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Chapter 4

Properties of Analytical Tomographic
Image Reconstruction

ch,tomo-prop
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4.1 Introduction (s,topo,intro)s,topo,intro

Chapter 3 reviewed analytical tomographic image reconstruction methods that are based on integral formulations.
Unlike Chapter 1, in which image restoration methods were formulated using cost functions, no cost functions ap-
peared in Chapter 3. For a variety of purposes, including developing intuition, it can be instructive to analyze the
properties of “analytical” methods for tomography that are based on cost functions. This chapter presents a somewhat
non-traditional regularized least-squares formulation (cf. (1.8.8)) of the tomographic image reconstruction problem,
and analyzes its properties. The key ingredients for this analysis are operators in suitable Hilbert spaces. The ideas
in this chapter are fairly specialized and can be skipped for readers more interested in practical image reconstruction
methods.

4.2 Operator formulation (s,tomo,op)
s,tomo,op

Chapter 1 extolled the virtues of using matrix-vector notation for statistical formulations of image restoration problems.
Similarly, we can better understand the parallels between image restoration and image reconstruction problems if we
also express the latter using the tools of linear algebra.

4.2.1 Forward projection
Because the Radon transform (3.2.4) is a linear operator, we can write it succinctly as

p = P f

where1 P : L2(R2) → L2([0, π] × R) denotes the Radon transform operator. The operator P is also called a
forward projector, because it maps object space or image space into projection space or sinogram space. We also
write

pϕ = Pϕ f

where Pϕ : L2(R2) → L2(R) is the projection operator that collapses a 2D object to a 1D function for each ϕ. We
refer to pϕ as the projection of f at angle ϕ.

4.2.2 Back projection: the adjoint of forward projection
Chapter 1 showed that statistical solutions to image restoration problems, such as the PWLS estimator (1.8.9), involved
both the system matrix A and its matrix transpose A′. To express such solutions in the context of continuous-space
problems like analytical image reconstruction, we need a generalization of matrix transpose, which is called the ad-
joint in a general vector space for which a suitable inner product has been defined [1].

The Radon transform operator P maps 2D objects f(x, y) into sinograms pϕ(r). This operator is linear, so if we
define inner products in sinogram space and in object space, then P will have an adjoint2. The natural inner product
for object space is the usual inner product for L2(R2):

〈f, g〉 =

∫ ∞
−∞

∫ ∞
−∞

f(x, y) g∗(x, y) dxdy, ∀f, g ∈ L2(R2). (4.2.1)
e,inprod,Ltwo

1 The domain of P really should be something like the subspace of L2(R2) on which the integrals (3.2.4) are well defined, but I am not
intending to try to make this very rigorous.

2 P is a bounded linear operator for the usual L2 inner products [2]:

‖P f‖2 =

∫ π

0

∫ ∞
−∞
|pϕ(r)|2 dr dϕ

=

∫ π

0

∫ ∞
−∞

∣∣∣∣∫ ∞
−∞

f(r cosϕ−` sinϕ, r sinϕ+` cosϕ) d`

∣∣∣∣2 dr dϕ

≤
∫ π

0

∫ ∞
−∞

∫ ∞
−∞
|f(r cosϕ−` sinϕ, r sinϕ+` cosϕ)|2 d`dr dϕ

=

∫ π

0

∫ ∞
−∞

∫ ∞
−∞
|f(x, y)|2 dxdy dϕ = π ‖f‖2 .
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The natural inner product for sinogram space is the usual inner product for L2([0, π]× R), i.e.,

〈p, q〉 =

∫ π

0

∫ ∞
−∞

pϕ(r) [qϕ(r)]
∗

dr dϕ, ∀p, q ∈ L2([0, π]× R). (4.2.2)
e,tomo,inprod,sino

The adjoint of P is denoted P∗, and is the operator that satisfies the following equality for any object f ∈ L2(R2)
and sinogram q ∈ L2([0, π]× R):

〈P f, q〉 = 〈f, P∗q〉 .

For the choices of inner products given above, the adjoint of P is the backprojection operator defined in (3.3.1), i.e.,

(P∗q)(x, y) =

∫ π

0

qϕ(x cosϕ+y sinϕ) dϕ,

as shown by the following equalities:

〈P f, q〉 =

∫ π

0

∫ ∞
−∞

(P f)(r, ϕ) [qϕ(r)]
∗

dr dϕ

=

∫ π

0

∫ ∞
−∞

[∫∫
f(x, y) δ(x cosϕ+y sinϕ−r) dxdy

]
[qϕ(r)]

∗
dr dϕ

=

∫∫
f(x, y)

[∫ π

0

∫ ∞
−∞

δ(x cosϕ+y sinϕ−r) qϕ(r) dr dϕ

]∗
dxdy

=

∫∫
f(x, y)

[∫ π

0

qϕ(x cosϕ+y sinϕ) dϕ

]∗
dxdy

=

∫∫
f(x, y) [(P∗q)(x, y)]

∗
dx dy = 〈f, P∗q〉 .

