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3.1 Introduction (s,tomo,intro)s,tomo,intro

The primary focus of this book is on statistical methods for tomographic image reconstruction using reasonably real-
istic physical models. Nevertheless, analytical image reconstruction methods, even though based on somewhat unre-
alistic simplified models, are important when computation time is so limited that an approximate solution is tolerable.
Analytical methods are also useful for developing intuition, and for initializing iterative algorithms associated with
statistical reconstruction methods. This chapter1 reviews classical analytical tomographic reconstruction methods.
(Other names are Fourier reconstruction methods and direct reconstruction methods, because these methods are
noniterative.) Entire books have been devoted to this subject [2–6], whereas this chapter highlights only a few results.
Many readers will be familiar with much of this material except perhaps for the angularly weighted backprojection that
is described in §3.3. This weighted backprojector is introduced here to facilitate analysis of weighted least-squares
(WLS) formulations in Chapter 4.

There are several limitations of analytical reconstruction methods that impair their performance. Analytical
methods generally ignore measurement noise in the problem formulation and treat noise-related problems as an “af-
terthought” by post-filtering operations. Analytical formulations usually assume continuous measurements and pro-
vide integral-form solutions. Sampling issues are treated by discretizing these solutions “after the fact.” Analytical
methods require certain standard geometries (e.g., parallel rays and complete sampling in radial and angular coordi-
nates). Statistical methods for image reconstruction can overcome all of these limitations.

3.2 Radon transform in 2D (s,tomo,radon)s,tomo,radon

The foundation of analytical reconstruction methods is the Radon transform that relates a 2D function f(x, y) to the
collection of line integrals of that function [7–9]. (We focus initially on the 2D case.) Emission and transmission
tomography systems acquire measurements that are something like blurred line integrals, so the line-integral model
represents an idealization of such systems. Fig. 3.2.1 illustrates the geometry of the line integrals associated with the
(ideal) 2D Radon transform.

3.2.1 Definition
Let L(r, ϕ) denote the line in the Euclidean plane at angle ϕ counter-clockwise from the y axis and at a signed distance
r from the origin:

L(r, ϕ) =
{

(x, y) ∈ R2 : x cosϕ+y sinϕ = r
}

(3.2.1)

=
{

(x, y) ∈ R2 : (x, y) · (cosϕ, sinϕ) = r
}

(3.2.2)

= {(r cosϕ−` sinϕ, r sinϕ+` cosϕ) : ` ∈ R} . (3.2.3)
e,tomo,ray

1Substantial portions of this chapter appeared in [1].
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Figure 3.2.1: Geometry of the line integrals associated with the Radon transform.
fig,tomo,geom

Let pϕ(r) denote the line integral through f(x, y) along the line L(r, ϕ). There are several equivalent ways to express
this line integral, each of which has its uses:

pϕ(r) =

∫
L(r,ϕ)

f(x, y) d`

=

∫ ∞
−∞

f(r cosϕ−` sinϕ, r sinϕ+` cosϕ) d` (3.2.4)
e,tomo,line,l

=

∫ ∞
−∞

∫ ∞
−∞

f(r′ cosϕ−` sinϕ, r′ sinϕ+` cosϕ) δ(r′ − r) dr′ d` (3.2.5)
e,tomo,radon,r’,l

=

∫ ∞
−∞

∫ ∞
−∞

f(x, y) δ(x cosϕ+y sinϕ−r) dxdy (3.2.6)
e,tomo,line,dirac

=


1

|cosϕ|

∫ ∞
−∞

f

(
r − t sinϕ

cosϕ
, t

)
dt, cosϕ 6= 0

1

|sinϕ|

∫ ∞
−∞

f

(
t,
r − t cosϕ

sinϕ

)
dt, sinϕ 6= 0,

(3.2.7)
e,tomo,line,xy

where δ(·) denotes the 1D Dirac impulse. (The last form came from [10].) The step between (3.2.5) and (3.2.6) uses
the following change of variables: [

x
y

]
=

[
cosϕ − sinϕ
sinϕ cosϕ

] [
r′

`

]
. (3.2.8)

e,tomo,radon,change

The Radon transform of f is the complete collection of line integrals2

f
Radon↔ {pϕ(r) : ϕ ∈ [0, π], r ∈ (−∞,∞)} . (3.2.9)

e,tomo,radon

The function pϕ(·) is called the projection3 of f at angle ϕ. As discussed in §4.2, we often write p = P f .
In its most idealized form, the 2D image reconstruction problem is to recover f(x, y) from its projections

{pϕ(·)}. To do this one must somehow return the data in projection space back to object space, as described in
§3.4.

x,tomo,proj,disk

Example 3.2.1 Consider the centered uniform disk object with radius r0:

f(x, y) = α rect

(
r

2r0

)
, rect(t) , I{|t|≤1/2} =

{
1, |t| ≤ 1/2
0, otherwise.

(3.2.10)
e,rect

2Sometimes one refers to values of ϕ outside of the domain given in (3.2.9); this is possible using the “periodic extension” described in (3.2.29).
Of course a practical system has a finite maximum radius that defines its circular field of view.

3The term “projection” also has a meaning in the context of convex sets in Hilbert spaces §29.9.2. The two uses of “projection” can be reconciled;
see Problem 4.1.
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Using (3.2.4), the Radon transform of this object is:

pϕ(r) =

∫ ∞
−∞

f(r cosϕ−` sinϕ, r sinϕ+` cosϕ) d` (3.2.11)

=

∫ ∞
−∞

α rect

(√
(r cosϕ−` sinϕ)2 + (r sinϕ+` cosϕ)2

2r0

)
d` (3.2.12)

= α

∫ ∞
−∞

rect

(√
r2 + `2

2r0

)
d` = α

∫
{` : r2+`2≤r20}

d` = α

∫ +
√
r20−r2

−
√
r20−r2

d` (3.2.13)

= 2α
√
r2
0 − r2 rect

(
r

2r0

)
, (3.2.14)

e,tomo,proj,disk

which is a semi-circle function as shown in Fig. 3.2.2. These projections are independent of ϕ due to the circular
symmetry of f(x, y).

f(x, y)

x

y
r

r0

r 0

p
ϕ

(r
)

2a
r 0

Figure 3.2.2: Projection of a centered uniform disk object, illustrated at ϕ = π/2.
fig,tomo,disk

3.2.2 Signed polar forms (s,tomo,radon,polar)s,tomo,radon,polar

It can be useful to have a form of the Radon transform when f is represented in a polar form. Throughout this chapter,
we use a “signed polar form” f◦(r, ϕ) = f(r cosϕ, r sinϕ), in which the radial argument r can be both positive and
negative. Usually we abuse notation slightly and write f(r, ϕ) without the subscript.

For making changes of variables between Cartesian coordinates and signed polar coordinates, we define

r±(a, b) ,

{ √
a2 + b2, {b > 0} or {b = 0 & a ≥ 0}
−
√
a2 + b2, {b < 0} or {b = 0 & a < 0} (3.2.15)

e,tomo,srad

∠π(a, b) ,


tan−1

(
b
a

)
, ab > 0

0, b = 0
π/2, a = 0, b 6= 0
tan−1

(
b
a

)
+ π, ab < 0.

(3.2.16)
e,tomo,angpi

These functions obey the following natural properties:

∠π(a, b) ∈ [0, π) (3.2.17)

∠π(b, a) =

{
0, a = 0 & b = 0
(π/2− ∠π(a, b)) modπ, else (3.2.18)

|r±(a, b)| =
√
a2 + b2 (3.2.19)

r±(αa, αb) = α r±(a, b) (3.2.20)
∠π(αa, αb) = ∠π(a, b), α 6= 0 (3.2.21)

cos∠π(a, b) =

{
1, b = 0

a sgn(b) /
√
a2 + b2, b 6= 0

(3.2.22)

sin∠π(a, b) =

{
0, b = 0

|b| /
√
a2 + b2, b 6= 0

(3.2.23)
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r±(a, b) cos∠π(a, b) = a (3.2.24)
r±(a, b) sin∠π(a, b) = b. (3.2.25)

e,tomo,polar,prop

Making a change of variables r = r±(x, y) and ϕ = ∠π(x, y) leads to the following integral relationship:∫ ∞
−∞

∫ ∞
−∞

f(x, y) dxdy =

∫ π

0

∫ ∞
−∞

f◦(r, ϕ) |r|dr dϕ . (3.2.26)
e,tomo,radon,polar,int

In particular, substituting r′ = r±(x, y) and ϕ′ = ∠π(x, y) into the Radon transform expression (3.2.6) leads to the
following Radon transform in polar coordinates:

pϕ(r) =

∫ π

0

∫ ∞
−∞

f◦(r
′, ϕ′) δ(r′ cos(ϕ− ϕ′)−r) |r′|dr′ dϕ′ (3.2.27)

e,tomo,line,polar

The properties (3.2.25) arise in several of the subsequent derivations.

3.2.3 Radon transform properties (s,tomo,radon,prop)s,tomo,radon,prop

The following list shows a few of the many properties of the Radon transform. This list is far from exhaustive; indeed
new properties continue to be found, e.g., [11, 12]. Throughout this list, we assume f(x, y)

Radon↔ pϕ(r).

• Linearity
If g(x, y)

Radon↔ qϕ(r), then

αf + βg
Radon↔ αp+ βq.

• Shift / translation
f(x− x0, y − y0)

Radon↔ pϕ(r − x0 cosϕ−y0 sinϕ) (3.2.28)
e,tomo,radon,shift

• Rotation
f(x cosϕ′+y sinϕ′,−x sinϕ′+y cosϕ′)

Radon↔ pϕ−ϕ′(r)

• Circular symmetry
f◦(r, ϕ) = f◦(r, 0) ∀ϕ =⇒ pϕ = p0 ∀ϕ

• Symmetry/periodicity
pϕ(r) = pϕ±π(−r) = pϕ±kπ

(
(−1)kr

)
, ∀k ∈ Z (3.2.29)

e,tomo,radon,prop,period

• Affine scaling

f(αx, βy)
Radon↔

p∠π(β cosϕ, α sinϕ)

(
r|α|β√

(β cosϕ)2+(α sinϕ)2

)
√

(β cosϕ)
2

+ (α sinϕ)
2

, (3.2.30)
e,tomo,radon,prop,affine

for α, β 6= 0, where r± and ∠π were defined in §3.2.2. For a more general affine skewing property see [13].

The following two properties are special cases of the affine scaling property.
• Magnification/minification

f(αx, αy)
Radon↔ 1

|α|
pϕ(αr), α 6= 0

• Flips
f(x,−y)

Radon↔ pπ−ϕ(−r)

f(−x, y)
Radon↔ pπ−ϕ(r)

• Laplacian (
∂2

∂x2
+

∂2

∂y2

)
f(x, y)

Radon↔ ∂2

∂r2
pϕ(r) (3.2.31)

e,tomo,prop,laplace

(This is a consequence of the Fourier-slice theorem (3.2.36) below; see Problem 3.4.)
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• The projection integral theorem
For a scalar function h : R→ R:∫

pϕ(r)h(r) dr =

∫ (∫
f(r cosϕ−` sinϕ, r sinϕ+` cosϕ) d`

)
h(r) dr (3.2.32)

=

∫∫
f(x, y)h(x cosϕ+y sinϕ) dxdy, (3.2.33)

e,tomo,pit

by making the orthonormal coordinate rotation: x = r cosϕ−` sinϕ, y = r sinϕ+` cosϕ .

• Volume conservation (DC value)

F (0, 0) =

∫ ∞
−∞

∫ ∞
−∞

f(x, y) dx dy =

∫ ∞
−∞

pϕ(r) dr, ∀ϕ. (3.2.34)
e,tomo,radon,dc

This is a corollary to the projection integral theorem for h(r) = 1. The volume conservation property is one of
many consistency conditions of the Radon transform [4].

The following example serves to illustrate some of these properties.
x,tomo,proj,ell

Example 3.2.2 Determine the Radon transform of f(x, y) = rect
(

1
2

√
(x/rX)2 + (y/rY)2

)
, an ellipse object cen-

tered at the origin having major axes of half lengths rX and rY, where the function is unity within the ellipse and zero
outside. Using (3.2.14) and the affine scaling property (3.2.30) with α = 1/rX and β = 1/rY:

pϕ(r) =
rXrY√

(rX cosϕ)2 + (rY sinϕ)2
g

(
r√

(rX cosϕ)2 + (rY sinϕ)2

)
,

where g(t) = 2
√

1− t2I{|t|<1} denotes the projection of a circle of unity radius. See also Problem 3.33.
MIRT See ellipse_sino.m.

x,tomo,proj,dirac

Example 3.2.3 Consider the object f(x, y) = δ2(x − x0, y − y0), the 2D Dirac impulse centered at (x0, y0). In-
formally, we can think of this object as a disk function centered at (x0, y0) of radius r0 and height 1/(πr2

0) (so that
volume is unity) in the limit as r0 → 0.

Let Cr0(r) = 2
√
r2
0 − r2 rect

(
r

2r0

)
denote the projection of centered uniform disk with radius r0 as derived in

(3.2.14) in Example 3.2.1. Then by the shift property (3.2.28), the projections of a disk centered at (x0, y0) are:

pϕ(r) = Cr0(r − [x0 cosϕ+y0 sinϕ]).

(See Fig. 3.2.4 below.) Thus the projections of the 2D Dirac impulse are found as follows:

pϕ(r) =
1

πr2
0

Cr0(r − [x0 cosϕ+y0 sinϕ])→ δ(r − [x0 cosϕ+y0 sinϕ]) as r0 → 0.

An alternative derivation uses (3.2.6). In summary, for a 2D Dirac impulse object located at (x0, y0), the projection
at angle ϕ is a 1D Dirac impulse located at r = x0 cosϕ+y0 sinϕ. See Fig. 3.2.3.

3.2.4 Sinogram
Because pϕ(r) is a function of two arguments, we can display pϕ(r) as a 2D grayscale picture where usually r and
ϕ are the horizontal and vertical axes respectively. If we make such a display of the projections pϕ(r) of a 2D Dirac
impulse, then the picture looks like a sinusoid corresponding to the function r = x0 cosϕ+y0 sinϕ. Hence this 2D
function is called a sinogram and (when sampled) represents the raw data available for image reconstruction. So the
goal of tomographic reconstruction is to estimate the object f(x, y) from a measured sinogram.

Each point (x, y) in object space contributes a unique sinusoid to the sinogram, with the “amplitude” of the sinusoid
being

√
x2 + y2, the distance of the point from the origin, and the “phase” of the sinusoid depending on ∠π(x, y). A

sinogram of an object f(x, y) is the superposition of all of these sinusoids, each one weighted by the value f(x, y).
Hence it seems plausible that there could be enough information in the sinogram to recover the object f , if we can
unscramble all of those sinusoids.

x,tomo,radon,points

Example 3.2.4 Fig. 3.2.3 illustrates these concepts for the object f(x, y) = δ2(x, y) + δ2(x−1, y) + δ2(x−1, y−1)
with corresponding projections pϕ(r) = δ(r) + δ(r − cosϕ) + δ(r − cosϕ− sinϕ) .

x,tomo,radon,disk

Example 3.2.5 Fig. 3.2.4 shows the sinogram for a disk of radius r0 = 20 centered at position (x0, y0) = (40, 0).

https://creativecommons.org/licenses/by-nc-nd/4.0/
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Figure 3.2.3: Left: cross-section of 2D object containing three Dirac impulses. Right: the corresponding sinogram
consisting of three sinusoidal impulse ridges.
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Figure 3.2.4: Sinogram for a disk object of radius r0 = 20 centered at (x0, y0) = (40, 0).
fig_tomo_disk_sino

3.2.5 Fourier-slice theorem (s,tomo,radon,fst)s,tomo,radon,fst

The most important corollary of the projection-integral theorem (3.2.33) is the Fourier-slice theorem, also known as
the central-slice theorem or central-section theorem or projection-slice theorem. In words, the statement of this
theorem is as follows4. If pϕ(r) denotes the Radon transform of f(x, y), then the 1D Fourier transform of pϕ(·) equals
the slice at angle ϕ through the 2D Fourier transform of f(x, y).

