 started a new class of much
faster CT reconstruction algorithms. This technique was inherited from other applications in
astronomy[8] and electron microscopy[9]. The simplest two-dimensional (2D) parallel-beam FBP
formula is given by:

(2)

where usually one must apodize the ramp filter h(s) to control noise and aliasing artifacts. The
application of FBP to x-ray CT has seen enormous advances and fine-tuning for many years, and
until today it remains the reconstruction method used in all commercial CT systems. Ironically,
after having gone from iterative reconstruction techniques like ART to direct reconstruction tech-
niques like FBP, there recently is a lot of renewed interest in applying iterative reconstruction (IR)
to CT. Functional imaging modalities (PET and SPECT) have already adopted statistical iterative
reconstruction (SIR) for many years[10,11,12], driven by the IQ needs of these essentially quantum noise
limited modalities. In CT, the high computational cost of IR and the high requirements for
throughput and time-to-first-image are the reasons that IR has not yet been adopted commercially.
Some of the first applications of SIR to real CT data started in the late 1990s[13–18], and were
inspired by its capability to model the physics of the CT acquisition and its robustness to missing
data. More recently, research groups started applying iterative reconstruction methods to clinical
data, leading to promising clinical results.[19-21]

2 Bayesian Framework

The starting point for most SIR algorithms is a cost function based on statistical models:

(3)reconstructed image image measurements= argmaxP (( )
e

image
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This represents a quest for the most likely image, given the measurements.Applying Bayes
rule, using the monotonicity of the logarithm and dropping the constant term, this formulation is
equivalent to the following optimization problem:

(4)

The first term is called the likelihood term and describes the probability of the measure-
ments given the image, or more specifically given the model (image) for the measurement means.
The second term is the prior term. With prior information, this optimization problem is called the
maximum a posteriori (MAP) approach. Without prior information, the second term drops out and it
becomes the maximum likelihood (ML) approach. We will now describe how to calculate the com-
ponents of this cost function one by one.

3 Forward Models and Projectors

The core of an SIR algorithm is its forward model (image) and more specifically the projector-
backprojector. X-ray CT measurements are governed by Beer’s law:

(5)

where the overbar refers to the calculated (or expected) value, as opposed to the actual measure-
ments and Ai is the expected air scan measurement.The argument of the exponent is computed by
a Radon transform or projection:

(6)

where the coefficients Iij represent (or approximate) the intersection length between projection line
i and voxel j. We now present a few popular approaches for computing Iij and performing the
projection operation. The key is to find the best tradeoff between accuracy and computational
efficiency.

3.1 Intersection Length

This method described in Herman[22], Siddon[23], and Zeng[24] is perhaps the most intuitive
approach to approximating the line integrals: each coefficient Iij is computed as the intersection
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length between line i and voxel j, either in 2D or in 3D.This is shown schematically in Figure 1(a),
where the contribution of voxels 1 and 2 to projection line i is computed as:

pi+ � L1m1 + L2m2. [7]

3.2 Linear Interpolation (Joseph’s Method)

Another intuitive approach was described in Joseph[25]: the coefficients are computed in 2D as the
row intersection length combined with the linear interpolation between the two nearest voxels
within that row, and in 3D as the slab intersection length combined with bi-linear interpolation
between the four nearest voxels within that slab.This is shown schematically in Figure 1(b), where
the contribution of voxels 1 and 2 to projection line i is computed as:
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Figure 1. Schematic representation of (a) the line intersection method and (b) Joseph’s linear
interpolation method. SEE COLOR PLATE XX.