It follows from the properties of adjoints [1, p. 151] that P∗ is bounded, i.e., P∗ : L2([0, π]× R)→ L2(R2).
We can also write the backprojection formula b = P∗q as follows:

b(x, y) =

∫ π

0

bϕ(x, y) dϕ, (4.2.3)
e,tomo,back,ang

where bϕ = P∗ϕq is defined by:

(P∗ϕq)(x, y) = qϕ(x cosϕ+y sinϕ) =

∫
qϕ(r) δ(r − [x cosϕ+y sinϕ]) dr . (4.2.4)

e,tomo,Pang,adj

The projection operator Pϕ converts a 2D object into a 1D projection pϕ(·); the adjoint operator P∗ϕ maps a 1D
projection back into a 2D object by “smearing” that projection along the angle ϕ.

To illustrate the convenience of these expressions, it is helpful to define next a “diagonal” sinogram-space angular
weighting operator W : L2([0, π]× R)→ L2([0, π]× R) as follows

q = Wp iff qϕ(r) = w(ϕ) pϕ(r), (4.2.5)
e,tomo,W

for some π-periodic angular-weighting function w(ϕ). Assuming that w(ϕ) is real, the operator is self-adjoint, i.e.,
W∗ = W , which is analogous to the symmetry of a real diagonal matrix. With this definition of W , the angularly-
weighted backprojection in (3.3.1) is expressed simply as b = P∗Wp. More importantly, the 1/|r| convolution
relationship described by Theorem 3.3.1 is simply the following:

P∗WP f = f ∗∗ w(ϕ+ π/2)

|r|
.

To help express this relationship in the frequency domain, we define next the 2D Fourier transform operator
F2 : L2(R2)→ L2(R2) as follows:

(F2f)(u, v) =

∫ ∞
−∞

∫ ∞
−∞

f(x, y) e−ı2π(xu+yv) dx dy . (4.2.6)
e,Ftwo

We also define the “diagonal” polar Fourier-space operator D
(
w(Φ)
|ρ|

)
by

P = D
(
w(Φ)

|ρ|

)
Q iff P (ρ,Φ) =

w(Φ)

|ρ|
Q(ρ,Φ). (4.2.7)

e,tomo,op,Dop,def
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Then the Fourier relationship (3.3.9) is simply

P∗WP = F−1
2 D

(
w(Φ)

|ρ|

)
F2.

Using the above notation, we can express the BPF method (3.4.1) as follows:

f̂ = F−1
2 D

(
|ρ|
w(Φ)

)
F2P∗Wp.

An even more succinct expression for BPF is the following:

f̂ = [P∗WP ]−1P∗Wp. (4.2.8)
e,tomo,bpf,wls

In this final form, we see that the BPF method has an interpretation that was not at all apparent in the original notation
of §3.4.2. Now we see that the reconstructed image f̂ is the solution to the following weighted least-squares (WLS)
minimization problem:

f̂ = arg min
f

‖p−P f‖2W1/2 (4.2.9)
e,tomo,bpf,wls,cost

where for any sinogram q we define

‖q‖2W1/2 = 〈Wq, q〉 =

∫ π

0

∫ ∞
−∞

w(ϕ) |qϕ(r)|2 dr dϕ .

We emphasize that the WLS interpretation (4.2.9) holds only for angular weighting; if we were to consider a radially
dependent weighting function, say w(r, ϕ) in (4.2.5), then we could still write the solution (4.2.8) on paper, but the
operator [P∗WP ]−1 would no longer be shift-invariant in general, so a more complicated form of “deconvolution”
would be needed, typically requiring an iterative algorithm. (See [3] for an interesting approximations.)

The FBP method (3.4.3) can be expressed
f̂ = P∗Vp, (4.2.10)

e,tomo,op,fbp

where V is the operator (3.4.2) that applies the ramp filter to each projection, i.e.,

V = (I ⊗F−1
1 )[I ⊗D(|u|)](I ⊗F1) = I ⊗ (F−1

1 D(|u|)F1),

where I ⊗ F1 takes the 1D FT of each projection view of a sinogram. There is no weighting W whatsoever in the
FBP method, so FBP provides an unweighted least-squares solution to the minimization problem (4.2.9). (The same
conclusion holds for BPF in the usual case where w(ϕ) = 1.) This lack of weighting is one of the deficiencies of
the FBP method (and of the BPF method in the usual unweighted case) because it treats all rays equally, whereas in
practice different rays have different noise variances so should be weighted differently to reduce reconstructed image
noise.