Let Pϕ(ν) denote the 1D Fourier transform5 of pϕ(r), i.e.,

Pϕ(ν) =

∫ ∞
−∞

pϕ(r) e−ı2πνr dr .

Let F (u, v) denote the 2D Fourier transform of f(x, y), i.e.,

F (u, v) =

∫ ∞
−∞

∫ ∞
−∞

f(x, y) e−ı2π(ux+vy) dxdy . (3.2.35)
e,ft2

Then in mathematical notation, the Fourier-slice theorem is simply:

Pϕ(ν) = F (ν cosϕ, ν sinϕ) = F◦(ν, ϕ), ∀ν ∈ R, ∀ϕ ∈ R, (3.2.36)
e,tomo,fst

where F◦(ρ,Φ) = F (ρ cosΦ, ρ sinΦ) denotes the polar form of F (u, v). (Again we will frequently recycle notation
and omit the subscript.) The proof of the Fourier-slice theorem is remarkably simple: merely set h(r) = exp(−ı2πνr)
in the projection-integral theorem (3.2.33).

It follows immediately from the Fourier-slice theorem that the Radon transform (3.2.9) describes completely any
(Fourier transformable) object f(x, y), because there is a one-to-one correspondence between the Radon transform

4Apparently the first publication of this result was in Bracewell’s 1956 paper [14]. However, at a symposium on 2004-7-17 held at Stanford
University to celebrate the 75th birthday of Albert Macovski, Ron Bracewell stated that he believed that the theorem was “well known” to other
radio astronomers at the time.

5Being an engineer, I simply assume existence of the Fourier transforms of all functions of interest here.
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and the 2D Fourier transform F (u, v), and from F (u, v) we can recover f(x, y) by an inverse 2D Fourier transform.
(See §3.4.1.)

x,tomo,slice,bessel

Example 3.2.6 For the circularly symmetric Bessel object f(x, y) = f(r) = (π/2)J0(πr), from a table of Hankel
transforms F (ρ) = 1

2 δ
(
|ρ| − 1

2

)
. (So F (ρ) is an impulse-ring of radius 1/2.) Thus Pϕ(ν) = F (ν) = 1

2 δ
(
|ν| − 1

2

)
=

1
2 δ
(
ν − 1

2

)
+ 1

2 δ
(
ν + 1

2

)
, so pϕ(r) = cos(πr) . So the projections of Bessel objects are sinusoids.

x,tomo,slice,rect

Example 3.2.7 The 2D the uniform rectangle object and its Fourier transform are

f(x, y) = rect
(x
a

)
rect

(y
b

)
2D FT←→ F (u, v) = a sinc(au) b sinc(bv),

so in polar form: F◦(ρ,Φ) = a sinc(a ρ cosΦ) b sinc(b ρ sinΦ) . By the Fourier slice theorem, the 1D Fourier trans-
form (FT) of its projections are given by

Pϕ(ν) = F◦(ν, ϕ) = a sinc(ν a cosϕ) b sinc(ν b sinϕ) . (3.2.37)
e,tomo,slice,rect,Pau

Thus, by the convolution property of the FT (29.2.3), each projection is the convolution of two rect functions:

pϕ(r) =
1

|cosϕ|
rect

(
r

a cosϕ

)
∗ 1

|sinϕ|
rect

(
r

b sinϕ

)
, (3.2.38)

e,tomo,slice,rect,proj

where “∗” denotes 1D convolution with respect to r. This is a trapezoid in general, as illustrated Fig. 3.2.5. Specifi-
cally, defining a generic trapezoid by

trap(t; τ1, τ2, τ3, τ4) ,


t−τ1
τ2−τ1 τ1 < t < τ2
1 τ2 ≤ t ≤ τ3
τ4−t
τ4−τ3 τ3 < t < τ4
0, otherwise,

(3.2.39)
e,tomo,trap

the Radon transform of a rectangle object are given by

pϕ(r) = lmax(ϕ) trap(r;− dmax(ϕ),− dbreak(ϕ), dbreak(ϕ), dmax(ϕ)) (3.2.40)

=



√
a2 + b2 tri

(
r

ab/
√
a2+b2

)
, |a cosϕ| = |b sinϕ|

b rect
(
r
a

)
, ϕ = 0,±π, . . .

a rect
(
r
b

)
, ϕ = ±π/2,±3π/2, . . .

1
|cosϕ sinϕ|

[
dmax(ϕ) tri

(
r

dmax(ϕ)

)
− dbreak(ϕ) tri

(
r

dbreak(ϕ)

)]
, otherwise,

(3.2.41)
e,tomo,proj,rect

where the unit triangle function is defined by

tri(x) = trap(x;−1, 0, 0, 1) = (1− |x|) rect
(x

2

)
= (1− |x|)I{|x|<1}, (3.2.42)

e,tomo,tri

and we define

dmax(ϕ) =
|a cosϕ|+ |b sinϕ|

2
(3.2.43)

dbreak(ϕ) =

∣∣∣ |a cosϕ| − |b sinϕ|
∣∣∣

2
(3.2.44)

lmax(ϕ) =
|ab|

max(|a cosϕ| , |b sinϕ|)
. (3.2.45)

e,tomo,radon,rect,lmax

At angles ϕ that are multiples of π/2, the trapezoid degenerates to a rectangle, and at angles where |a cosϕ| = |b sinϕ|
the trapezoid degenerates to a triangle.

MIRT See rect_sino.m.
s,tomo,proj,disk

Example 3.2.8 The 2D FT of a uniform disk object f(x, y) = rect
(

r
2r0

)
is F (ρ) = r2

0 jinc(r0ρ).

Thus Pϕ(ν) = r2
0 jinc(r0ν) = r2

0
J1(πr0ν)

2r0ν
, where J1 denotes the 1st-order Bessel function of the first kind. Because

J1(2πν)/(2ν) and
√

1− t2 rect(t/2) are 1D Fourier transform pairs [15, p. 337], we see that the projections of a

uniform disk are given by pϕ(r) = 2
√
r2
0 − r2 rect

(
r

2r0

)
. This agrees with the result shown in (3.2.14) by integration.
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rdbreak(ϕ)− dbreak(ϕ) dmax(ϕ)− dmax(ϕ)

pϕ(r)

lmax(ϕ)

Figure 3.2.5: The trapezoidal projection at angle ϕ of a rectangular object.
fig,tomo,trap

x,tomo,slice,gauss

Example 3.2.9 Consider the 2D gaussian object f(x, y) = f(r) = 1
w2 exp

(
−π (r/w)2

)
, with corresponding 2D FT

F (ρ) = exp
(
−π (wρ)2

)
. By the Fourier-slice theorem: Pϕ(ν) = exp

(
−π (wν)2

)
, the inverse 1D Fourier transform

of which is pϕ(r) = 1
w exp

(
−π (r/w)2

)
. (Note the slight change in the leading constant.) Thus the projections of a

gaussian object are gaussian, which is a particularly important relationship. This property is related to the fact that
two jointly gaussian random variables have gaussian marginal distributions.

The following corollary follows directly from the Fourier-slice theorem.
c,tomo,radon,conv

Corollary 3.2.10 (Convolution property.) If f Radon↔ p and g Radon↔ q then

f(x, y) ∗∗ g(x, y)
Radon↔ pϕ(r) ∗ qϕ(r) . (3.2.46)

e,tomo,radon,conv

x,tomo,radon,conv

Example 3.2.11 In particular, it follows from Example 3.2.9 that 2D gaussian smoothing of an object is equivalent to
1D radial gaussian smoothing of each projection6:

f(x, y) ∗∗ 1

w2
e−π (r/w)2 Radon↔ pϕ(r) ∗ 1

w
e−π (r/w)2 .

3.3 Backprojection (s,tomo,back)
s,tomo,back

The Radon transform maps a 2D object f(x, y) into a sinogram pϕ(r) consisting of line integrals through the object.
One approach to try to recover the object from pϕ(r) would be to take each sinogram value and “smear” it back into
object space along the corresponding ray, as illustrated in Fig. 3.3.1. (Early versions used film exposure summation
for this operation [16].) This type of operation is called backprojection and is fundamental to tomographic image
reconstruction. Unfortunately in its simplest form this procedure does not recover the object f(x, y), but instead yields
a blurred version of the object fb(x, y). This blurred version fb(x, y) is called a laminogram or layergram [17].

Recall from Example 3.2.3 that the projection of an impulse object centered at (x0, y0) is the “sinusoidal impulse”
along r = x0 cosϕ+y0 sinϕ . Because each object point (x0, y0) contributes its own sinusoid to the sinogram, it is
natural to “sum along the sinusoid” to attempt to find f(x0, y0). (There are analogous image formation methods in
other modalities such as ultrasound beamforming by delay and sum.)

When the sinogram of an asymmetric object is corrupted by noise, it is conceivable that different views will
have different signal to noise ratios, so it may be useful to weight the views accordingly7 while “summing along the
sinusoid.” Therefore, we analyze the following angularly-weighted backprojection operation:

fb(x, y) =

∫ π

0

w(ϕ) pϕ(x cosϕ+y sinϕ) dϕ, (3.3.1)
e,tomo,back

where w(ϕ) denotes the user-chosen weight for angle ϕ. In the usual case where w(ϕ) = 1, this operation is the
adjoint of the Radon transform (see §3.4.4).

6Expressions of the form f(x, y) ∗∗ h(r) should be interpreted as 2D convolution in Cartesian coordinates as follows: g(x, y) = f(x, y) ∗∗
h(r) =

∫∫
f(x− s, y − t)h

(√
s2 + t2

)
dsdt .

7It could also be useful to weight each ray differently, but such weighting is more difficult to analyze. Most readers should probably consider
w(ϕ) = 1 on a first pass anyway. See [18] for related analysis of tomography with arbitrary view angles and view-dependent filters. See [19] for a
noise-weighted FBP algorithm.
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x

y

pϕ(r)

L(r, ϕ)

r

r

ϕ

Figure 3.3.1: Illustration of backprojection operation for a single ray in a single projection view.
fig_tomo_back2

3.3.1 Image-domain analysis
The following theorem shows that the laminogram fb(x, y) is a severely blurred version of the original object f(x, y).

t,tomo,1/r

Theorem 3.3.1 If pϕ(r) denotes the Radon transform of f(x, y) in (3.2.4), and fb(x, y) denotes the angularly-
weighted backprojection of pϕ(r) as given by (3.3.1), then

fb(x, y) = h(r, ϕ) ∗∗ f(x, y), where h(r, ϕ) =
w((ϕ+ π/2) modπ)

|r|
, (3.3.2)

e,tomo,1r

for ϕ ∈ [0, π] and r ∈ R.
Proof:
It is clear from (3.2.4) and (3.3.1) that the operation f(x, y)→ pϕ(r)→ fb(x, y) is linear. Furthermore, this operation
is shift invariant because

fb(x− c, y − d) =

∫ π

0

w(ϕ) pϕ((x− c) cosϕ+(y − d) sinϕ) dϕ

=

∫ π

0

w(ϕ) qϕ(x cosϕ+y sinϕ) dϕ,

where, using the shift property (3.2.28), the projections qϕ(r) , pϕ(r − c cosϕ−d sinϕ) denote the Radon transform
of f(x− c, y − d).

Due to this shift-invariance, it suffices to examine the behavior of fb(x, y) at a single location, such as the center.
Using (3.2.4):

fb(0, 0) =

∫ π

0

w(ϕ′) pϕ′(0) dϕ′ (3.3.3)

=

∫ π

0

w(ϕ′)

[∫ ∞
−∞

f
(
0 cosϕ′−` sinϕ′, 0 sinϕ′+` cosϕ′

)
d`

]
dϕ′ (3.3.4)

=

∫ π

0

∫ ∞
−∞

w((ϕ+ π/2) modπ)

|r|
f(0− r cosϕ, 0− r sinϕ) |r|dr dϕ, (3.3.5)

e,tomo,back,b00
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making the variable changes ϕ′ = (ϕ+π/2) modπ and ` =

{
r, ϕ′ ∈ [π/2, π]
−r, ϕ′ ∈ [0, π/2).

Thus, using the shift-invariance

property noted above:

fb(x, y) =

∫ π

0

∫ ∞
−∞

w((ϕ+ π/2) modπ)

|r|
f(x− r cosϕ, y − r sinϕ) |r|dr dϕ, (3.3.6)

e,tomo,back,bxy,proof

which is the convolution integral (3.3.2) in (signed) polar coordinates. 2

An alternative proof uses the projection and backprojection of a centered Dirac impulse based on Example 3.2.3.
In the usual case where w(ϕ) = 1, we see from (3.3.2) that unmodified backprojection yields a result that is the

original object blurred by the 1/r function. This PSF has very heavy tails, so the laminogram is nearly useless for
visual interpretation. Fig. 3.3.2 illustrates the 1/r function.

Thus far we have focused on the parallel ray geometry implicit in (3.2.4). For a broad family of other geometries,
there exist pixel-dependent weighted-backprojection operations that also yield the original object convolved with 1/r
[20]. So the nature of (3.3.2) is fairly general.

h(r)
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Figure 3.3.2: Illustrations of 1/r function and its “heavy tails.”
fig_tomo_1r_grayfig_tomo_1r_surf

3.3.2 Frequency-domain analysis
Because the laminogram fb(x, y) is the object f(x, y) convolved with the PSF h(r, ϕ) in (3.3.2), it follows that in the
frequency domain we have

Fb(ρ,Φ) = H(ρ,Φ)F◦(ρ,Φ),

where H(ρ,Φ) denotes the polar form of the 2D FT of h(r, ϕ).
It is well known that 1/ |r| and 1/ |ρ| are 2D FT pairs [15, p. 338]. The following theorem generalizes that result

to the angularly weighted case.
t,tomo,2dft,1r

Theorem 3.3.2 The PSF given in (3.3.2) has the following 2DFT for8 Φ ∈ [0, π] and ρ ∈ R:

h(r, ϕ) =
1

|r|
w((ϕ+ π/2) modπ)

2D FT←→ H(ρ,Φ) =
1

|ρ|
w(Φ) . (3.3.7)

e,tomo,2dft,1r

Proof:
Evaluate the 2D FT of h:

H(ρ,Φ) =

∫ π

0

∫ ∞
−∞

h(r, ϕ) e−ı2πrρ cos(ϕ−Φ) |r|dr dϕ

=

∫ π

0

w((ϕ+ π/2) modπ)

[∫ ∞
−∞

e−ı2πrρ cos(ϕ−Φ) dr

]
dϕ

=

∫ π

0

w((ϕ+ π/2) modπ) δ(ρ cos(ϕ− Φ)) dϕ

=
1

|ρ|

∫ π

0

w(ϕ′) δ(sin(ϕ′ − Φ)) dϕ′ =
1

|ρ|
w(Φ),

8Alternatively we could write H(ρ,Φ) = 1
|ρ| w(Φ modπ) for Φ ∈ [0, 2π) and ρ ≥ 0.
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letting ϕ′ = (ϕ+ π/2) modπ and using9 the following Dirac impulse property [15, p. 100]

δ(f(t)) =
∑

s : f(s)=0

δ(t− s)∣∣∣ḟ(s)
∣∣∣ . (3.3.8)

e,tomo,back,dirac

In particular,
δ(sin(t)) =

∑
k

δ(t+ πk) .

Thus, the 2D FT of h(r, ϕ) in (3.3.2) is H(ρ,Φ) = w(Φ) / |ρ|. 2

So the frequency-space relationship between the laminogram and the original object is

Fb(ρ,Φ) =
w(Φ)

|ρ|
F◦(ρ,Φ) . (3.3.9)

e,tomo,lamino,1rho

High spatial frequencies are severely attenuated by the 1/ |ρ| term, so the laminogram is very blurry. However, the
relationship (3.3.9) immediately suggests a “deconvolution” method for recovering f(x, y) from fb(x, y), as described
in the next section.