(a) (b)



3.3 Linear Interpolation with General Step-Size

In this more general method the projection line is divided into a number of segments with fixed
step size.[26] At each step, the contribution to projection line i is computed as the product of the
step-size and a voxel value obtained by bi-linear interpolation between the four nearest voxels (in
2D) or obtained by tri-linear interpolation between the eight nearest voxels (in 3D). For 2D, this is
shown schematically in Figure 2(a), where the contribution for a given line segment with length e
is computed as:

(9)

If the step-size e is chosen to be equal to the step-size between two consecutive rows or slabs, this
method reduces to Joseph’s method.

p
a b a b a b a b
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Figure 2. Schematic representation of (a) the linear interpolation method with general step size
and (b) the solid voxel or strip integral method. SEE COLOR PLATE XX.

(a) (b)



3.4 Distance-Driven Method

The recently proposed “distance-driven” projector-backprojector method[27,28] was motivated by
the following desired properties:

• low arithmetic cost
• sequential memory access
• good approximation to the true strip integral
• continuous signals should be (back-)projected onto continuous signals.

In this method, the coefficients are computed as the row or slab intersection length combined with
the overlap coefficient. The overlap coefficient is computed based on the length or area of overlap
between a voxel and a detector cell when they are mapped onto each other as seen by the source.
This is shown schematically in Figure 3(a) in 2D, where the contribution of two voxels to projec-
tion line i is computed as:

(10)

Efficient implementation can be achieved by mapping the detector cell boundaries on the
x- or y-axis, computing the projection or backprojection for one row at the time, and looping
across all voxel and detector cell boundaries from left to right. Figure 3(b,c) show the corrsponding
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Figure 3. Schematic representation of (a) the 2D distance-driven method and (b,c) the 3D distance-
driven method. SEE COLOR PLATE XX.

(a) (b)



3D overlap segments.The overlap area is computed as the product of the overlap lengths in x-y and
and in z, respectively.

3.5 Methods Based on Basis Functions

The methods summarized above can be described as procedures for forward projection, but they
are not all based on explicit models. Another family of methods is based on basis function expan-
sions of the linear attenuation coefficient distribution[29–32] of the form:

(11)

where denotes 2D or 3D continuous-space coordinates. Numerous choices for basis functions
have been considered explicitly or implicitly in the literature.There are several factors that influ-
ence the choice of basis functions. Mathematically, we require linear independence of the basis
functions to ensure uniqueness of the expansion.The stronger condition of orthogonality may be
desirable in some cases but usually is not essential. We would like to approximate well for a
given number of terms, including representing a uniform (constant) object well. Computationally,
we prefer bases for which the Iij values are sparse. Nonnegative bases are preferable when we want
to enforce non-negativity of . Basis functions that have been investigated include the following:
square voxels[20], Fourier series[33], circular harmonics[1,2,34,35], wavelets[36], overlapping circles
(disks)[11,37,38] or spheres (balls)[39], Kaiser-Bessel window functions (blobs)[40], “natural pixels”[41–45],
B-splines[31,46,47], Dirac impulses, Gaussian functions[48–50], organ-based basis functions[51–56], and
others.[57] Other related representations include polygons[58], polar grids[59–61], logarithmic polar
grids[62], and tetrahedral meshes[63]. For computation, rotationally symmetric basis functions can be
convenient. Kaiser-Bessel functions (blobs) have been a particularly popular choice of rotationally
symmetric basis.Although in the context of SPECT imaging, blobs were not found to be advanta-
geous[64], more favorable results have been reported in X-ray and PET.[21,65–70] Naturally, the fine-
ness of the grid can affect edge artifacts and aliasing.[15,71]

3.6 Finite BeamWidth

Consider a monoenergetic x-ray source for simplicity of presentation. Ideally the i th measurement
would be associated with a line integral from an ideal point source to an ideal point detector. A
more realistic forward model is achieved by summing a number of projection line to approximate
the finite x-ray beam.[20,72,73] The result is a good approximation of the true strip or x-ray beam
integral.This is shown schematically in Figure 2(b), where the contribution of voxel j to projection
line i is computed as:
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It was shown in De Man[73] that the artifacts due to the nonlinear nature of the partial vol-
ume effect[73,74] can be prevented by performing the summation over the samples s outside of the
exponent:

(13)

Computing the system matrix elements is simplified if the basis functions are rotationally
symmetric, because then the footprint is independent of (parallel-beam) projection angle. The
Kaiser-Bessel basis, also known as blobs, is the most popular of the rotationally symmetric basis
functions, because they are approximately band limited, and by carefully adjusting the parameters
they approximate a partition of unity.[67,68]

3.7 Fourier-based Projection Methods

A drawback of the preceding methods is that they require O(N3) operations for N � N images and
N projection views. By using the Fourier-slice theorem for the Radon transform, one can develop
an O(N2 log N ) reprojection approach for 2D parallel beam and fan-beam geometries.[76–78] The
method first takes the 2D fast Fourier transform (FFT) of the image, then interpolates the Fourier
samples onto a polar grid. An inverse FFT, followed by parallel-to-fan rebinning, completes the
projection operation. Open-source software for this method is available.[79] It is straightforward
conceptually to generalize this approach to 3D parallel-beam geometries such as those used in fully
3D PET.[76] Unfortunately, it is unclear how to generalize this method to 3D cone-beam CT (axial
or helical) geometries efficiently. Other O(N2 log N ) methods have been proposed based on hier-
archical decompositions.[80,81]

4 Noise Models

A second aspect of SIR is the noise model. Realizing that the actual measurements include noise
and deviate from their expected value, we can write:

(14)y y ei i i= + .
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While energy-integrating detectors are better approximated by a compound Poisson quantum
noise model combined with a Gaussian electronic noise model, most researchers approximate the
total noise by a Poisson model:

(15)

or by a Gaussian model:

(16)

The incremental benefit of a more accurate noise model has been studied[81] but has not
been demonstrated to be advantageous in typical imaging scenarios. All the above noise models
implicitly take into account that the noise variance is proportional to the mean signal, which is one
of the main strengths of SIR. Relatively more weight will be given to reliable measurements, and
less weight will be given to noisy measurements.This leads to reduced noise in the reconstructed
image for a given patient dose and spatial resolution.

5 Priors and Regularizers

The prior or regularization term defines a criterion for voxels to deviate minimally from their
neighbors or from predefined values.The most popular are Gibbs neighborhood priors, which are gen-
erally defined by the following probability:

(17)

where the neighborhood mask Njk is typically defined by:
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For a quadratic prior[83], the potential function f is a quadratic function, leading to the fol-
lowing probability:

(18)

An edge-preserving behavior can be obtained by using a Huber prior[84], which has a
potential function that becomes linear for larger arguments:

(19)

or a Geman prior[85], which has a potential function that becomes constant for larger arguments:

(20)

The latter has the disadvantage of being non-convex, which leads to local minima in the cost func-
tion, potentially causing convergence problems.

The generalized Gaussian prior[86] is similar to the quadratic prior but with a different expo-
nent, also providing more edge-preserving behavior:

f(m) � mn. [21]

We proposed a Generalized Geman prior[87] that offers the ability to fine tune the prior characteristics:

(22)

Figure 4 illustrates its properties for various values of n. We proved that it is convex for
n < 16/17.
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6 Update Steps

In a model-based image reconstruction method, all of the above elements (system model, statistical
model, and regularizer) are combined into a single cost function. An optimization algorithm is
applied to the cost function to produce the reconstructed image.A SIR method is the combination
of the cost function and the selected optimizer or update step or iterative algorithm. Numerous
iterative algorithms have been investigated for image reconstruction, including both general pur-
pose methods and methods tailored to the form of the specific cost functions of interest in tomog-
raphy. The challenge is to find a technique that converges in few iterations and has a low
computation cost per iteration.