Comparing (4.2.10) to (4.2.8) with W = I , we can express the equivalence of the FBP and BPF methods using
operators as follows:

P∗V = [P∗P ]−1P∗ = P∗P [P∗P ]−2P∗,
which establishes the following curious relationship: V = P [P∗P ]−2P∗. It also follows that P∗VP = I.

4.2.3 Convolution property (s,topo,conv)s,topo,conv

One can show (see [4, p. 11] and §3.4.7) the following convolution property for any sinogram q and 2D object f :

P∗ {q ∗r P f} = {P∗q} ∗∗ f, (4.2.11)
e,tomo,back,convprop

where ∗r denotes 1D convolution with respect to the radial variable r.
x,tomo,back,1/r

Example 4.2.1 The choice qϕ(r) = δ(r) yields P∗P f = 1
|r| ∗∗ f .

4.2.4 SVD of Radon transform (s,tomo,svd)s,tomo,svd

For some analyses, it can be useful to have a singular value decomposition (SVD) of the Radon transform operator
P . Natterer [4, p. 16] gives an SVD in terms of Jacobi and Gegenbauer polynomials, all terms of which are square
integrable. We base the following “Fourier” description on the formulation given by Barrett and Myers [5, p. 1174].
However, we generalize that analysis to consider the Radon transform operator with blur:

A = BP , (4.2.12)
e,tomo,svd,A=BP

where B denotes (possibly) angle-dependent radial blur:

p = Bq ⇐⇒ pϕ(r) = bϕ(r) ∗ qϕ(r), ∀ϕ ∈ [0, π]. (4.2.13)
e,tomo,Bop

We first define the following three Hilbert spaces:
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• H2 = L2(R2) with the usual inner product (4.2.1),
• H◦ = L2(R× [0, π]) with the polar coordinates inner product

〈G, F 〉 =

∫ π

0

∫ ∞
−∞

G(ρ,Φ)F ∗(ρ,Φ) |ρ|dρdΦ,

• andHsino = L2([0, π]× R) with the “sinogram” inner product (4.2.2).
Then we define the following three operators as mappings between these Hilbert spaces:

F2 : H2 → H2, F = F2f ⇐⇒ F (u, v) =

∫∫
f(x, y) e−ı2π(xu+yv) dx dy

D : H2 → H◦, G = D F ⇐⇒ G(ρ, ϕ) =
Bϕ(ρ)√
|ρ|

F (ρ cosϕ, ρ sinϕ)

U : H◦ → Hsino, p = UG ⇐⇒ pϕ(r) =

∫ ∞
−∞

√
|ρ|G(ρ, ϕ) eı2πrρ dρ,

(4.2.14)
e,tomo,Uop

where Bϕ(ν) denotes the 1D Fourier transform of bϕ(r) with respect to r, i.e.,

Bϕ(ν) ,
∫
bϕ(r) e−ı2πνr dr .

Having defined these operators, we can write the blurred Radon transform operator A in the following “SVD like”
form:

A = U DF2. (4.2.15)
e,tomo,svd,Aop

Ignoring the blur, this form “reads” very much like the Fourier slice theorem: first take the 2D FT of the object, then
convert to polar coordinates, and then take the inverse 1D FT for each angular view.

The importance of this form is that both F2 and U are unitary operators [6, p. 331], i.e., F−1
2 = F∗2 and

U−1 = U∗. (The purpose of the
√
|ρ| factors is to make U be unitary.) The adjoints of D and U with respect to the

inner products defined above can be shown to be as follows:

D∗ : H◦ → H2, H = D∗G ⇐⇒ H(u, v) =
B∗∠π(u,v)(ρ±(u, v))√

|ρ±(u, v)|
G(ρ±(u, v),∠π(u, v))

U∗ : Hsino → H◦, G = U∗p ⇐⇒ G(ρ, ϕ) =
1√
|ρ|

∫ ∞
−∞

pϕ(r) e−ı2πrρ dr,

(4.2.16)
e,tomo,svd,adj

where ρ±(·, ·) and ∠π(·, ·) are defined as in (3.2.16).
In the absence of blur, i.e., when B = I , this SVD form allows the following concise expression for inverting the

Radon transform:
P−1 = F−1

2 D−1 U−1 = F−1
2 D−1 U∗,

where
F = D−1G ⇐⇒ F (u, v) =

√
|ρ±(u, v)|G(ρ±(u, v),∠π(u, v))

and

F = D−1 U∗p ⇐⇒ F (u, v) =

∫ ∞
−∞

p∠π(u,v)(r) e−ı2πr ρ±(u,v) dr .