More generally, if qϕ(r) is an arbitrary sinogram to which we apply a weighted backprojection of the form (3.3.1),
then the Fourier transform of the resulting image is

Fb(ρ,Φ) =
w(Φ)

|ρ|
Qϕ(ν)

∣∣∣
ν=ρ, ϕ=Φ

=
w(Φ)

|ρ|

{
QΦ(ρ), Φ ∈ [0, π)
QΦ−π(−ρ), Φ ∈ [π, 2π),

(3.3.10)
e,tomo,back,general

where Qϕ(ν) is the 1D FT of qϕ(r) along r. (See Problem 3.15.) The special case (3.3.9) follows from the Fourier-
slice theorem.

3.3.3 Summary *
Fig. 3.3.3 summarizes the various Fourier-transform relationships described above, as well as the Fourier-slice theo-
rem, and the projection and backprojection operations.
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Pϕ(ν)F (u, v)

Object

f(x, y)

fb(x, y)

Laminogram

Fb(u, v)

Projection

Figure 3.3.3: Relationships between a 2D object f(x, y) and its projections and transforms. Left side of the figure is
image domain, right side is projection domain. Inner ring is space domain, outer ring is frequency domain.

fig,tomo,relate

x,tomo,back

Example 3.3.3 Fig. 3.3.4 shows an object f(x, y) consisting of two squares, the larger of which has several small
holes in it. Also shown is the sinogram pϕ(r) of this object. The laminogram fb(x, y) is so severely blurred that the
small holes are not visible.

9This is not a rigorous proof because the function 1/ |r| is not square integrable (in 2D) so its 2D FT exists only in the sense of distributions, as
used for other signals like iDirac impulses, sinusoids, step functions, etc.
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Figure 3.4.1: Illustration of polar samples of F◦(ρ, ϕ) = Pϕ(ρ) that one must interpolate onto Cartesian samples of
F (u, v) for the direct Fourier reconstruction method.

3.4 Radon transform inversion (s,tomo,iradon)s,tomo,iradon

By manipulating the expressions derived in the preceding sections, one can find several methods for inverting the
Radon transform, i.e., for recovering an object f(x, y) from its projections {pϕ(r)}. This section describes three
alternatives: direct Fourier reconstruction based on the Fourier-slice theorem, the backproject-filter (BPF) method
based on the laminogram, and finally the convolve-backproject (CBP) method, also called the filter-backproject (FBP)
method. Each of these methods uses some of the relationships shown in Fig. 3.3.3.

In this section we continue to treat the idealized version of the tomography problem in which the entire continuum
of projections {pϕ(r)} is available. In practical tomography systems, only a discrete set of projections and rays are
available; these sampling considerations will be addressed in §4.3 and §3.5.

3.4.1 Direct Fourier reconstructions,tomo,iradon,dfr

The direct Fourier reconstruction method is based on the Fourier-slice theorem (3.2.36). To reconstruct f(x, y)
from {pϕ(r)} by the direct Fourier method, one performs the following steps.
• Take the 1D FT of each pϕ(·) to get Pϕ(·) for each ϕ.
• Create a polar representation F◦(ρ,Φ) of the 2D FT of object F (u, v) using the Fourier-slice relationship:

F◦(ρ, ϕ) = Pϕ(ρ) .

• Convert from polar representation F◦(ρ,Φ) to Cartesian coordinates F (u, v). This approach, first proposed in [21],
was “the first applicable method for reconstructing pictures from their projections” [22].
For sampled data, this polar to Cartesian step, often called gridding, requires very careful interpolation. Fig. 3.4.1
illustrates the process. Numerous papers have considered this step in detail, e.g., [10, 14, 23–46]. Of these, the
nonuniform FFT (NUFFT) methods with good interpolation kernels are particularly appealing, e.g., [36, 45, 47].
See Chapter 6 for related problems.
• Take the inverse 2D FT of F (u, v) to get f(x, y).

In practice this is implemented using the 2D inverse FFT, which requires Cartesian samples, whereas the relation-
ship F◦(ρ, ϕ) = Pϕ(ρ) is intrinsically polar. Hence the need for interpolation.

This method would work perfectly if given noiseless, continuous projections pϕ(r). Practical disadvantages of this
method are that it requires 2D FTs, and gridding can cause interpolation artifacts. An alternative approach uses a
Hankel transform rather than Fourier transforms [48]; this method also uses interpolation.

x,tomo,direct

Example 3.4.1 Consider the sinogram described by

pϕ(r) = rect

(
r − x0 cosϕ−y0 sinϕ

w

)
.

What is the object f(x, y) that has these projections?
First, taking the 1D FT yields

Pϕ(ν) = w sinc(wν) e−ı2πν(x0 cosϕ+y0 sinϕ) ,
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so by the Fourier-slice theorem the spectrum of f(x, y) is given by

F◦(ρ,Φ) = w sinc(wρ) e−ı2πρ(x0 cosΦ +y0 sinΦ)

or equivalently
F (u, v) = w sinc

(
w
√
u2 + v2

)
e−ı2π(x0u+y0v) .

Because [15, p. 338], w sinc(wρ)
2D FT←→ 1

π
rect(r/w)√
(w/2)2−r2

, the corresponding object is

f(x, y) = rect

(√
(x− x0)2 + (y − y0)2

w

)
1

π
√

(w/2)2 − (x− x0)2 − (y − y0)2
.

In other words, the object that has “flat” projections has a circular singularity. Using this relationship, one can
analyze the deficiencies of simplistic pixel-driven forward projection [49].

3.4.2 The backproject-filter (BPF) method (s,tomo,bpf)s,tomo,bpf

Another reconstruction method is suggested by the Fourier relationship (3.3.9) between the laminogram and the orig-
inal object. Solving (3.3.9) for the 2D FT of the object yields

F̂ (u, v) =

√
u2 + v2

w(∠π(u, v))
Fb(u, v), (3.4.1)

e,tomo,bpf

where Fb(u, v) denotes the 2D FT of the laminogram, and ∠π was defined in (3.2.16). The filter with frequency
response |ρ| =

√
u2 + v2 is called the cone filter due to its shape. (This method is also called the ρ-filtered layergram

approach [17] [4, p. 153].)
The above relationship suggests the following reconstruction method.

• Choose a nonzero angular weighting function w(ϕ) (typically unity).
• Perform angularly-weighted backprojection of the sinogram pϕ(r) to form the laminogram fb(x, y) using (3.3.1).
• Take the 2D FT of fb(x, y) to get Fb(u, v).
• Apply the angularly-modulated cone filter in the Fourier domain using (3.4.1).
• The cone filter nulls the DC component of f(x, y). This component can be recovered using the volume conserva-

tion property (3.2.34) of the Radon transform. For noisy sinogram data, one can compute such an integral for all
projections and take the average value to estimate the DC component: F̂ (0, 0) = 1

π

∫ π
0

[∫
pϕ(r) dr

]
dϕ .

• Take the inverse 2D FT of F̂ (u, v) to get f̂(x, y).
This approach is called the backproject-filter (BPF) method because we first backproject the sinograms, and then
apply the cone filter to “deconvolve” the 1/ |ρ| effect of the backprojection.

In practice, using the cone-filter without modification would excessively amplify high-frequency noise. To control
noise, the cone-filter is usually apodized in the frequency domain with a windowing function. Specifically, we replace
(3.4.1) by

F̂ (u, v) = A(u, v)

√
u2 + v2

w(∠π(u, v))
Fb(u, v),

where A(u, v) is an apodizing lowpass filter. In the absence of noise, the resulting reconstructed image satisfies

f̂(x, y) = a(x, y) ∗∗ f(x, y),

where a(x, y) is the inverse 2D FT of A(u, v). (See [50, 51] for early 3D versions of BPF.)
One practical difficulty with the BPF reconstruction method is that the laminogram fb(x, y) has unbounded spatial

support (even for a finite-support object f ) due to the tails of the 1/ |r| response in (3.3.2). In practice the support of
fb(x, y) must be truncated to a finite size for computer storage, and such truncation of tails can cause problems with
the deconvolution step. Furthermore, using 2D FFTs to apply the cone filter results in periodic convolution which can
cause wrap-around effects due to the high-pass nature of the cone filter. To minimize artifacts due to spatial truncation
and periodic convolution, one must evaluate fb(x, y) numerically using a sampling grid that is considerably larger
than the support of the object f(x, y). A large grid increases the computational costs of both the backprojection step
and the 2D FFT operations used for the cone filter. The FBP reconstruction method, described next, largely overcomes
this limitation. The FBP method has the added benefit of only requiring 1D Fourier transforms, whereas the direct
Fourier and BPF methods require 2D transforms.
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x,tomo,bpf,cone,exp

Example 3.4.2 For theoretical analysis, a convenient choice for the apodizer is A(ρ) = e−aρ . Using Hankel trans-
forms [15, p. 338] and the following Laplacian property (see (29.2.8)):

−4π2r2h(r)
Hankel←→ 1

ρ

d

dρ
H(ρ) +

d2

dρ2H(ρ),

one can show that that the corresponding impulse response of the apodized cone filter is given by

h(r) = 4π
a2 − 2π2r2

(a2 + 4π2r2)5/2

Hankel←→ ρ e−aρ .

Taking the limit as a→ 0 shows that h(r) = −1/(4π2r3) for r 6= 0, and that h(r) has a singularity at r = 0.
Fig. 3.4.2 illustrates this impulse response for the case a = 1.
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Figure 3.4.2: Impulse response of cone filter that is apodized by an exponential.
fig_tomo_bpf_cone_exp

x,tomo,bpf,cone,rect

Example 3.4.3 If we band-limit the cone filter by choosing A(ρ) = rect
(

ρ
2ρmax

)
, then the resulting impulse response

h(r) has a complicated expression that depends on both Bessel functions and the Struve function [52]. Fig. 3.4.3
illustrates this impulse response for the case ρmax = 1.

3.4.3 The filter-backproject (FBP) method (s,tomo,fbp)s,tomo,fbp

We have seen that an unfiltered backprojection yields a blurry laminogram that must be deconvolved by a cone filter
to yield the original image. The steps involved look like the following:

f(x, y)→ Projection → pϕ(r)→ Backprojection︸ ︷︷ ︸
convolution with 1/ |r|

→ fb(x, y)→ Cone filter → f(x, y) .

Because the cascade of the first two operations is linear and shift invariant, as shown in §3.3, in principle we could
move the cone filter to be the first step to obtain the same overall result:

f(x, y)→ Cone filter → f̌(x, y)→ Projection → p̌ϕ(r)→ Backprojection → f(x, y),

where, assuming w(ϕ) = 1 hereafter, the filtered object f̌(x, y) has the following the spectrum:

F̌ (ρ,Φ) = |ρ|F◦(ρ,Φ) .
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Figure 3.4.3: Impulse response of band-limited cone filter.
fig_tomo_bpf_cone_rect

Of course in practice we cannot filter the object before acquiring its projections. However, applying the Fourier-slice
theorem to the scenario above, we see that each projection p̌ϕ(r) has the following 1D FT:

p̌ϕ(r)
FT←→ P̌ϕ(ν) = F̌ (ρ, ϕ)

∣∣∣
ρ=ν

= |ρ| F◦(ρ, ϕ)
∣∣∣
ρ=ν

= |ν|F◦(ν, ϕ) = |ν|Pϕ(ν) .

This relationship implies that we can replace the cone filter above with a set of 1D filters with frequency response
|ν| applied to each projection pϕ(·). This filter is called the ramp filter due to its shape. The block diagram above
becomes:

f(x, y)→ Projection → pϕ(r)→ Ramp filters → p̌ϕ(r)→ Backprojection → f(x, y) .

This reconstruction approach is called the filter-backproject (FBP) method, and is used the most widely in tomography.
A formal derivation of the FBP method uses the Fourier-slice theorem as follows:

f(x, y) =

∫∫
F (u, v) eı2π(xu+yv) dudv

=

∫ π

0

∫ ∞
−∞

F (ν cosϕ, ν sinϕ) eı2πν(x cosϕ+y sinϕ) |ν|dν dϕ

=

∫ π

0

∫ ∞
−∞

Pϕ(ν) eı2πν(x cosϕ+y sinϕ) |ν|dν dϕ

=

∫ π

0

p̌ϕ(x cosϕ+y sinϕ) dϕ,

where we define the filtered projection p̌ϕ(r) as follows:

p̌ϕ(r) =

∫ ∞
−∞

Pϕ(ν) |ν| eı2πνr dν . (3.4.2)
e,tomo,fbp,ramp

The steps of the FBP method are summarized as follows.
• For each projection angle ϕ, compute the 1D FT of the projection pϕ(·) to form Pϕ(ν).
• Multiply Pϕ(ν) by |ν| (ramp filtering) to get P̌ϕ(ν) = |ν|Pϕ(ν) .
• For each ϕ, compute the inverse 1D FT of P̌ϕ(ν) to get the filtered projection p̌ϕ(r) in (3.4.2). In practice this

filtering is often done using an FFT, which yields periodic convolution. Because the space-domain kernel corre-
sponding to |ν| is not space limited (see Fig. 3.4.5), periodic convolution can cause “wrap-around” artifacts. With
care, these artifacts can be avoided by zero padding the sinogram. Sampling the ramp filter can also cause aliasing
artifacts. See Example 3.4.6 below for a preferable approach.
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• The ramp filter nulls the DC component of each projection. If desired, this can be restored using the volume
conservation property (3.2.34). The approach of Example 3.4.6 avoids the need for any such DC correction.
Discretizing the integrals carefully avoids the need for empirical scale factors.
• Backproject the filtered sinogram {p̌ϕ(r)} using (3.3.1) to get f̂(x, y), i.e.

f̂(x, y) =

∫ π

0

p̌ϕ(x cosϕ+y sinϕ) dϕ . (3.4.3)
e,tomo,fbp

In practice usually the pixel-driven backprojection approach of §3.5.3 is used.
With some hindsight, the existence of such an approach seems natural because the Fourier-slice theorem provides a
relationship between the 2D FT in object domain and the 1D FT in projection domain. Apparently [53] FBP was first
applied to medical tomography by Chesler in 1972 [54]. For weighted versions of FBP, see [55, 56].

3.4.4 Ramp filters and Hilbert transformss,tomo,hilbert

It can be useful to relate the ramp filter |ν| to a combination of differentiation and a Hilbert transform.
The Hilbert transform of a 1D function f(t) is defined (using Cauchy principal values) by10 [58, p. 248]:

fHilbert(t) =
1

π

∫ ∞
−∞

1

t− s
f(s) ds =

1

πt
∗ f(t). (3.4.4)

e,tomo,hilbert

Note that this “transform” returns another function of t. The corresponding relationship in the frequency domain is

FHilbert(ν) = −ı sgn(ν)F (ν). (3.4.5)
e,tomo,hilbert,freq

x,tomo,hilbert,rect

Example 3.4.4 The Hilbert transform of the rect function rect(t) = I{|t|≤1/2} is [58, p. 249]: 1
π log

∣∣∣ t+1/2
t−1/2

∣∣∣ .
Using the Hilbert transform frequency response (3.4.5), we rewrite the ramp filter |ν| in (3.4.2) as follows:

|ν| = 1

2π
(ı2πν) (−ı sgn(ν)) .