Several factors affect the choice of iterative algorithm, including the form of the cost func-
tion, whether non-negativity constraints are to be enforced, and what type of parallelization is
desired.The implementation of the system matrix can also affect the algorithm choice. For exam-
ple, the Fourier-based system methods described above are efficient only if all (or nearly all) the
projection views are computed together, which is poorly matched to ordered-subsets algorithms
that work with a small subset of the projection views at a time. Other hierarchical decomposition
methods for forward- and backprojection share this limitation. System models based on “factored
system matrices,” e.g., Mumcuoglu[84,88], Qi[89], Reader[90], are convenient for gradient-based algo-
rithms that update all voxels simultaneously, but are poorly suited to algorithms that access individ-
ual rows or columns of the system matrix at a time.
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Figure 4. Generalized Geman prior for different exponents n, resulting in a quadratic prior
(n�0), a Huber-like prior (n�1) and a Geman prior (n�2). SEE COLOR PLATE XX.



Hereafter we focus on algorithms for the penalized weighted least-squares (PWLS) cost
functions of the form

(23)

where the regularizer R(m ) is the negative logarithm of one of the priors described above, and
the weights wi of the Gaussian noise model are the reciprocal of an estimate of the variance of
the log projection data pi. Often wi � yi is used, which corresponds to a noise model where the
variance equals the mean. For a review of algorithms for the Poisson model, see Fessler.[91] Algo-
rithms based on the quadratic data-fit term in equation (23) are appropriate for monoenergetic
transmission measurements, but may be suboptimal for polyenergetic measurements with
energy-integrating detectors. For polyenergetic data there is a nonlinear relationship between
the measured and the true attenuation lengths, requiring a more complicated forward model and
data-fit term.[16,17,92,93]

6.1 Gradient-based Updates Steps

For minimizing the above cost function, the conjugate gradient (CG) method and other gradient-
based update steps optimize all voxels simultaneously, and therefore are particularly convenient for
parallelization.An example of a weighted least-squares (WLS) update step[94] is given by:

(24)

The resulting flow of operations is represented schematically in Figure 5: the current image
estimate is projected, the resulting computed sinogram is compared to the measured sinogram, the
error term is backprojected, and the result is added to the image estimate. However, such gradient-
based methods often require a large number of iterations to converge. For quadratic regularization
methods, there are simple analytical expressions for the step-size that minimizes the cost function
along a given search direction. In contrast, nonquadratic (e.g., edge preserving) regularizers require
line search methods for each search direction. A line search approach that ensures monotonic
descent by using optimization transfer principles[95] is described in Fessler.[96]
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6.2 Single Coordinate Update Steps

Iterative coordinate descent (ICD) methods optimize one voxel at a time, holding all other voxels
fixed, and cycle through the voxels one by on in some order.[20,97–100] The WLS ICD update step is
given by:

(25)

This method converges rapidly in tomographic image reconstruction problems. Non-uniform
updating schemes can accelerate convergence.[101]

6.3 Ordered-Subsets Acceleration

For fully 3D iterative reconstruction in PET, modern commercial scanners use (unregularized)
order subsets (OS) methods that compute updates based on alternating subsets of measured projec-
tion views.[12,102] Standard OS algorithms “converge” much faster in the early iterations, but they
typically approach a limit cycle rather than converging to a minimizer of the cost function. Con-
vergence can be restored by modifying the algorithm with relaxation parameters[103] or with modi-
fied surrogate functions.[104] However, these modifications may also slow down the convergence
rate somewhat.
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Figure 5. Iterative reconstruction scheme consisting of a forward model and a negative feedback
of the error sinogram via the transpose of the forward model.



6.4 Hybrid Approaches

In between ICD and gradient-based updates are grouped-coordinate descent algorithms that use
all the data to update a subset of the pixels each (sub)iteration.[100,105,106] These algorithms offer a
compromise that combines efficient iterations with faster convergence than gradient-based meth-
ods, albeit with somewhat more complicated implementation.