This is simply the direct Fourier inversion method.
For alternative SVD formulations, see [7, 8]. For the relation to FBP and pseudo-inverse solutions, see [9]. An

SVD for the case of a finite number of projection angles has also been derived [10].

4.3 System blur, sampling, and noise (s,tomo,blur)
s,tomo,blur

The preceding sections have considered the ideal line-integral model (3.2.4) for tomography. The measurements from
real tomographic systems are degraded by blur, sampling, and noise. These effects are often ignored in classical
treatments of analytical reconstruction methods. In this section we depart somewhat from classical treatments and
attempt to analyze the effects of these degradations. Our purpose is not to derive reconstruction algorithms for practical
use, but rather to provide insight into the properties of statistical image reconstruction methods.

For simplicity, we consider the effects of sampling in the radial dimension only; we continue to consider a contin-
uum of projection angles ϕ. (The concepts generalize to finite sets of projection views; see Problem 4.10.) Let ȳϕ[n]
denote the mean measurement for the nth radial sample at angle ϕ. The following model accounts for sampling and
for shift-invariant blur [11]:

ȳϕ[n] = pϕ(r) ∗ bϕ(r)
∣∣∣
r=rn
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=

∫∫
f(x, y) bϕ(rn − [x cosϕ+y sinϕ]) dx dy, n ∈ Z, (4.3.1)

e,tomo,blur,ybn

where pϕ = Pϕ f , bϕ(r) denotes the radial blur for each angle ϕ, the sample locations are given by rn = n4R, and
4R denotes the radial sample spacing. We allow the blur shape to depend on the projection angle ϕ because PET and
SPECT systems have such variations. To account for the effects of measurement errors, we assume a simple additive
noise model:

yϕ[n] = ȳϕ[n] +εϕ[n], (4.3.2)
e,tomo,blur,+noise

where εϕ[n] denotes zero-mean noise. Now the image reconstruction problem is to estimate f from the collection of
measurements

y = {yϕ[n] : ϕ ∈ [0, π), n ∈ Z} .
This is still an idealized formulation because we are assuming a continuum of projection angles and an infinite number
of radial samples per projection angle. Nevertheless, it is somewhat more realistic than the usual Radon transform
model (3.2.4), and to my knowledge it is the most generality that is still conducive to shift-invariant solutions.

To formulate solutions, we again enlist the aid of operators. Define the blur operator B as in (4.2.13). Also define
the 1D sampling operator S by

ȳ = Sq iff ȳϕ[n] = qϕ(rn), ∀n ∈ Z, ∀ϕ ∈ [0, π].

Then we express (4.3.1) using operators as follows

ȳ = Af, where A , SBP . (4.3.3)
e,tomo,blur,y=Af

Here the system model A is the composition of the Radon transform, blur, and sampling operators.

4.3.1 WLS estimator
In light of the additive noise model (4.3.2) and the linear system model (4.3.3), a natural formulation of the problem
of estimating the object f from the measurements y would be the following weighted least-squares criterion:

f̂ = arg min
f

Ψ(f), Ψ(f) =
1

2
‖y −A f‖2W1/2 , (4.3.4)

e,tomo,blur,cost

where the “diagonal” weighting operator W is defined here by

p = Wq iff pϕ[n] = w(ϕ) qϕ[n], ∀ϕ ∈ [0, π], ∀n ∈ Z, (4.3.5)
e,tomo,blur,W

for some user-selected, nonzero, π-periodic angular weighting function w(ϕ).
From the theory of optimization in Hilbert spaces [1, p. 160], any f̂ that minimizes the cost function Ψ(f) in

(4.3.4) must satisfy the following normal equations

A∗WA f̂ = A∗Wy. (4.3.6)
e,tomo,blur,wls

There may be multiple solutions or a unique solution to this linear system of equations, depending on the properties
of A∗WA.

Hereafter we assume that the object is band limited such that the sampling interval 4R satisfies the Nyquist
condition. (This too is unrealistic because real objects are space limited, but it is convenient for analysis because it
avoids consideration of aliasing effects. See §4.3.9.) Then using arguments similar to those in §3.3, one can show that

A∗WA = F−1
2 D

(
w(Φ) |BΦ(ρ)|2

|ρ|

)
F2, (4.3.7)

e,tomo,blur,F,freq

where Bϕ(·) denotes the 1D FT of the blur bϕ(·). If the transfer function Bϕ(·) has any zeros in the interval
[−1/(24R), 1/(24R)], then the Gram operator A∗WA has a null space within the space of band-limited func-
tions, so the normal equations will have multiple solutions f̂ , meaning that the cost function Ψ is not sufficiently
“selective” to identify a unique solution.