The term (ı2πν) corresponds to differentiation, by the differentiation property of the Fourier transform. Therefore,
another expression for the FBP method (3.4.3) is

f̂(x, y) =
1

2π

∫ π

0

d

dr
pHilbert(r, ϕ)

∣∣∣∣
r=x cosϕ+y sinϕ

dϕ, (3.4.6)
e,tomo,fbp,hilbert

where pHilbert(r, ϕ) denotes the Hilbert transform of pϕ(r) with respect to r. Combining (3.4.4) and (3.4.6) yields

f̂(x, y) =
1

2π2

∫ π

0

∫ ∞
−∞

∂
∂r pϕ(r)

x cosϕ+y sinϕ−r
dr dϕ . (3.4.7)

e,tomo,cbp,radon

This form is closer to Radon’s inversion formula [4, p. 21] [7, 9].
x,tomo,fbp,rect

Example 3.4.5 Continuing Example 3.2.7, the spectrum of the projection at angle ϕ of a rectangle object is given by
(3.2.37), so its ramp-filtered projections are given by (for sinϕ 6= 0):

P̌ϕ(ν) = |ν| a sinc(νa cosϕ) b sinc(νb sinϕ)

=
1

π cosϕ sinϕ
sin(πνa cosϕ) sgn(ν)(b sinϕ) sinc(νb sinϕ)

=
1

2π cosϕ sinϕ

(
e−ıπνa cosϕ − eıπνa cosϕ

)
[ı sgn(ν)(b sinϕ) sinc(νb sinϕ)] .

Using the Hilbert transform in Example 3.4.4, the inverse 1D FT of the bracketed term is 1
πb sinϕ log

∣∣∣x− 1
2 b sinϕ

x+ 1
2 b sinϕ

∣∣∣ , so
by the shift property of the FT, the filtered projections are:

p̌ϕ(r) =
1

2π2 cosϕ sinϕ
log

∣∣∣∣∣∣∣
r2 −

(
a cosϕ+b sinϕ

2

)2

r2 −
(
a cosϕ−b sinϕ

2

)2

∣∣∣∣∣∣∣ ,
cf. [59, eqn. (14)]. Fig. 3.4.4 shows an example of the projection pϕ(r) of a unit square and its filtered version p̌ϕ(r).
The ramp filter causes singularities at each of the points of discontinuity in the projections. (Compare with Fig. 3.3.4.)
For the case sinϕ = 0, see Problem 3.24.

10Note that some texts use the opposite sign, e.g., [15, p. 359] [57, p. 194].
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Figure 3.4.4: Projection pϕ(r) of a unit square at angle ϕ = π/9 and its filtered versions p̌ϕ(r) both for ideal ramp
filter |ν| and a band-limited ramp filter with cutoff frequency ν0 = 4.

fig_tomo_square_proj_filt

3.4.5 Filtered versus unfiltered backprojection
Recall that an unfiltered backprojection of a sinogram gives an image blurred by 1/ |r|. This blurring is due to the
fact that the (all nonnegative) projection values “pile up” in the laminogram, and there is no destructive interference.
In contrast, after filtering with the ramp filter, the projections have both positive and negative values, so destructive
interference can occur, which is desirable for the parts of the image that are supposed to be zero for example. Fig. 3.3.4
illustrates these concepts.

3.4.6 The convolve-backproject (CBP) methods,tomo,cbp

The ramp filter amplifies high frequency noise, so in practice one must apodize it by a 1D lowpass filterA(ν), in which
case (3.4.2) is replaced by

p̌ϕ(r) =

∫ ∞
−∞

Pϕ(ν)A(ν) |ν| eı2πνr dν . (3.4.8)
e,tomo,fbp,A(u)

Alternatively, one can perform this filtering operation in the spatial domain by radial convolution:

p̌ϕ(r) = pϕ(r) ∗hA(r) =

∫
pϕ(r′)hA(r − r′) dr′, (3.4.9)

e,tomo,cbp,conv

where the filter kernel hA(r) is the inverse FT of HA(ν) = A(ν) |ν| , i.e.,

hA(r) =

∫ ∞
−∞

A(ν) |ν| eı2πνr dν . (3.4.10)
e,tomo,cbp,h

Combining with (3.4.3) and (3.4.9) leads to the following convolve-backproject method:

f̂(x, y) =

∫ π

0

(pϕ ∗ hA)(x cosϕ+y sinϕ) dϕ =

∫ π

0

∫
pϕ(r)hA(x cosϕ+y sinϕ−r) dr dϕ . (3.4.11)

e,tomo,cbp

Although the convolution kernel hA(r) usually is not space-limited, the object (and hence its projections) are
space limited, so space-domain convolution is feasible. On the other hand, the space-domain convolution requires
more computation than a frequency-space implementation using the FFT method, so the FBP approach is often more
attractive than the CBP approach.
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x,tomo,fbp,ramp,rect

Example 3.4.6 As a concrete example, consider the case of a rectangular band-limiting window

A(ν) = rect

(
ν

2ν0

)
, (3.4.12)

e,tomo,fbp,apod,rect

which is a logical choice when the object (and hence its projections) are band limited to a maximum spatial frequency
ν0. In this case, the band-limited ramp filter has the frequency response shown in Fig. 3.4.5. This is called the
Ram-Lak filter [6, p. 83] after [60].

νν0

ν0 tri
(
ν
ν0

)
HA(ν)

ν0
ν ν0

ν

ν0 rect
(

ν
2ν0

)
= -

Figure 3.4.5: Frequency response of band-limited ramp filter.
fig_tomo_ramp_tri

To determine the corresponding convolution kernel, observe that

|ν| rect

(
ν

2ν0

)
= ν0 rect

(
ν

2ν0

)
−ν0 tri

(
ν

ν0

)
where tri(·) was defined in (3.2.42). Thus the convolution kernel is [61]

hA(r) = 2ν2
0 sinc(2ν0r)−ν2

0 sinc2(ν0r), (3.4.13)
e,tomo,cbp,kernel

as shown in Fig. 3.4.6. The ringing is due to the implicit assumption that the object is band limited. In practice one
usually uses an apodization filter A(ν) that goes to zero gradually to reduce ringing; see §3.4.7.
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Figure 3.4.6: Convolution kernel for band-limited ramp filter hA(r) with ν0 = 1, and the sample values h[n] =
hA(n/(2ν0)) .

fig_tomo_ramp_bandlimit

In practice, one uses samples of this impulse response. Sampling it using the Nyquist rate 2ν0 yields [5, p. 72]:

h[n] = hA

(
n

2ν0

)
= 2ν2

0 sinc(n)−ν2
0 sinc2(n/2) = ν2

0

 1, n = 0
0, n even
−1/(πn/2)2, n odd.

(3.4.14)
e,tomo,fbp,ramp,samples

Rarely is ν0 given in practice, so one assumes that the sampling is adequate, i.e., ν0 = 1/(24R), where 4R is the
radial sample spacing. This approach is preferable to sampling the ramp filter directly in the frequency domain [5,
p. 69] [62].
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Although the filter (3.4.14) is infinitely long, given a sinogram with a finite number nR of radial samples, we need
only to evaluate the filtered sinogram p̌ϕ(r) at those same radial sample locations, so it suffices to compute h[n] for
n = −nR, . . . , nR − 1 and to zero pad the sinogram radially with nR zeros before computing the FFTs to perform
the filtering. When using this discrete-space filter h[n] to approximate the convolution (3.4.9), one should include a
scaling factor4R to account for dr in that integral.

x,tomo,fbp,rect,proj,filt,apod

Example 3.4.7 In Example 3.4.5, Fig. 3.4.4 showed the projections of a square after filtering with an ideal ramp filter.
Fig. 3.4.4 also shows those same projections when filtered with the rectangularly apodized ramp filter described in
Example 3.4.6.

x,tomo,fbp,ramp,limit

Example 3.4.8 For theoretical analysis, an alternative to the rectangular apodization considered in Example 3.4.6 is
to use exponential apodization A(ν) = e−ε|ν| , for some small ε > 0. One can verify the following 1D FT pair [63,
p. 127]:

hA(r) =
2(ε2 − 4π2r2)

(ε2 + 4π2r2)2

FT←→ HA(ν) = e−ε|ν| |ν| .

Fig. 3.4.7 shows examples of this impulse response. Taking the limit as ε→ 0, yields the following expression for the
ramp filter for r 6= 0:

h∗(r) =
−1

2π2r2
, (3.4.15)

e,tomo,fbp,ramp,hr

and a singularity at r = 0. (See [64] for rigorous treatment of Fourier transforms of such functions.) This ramp filter
satisfies the following scaling property:

h∗(r) = α2 h∗(αr) . (3.4.16)
e,tomo,fbp,ramp,scale

This is also known as the homogeneity property [65].
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Figure 3.4.7: Impulse response hA(r) of ramp filter with exponential apodization.
fig_tomo_fbp_ramp_exp

MIRT See fbp2.m.

3.4.7 PSF of the FBP method (s,tomo,fbp,psf)s,tomo,fbp,psf

Apodizing the ramp filter will reduce amplification of high frequency noise, but will also degrade spatial resolution in
the reconstructed object. To analyze the effects of apodization, we again turn to the Fourier-slice theorem (3.2.36). By
that theorem, multiplying the 1D FT Pϕ(ν) of each projection by A(ν) is equivalent11 to pre-multiplying the object
spectrum by A(ρ), i.e.,

F (u, v) 7→ A(
√
u2 + v2)F (u, v) .

11Note that for this simple relationship to hold, it is essential that the same apodizer be used for every projection angle ϕ.
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Thus, the reconstructed object f̂(x, y) is a blurred version of the original:

f̂(x, y) = f(x, y) ∗∗ h(x, y), (3.4.17)
e,tomo,fbp,psf

where
h(x, y)

2D FT←→ H(u, v) , A(
√
u2 + v2). (3.4.18)

e,tomo,fbp,psf,hankel

Because H is circularly symmetric, so is h; thus h(r) is simply the Hankel transform of H(ρ) = A(ρ).
x,tomo,psf,rect

Example 3.4.9 For the rectangular apodizing window A(ν) = rect
(

ν
2ν0

)
, the corresponding PSF in the image

domain would be
h(r) = ν2

0 jinc(ν0r) . (3.4.19)
e,tomo,fbp,psf,jinc

Thus the image would be blurred by a jinc function, which has large sidelobes that would cause undesirable “ringing.”
x,tomo,psf,gauss

Example 3.4.10 A popular choice in nuclear medicine is a gaussian window: A(ν) = exp
(
−π(ν/ν0)2

)
. The half-

amplitude cutoff frequency ν1/2 for this window, i.e., the point where A(ν1/2) = A(0)/2, is ν1/2 = ν0

√
log 2
π ≈

ν0
2 0.9394 ≈ ν0

2 . Because the Hankel transform of a gaussian is gaussian, in the image domain the PSF is

h(r) = ν2
0 exp

(
−π(ν0r)

2
)
.

To find the FWHM of this gaussian, find r such that h(r) = h(0)/2, or exp
(
−π(ν0r)

2
)

= 1/2 so π(ν0r)
2 = log 2.

Thus

FWHM =
2

ν0

√
log 2

π
≈ 0.9394

ν0
≈ 1

ν0
≈ 1

2ν1/2
.

So for a 5mm FWHM PSF, we would use ν0 = 1/5 = 0.2 cycles/cm.
x,tomo,fbp,other

Example 3.4.11 Other popular window functions include the following.
• Hann or Hanning: A(ν) = [1

2 + 1
2 cos(πν/ν0)] rect

(
ν

2ν0

)
• Hamming: A(ν) = [0.54 + 0.46 cos(πν/ν0)] rect

(
ν

2ν0

)
• Generalized Hamming: A(ν) = [α+ (1− α) cos(πν/ν0)] rect

(
ν

2ν0

)
, for α ∈ [0, 1]

• Butterworth: A(ν) =
1√

1 + (ν/ν0)2n
, for n ≥ 0

• Parzen: A(ν) =


1− 6(ν/ν0)2 (1− |ν| /ν0) |ν| ≤ ν0/2

2 (1− |ν| /ν0)
3

ν0/2 ≤ |ν| ≤ ν0

0, otherwise

• Shepp Logan [66]: A(ν) =
∣∣∣sinc

(
ν

2ν0

)∣∣∣ or
∣∣∣sinc

(
ν

2ν0

)∣∣∣3
• Modified Shepp Logan: A(ν) = sinc

(
ν

2ν0

)
[0.4− 0.6 cos(πν/ν0)]

It is not always easy to find a closed-form expression for the PSF h that results from apodization. But the general
rule of thumb, FWHM ≈ 1/(2ν1/2), is usually pretty close.

In light of the result (3.4.17), one might wonder why we apply the window A(ν) to the projections rather than
just smooth (post-filter) the reconstructed image? The main reason is that we must apply the ramp filter anyway, so
we can include A(ν) essentially for free. In contrast, post-smoothing would require either an “expensive” convolution
or a pair of 2D FFTs. However, if one wants to experiment with several different amounts of smoothing, then it is
preferable to smooth after a (ramp-filtered) backprojection so that only one backprojection operation is needed.

3.4.8 Summary *
We have described three methods for inverting the Radon transform, i.e., for reconstructing a 2D object f(x, y) from
its projections {pϕ(r)}:
• direct Fourier reconstruction (gridding),
• the backproject-filter (BPF) method (cone filter),
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• the filter-backproject (FBP) method (ramp filter), and its cousin the convolve-backproject (CBP) method.
The derivations of these methods all used the Fourier-slice theorem. These methods would yield identical results for
noiseless continuous-space data, but are based on different manipulations of the formulas so they lead to different
ways of discretizing and implementing the equations, yielding very different numerical algorithms in practice.

We also analyzed the PSF due to windowing the ramp filter. In practice one must choose the apodizing window
to make a suitable compromise between spatial resolution and noise. Most implementations assume that the object is
band-limited, often leading to the kind of rining seen in (3.4.19). See [67] for an alternative formulation that assumes
the object is piecewise constant.

Recently, other inversion formulas for the 2D Radon transform have been discovered for objects with compact
support, e.g., [68]. These methods include user-selectable parameters that allow one to avoid corrupted or missing
regions of the sinogram. An interesting open problem is to determine whether the methods could be extended to
include some type of statistical weighting.

3.5 Practical backprojection (s,tomo,prac)
s,tomo,prac

The preceding sections considered the idealized case where there is a continuum of projection views. In practice,
sinograms have only finite angular samples, so each of the reconstruction methods described in §3.4 requires modifi-
cation for practical implementations. (There are also alternative methods for solving the problem for a finite number
of views, such as the minimium-norm approach [69, 70].)

A critical step in both the BPF and FBP reconstruction methods is the backprojection operation (3.3.1). Given
only a finite number nϕ of projection angles, we must approximate the integral in (3.3.1). Usually the projection
angles are uniformly spaced over the interval [0, π), i.e.,

ϕi =

(
i− 1

nϕ

)
π, i = 1, . . . , nϕ.

In such cases, the usual approach is to use the following Riemann sum approximation to (3.3.1):

fb(x, y) ≈ π

nϕ

nϕ∑
i=1

pϕi(x cosϕi +y sinϕi). (3.5.1)
e,tomo,prac,back

Whether more sophisticated approximations to this integral would be beneficial is an open problem.
There are at least three distinct approaches to implementing (3.5.1): rotation-based backprojection, ray-driven

backprojection, and pixel-driven backprojection. If the available projections were continuous functions of the radial
argument, then these formulations would be identical. In practice, not only are the projection angles discrete, but also
we have only discrete radial samples of pϕ(r). (See (4.3.1).) Ignoring noise and blur, we are given the discrete
sinogram

yi[n] = pϕ(r)
∣∣∣
ϕ=ϕi, r=rc[n]

, i = 1, . . . , nϕ, n = 0, . . . , nR − 1, (3.5.2)
e,tomo,prac,sample

where the radial sample locations are given by

rc[n] = (n− n0)4R (3.5.3)
e,tomo,prac,rcn

and typically n0 = nR/2 or n0 = (nR − 1)/2. For such sinograms, the various backprojection methods can produce
different results because they differ in how the equations are discretized.

If the true object f true can be assumed to be appropriately band limited, then its projections will also be band
limited (by the Fourier slice theorem), so in principle we could recover pϕi from {yi[·]} using sinc interpolation:

pϕi(r) =

∞∑
n=−∞

yi[n] sinc

(
r − rc[n]

4R

)
.