6.5 Algebraic Reconstruction Techniques

In contrast to algorithms that are designed to minimize a cost function based on the data statistics,
the algebraic reconstruction technique (ART) and its relatives are based on projection methods for
solving the system of equations p � Am , where p denotes the data, A denotes the system model,
and m denotes the unknown voxel values. One variant of the ART algorithm is the simultaneous
ART (SART) algorithm that has the form:

(26)

where D1 denotes a diagonal matrix with elements along its diagonal, and D2 denotes a

diagonal matrix with elements along its diagonal. The relaxation parameter w must lie

within a certain interval to ensure convergence.[107] If it converges, it finds a minimizer of a WLS

cost function with weights .These weights are unrelated to the data statistics, so one cannot

expect the standard SART algorithm to perform well for very noisy data. However, if we modify the

original system of equations p � Am by multiplying by a suitable diagonal matrix to form the system

where and then the corresponding SART algorithm for the

modified system of equations is

(27)

where W is diagonal with elements wi , and D3 is diagonal with elements where

Using optimization transfer methods, one can show that this iteration monotonically

decreases the WLS cost function every iteration for w � 1.This is still for an unregularized cost
function however, and it is not clear how to extend ART and its relatives to nonquadratic (edge
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preserving) potential functions. In contrast, algorithms that are designed for cost functions (rather
than systems of equations), such as CG, ICD, and optimization transfer methods, can readily accom-
modate a wide variety of regularizers.

6.6 Convergence

Ideally, only the cost function will determine the final image quality. If the cost function has a
unique optimum (e.g., is convex), and one uses a sufficient number of iterations of a convergent
algorithm, then the resulting image will be independent of the optimizer.The optimizer will only
affect compute time. On the other hand, if the algorithm is not globally convergent or if insuffi-
cient iterations are used, then the resulting image will depend on the optimizer. Figure 6 shows a
comparison[100] of different approaches as a function of iteration number.This also illustrates that
some approaches—like OS—require many iterations1 to converge, but each iteration is relatively
computationally efficient. Other approaches—like ICD—converge in few iterations, but each
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Figure 6. (a) Image error relative to the absolute minimum as a function of iteration number for
ICD and CG. (b) Cost function value as a function of iteration number for ICD and OS, switching
to convergent OS after 25 iterations. SEE COLOR PLATE XX.

(a) (b)

1 One iteration is defined as one update of every voxel in the reconstructed image.



iteration requires a lot of computation time. Compute time per iteration depends greatly on the
computing hardware, and there are currently many investigations into using graphical processing
units (GPUs) and other computing devices to accelerate computation.

7 Image Quality

Images that are reconstructed by model-based image reconstruction methods have spatial resolu-
tion properties that depend on the system model, the noise statistics, and the regularizer. These
terms can have somewhat unexpected interactions. In particular, when using the non-uniform
weighting associated with Poisson or Poisson-like statistical model, the resulting spatial resolution
can be highly non-uniform if one uses conventional regularizers.[108]

If desired, one can overcome this non-uniformity by designing modified regularizers that
use values for the neighborhood weights Njk that depend on the data statistics and system model.
Several such design methods have been proposed for a variety of system geometries including 2D
parallel-beam[108–110], 2D fan-beam[111], 3D parallel-beam[112], and 3D axial cone-beam CT.[113]

The case of helical cone-beam CT remains a challenging open problem. These methods have
been best characterized in the context of quadratic regularization methods, although recently
there has been progress on understanding the resolution properties of nonquadratic regularization
as well.[114]

Another approach for mitigating the undesired impact of the noise statistics on the local
spatial resolution is to artificially adjust the weight of the respective measurements. Instead of
defining the weights purely based on the noise variance of the corresponding measurements, the
weights can be relaxed to avoid highly non-uniform and non-isotropic spatial resolution.[115]