If the transfer function Bϕ(·) has no zeros, then the unique solution to the normal equations within the space of
band-limited functions is given by

f̂ = [A∗WA]−1A∗Wy = F−1
2 D

(
|ρ|

w(Φ) |BΦ(ρ)|2

)
F2A∗Wy. (4.3.8)

e,tomo,blur,f,wls

This is a kind of BPF reconstruction method; first we perform a (blurred and angularly weighted) backprojection of
the sinogram y, and then deconvolve both the 1/ |r| effect of tomography and deconvolve the effects of the blur. The
frequency response of the deconvolution filter has both the cone filter component |ρ| seen previously for the BPF
method (3.4.1) as well as the (squared!) inverse filter 1/ |BΦ(ρ)|2. Typically the transfer function Bϕ(·) of the blur
is a lowpass type, so both the cone filter and the inverse filter would amplify high spatial frequency components.
Therefore, the WLS method described by (4.3.4) and (4.3.8) would yield unacceptably noisy images in practice.
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4.3.2 Regularizations,tomo,blur,reg

To control this noise, one could simply apodize the deconvolution filter as described for the BPF method in §3.4.2.
Instead, to provide more insight into the statistical image reconstruction methods described in later chapters, we
consider modifying the WLS cost function to include a regularizing penalty function R(f). The motivations are
similar to those discussed in Chapter 1. Here we are analyzing a formulation in which the object f is a continuous-
space function, so we consider continuous-space penalty functionals as mentioned in (2.4.1) of §2.4.

Natural approaches to quantifying roughness involve the partial derivatives of f . Define Dj to be the differentiation
operator with respect to the jth spatial coordinate:

(Dj f)(x1, x2) =
∂

∂xj
f(x1, x2), j = 1, 2.

Then for the usual L2 norm we have

‖Dj f‖2 =

∫∫ ∣∣∣∣ ∂∂xj f(x1, x2)

∣∣∣∣2 dx1 dx2,

so these norms quantify the roughness of f . (To use such norms we restrict attention to the subspace of functions with
square integrable derivatives.) It is useful to express the differentiation operators in the frequency domain:

Dj = F−1
2 D(ı2πνj)F2,

where (ν1, ν2) denote the frequency domain Cartesian coordinates. For the usual inner product for L2(R2) defined in
(4.2.1), it is straightforward to show that the adjoint of Dj is D∗j = F−1

2 D(−ı2πνj)F2 and to show that

D∗j Dj = F−1
2 D

(
(2πνj)

2
)
F2.

The operators {Dj} and their adjoints all commute because they are essentially just linear shift-invariant “filters.”
Furthermore, we have

D∗1 D1 +D∗2 D2 = F−1
2

[
D
(
(2πν1)2

)
+D

(
(2πν2)2

)]
F2 = F−1

2 D
(
(2πρ)2

)
F2,

where ρ =
√
ν2

1 + ν2
2 .

As discussed in §2.4.2, it seems natural to use isotropic measures of roughness. Towards this end, we define the
following operator:

R = (D∗1 D1 +D∗2 D2)MR , (4.3.9)
e,tomo,blur,Rop

for some nonnegative power MR. For example, the case MR = 2 corresponds to the thin-plate spline energy (2.4.2).
The corresponding frequency domain expression is

R = F−1
2 D(R(ρ,Φ))F2, (4.3.10)

e,tomo,blur,Rop,freq

where the frequency response of the regularizer (4.3.9) is3:

R(ρ,Φ) = (2πρ)2MR . (4.3.11)
e,tomo,blur,RqAng

Using this operator, the following functional is a natural quadratic roughness measure that is convenient for Fourier
analysis:

R(f) =
1

2
〈f, R f〉 =

1

2

∥∥∥D(√R(ρ,Φ)
)
F2 f

∥∥∥2

, (4.3.12)
e,tomo,blur,Rf

using the usual L2 inner product (4.2.1). (Chu and Tam considered the case MR = 2 in 1977 [12].)