In practice this interpolation is inappropriate because: real objects are space limited so they cannot be band limited, sinc
interpolation expects an infinite number of samples whereas practical sinograms have only a finite number of samples,
and sinc interpolation is computationally impractical. Thus, simpler interpolation methods are used in practice, such
as linear interpolation or spline interpolation [71], perhaps combined with oversampling of the FFT used for the ramp
filter.
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3.5.1 Rotation-based backprojection
We can rewrite the backprojection formula (3.5.1) as follows:

fb(x, y) =
π

nϕ

nϕ∑
i=1

bi(x, y), (3.5.4)
e,tomo,prac,back,ray

where the backprojection of the ith view is given by:

bi(x, y) = pϕi(x cosϕi +y sinϕi). (3.5.5)
e,tomo,prac,bi

We can also write bi = P∗ϕipϕi , where P∗ϕi is the adjoint operator defined in (4.2.4). This operator maps the ith
1D projection back into a 2D image by “smearing” that projection along the angle ϕi. In this approach, we form
temporary images by backprojecting each view and accumulating the sum of those temporary images.

To better understand bi(x, y), note that when i = 1 we have ϕ = 0, so

b1(x, y) = p0(x), (3.5.6)
e,tomo,prac,b0

which is just a 2D version of the function p0(x).
For sampled sinograms, implementing (3.5.6) is trivial12, simply replicate the first row of the sinogram (a vector)

to make a matrix. For other angles, perform the following steps to implement (3.5.5).
• Replicate the ith sinogram row to make an image, as if it were the ϕ = 0 case.

Mat Use repmat.
• Rotate that image counter clockwise by ϕ. This rotation will require an interpolation method, such as bilinear

interpolation or a more precise spline approach [72].
Mat Use imrotate.
• Accumulate these rotated images over all angles, as described in (3.5.4).

In this approach, the “outer loop” is over projection angles. The first step (replication) inherently “accounts” for
discrete radial samples.

The rotation approach is easily implemented but can be somewhat slow because high quality rotation is a fairly
expensive operation. One of the faster methods uses three 1D passes [72].

3.5.2 Ray-driven backprojection
For ray-driven backprojection, one loops through all the rays and for each ray one interpolates yi[n] onto the pixels
whose centers are nearest to the ray L(rc[n], ϕi), as defined in (3.2.3). Although this approach is somewhat popular
for forward projection, it can produce significant artifacts when used for backprojection, so will not be considered
further here. Fig. 3.3.1 somewhat illustrates the approach.

When radial sample spacing equals image sample spacing, ray-driven backprojection is equivalent to rotation-
based backprojection [73].

For a N × N image, ray-driven back-projection requires O(NnϕnR) operations. Usually nϕ ≈ N and nR ≈ N
so we say 2D ray-driven back-projection is O(N3).

3.5.3 Pixel-driven backprojections,tomo,prac,back,pixel

For image display, we compute fb(x, y) on a finite grid of pixel coordinate pairs {(xj , yj) : j = 1, . . . , np}. For
pixel-driven backprojection, we loop over the (xj , yj) pairs of interest and evaluate (3.5.1) for each of the grid
points, thereby filling up an image array. To implement, the outer loop is over pixel index j and the inner loop is over
angles ϕi. In essence, for each pixel we are summing along the corresponding sinusoid (illustrated in Fig. 3.2.3) in the
sinogram.

However, the radial argument xj cosϕi +yj sinϕi in (3.5.1) rarely exactly equals one of the radial sample locations
rc[n] shown in (3.5.2). Therefore, radial interpolation is required for pixel-driven backprojection. The usual approach
is linear interpolation which is equivalent mathematically to the following approximation:

pϕi(r) ≈
∑
n

yi[n] tri

(
r − rc[n]

4R

)
, (3.5.7)

e,tomo,prac,interp1

12This method assumes that n0 = (nR − 1)/2, i.e., that the center of the image projects onto the center of each projection. It furthermore
assumes that the desired pixel size equals4R. Otherwise a more complicated approach is needed.
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where the unit triangle function is denoted:

tri(t) =

{
1− |t|, |t| ≤ 1,
0, otherwise.

Although (3.5.7) is a mathematically correct expression for linear interpolation and is useful for theoretical analysis,
it poorly conveys how one would implement linear interpolation in practice. Because support of the function tri(t) is
two sample units, for any given r, only two terms in the sum in (3.5.7) are possibly nonzero. An alternative expression
is

pϕi(r) ≈ yi[n(r)] tri

(
r − rc[n(r)]

4R

)
+yi[n(r) + 1] tri

(
r − rc[n(r) + 1]

4R

)
= yi[n(r)]

(
1− r − rc[n(r)]

4R

)
+ yi[n(r) + 1]

(
r − rc[n(r)]

4R

)
,

where we define
n(r) , br/4R +n0c .

Other interpolators, such as an oversampled FFT or spline functions are also used [71].
For a N × N image, pixel-driven back-projection requires O(N2nϕ) operations. Usually nϕ ≈ N so we say

2D pixel-driven back-projection is O(N3). Hierarchical methods requiring O(N2 logN) operations have also been
developed [74, 75].

MIRT See fbp2_back.m.

3.5.4 Interpolation effectss,tomo,prac,interp

Generalizing (3.5.7), suppose that we use an interpolation method of the form:

p̂ϕi(r) =
∑
n

yi[n]h

(
r − rc[n]

4R

)
for some interpolation kernel h(·). Suppose furthermore that pϕ(r) is band limited with maximum frequency less than

1
24R

. Then it follows from (3.5.2) and the sampling theorem that (ignoring noise):

P̂ϕi(ν) =

{
Pϕi(ν)H(ν), |ν| < 1

24R

0, otherwise.

For example, when h is the linear interpolator in (3.5.7), we have H(ν) = 4R sinc2(4R ν), which is strictly positive
for |ν| < 1

24R
. Therefore, while we are applying the ramp filter |ν| in the discretized version of (3.4.2), we can also

apply the inverse filter 1/H(ν) to compensate for the effects of interpolation [76, eqn. (45)] [71, 77].
MIRT See fbp2_sino_filter.m.

3.5.5 Summary *
Pixel-driven, rotation-based, and ray-driven backprojection are all used in practice, depending on number of samples,
sample spacing, etc. The formulations are exactly identical in continuous space, but can yield slightly different results
when discretized.

3.6 Sinogram restoration (s,tomo,restore)
s,tomo,restore

Because a sinogram pϕ(r) has two coordinates (r and ϕ), one can display it as a 2D picture or even treat it as a 2D
“image” and apply any number of image processing methods to it. Numerous linear and nonlinear filters have been ap-
plied to sinograms in an attempt to reduce noise [78–100] to extrapolate missing data [101–104] and to compensate for
detector blur [105–112] and/or SPECT attenuation [113–116]. Some of these methods can even be called “statistical”
methods because they include measurement noise models. Problem 3.12 explores an approach based on B-splines.

A typical linear approach for a system with shift-invariant blur having frequency response B(ν) would be to use a
Wiener filter as the apodizing filter A(ν) in (3.4.8) as follows

A(ν) =
B∗(ν)

|B(ν)|2 +R(ν)
, (3.6.1)

e,tomo,restore,wiener
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Figure 3.7.1: Angular sampling considerations.
fig,tomo,ang,sample

where the “regularizer” R(ν) is a model for the ratio of the power spectral density of the noise over that of pϕ(r)
under the (questionable) assumption that both are wide sense stationary (WSS) random processes.

Nonlinear sinogram preprocessing methods, including classical methods based on view-adaptive Wiener filters
[117] and contemporary approaches like wavelet-based denoising [118], have the potential to reduce noise more than
linear methods with less degradation of spatial resolution. However, when a nonlinear sinogram filtering method is
combined with the linear FBP reconstruction method, the resulting spatial resolution properties can be quite unusual.
Modern methods typically apply nonlinear processing in the image domain, e.g., by nonquadratic edge-preserving
regularization, instead of in the sinogram domain.

3.7 Sampling considerations (s,tomo,samp)
s,tomo,samp

In practice one can acquire only finite radial and angular samples, due to constraints such as cost and time. This section
describes considerations in choosing the radial and angular sampling.

3.7.1 Radial sampling
The radial sample spacing, 4R, should be determined by the spatial resolution (in the radial direction) of the to-
mographic scanning instrument. The FWHM of the system radial resolution is a function of the detector width, the
source size in X-ray imaging, etc. The radial detector response (e.g., a rectangular function for square detector el-
ements) generally is not exactly band-limited, so Nyquist sampling theory can provide only general guidance. A
practical rule-of-thumb is to choose (if possible): 4R = FWHM/2. Then the number of radial samples should be
determined to cover the desired FOV by choosing: nR = FOV/4R . See §4.3.9 for Fourier analysis of aliasing due
to radial sampling.

3.7.2 Angular samplings,tomo,samp,ang

For a given FOV and radial sampling, Nyquist sampling theory can help determine the angular sampling 4ϕ. If
we have nR radial samples spaced by 4R, then in the Fourier domain (of the 2D DFT), the corresponding spatial
frequencies are spaced by 4ν = 1/(nR4R). It is natural to choose the angular sampling so as to ensure that all
samples in the 2D Fourier domain are separated by no more than this amount.

Considering Fig. 3.7.1, the appropriate angular spacing is4ϕ =
4ν

1/(24R)
= 2/nR. So the total number of angles

over 180◦ should be

nϕ =
π

4ϕ
=
π

2
nR.

In practice often somewhat fewer angular samples are used, but usually nϕ ≈ nR. The reason for using fewer than
πnR/2 angular samples is that often in real systems there is blur in the radial direction so the spatial resolution is
somewhat lower than that implied by just the radial sampling, i.e., the radial sampling may be a little finer than nec-
essary from a strict Nyquist perspective. However, we rarely use Nyquist (sinc) reconstruction, but rather only linear
interpolation, so some “oversampling” is reasonable. Inadequate angular sampling can lead to significant aliasing
artifacts. On the other hand, for the FBP reconstruction method, the computation time is directly proportional to the
number of angles.

x,tomo,undersample

Example 3.7.1 Fig. 3.7.2 illustrates the effects of angular undersampling.
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Original 2 angles 4 angles

32 angles 64 angles 128 angles

Figure 3.7.2: Illustration of the effects of angular undersampling on image quality for FBP reconstruction. The image
is 128 × 128, and the true values of the digital phantom are 1 in the background disk and 8 in the small disks. The
grayscale display is windowed from 0.5 to 1.5 to enhance the visibility of the artifacts.

fig_tomo_sample

3.8 Linogram reconstruction (s,tomo,lino)
s,tomo,lino

For tomographic imaging systems with certain geometries involving flat detectors, it can be convenient to use an
alternative sinogram coordinate system of the form

pEW(s, β) ,
1√

1 + β2
parctan(β)

(
s√

1 + β2

)
(3.8.1)

pNS(s, β) ,
1√

1 + β2
pπ/2+arctan(β)

(
s√

1 + β2

)
, (3.8.2)

e,tomo,lino,def

for |β| ≤ 1. This is called a linogram [10, 44, 119–121], because in this coordinate system the projection of a point
source is a straight line.

Taking the 1D Fourier transform of pEW(s, β) and pNS(s, β) along s and applying the Fourier slice theorem yields
the Fourier relationships:

P EW

ϕ (ν) =
√

1 + β2 Parctan(β)

(√
1 + β2ν

)
= F (ν, βν) (3.8.3)

PNS

ϕ (ν) =
√

1 + β2 Pπ/2+arctan(β)

(√
1 + β2ν

)
= F (−βν, ν) . (3.8.4)

e,tomo,lino,Pub

So the 1D Fourier transform of linogram data corresponds to samples of the object spectrum F (u, v) along lines with
slope β or 1/β. In particular, for a projection at slope β, if the linogram data has NS equally spaced samples along s
with spacing 4S, then the corresponding samples of the object spectrum F (u, v) in 2D Fourier space along the line
at slope β are spaced by

√
1 + β2/(NS4S), corresponding to the pseudo-polar grid shown in Fig. 3.8.1. Using this

sampling pattern, one can develop direct Fourier reconstruction methods for linogram data akin to §3.4.1, e.g., [122,
123], and iterative methods [124]. See Chapter 6 for more options. The linogram concept has been generalized to
higher dimension data, called planogram reconstruction [125–128].

By equating ϕ with arctan(β) or π/2 + arctan(β), one can show that
√

1 + β2 = 1
max(|cosϕ|,|sinϕ|) . Therefore

the radial sample spacing in (3.8.2) is the same as that of Mojette sampling described in §27.7.6 and [22, 129–138].
The primary difference between linogram and Mojette sampling is in the angular sampling.
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Figure 3.8.1: Illustration of pseudo-polar grid in 2D Fourier space associated with linogram sampling. The (green)
cross marks and (blue) circles correspond to the P EW

ϕ (ν) samples and the PNS
ϕ (ν) samples respectively.

fig_tomo_lino_pseudo

3.9 2D fan beam tomography (s,tomo,fan)
s,tomo,fan

The preceding sections have focused on case of 2D parallel-beam projections. Although 1st-generation X-ray CT
scanners did correspond to that geometry, many contemporary tomographic imaging systems have fan beam geome-
tries, including commercial X-ray CT scanners and some collimators for SPECT systems. For hypothetical continuous
measurements, one could transform fan-beam projections into parallel-beam projections by a simple change of vari-
ables. For discrete, noisy measurements, rebinning fan-beam measurements into parallel-beam projections requires
an interpolation operation that could degrade spatial resolution. To avoid such rebinning, one can derive analytical
reconstruction methods directly in terms of the fan-beam coordinates, as described below.

P

γ

ϕ

X-ray Source

αFocal Point
Dfs

Ds0

D0d

β

s = 0

s

roff

β

r

Figure 3.9.1: Illustration of fan beam geometry.
fig,tomo,fan,offset

Fig. 3.9.1 illustrates the fan-beam geometry that will be considered here. Because it can be challenging to ensure
that the line between the X-ray source and the midpoint of the detector passes through the exact center of rotation,
we allow an offset roff between that line and the center [139]. Let P denote the point along that line that intersects
the circle of radius roff centered at the rotation isocenter. D0d denotes the distance from the point P to the detector,
Ds0 denotes the distance from the X-ray source to P , and Dfs denotes the distance from the focal point of the detector
arc to the X-ray source. Define Dsd , D0d + Ds0 to be the total distance from the X-ray source to the center of
the detector. This formulation allows the detector focal point to differ from the X-ray source location to encompass a
variety of system configurations. For flat detectors, Dfs = ∞. For third-generation X-ray CT systems, Dfs = 0. For
fourth generation X-ray CT systems, Dfs = −Ds0.

In our notation, the distances D0d and Ds0 are constants, rather than being functions of β, defined as the angle
that the line segment between the X-ray source and the detector center makes with the y axis. Generalizations exist to
allow non-circular source trajectories [140].