Not only does SIR typically result in a much improved noise-resolution tradeoff, but the
noise has a different texture, the spatial resolution is strongly object and statistics dependent, and
dedicated IQ metrics are desired for SIR. We have developed a way to quantify spatial resolution
and image noise as a function of location and object contrast.[116] Starting from any sinogram,
such as from a real measurement, we add artificial noise and we add the projections of small wires
that act as impulse responses. We reconstruct three different sinograms with the same algorithm:
the original sinogram, the original-plus-noise sinogram, and the original-plus-noise-plus-impulses
sinogram. We subtract the resulting images to obtain a noise-only image based on which the
noise is assessed, and an impulse-only image based on which the spatial resolution is assessed.This
is shown schematically in Figure 7.
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8 Hardware Implementation Schemes

One of the main challenges in iterative reconstruction is the high computation time. Besides
improving the algorithms, one can implement SIR on more powerful hardware architectures. His-
torically, the fastest reconstruction was achieved using application-specific integrated circuits
(ASICs). With the fast development in reconstruction the high initial cost and time to develop a
dedicated new ASIC have made this approach undesired.A higher level of flexibility was achieved
with field-programmable gate-arrays (FPGAs), but they suffer from relatively low clock speeds. In
the last decade general-purpose processors have benefited from a huge increase in clock speed.This
in combination with their combination in clusters and multiprocessor architectures, results in an
affordable, high-performance, and most flexible solution. Recently, large investments in the gaming
industry have resulted in very fast GPUs and multi-core architectures such as IBM’s Cell Broad-
band Engine (CBE) (Figure 8). Researchers have been studying the use of GPUs[117,118] and cell
processors[119,120] for several years, but only recently they have become part of the reconstruction
engine in commercial scanners.

Statistical Iterative Reconstruction for X-Ray Computed Tomography
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Figure 7. Schedule for assessing spatial resolution and image noise as a function of location and
contrast. Artificial noise and impulse responses are added to the original sinogram, reconstructed
and subtracted, yielding impulse-only and noise-only images. SEE COLOR PLATE XX.



9 Benefits and Applications

The main driver for SIR is undoubtedly its reduced noise (or dose). Figure 9 shows a very low
dose patient CT scan reconstructed with FBP and SIR.[20] The SIR images have strongly reduced
noise while the spatial resolution is well preserved.

Other potential benefits include its robustness in the case of missing data (metal artifact
reduction)[15,26,73,121,122], sparse data (sparse view sampling)[123], and its ability to deal with object
motion (cardiac CT).[124–126] Figure 10 shows a CT scan of a Plexiglas™ disk with three amalgam
inserts and a number of low-contrast inserts reconstructed with standard FBP and with a maxi-
mum a posteriori algorithm.The forward model can also include physical effects such as the X-ray
spectrum[16,17], the finite beam width[72,73,127], and X-ray scatter. Figure 11 shows a CT scan of a
human skull phantom reconstructed with FBP and SIR including a polychromatic spectrum
model.

Bruno De Man and Jeffrey A. Fessler
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(a) (b)

Figure 8. (a) Intel CPU technology, (b) general purpose GPU technology, and (c) Cell Broadband
Engine technology. SEE COLOR PLATE XX.

(c)
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Figure 9. A very low-dose patient CT scan reconstructed with (a) FBP and (b) SIR.

(b)

(a)
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Figure 10. CT scan of a Plexiglas™ disk with three amalgam inserts and a number of low-contrast
inserts reconstructed (a) with standard FBP and (b) with a maximum a posteriori algorithm.

(a) (b)

Figure 11. CT scan of a human skull phantom reconstructed with (a) FBP and (b) SIR with a
polychromatic spectrum model.

(a) (b)



We have illustrated many potential advantages of SIR relative to FBP. While it would be
challenging to suddenly replace FBP, a reconstruction technique with decades of history, by a com-
pletely new reconstruction technique like IR, a lot of progress has been made to show the poten-
tial clinical impact of SIR, and it is only a matter of time before SIR will become routinely
available for clinical application.
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