4.3.3 QPWLS analytical reconstructions,tomo,blur,qpwls

Having defined a convenient quadratic roughness measure, we now analyze the effects of replacing the WLS cost
function (4.3.4) with a quadratically penalized weighted least squares (QPWLS) cost function of the form

Ψ(f) =
1

2
‖y −A f‖2W1/2 + β R(f) . (4.3.13)

e,tomo,blur,qpwls,kost

Any minimizer f̂ of this cost function must satisfy the following modified normal equations

[A∗WA + βR] f̂ = A∗Wy.

3 We reuse R here because it should always be evident whether any given expression involves the penalty R(f) or the spectrum R(ρ,Φ).
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In the frequency domain, combining (4.3.7) and (4.3.10) yields

[A∗WA + βR] = F−1
2 D

(
w(Φ) |BΦ(ρ)|2

|ρ|
+ β R(ρ,Φ)

)
F2. (4.3.14)

e,tomo,blur,H,freq

Clearly the only frequency component in the null space of R is DC (ρ = 0), and this component will not be in the
null space of A∗WA unless Bϕ(0) = 0, which would be quite unusual because bϕ(r) is usually a lowpass filter.
Assuming Bϕ(0) 6= 0 hereafter, the solution to the modified normal equations above is given uniquely by

f̂ = F−1
2 D

(
w(Φ) |BΦ(ρ)|2

|ρ|
+ β R(ρ,Φ)

)−1

F2A∗Wy (4.3.15)

= F−1
2 D

(
|ρ|

w(Φ) |BΦ(ρ)|2 + β |ρ|R(ρ,Φ)

)
F2A∗Wy. (4.3.16)

e,tomo,blur,qpwls

This estimator has the form of the BPF reconstruction method except that the cone filter has been “apodized” due to
the regularization.

For further insight, we examine next the spatial resolution and noise properties of the QPWLS estimator (4.3.16).

4.3.4 Spatial resolution properties (s,tomo,blur,prop)s,tomo,blur,prop

Using (4.3.3), the ensemble mean of the reconstructed image f̂ is given by

E
[
f̂
]

= [A∗WA + βR]
−1 A∗W E[y]

= [A∗WA + βR]
−1 A∗WAf

= F−1
2 D

(
|ρ|

w(Φ) |BΦ(ρ)|2 + β |ρ|R(ρ,Φ)

)
D
(
w(Φ) |BΦ(ρ)|2

|ρ|

)
F2f

= F−1
2 D

(
w(Φ) |BΦ(ρ)|2

w(Φ) |BΦ(ρ)|2 + β |ρ|R(ρ,Φ)

)
F2f.

Thus, the mean reconstructed image corresponds to the true image smoothed by a filter with frequency response [3,
eqn. (10)]:

L(ρ,Φ) =
w(Φ) |BΦ(ρ)|2

w(Φ) |BΦ(ρ)|2 + β |ρ|R(ρ,Φ)
. (4.3.17)

e,tomo,blur,qpwls,psf

Due to theR(ρ,Φ) term in the denominator (see (4.3.11)), this “filter” attenuates high spatial frequencies, with greater
attenuation for large values of the regularization parameter β. See [3] for an approximation that leads to a closed-form
solution to the corresponding local impulse response.

x,tomo,blur,screen

Example 4.3.1 The (normalized) frequency response of a scintillating screen with attenuation coefficient µ and thick-
ness d is [13, p. 66]

B(ν) =
1

(1 + 2πν/µ)(1− e−µd)

[
1− e−µd(1+2πν/µ)

]
.

Fig. 4.3.1 shows the resulting image-domain frequency response L(ρ) for the unweighted case w(ϕ) = 1, for m = 1,
µ = 1.5/mm, and d = 0.25mm. As β increases, the knee of L(ρ) moves towards lower spatial frequencies. Fig. 4.3.2
shows the corresponding point spread functions. As β decreases, the PSF can exhibit negative sidelobes.

4.3.5 Noise properties
The QPWLS estimator (4.3.16) has two design variables: the angular weighting function w(ϕ), and the regularizer
(e.g., the regularization parameter β, and the regularization order m). To select these parameters appropriately, one
should consider both the resolution and the noise properties of the resulting estimator f̂ .

As described in §1.6.1, we can characterize the covariance properties of a random vector z ∈ Rn using its covari-
ance matrix, e.g.,

Πz = Cov{z} ∈ Rn×n.

Such a matrix can be viewed as a linear operator from Rn to Rn in the following sense:

u = Πz v ⇐⇒ uj =
∑
k

Cov{zj , zk} zk, j = 1, . . . , n.
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fig_tomo_blur_screen_psf

https://creativecommons.org/licenses/by-nc-nd/4.0/


c© J. Fessler. [license] April 7, 2017 4.10

To analyze the noise properties of the QPWLS estimator (4.3.16), we need to generalize the covariance property (1.9.3)
to the case of continuous-space functions, an infinite dimensional vector space.