Let s ∈ [−smax, smax] denote the (signed) arc length along the detector, with s = 0 corresponding to the detector
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center. Arc length is a natural parameterization for detector elements that are spaced equally along the detector. (For
a flat detector with Dfs = ∞, the arc length s is simply the position along the detector.) The various angles have the
following relationships:

α(s) =
s

Dfd
, γ(s) = arctan

(
Dfd sinα(s)

Dfd cosα(s)−Dfs

)
, (3.9.1)

e,tomo,fan,alf,gam

where Dfd , Dfs +Dsd. The two most important cases are

γ(s) =

{
s/Dsd, Dfs = 0 (equiangular)
arctan(s/Dsd), Dfs =∞ (equidistant). (3.9.2)

e,tomo,fan,tan,gam

The function γ(s) is anti-symmetric and increasing and the (inverse) relationship between γ and s is:

s(γ) =


Dsdγ, Dfs = 0

Dfd

[
γ − arcsin

(
Dfs

Dfd
sin γ

)]
, 0 ≤ Dfs <∞

Dsd tan γ, Dfs =∞.
(3.9.3)

e,tomo,fan,gam,inv

The ray corresponding to angle β and detector element s is

L(s, β) = {(x, y) : x cosϕ(s, β) + y sinϕ(s, β) = r(s)} , (3.9.4)
e,tomo,fan,Ray

where

ϕ(s, β) , β + γ(s) (3.9.5)

r(s) , Ds0 sin γ(s) + roff cos γ(s) (3.9.6)

=
√
D2

s0 + r2
off sin(γ(s) + βoff), (3.9.7)

e,tomo,fan,r,ang

where we define βoff , ∠(Ds0, roff). When β = 0, the coordinates of a point on the detector are

(xd(s), yd(s)) =

{ (
roff +Dsd sin

(
s
Dsd

)
, Ds0 −Dsd cos

(
s
Dsd

))
, Dfs = 0 (equiangular)

(roff + s,−D0d) , Dfs =∞ (equidistant).
(3.9.8)

e,tomo,fan,xds

Unlike in our analysis of parallel-beam tomography, here the range of r is limited inherently by the position of the
X-ray source and the extent of the detector:

|r(s)| ≤ rmax , Ds0 sin γmax, (3.9.9)
e,tomo,fan,rmax

where γmax , γ(smax) and smax is half of the total arc length of the detector. The radius rmax defines the circular field
of view of the imaging system: the subset of the plane that is measured completely. (We assume that D0d ≥ rmax,
because otherwise even the detector center would limit the field of view.) The angle 2γmax is called the fan angle. A
typical clinical CT scanner has Dsd ≈ 95 cm, smax ≈ 45 cm, so γmax ≈ π/6.

Fig. 3.9.2 illustrates the sampling (3.9.7) associated with the fan-beam geometry, before and after the values of
(r, ϕ) are collapsed to the range described in (3.2.9).

The line-integral projection p(s, β) of f along L(s, β) is13:

p(s, β) =

∫
L(s,β)

f(x, y) d` (3.9.10)

=

∫∫
f(x, y) δ(x cosϕ(s, β) +y sinϕ(s, β)−r(s)) dx dy, (3.9.11)

e,tomo,fan,psb

for |s| ≤ smax and 0 ≤ β < βmax. We assume βmax ≥ π+ 2γmax to ensure complete sampling. By (3.9.7), fan-beam
projections satisfy the following general symmetry property:

p
(
γ−1(−γ(s)− 2βoff), β ± π + 2γ(s) + 2βoff

)
= p(s, β) . (3.9.12)

e,tomo,fan,sym

The corresponding rays are called conjugate rays. In particular, if Dfs = 0, then

p(−s− 2Dsdβoff , β ± π + 2s/Dsd + 2βoff) = p(s, β) . (3.9.13)
e,tomo,fan,sym,Dfs=0

Alternatively, if βoff = 0, then
p(−s, β ± π + 2γ(s)) = p(s, β) . (3.9.14)

e,tomo,fan,sym,boff=0

The reconstruction problem is to estimate f from the fan-beam projections {p(s, β)}.
13Practically speaking, the integral should be restricted to the field of view:

√
x2 + y2 ≤ rmax, but this restriction would complicate analysis

by introducing a shift variance into the problem, so we ignore it.
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Figure 3.9.2: Left: (r, ϕ) coordinates for equiangular fan-beam samples based directly on (3.9.7). The fan angle is
2γmax = π/3. Right: after converting ϕ to the range [0, π) using the periodicity property (3.2.29). Top: for equally
spaced samples in s symmetrical around s = 0. Bottom: for equally spaced samples in s with quarter-detector offset.
The samples for one particular value of β are circled for illustration.

fig_tomo_fan_sample

https://creativecommons.org/licenses/by-nc-nd/4.0/


© J. Fessler. [license] October 25, 2021 3.31

3.9.1 Fan-parallel rebinning methods (s,tomo,fan,rebin)s,tomo,fan,rebin

In continuous space, to rebin from fan-beam to parallel-beam coordinates requires a simple change of variables based
on (3.9.7). In the usual case where roff = 0, we can express the parallel-beam projections in terms of the fan-beam
projections using the following relationship:

pϕ(r) = p(s, β)
∣∣∣
s=s(r), β=β(r,φ)

= p
(
γ−1(arcsin(r/Ds0)), φ− arcsin(r/Ds0)

)
, (3.9.15)

e,tomo,fan,rebin

where γ−1 is defined by (3.9.3). For sampled measurements, usually one first performs 1D interpolation along the
source position using the relationship φ = β + γ. Then one performs 1D interpolation along the detector by relating
r and s. Fig. 3.9.3 illustrates the process. When the s samples include a quarter detector offset, then the radial
sampling can be improved by a factor of two, at least for 360◦ scans, as illustrated in Fig. 3.9.2.

−0.6 0 0.6

0 

 π 

 2π

Original Fan Samples

r / D
s0

φ

−0.6 0 0.6

Modulo 2π

−0.6 0 0.6

Angular Interpolated

−0.6 0 0.6

Radial Interpolated

Figure 3.9.3: Illustration of fan to parallel rebinning for a 360◦ fan-beam scan having for equally spaced samples in
s with quarter-detector offset for 3rd generation CT geometry. All sample locations are shown in the parallel-beam
coordinate system (r, ϕ). Left to right: original fan-beam sample locations; sample locations after consideration of
the periodicity property (3.2.29); sample locations after angular interpolation; sample locations after interpolation to
equally spaced radial coordinates.

fig_tomo_fan_rebin1

In the presence of motion, it can be preferable to extend the data range slightly and then use transition weights
similar to the Parker weighting described in §3.9.3 to reduce artifacts from possibly inconsistent views [141].

If one chooses the sampling coordinates appropriately, then one can minimize the amount of interpolation needed
at the center of the FOV14. Specifically, using (3.9.7) when roff = 0, it is natural to choose 4R /4S = ṙ(s)

∣∣∣
s=0

=

Ds0γ̇(0). Fig. 3.9.3 used that choice for4R.
MIRT See rebin_fan2par.m.

3.9.2 The filter-backproject (FBP) approach for 360◦ scans (s,tomo,fan,fbp)s,tomo,fan,fbp

This section derives filter-backproject methods for the fan-beam geometry shown in Fig. 3.9.1, including the case of
displaced center of rotation [139]. We focus on the case of 360◦ rotation of the X-ray source and detector [5, p. 77].

Using the symmetry property (3.2.29) of the Radon transform, we start by rewriting the parallel-ray FBP formula
(3.4.11) for the case of 360◦ rotation:

f(x, y) =
1

2

∫ 2π

0

∫
pϕ(r)h∗(x cosϕ+y sinϕ−r) dr dϕ, (3.9.16)

e,tomo,fan,fbp,360,orig

where h∗(·) denotes the ramp filter in (3.4.15) with 1D Fourier transform H∗(ν) = |ν|. More generally we can write

f(x, y) =

∫ 2π

0

w2π(x, y;ϕ)

∫
pϕ(r)h∗(x cosϕ+y sinϕ−r) dr dϕ, (3.9.17)

e,tomo,fan,fbp,360,wxyang

14F. Noo, personal communication, 2013-06-18.
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where w2π(x, y;ϕ) is any weighting function for which w2π(x, y;ϕ) +w2π(x, y;ϕ+ π) = 1. (See Problem 3.20.)
The rays corresponding to (r, ϕ) and (−r, ϕ± π) are called conjugate rays. Usually w2π(x, y;ϕ) is nonnegative and
independent of (x, y) and simply equals 1/2 for 360◦ scans.

Now change to fan-beam coordinates by making the transformation of variables r = r(s), ϕ = ϕ(s, β), defined
in (3.9.7). The Jacobian matrix is[

∂
∂sr(s)

∂
∂β r(s)

∂
∂sϕ(s, β) ∂

∂βϕ(s, β)

]
=

[
[Ds0 cos γ(s)− roff sin γ(s)] γ̇(s) 0

γ̇(s) 1

]
, (3.9.18)

e,tomo,fan,J

the determinant of which is
J(s) , |Ds0 cos γ(s)− roff sin γ(s)| |γ̇(s)| . (3.9.19)

e,tomo,fan,detJ

The reconstruction formula (3.9.17) becomes

f(x, y) =

∫ 2π

0

∫
w2π(x, y;ϕ(s, β)) p(s, β)h∗(x cosϕ(s, β) + y sinϕ(s, β)− r(s)) J(s) dsdβ

=

∫ 2π

0

∫
p(s, β)w2π(x, y;β + γ(s)) J(s)

· h∗(x cos(β + γ(s)) + y sin(β + γ(s))−Ds0 sin γ(s)− roff cos γ(s)) dsdβ .

This expression fan-beam reconstruction formula is inconvenient for practical use; we prefer to manipulate it into a
filter-backproject form to facilitate implementation.

Using trigonometric identities, one can simplify the argument of h∗ above as follows:

x cos(β + γ) +y sin(β + γ)−Ds0 sin γ − roff cos γ = Lβ(x, y) sin(γβ(x, y)−γ), (3.9.20)
e,tomo,fan,fbp,h,arg

where

xβ , x cosβ + y sinβ

yβ , −x sinβ + y cosβ (3.9.21)
e,tomo,fan,xybet

Lβ(x, y) ,
√

(Ds0 − yβ)2 + (xβ − roff)2

γβ(x, y) , arctan

(
xβ − roff

Ds0 − yβ

)
. (3.9.22)

e,tomo,fan,L,gam

Define sβ(x, y) (or s′ for short) by γβ(x, y) = γ(s′) via (3.9.3), i.e.,

sβ(x, y) ,

{
Dsd γβ(x, y), Dfs = 0
Dsd tan γβ(x, y), Dfs =∞ =

{
Dsd arctan

(
xβ−roff
Ds0−yβ

)
, Dfs = 0

Dsd
xβ−roff
Ds0−yβ , Dfs =∞.

(3.9.23)
e,tomo,fan,s’

Using (3.9.20) and applying the scaling property of the ideal ramp filter15 (3.4.16) leads to the following form for the
fan-beam reconstruction formula:

f(x, y) =

∫ 2π

0

∫
p(s, β)w2π(x, y;β + γ(s)) J(s)h∗(Lβ(x, y) sin(γβ(x, y)−γ(s))) dsdβ

=

∫ 2π

0

∫
p(s, β)w2π(x, y;β + γ(s)) J(s)

(
sβ(x, y)−s

Lβ(x, y) sin(γβ(x, y)−γ(s))

)2

h∗(sβ(x, y)−s) dsdβ .

Hereafter, we assume that w2π(x, y;ϕ) is independent of (x, y) and define w2π(s, β) , w2π(x, y;β + γ(s)) . For
certain special fan-beam geometries, we can express the sin term in the preceding denominator as follows [140]:

sin(γβ(x, y)−γ(s)) = W2(x, y, β)W1(s)W0(sβ(x, y)−s), (3.9.24)
e,tomo,fan,fbp,sin

for some geometry-dependent weighting functionsW0,W1, andW2. For such geometries, the fan-beam reconstruction
formula simplifies as follows:

f(x, y) =

∫ 2π

0

1

W 2
2 (x, y, β)L2

β(x, y)

[∫
p(s, β)

w2π(s, β) J(s)

W 2
1 (s)

g∗(sβ(x, y)−s) ds

]
dβ, (3.9.25)

e,tomo,fan,fbp,final

15Using this property leads to nonuniform image noise variance in practice [65], and an alternative approach based on Hilbert transforms has
been proposed [142].
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where the inner integral is convolution with the following modified ramp filter:

g∗(s) ,

(
s

W0(s)

)2

h∗(s) . (3.9.26)
e,tomo,fan,ramp,gen

Thus, the fan-beam FBP method uses the following three steps.
• Step 1. Compute weighted projections for each β:

p̃(s, β) , p(s, β)
w2π(s, β) J(s)

W 2
1 (s)

. (3.9.27)
e,tomo,fan,psb,weight

• Step 2. Filter those weighted projections (along s) for each β using the modified ramp filter (3.9.26):

p̌(s, β) , p̃(s, β) ∗ g∗(s), ∀β.

• Step 3. Perform a weighted backprojection of those filtered projections:

f(x, y) =

∫ 2π

0

1

W 2
2 (x, y, β)L2

β(x, y)
p̌(sβ(x, y), β) dβ . (3.9.28)

e,tomo,fan,fbp,wtd,back

This three-step procedure is quite practical and has been used routinely in commercial X-ray CT systems.
The existence of this efficient FBP approach hinges on whether a factorization of the form (3.9.24) exists. There

are exactly four fan-beam geometries for which this is possible [140]. Fortunately, two of the four cases are the
important ones described in (3.9.2). Somewhat unfortunately, the 4th generation CT scanner geometry is not one of
the four cases, although most commercial CT scanners now have 3rd-generation geometries.

3.9.2.1 Equiangular case

The case whereDfs = 0 corresponds to 3rd-generation X-ray CT systems using an arc detector, called the equiangular
case [143]. In this case, γ(s) = s/Dsd, so we factor the sin term in (3.9.24) as follows:

sin(γβ(x, y)−γ(s)) = W2W0(sβ(x, y)−s),

where W2 =
1

Dsd
, W0(s) = Dsd sin

(
s

Dsd

)
, sβ(x, y) = Dsd γβ(x, y),

with W1 = 1. Thus the modified ramp filter (3.9.26) is

g∗(s) =

(
s/Dsd

sin(s/Dsd)

)2

h∗(s) . (3.9.29)
e,tomo,fan,ramp,ea

Because γ̇(s) = 1/Dsd, the projection weighting ratio in (3.9.27) simplifies to

J(s)

W 2
1

= J(s) =
1

Dsd

∣∣∣∣Ds0 cos
s

Dsd
− roff sin

s

Dsd

∣∣∣∣ ≈ Ds0

Dsd
cos

s

Dsd
, (3.9.30)

e,tomo,fan,J_w1w1,ea

and the backprojection weighting in (3.9.28) is

1

W 2
2 L

2
β(x, y)

=
D2

sd

L2
β(x, y)

=
D2

sd

(Ds0 − yβ)2 + (xβ − roff)2
. (3.9.31)

e,tomo,fan,fbp,w2,ea

Note that as Ds0 → ∞, i.e., as the rays become more parallel, the modified ramp filter approaches the usual ramp
filter, and the projection and backprojection weighting ratios approach unity, as expected for the parallel-ray case.

For practical implementation the filter must be band-limited and sampled. Combining (3.9.29) with (3.4.14) for
hA(r), the necessary filter samples are

h[n] =


1

442
S

, n = 0

0, n even
−1

[πDsd sin(n4S /Dsd)]
2 , n odd,

(3.9.32)
e,tomo,fan,ramp,ea,sample
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where4S denotes the detector element spacing. (Note that there is an error in [5, eqn. (96)].)
There is a subtle issue in the above derivation [65, 142, 144]. We first applied the scaling property of the ramp

filter, continued the derivation, and then eventually considered a band-limited ramp filter (3.9.32). If we had considered
the band-limiting effect first, which might be more appropriate for sampled data, then the scaling property would not
hold exactly. It has been stated that this practice “results in a nonstationary cutoff frequency in the image” [65, 142].
Nevertheless, it is used widely.

MIRT See fbp_ramp.m.
MIRT See fbp_fan_arc.m.

3.9.2.2 Equidistant cases,tomo,fan,ea

The case where Dfs = ∞ corresponds to a flat detector, called the equidistant case [145]. In this case, γ(s) =
arctan(s/Dsd) and (with some trigonometric identities) we factor the sin term in (3.9.24) as follows:

sin(γ′ − γ) = sin γ′ cos γ − sin γ cos γ′ = cos γ′ cos γ (tan γ′ − tan γ) = cos(γ′)
Dsd√
D2

sd + s2

s′ − s
Dsd

,

where sβ(x, y) = Dsd tan γβ(x, y), or equivalently:

W2 =
cos γβ(x, y)

Dsd
, W1 =

Dsd√
D2

sd + s2
, W0(s) = s.

Because W0(s) = s, we can use the usual ramp filter (3.4.14) without modification. Because here

γ̇(s) = (cos2 γ(s))/Dsd = W 2
1 (s) /Dsd,

the projection weighting in (3.9.27) becomes

w2π(s, β)
J(s)

W 2
1

=
w2π(s, β)

Dsd
|Ds0 cos γ(s)− roff sin γ(s)| ≈ w2π(s, β)

Ds0√
D2

sd + s2
, (3.9.33)

e,tomo,fan,J_w1w1,ed

and the backprojection weighting in (3.9.28) is

1

W 2
2 L

2
β(x, y)

=
D2

sd

(cos γβ(x, y)Lβ(x, y))
2 =

D2
sd

(Ds0 − yβ)
2 . (3.9.34)

e,tomo,fan,wtb,ed

Note that as Ds0 →∞, the projection and backprojection weighting ratios again approach unity.
MIRT See fbp_fan_flat.m.

The preceding derivation started with the parallel-ray FBP formula. Other formulations are possible, e.g., [146].

3.9.3 FBP for short scans (s,tomo,fan,short)s,tomo,fan,short

The preceding analyses have assumed a full 360◦ rotation. For a 360◦ rotation, every ray is sampled exactly twice,
leading to the 1/2 factor in (3.9.16). There are also fan-beam reconstruction methods that use a short scan with less
than a full rotation. A standard short scan uses βmax = π+ 2γmax, so that every point in the equivalent parallel-beam
sinogram is sampled at least once. As illustrated in Fig. 3.9.4, some areas of the sinogram are sampled twice, so these
methods require appropriate weighting, sometimes called Parker weighting [147], related to the w2π(s, β) factor in
(3.9.25). In particular, by the symmetry property (3.9.14), fan-beam sinogram data where 0 < β < 2 (γmax − γ(s))
correspond to the same rays as π − 2γ(s) < β < π + 2γmax.

One can compensate for this sampling by defining appropriately the sinogram weighting function w2π(s, β) in
(3.9.25) and (3.9.27), i.e., by applying a weighting such as the following to the fan-beam sinogram p(s, β) prior to
filtering and backprojection:

w2π(s, β) =


q
(

β
2(γmax−γ)

)
, 0 ≤ β ≤ 2 (γmax − γ)

1, 2 (γmax − γ) < β < π − 2γ

q
(
π+2γmax−β
2(γmax+γ)

)
, π − 2γ ≤ β ≤ π + 2γmax,

(3.9.35)
e,tomo,fan,short,wsb

where q(x) = sin2
(
π
2x
)

and γ = γ(s). Note that [147, eqn. (12)] has a typo. This weighting ensures that the relevant
conjugate rays (cf. (3.9.14)) have weights that sum to unity, i.e., w2π(s, β) +w2π(−s, β + 2γ(s)± π) = 1.
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Figure 3.9.4: For short scan with βmax = π + 2γmax, the left figure above illustrates (by shading) the areas of
a sinogram (in φ, γ space) that are sampled twice. The other areas are sampled once. The right figure shows the
fan-beam sinogram Parker weighting (3.9.35).

fig_tomo_fan_short

MIRT See fbp_fan_short_wt.m.
Similar considerations apply to parallel-beam FBP with more than 180◦ rotation.

MIRT See ir_fbp2_test_non180.m.
Amazingly, one can also reconstruct images from less than a short scan [148]. (Interestingly, that 2D work was

inspired by Katsevich’s 3D helical work [149].) Of course one can apply iterative reconstruction methods to arbitrary
geometries. The relative performance of iterative methods and analytical methods for the “less than a short scan” cases
is an interesting open problem.

3.9.4 The backproject-filter (BPF) approach (s,tomo,fan,bpf)s,tomo,fan,bpf

Although the filter-backproject approach is used most widely for fan-beam reconstruction, it is also possible to use
backproject-filter (BPF) methods for fan-beam tomography [20].

Given fan-beam projections p(s, β) as defined in (3.9.11), for β ∈ [0, βmax], and given a weighting function
wBPF(s, β), the weighted backprojection is given by

b(x, y) =

∫ smax

−smax

∫ βmax

0

δ(x cosϕ(s, β) +y sinϕ(s, β)− r(s)) p(s, β)wBPF(s, β) dsdβ .

We now analyze the impulse response of the sequence of linear operations f(x, y) → p(s, β) → b(x, y), by
considering an object f(x, y) that is a Dirac impulse at (x0, y0), for which the fan-beam projections are given by
p(s, β) = δ(x0 cosϕ(s, β) +y0 sinϕ(s, β)− r(s)) . The overall impulse response of the weighted projection / back-
projection operation is thus:

h(x, y;x0, y0) =

∫ βmax

0

∫ smax

−smax

δ(x cosϕ(s, β) +y sinϕ(s, β)− r(s))

δ(x0 cosϕ(s, β) +y0 sinϕ(s, β)− r(s))wBPF(s, β) dsdβ .

Now make the change of variables defined in (3.9.7), the Jacobian determinant of which is given in (3.9.19). Assume
that the weighting term wBPF(s, β) consists of two terms:
• a term that compensates for the Jacobian determinant in (3.9.19) [20],
• a term that ensures that for any (r, ϕ) pair that gets contributions from more than one (s, β) pair, these (s, β) pairs

are appropriately weighted [5, p. 98] [150]. (That weighting is simply 1/2 for a full rotation where βmax = 2π.)
Assume furthermore that βmax ≥ π+ 2γmax, so that there is complete sampling. Then after making the above change
of variables, the impulse response expression simplifies to

h(x, y;x0, y0) =

∫ π

0

∫ rmax

−rmax

δ(x cosϕ+y sinϕ− r) δ(x0 cosϕ+y0 sinϕ− r) dr dϕ

=

∫ π

0

δ((x− x0) cosϕ+(y − y0) sinϕ) I{|x0 cosϕ+y0 sinϕ|≤rmax} dϕ

=

∫ π

0

δ(r±(x− x0, y − y0) cos(ϕ− ∠π(x− x0, y − y0))) I{|x0 cosϕ+y0 sinϕ|≤rmax} dϕ

=
1

|r±(x− x0, y − y0)|
I{|x0 cosϕ+y0 sinϕ|≤rmax}

∣∣
ϕ=∠π(x−x0,y−y0)±π/2 ,
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where rmax was defined in (3.9.9). Thus, within the field of view, the composition of projection with appropriately
weighted backprojection is linear and shift invariant, and similarly to Theorem 3.3.1, in polar coordinates the impulse
response is [151]: h(r) = 1

|r| . Using this “restricted” shift invariance, one can formulate an approximate BPF recon-
struction method [20]. However, the practical problems described in §3.4.2 are exacerbated here by the inherently
finite field of view of the fan-beam geometry.

3.10 3D cone-beam reconstruction (s,3d,cone)s,3d,cone

A particularly challenging problem for analytical reconstruction methods is that of reconstructing a 3D object from
cone-beam projection views. As X-ray detectors have evolved from 1D to 2D arrays, the practical importance of this
problem has increased. The literature on this problem is extensive, and includes both exact and approximate methods,
for various types of X-ray source trajectories and detector configurations. (See §4.6.1 for the 3D parallel-beam case.)

For the case of a circular X-ray source trajectory (axial scan), the most popular method is the Feldkamp cone-
beam algorithm or FDK approach [152]. This approach extends the fan-beam reconstruction formula (3.9.28) to the
cone-beam case; it matches the fan-beam formula in the plane of the circular source trajectory, but is inexact (due to
missing data) away from that plane. Exact 3D reconstruction for a circular trajectory (axial scan) is likely impossible
because such a scan does not satisfy Tuy’s conditions [153].

Here, we summarize the classical FDK method for a 360◦ circular trajectory. The basic idea of the FDK method
is to filter (a weighted version of) the measured data along each row of the detector as if it were part of a 2D fan-beam
acquisition, and then to perform 3D backprojection. With this approximation, the central slice is reconstructed exactly
as it would be by conventional 2D fan-beam methods, whereas the non-central slices have artifacts that increase with
distance from the central slice. We focus on the case roff = 0 for simplicity.

z

Ds0 D0d

s

t

xβyβSource

Figure 3.10.1: Cone-beam flat-detector geometry.
fig_tomo_cone

3.10.1 Equidistant case (flat detector)
Fig. 3.10.1 illustrates the flat-detector cone-beam geometry, where the rotated coordinates (xβ , yβ) were defined in
(3.9.21). As in Fig. 3.9.1, let β denote the angle of the source point counter-clockwise from the y axis. The cone-beam
line-integral projections are given by

p(s, t;β) ,
∫
L(s,t,β)

f(x, y, z) d`, (3.10.1)
e,3d,cone,pstb

where the locations of the source and a point on the detector and the line between them are

~p0 = ~p0(β) , (−Ds0 sinβ,Ds0 cosβ, 0) (3.10.2)

~p1 = ~p1(s, t;β) , (s cosβ +D0d sinβ, s sinβ −D0d cosβ, t) (3.10.3)

L(s, t, β) ,

{
~p0 + α

~p1 − ~p0

‖~p1 − ~p0‖
: α ∈ R

}
. (3.10.4)

e,3d,cone,Lstb

Note that ~p1 − ~p0 = (s cosβ +Dsd sinβ, s sinβ −Dsd cosβ, t) and ‖~p1 − ~p0‖ =
√
D2

sd + s2 + t2.
Consider one row of the measured projection at angle β and vertical position t. That row forms a tilted fan with

the source point, with distances “inflated” by the factor

‖~p1(s, t;β)− ~p0‖
‖~p1(s, 0;β)− ~p0‖

=

√
D2

sd + s2 + t2√
D2

sd + s2
.
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Following §3.9.2.2 we apply the projection weighting in (3.9.33), compensating for the above inflation factor, i.e.,

w1(s, t) ,
Ds0√

Dsd + s2

‖~p1(s, 0;β)− ~p0‖
‖~p1(s, t;β)− ~p0‖

=
Ds0√

D2
sd + s2 + t2

. (3.10.5)
e,3d,cone,wtp

We apply the usual ramp filter (3.4.14) to the (weighted) measurements from each row of the detector. Then we
perform 3D cone-beam backprojection using the image-domain weighting given in (3.9.34). No modifications of
(3.9.34) are needed. To summarize, the FDK algorithm for the equidistant case consists of the following steps.
• Step 1. Use (3.10.5) to compute weighted projections [5, p. 106, eqn. (175)]:

p̃(s, t;β) , w1(s, t) p(s, t;β), w1(s, t) =
Ds0√

D2
sd + s2 + t2

. (3.10.6)
e,3d,cone,pst,w1

• Step 2. Filter each row of those projections using the ordinary ramp filter (3.4.14):

p̌(s, t;β) , p̃(s, t;β) ∗h∗(s), (3.10.7)
e,3d,cone,pst,filter

where h∗(s) denotes the ramp filter given in (3.4.13) or (3.4.14).
• Step 3. Perform weighted cone-beam backprojection of those filtered projections:

f̂(x, y, z) ,
1

2

∫ 2π

0

w2(x, y, β) p̌(sβ(x, y), tβ(x, y, z);β) dβ, w2(x, y, β) =
D2

sd

(Ds0 − yβ)2
, (3.10.8)

e,3d,cone,back

where from (3.9.21) and (3.9.23)

sβ(x, y) =
Dsd

Ds0 − yβ
xβ , tβ(x, y, z) =

Dsd

Ds0 − yβ
z. (3.10.9)

e,3d,cone,flat,tbxyz

(The factor Dsd

Ds0−yβ is a magnification factor.) For view β, the ray from the source through the point (x, y, z)

intersects the detector at point (sβ(x, y), tβ(x, y, z)).
Although the above algorithm is inexact in general, if the object is “cylinder like,” i.e., if f(x, y, z) = f(x, y, 0),

then one can verify that (3.10.8) is exact [154]. See Problem 3.40.

3.10.2 Equiangular case (3rd generation multi-slice CT)s,3d,cone,ea

For a 3rd-generation multi-slice CT scanner, the FDK algorithm has the same general steps as above. Using (3.9.8),
here the distances in the tilted fans are “inflated” by the factor

‖~p1(s, t;β)− ~p0‖
‖~p1(s, 0;β)− ~p0‖

=

√
D2

sd + t2

Dsd
.

Thus we replace the 1D weighting in (3.10.6) by

w1(s, t) ,
Ds0

Dsd
cos

(
s

Dsd

)
‖~p1(s, 0;β)− ~p0‖
‖~p1(s, t;β)− ~p0‖

=
Ds0√
D2

sd + t2
cos

(
s

Dsd

)
, (3.10.10)

e,3d,cone,pst,w1,arc

The filtering in (3.10.7) for each projection view row uses the modified ramp filter (3.9.29) in its sampled form
(3.9.32). The 2D weighting in (3.10.8) is replaced by the equiangular counterpart in (3.9.31). Finally, the sβ(x, y)
term in (3.10.8) is replaced by (3.9.23). (The tβ(x, y, z) term in (3.10.9) is unchanged.)

Again, if the object is “cylinder like,” then one can verify that (3.10.8) is exact [154]. See Problem 3.39.
MIRT See feldkamp.m.

3.10.3 Extensions (data truncation, helical scans) (s,3d,extend)s,3d,extend

3.10.3.1 Fourier-based methods for cone-beam reconstructions,3d,tomo,dfi

For the 2D parallel-beam geometry, this chapter described three distinct methods: BPF, FBP, and the direct Fourier
method of §3.4.1. For the 3D cone-beam geometry, we have focused solely on FDK – an FBP approach. For an
approach that first converts 3D cone-beam data to 3D Radon data and then uses a Fourier-based inversion, see [155].
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3.10.3.2 Cone-parallel rebinnings,tomo,cp

By analogy with the fan-beam case discussed in §3.9.1, there are cone-parallel rebinning methods for cone-beam CT
that can lead to FBP methods with simplified computation and reduced noise for both axial [154] and helical [156,
157] geometries. The simplest rebinning approach converts the fans for each detector row into cone-parallel rays by
adapting (3.9.15):

pCP(r, ϕ; t) , p(s, t;β)
∣∣∣
s=s(r), β=β(r,φ)

= p

(
γ−1

(
arcsin

(
r

Ds0

))
, t; φ− arcsin

(
r

Ds0

))
(3.10.11)

e,3d,cp,rebin

where γ−1 is defined by (3.9.3). In particular, for a 3rd generation (equiangular) cone-beam CT geometry where
Dfs = 0,

pCP(r, ϕ; t) = p

(
Dsd arcsin

(
r

Ds0

)
, t; φ− arcsin

(
r

Ds0

))
.

3.10.3.3 Offset detectors

If the detector is too narrow (transaxially) to record the entire projection of the object, sometimes its position is offset.
This is called the offset detector geometry. Reconstruction from such data requires appropriate weighting functions
[158].

3.10.3.4 Long object problem

In practice the object axial extent usually exceeds the axial range of the detector, which is called the long object
problem. Extrapolation techniques have been proposed for reconstructing somewhat more of the axial extent of the
object from such axially truncated data [159].

3.10.3.5 Helical scans

For helical source trajectories, Katsevich [149, 160] developed a “theoretically exact” FBP type of reconstruction
method for cone-beam reconstruction, a significant breakthrough in that field. As a result, this topic is evolving
rapidly, e.g., [161]. Versions of the Fourier-slice theorem have even been proposed for fan-beam and cone-beam
geometries [162]. In practice, usually “approximate” algorithms are often used rather than the exact methods to save
computation. A typical approximate algorithm involves some rebinning, ramp filtering, and weighted backprojection
steps, e.g., [163]. A particularly simple method is single slice rebinning [164].

MIRT See rebin_helix.m.