For continuous-space functions, we need a covariance operator rather than a covariance matrix. Because f̂ ∈
L2(R2), we define the covariance operator Kf̂ = Cov

{
f̂
}

as follows:

g = Kf̂h ⇐⇒ g(~x) =
〈
Cov

{
f̂(~x), f̂(·)

}
, h(·)

〉
=

∫∫
Cov

{
f̂(~x), f̂(~x′)

}
h(~x′) d~x′, (4.3.18)

e,tomo,blur,prop,cov,op

where ~x = (x, y). It follows from this definition that

Cov
{
f̂(~x′), f̂(~x)

}
=
〈
δ~x′ , Kf̂ δ~x

〉
,

where δ~x denotes the Dirac impulse located at position ~x.
Similarly, we define a covariance operator for y as follows:

u = Cov{y}v ⇐⇒ uϕ′ [n
′] =

∞∑
n=−∞

∫ π

0

Cov{yϕ′ [n′], yϕ[n]} vϕ[n] dϕ .

With these definitions, if f̂ = Ly for a linear operator L : L2([0, π]×R)→ L2(R2) having adjoint L∗, then one can
prove the following generalization of (1.9.3):

Cov
{
f̂
}

= Cov{Ly} = LCov{y}L∗.

Considering the linear form of (4.3.16), the covariance operator Kf̂ for the QPWLS estimator f̂ is:

Kf̂ = F−1
2 D

(
|ρ|

w(Φ) |BΦ(ρ)|2 + β |ρ|R(ρ,Φ)

)
F2A∗W Cov{y}

·WAF−1
2 D

(
|ρ|

w(Φ) |BΦ(ρ)|2 + β |ρ|R(ρ,Φ)

)
F2,

where we have used the fact that F∗2 = F−1
2 . To facilitate analysis, hereafter we assume that the covariance of y

depends only on the projection angle ϕ, and is not a function of the radial sample n, and is independent from angle to
angle. In particular, we assume:

Cov{yϕ1
[n1], yϕ2

[n2]} =

{
c(ϕ1) δ(ϕ1 − ϕ2), n1 = n2

0, otherwise,
(4.3.19)

e,tomo,blur,cov,y

where c(·) is some π-periodic function. Thus if u = Cov{y}v, then uϕ[n] = c(ϕ)vϕ[n]. In the frequency domain, it
follows from the Fourier-slice theorem that the middle portion of Kf̂ simplifies as follows:

A∗W Cov{y}WA = F−1
2 D

(
c(Φ)w2(Φ) |BΦ(ρ)|2

|ρ|

)
F2. (4.3.20)

e,tomo,blur,AWKWA

Combining with the preceding expression for Kf̂ yields the following covariance expression for the QPWLS estimator:

Kf̂ = F−1
2 D

 c(Φ)w2(Φ) |ρ| |BΦ(ρ)|2(
w(Φ) |BΦ(ρ)|2 + β |ρ|R(ρ,Φ)

)2

F2. (4.3.21)
e,tomo,blur,K,general

The form of this expression indicates that under the noise model (4.3.19), f̂ −E
[
f̂
]

is a wide-sense stationary random
process for the QPWLS estimator, and the diagonal term reflects its power spectral density.

4.3.6 Optimization of angular weightings,tomo,blur,prop,w

The Gauss-Markov theorem [14, p. 141] of statistical estimation states that for a linear model of the form (4.3.3), the
minimum-variance linear unbiased estimator of f is given by

f̂ = [A∗C−1A]−1AC−1y,
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where C denotes the covariance of y, assuming the inverse exists. In other words, the minimum-variance estimator is
of the WLS form (4.3.6) where the weighting operator W is chosen to be the inverse of the covariance operator:

W = C−1. (4.3.22)
e,gauss,markov,inv

When I was first deriving this section, I expected to arrive at an expression like (4.3.21) in which the optimal choice
of the angular weighting would be given by w(ϕ) = 1/c(ϕ), in analogy with (4.3.22). However, if we consider
the unregularized case (where β = 0), then the angular weighting w(ϕ) in (4.3.21) becomes irrelevant! This con-
clusion would seem to contradict practical experience with iterative reconstruction showing that weighting can be
highly relevant, e.g., [15]. Evidently the noise model (4.3.19) is over simplified. In PET, SPECT and X-ray CT, the
noise variance changes both with projection angle and with radial bin position; the radial variations are ignored in
(4.3.19) because including them would preclude the exact Fourier analysis result (4.3.21). (See §4.4.2 for approximate
analysis.) Unfortunately, Fourier analysis does not appear to provide insight into the importance of weighting.