3.11 Summary (s,tomo,summ)
s,tomo,summ

This chapter has reviewed analytical methods for tomographic image reconstruction. We have considered the parallel-
beam geometry, fan-beam geometries for both flat and curved detectors, and both types of cone-beam geometries. For
analytical methods, each geometry requires its own derivation. In contrast, for iterative image reconstruction, the basic
formulations are the same for any geometry.

Interestingly, even though the topics in this chapter have been studied for decades, advances continue to be made.
For example, recently the subject of reconstructing regions of interest (from truncated sinogram data) has had break-
throughs [68, 165–167]. And there is ongoing progress on image reconstruction from the exponential Radon transform
[168–170]. Another interesting problem is interior tomography [171–178].

Because of the shift invariance of (parallel-beam) projection and backprojection, the primary tool for understanding
these methods is Fourier analysis. It is something of a leap from the Fourier focus of this chapter to the linear algebra
focus of subsequent chapters; the next chapter attempts to partly bridge these approaches by using operators, the
continuous-space analog of matrices.

3.12 Problems (s,tomo,prob)s,tomo,prob

p,tomo,ex,1-r2

Problem 3.1 Determine the Radon transform of the 2D function [179] f◦(r) =
(
1− r2

)
rect(r/2) .

p,tomo,ex,sqrt

Problem 3.2 Determine the Radon transform of the 2D function f◦(r) = 2
√

1− r2I{|r|≤1}.
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p,tomo,separable

Problem 3.3 Use the Fourier-slice theorem to show that the Radon transform of any separable function f(x, y) =
a(x) b(y) is given by

pϕ(r) =
1

|cosϕ|
a

(
r

cosϕ

)
∗ 1

|sinϕ|
b

(
r

sinϕ

)
.

p,tomo,prop,laplace

Problem 3.4 Prove the Laplacian property (3.2.31) of the Radon transform.

Problem 3.5 Show that the Radon transform of the function f(x, y) = sinc(x) sinc(y) is given by

pϕ(r) =
1

max(|cosϕ| , |sinϕ|)
sinc

(
r

max(|cosϕ| , |sinϕ|)

)
.

p,tomo,star

Problem 3.6 Consider the following “star function” [17]:

star(r, ϕ) ,
1

|r|

N∑
n=1

δ((ϕ− ϕn) modπ) .

Show that the 2D FT of this function is star(ρ,Φ± π/2). This relation is useful for analyzing backprojection with
discrete angular samples.

Problem 3.7 Prove each of the Radon transform properties in §3.2.3.

Problem 3.8 Find a Radon transform property for an affine transformation of the object f(x, y), i.e.,

f(a11x+ a12y + b1, a21x+ a22y + b2)

with a11a22 − a12a21 6= 0.

Problem 3.9 Show that if 0 < a ≤ b then

1

a
rect

(x
a

)
∗1

b
rect

(x
b

)
=
b+ a

2ba
tri

(
2x

b+ a

)
−b− a

2ba
tri

(
2x

b− a

)
,

where tri was defined in (3.2.42).
p,radon,flat

Problem 3.10 Find a nonzero object f(x, y) (other than a Dirac impulse) whose projections have the property that
they depend only on ϕ over their support, i.e.,

pϕ(r) =

{
gϕ, rmin(ϕ) ≤ r ≤ rmax(ϕ)
0, otherwise,

for some functions gϕ, rmin(ϕ), and rmax(ϕ) that depend on f(x, y).

Generalize to the case of fan-beam projections, i.e., find the object f(x, y) for which p(s, β) = rect
(

s
2s0

)
, where

s0 ≤ smax. (Assume roff = 0 for simplicity.)

Problem 3.11 Let pϕ(r) denote the Radon transform of a disk object as considered in Example 3.2.1. Determine
(analytically) p̌ϕ(r), the corresponding ramp-filtered projections, and plot. (Need typed.)

p,tomo,spline

Problem 3.12 Given noisy, blurred, samples of the Radon transform of an object, one interesting reconstruction
approach is to first fit 1D spline functions to each projection view, and then filter those continuous-space fitted
projections using analytical expressions, and then backproject [181]. In other words, we make the approximation
pϕ(r) =

∑∞
n=−∞ cnb(r/4R−n), where the coefficients cn are determined from the sampled projections by filter-

ing [182]. The ramp-filtered projections p̌ϕ(r) have the form p̌ϕ(r) =
∑∞
n=−∞ cnb̌(r/4R−n). Find an analytical

expression for b̌(·) when b(·) is a cubic B-spline.
p,tomo,freq,dis

Problem 3.13 An interesting property of the Radon transform is the frequency-distance relation or frequency-
distance principle (FDP) that describes the characteristics of the 2D Fourier transform of a sinogram [113, 114,
183–185]. This property has been used to reduce noise in sinograms [99].
• Consider f(x, y) = δ(x− x0, y − y0) and take the 2D FT of its sinogram to see where it is nonzero.
• Analyze the impulse response in the sinogram domain of such an apodization.
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• Analyze how much noise reduction could be achieved with such method. (Solve?)
• Take the 2D sinogram of an image (over 360◦ for simplicity), compute its 2D DFT, and set to zero the coefficients

outside the bowtie region described in the papers cited above, then inverse transform and reconstruct the image by
FBP. Observe the effects.

Problem 3.14 §3.3 is missing an example where the laminogram fb(x, y) can be found analytically. Find an object
f(x, y) whose projections (pϕ(r) or Pϕ(ν)) and laminogram fb(x, y) have simple analytical expressions. Hint: [15,
p. 338] may be useful.

p,tomo,back,general

Problem 3.15 Prove the general back-projection relationship (3.15).

Problem 3.16 §3.4.6 described how it is preferable to sample the (band-limited) ramp filter in the space domain for
the FBP method. For the BPF method, would it be advantageous to find the impulse response h(r) of the (band-limited)
cone filter and then sample it instead of sampling the cone directly? Discuss.

Problem 3.17 Some tomographic imaging systems cannot measure the projection views at every projection angle.
Such angularly incomplete data is known as limited angle tomography and is notoriously challenging.
One way to model the effects of such missing projection views is to set w(ϕ) to zero in the backprojection formula
(3.3.1) for angles ϕ that are missing, and to unity otherwise. Suppose we apply this idea to a system that only records
projection views where ϕ ∈ [0, 7π/8].
Sketch the support of the spectrum of the laminogram, i.e., Fb(u, v) in this case.
Explain why this is called the “missing wedge” problem (in 2D) or the “missing cone” in such 3D problems.
Explain why the BPF method cannot work in this case. (Need typed.)

Problem 3.18 Let bϕ(x, y) = pϕ(x cosϕ+y sinϕ) denote the image formed by backprojection of a projection at angle
ϕ, and let Bϕ(u, v) denote its 2D Fourier transform. Relate Bϕ(u, v) to F (u, v).
Hint: relate B0(u, v) to F (u, 0) δ(v) . (Need typed.)

Problem 3.19 The set (3.9.4) is too large to be realistic for a practical system like that illustrated in Fig. 3.9.1. Find
a more realistic expression for L(s, β).

p,tomo,fan,360

Problem 3.20 Verify the 360◦ FBP formula (3.9.17) using (3.2.29).
p,tomo,artifact

Problem 3.21 Each of the images in Fig. 3.12.1 exhibits some type of artifact due to data limitations or errors. Match
the figure with the corresponding problem in the following list.

1. Limited projection angular range (less than 180◦).
2. Under-sampled projection view angles.
3. Single detector channel with miscalibrated gain.
4. Misaligned detector (radial shift).
5. Projection views over [0, 180◦] instead of [0, 180◦NA−1

NA
]

6. Fan-beam data into parallel-beam reconstructor

Problem 3.22 Modify (3.3.2) and (3.3.7) to consider the case of a 360◦ rotation. Show that the impulse response
is h(r, ϕ) = 1

|r| [w(ϕ+ π/2) +w(ϕ+ 3π/2)] for ϕ ∈ [−π/2, π/2] and the frequency response is H(ρ,Φ) =
1
|ρ| [w(Φ) +w(Φ + π)] . These relations are useful for analyzing 360◦ SPECT scans. (Need typed.)

Problem 3.23 Find a relationship between P̌ϕ(ν) and Fb(u, v) or Fb(ρ,Φ) to complete the bottom link in Fig. 3.3.3.
p,tomo,fbp,rect

Problem 3.24 Find P̌ϕ(ν) and p̌ϕ(r) in Example 3.4.5 when ϕ = 0.
p,tomo,ramp,gauss

Problem 3.25 Suppose the ideal ramp filter is applied to the projections pϕ(r) of a gaussian object f(x, y) =

w−2 e−π(r/w)2 . Determine analytically the resulting filtered projections p̌ϕ(r) and plot.
p,tomo,ramp,apod,gauss

Problem 3.26 Suppose the ideal ramp filter |ν| is apodized by a gaussian A(ν) = e−πν
2

instead of by the discontin-
uous rect function (3.4.12). Determine the resulting impulse response hA(r) of the apodized ramp filter.
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fd

a c

e

b

Figure 3.12.1: Illustration of common artifacts for Problem 3.21.
fig_tomo_artifact

p,tomo,ramp,apod,hann

Problem 3.27 Suppose that a Hanning window is applied to the ramp filter, i.e.,

A(ν) = rect

(
ν

2ν0

)
1 + cos(πν/ν0)

2

in (3.4.10). Using Fourier transform properties, find analytically the impulse response hA(r) of the apodized ramp
filter, and plot it. Compare to Fig. 3.4.6 and comment on the advantages and disadvantages of this choice.

p,tomo,ramp,apod,tri

Problem 3.28 Suppose the ramp filter is apodized using a triangular window function A(ν) = tri(ν/νc) . Find an
analytical expression for the impulse response hA(r) of the resulting apodized ramp filter using symbolic integration.

p,tomo,fbp,apod,exp

Problem 3.29 Suppose the apodizer A(ν) = e−a|ν| is used in the FBP method. Find the resulting image PSF h(r).

Problem 3.30 Real tomographs can be aligned imprecisely, leading to offset projections: qϕ(r) = pϕ(r − τ) for
some offset center of rotation τ . Determine the PSF of such an imaging system when the FBP method is applied to
qϕ(r). (Solve?)

Problem 3.31 Would the inverse filter approach of §3.5.4 work if we used nearest-neighbor interpolation, i.e., h(r) =
rect(r/4R)? Explain why or why not.

Problem 3.32 A PET scanner measures line integrals along chords connecting detector pairs typically arranged
around a circle. The natural measurement model would be g(ϕ1, ϕ2) =

∫
L(ϕ1,ϕ2)

f(x, y) d`,whereL(ϕ1, ϕ2) denotes
the set of points along the chord connecting the point (r0, ϕ1) with the point (r0, ϕ2) (in polar coordinates), where
r0 is the radius of the system. Following §3.9, derive a BPF method for this geometry. It may be easier to use the
transformed parameterization: ϕ = (ϕ1 + ϕ2)/2, γ = (ϕ2 − ϕ1)/2..

p,tomo,radon,ellip

Problem 3.33 Using (3.2.14) and (3.2.30), determine the Radon transform of an ellipse object centered at (cx, cy)
with major axes of half lengths rx, ry , tilted at an angle χ with respect to the horizontal axis. Assume the function is
unity within the ellipse and zero outside. Generalize to the case of fan-beam projections.

p,tomo,lambda

Problem 3.34 The method called lambda tomography is a local tomography approach where one back-projects the
second derivative ∂2

∂r2 pϕ(r) of the projections [187–190]. Show that the frequency-domain relationship between the
resulting backprojected image and the original image is

B(u, v) = −2πΛ(ρ)F (u, v),

where Λ(ρ) = 2π |ρ| is the square root of −∆, the positive Laplace operator. In 2D, the positive Laplace operator is
−∆ = d

2

dx2 + d
2

dy2
, cf. (2.4.1), which has Fourier transform ∆̂(ρ) = (2πρ)2.
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p,tomo,hilbert

Problem 3.35 A disadvantage of the ramp filter in (3.4.2) and the Hilbert transform in (3.4.6) is that they both depend
on pϕ(r) for all r ∈ R. Therefore, if the projection data are truncated, meaning available only for r in a finite interval
[rmin, rmax], then FBP methods based on the ramp filter will produce very large artifacts.
Following [165], consider what happens if we simply differentiate each projection and then backproject:

b(x, y) ,
−1

2π

∫ π

0

d

dr
pϕ(r)

∣∣∣∣
r=x cosϕ+y sinϕ

dϕ . (3.12.1)
e,tomo,back,deriv

• Using (3.3.10) show that
B(u, v) = −ı sgn(v)F (u, v) .

In other words, for each x, b(x, y) is the Hilbert transform of f(x, y) along the y-direction.

• Determine b(x, y) analytically for the case f(x, y) = rect
(

r
2r0

)
. Hint: use Example 3.4.4, and see Fig. 3.12.2.

b(x,y)

 

 

−2 −1 0 1

−1

0

1

2

0

Figure 3.12.2: Backprojection of derivative of each projection of a disk of radius r0 = 1, for Problem 3.35.
fig_tomo_prob_hilbert_disk

• Sample the solution in the previous part (ala Fig. 3.12.2) and apply a FFT-based inverse Hilbert transform method
to recover f [m,n] (approximately) from b[m,n]. Hint: use mirror end conditions along the y direction to avoid
artifacts due to discontinuities at the image edge.
• todob: try it in matlab

todob: compare the FFT-based inverse Hilbert transform approach to the finite Hilbert inverse described in [191]
[165] [192].

p,tomo,hilbert,laplace

Problem 3.36 Another way to write the ramp filter is |ν| =
(
−2πu2

)(
1

ı2πν

)
(−ı sgn(ν)) . Each of the parenthesized

terms is suggestive of a certain type of filtering operation.
Following [193], show that the following Hilbert/integrate/Laplacian approach to image reconstruction is valid.
• Hilbert transform each projection: p̄ϕ(r)

FT←→ P̄ϕ(ν) , (−ı sgn(ν))Pϕ(ν)

• Compute the anti-derivative of the Hilbert projections: p̂ϕ(r) ,
∫ r
−∞ p̄ϕ(r)(r′) dr′

• Back-project the anti-derivative projections: b(x, y) ,
∫ π

0
p̂ϕ(r) dϕ

• Laplacian filter the back-projected image: f(x, y) = −1
2π

(
∂2

∂x2 + ∂2

∂y2

)
b(x, y)

This method may be more robust than FBP to transaxially truncated projections.
p,tomo,gauss,joint

Problem 3.37 It is well known that if a pair of random variables are jointly gaussian distributed, then their marginal
distributions are also gaussian. However, the converse is not true. Give an example of two random variables that
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are individually gaussian distributed but their joint distribution is not gaussian. Do not use the degenerate example
of X ∼ N(0, 1) and Y = −X . Hint. The relationship between the (2D) joint distribution and the (1D) marginal
distributions is analogous to the Radon transform at 0◦ and 90◦.

p,tomo,dpc

Problem 3.38 In differential phase-contrast X-ray CT [194], the ideal forward model is not given by (3.2.4) but
rather is given by the derivative of (3.2.4) with respect to r. Because of the presence of this derivative, the filter needed
for reconstruction is not the usual ramp filter in (3.4.12), but rather is a band-limited Hilbert transform-type filter

with frequency response H(ν) = 1
ı2πν |ν| rect

(
ν

2ν0

)
=

{
−ı/(2π), 0 ≤ ν ≤ ν0

ı/(2π), −ν0 ≤ ν < 0.
Following Example 3.4.6,

determine the sampled impulse response of this filter.
p,tomo,3d,cyl,ea

Problem 3.39 Verify that the 3D equiangular (arc detector) FDK method in §3.10.2 is exact if the object is “cylinder
like,” i.e., if f(x, y, z) = f(x, y, 0) .

p,tomo,3d,cyl,ed

Problem 3.40 Verify that the 3D equidistant (flat detector) FDK method (3.10.8) is exact if the object is “cylinder
like,” i.e., if f(x, y, z) = f(x, y, 0) .
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