4.3.7 Resolution-noise trade-offs
Consider the simplest case where there is no system blur: Bϕ(·) = 1, the measurement variance is constant: c(·) = 1,
and we choose uniform angular weights: w(·) = 1. Then the spatial resolution properties are governed by the
frequency response (4.3.17) that simplifies to

L(ρ) =
1

1 + β |ρ| |2πρ|2MR
,

using (4.3.11). The noise properties are governed by the diagonal of (4.3.21) that simplifies to

|ρ|
(1 + β |ρ| |2πρ|2MR)

2 = |ρ|L2(ρ).

Clearly, to have good spatial resolution, we would like β to be small, so that L(ρ) ≈ 1. On the other hand, to have
low image noise, we would like β to be large, so that L2(·) ≈ 0. These two expressions epitomize the resolution-noise
trade-off for tomographic image reconstruction: as we try to recover higher object spatial frequency components, i.e.,
as L(ρ) → 1, we will concurrently increase noise, particularly at high spatial frequencies where |ρ| is large. This
analysis is a continuous-space analog of the results in §1.9, and it is useful to be familiar with both the matrix-vector
version and the continuous-space version.

4.3.8 Isotropic spatial resolution (s,tomo,blur,iso)s,tomo,blur,iso

This subsection considers the case where the system blur is independent of angle, i.e., bϕ(r) = b(r), and examines the
anisotropy that results from angular weighting w(ϕ).

If the angular weighting function w(ϕ) is nonuniform, then when we use the isotropic regularizer (4.3.11), the
resulting frequency response (4.3.17) has an angularly-dependent component, meaning that the the spatial resolution
properties of f̂ will be anisotropic. Of course, one way to eliminate this anisotropy would be to choose uniform
angular weighting, e.g., w(ϕ) = 1. However, under more realistic noise models than (4.3.19), uniform angular
weighting might be suboptimal in terms of the estimator noise properties. An alternative way to eliminate (or at
least reduce) the anisotropy would be to modify the regularization method by replacing (4.3.11) with an anisotropic
operator. Considering (4.3.17), to provide isotropic spatial resolution, the desired regularization operator has the
following anisotropic frequency response

R(ρ,Φ) = w(Φ) |2πρ|2MR , (4.3.23)
e,tomo,blur,prop,R,target

so that the transfer function between E
[
f̂
]

and f becomes

L(ρ,Φ) =
|B(ρ)|2

|B(ρ)|2 + β |ρ| |2πρ|2MR
,

which is independent of Φ and hence isotropic. The power spectral density term in (4.3.21) becomes

c(Φ) |ρ| |B(ρ)|2

(|B(ρ)|2 + β |ρ| |2πρ|2MR)2
.

For nonuniform noise variance c(ϕ), this QPWLS estimator has anisotropic noise covariance. Apparently it is difficult,
if not impossible, to achieve both isotropic spatial resolution and isotropic noise correlation, even under the over-
simplified noise model (4.3.19).
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Although one cannot attain (4.3.23) exactly in practice, §5.2 describes a practical procedure for designing a regu-
larizer that leads to nearly isotropic spatial resolution.

An alternative approach to attaining isotropic spatial resolution would be to use the BPF method followed by
isotropic smoothing:

f̂ = Bsmooth(P∗P)−1P∗y, (4.3.24)
e,tomo,blur,iso,bpf

where Bsmooth = F−1
2 Bsmooth(ρ)F2. By analyses similar to those leading to (4.3.21), one can show that the covari-

ance of this estimator is
Cov

{
f̂
}

= F−1
2 D

(
c(Φ) |ρ| |Bsmooth(ρ)|2

)
F2.

In particular, if we choose the post-reconstruction smoothing filter to have the following frequency response:

Bsmooth(ρ) =
B∗(ρ)

|B(ρ)|2 + β |ρ| |2πρ|2MR
,

then the post-smoothed BPF method has the exact same spatial resolution and noise properties as the QPWLS method
with the regularization method (4.3.23). This conclusion is consistent with empirical studies that have found post-
smooth maximum-likelihood reconstruction to have similar resolution-noise trade-offs as quadratically-penalized like-
lihood estimators for PET and SPECT [16, 17].

4.3.9 Aliasing effects due to radial sampling (s,topo,alias)s,topo,alias

In general the objects that are imaged in tomography are space-limited, so they cannot be band-limited. So any
reconstruction from sampled data like (4.3.1), even noiseless data, will be degraded by aliasing. This section provides
a Fourier analysis of the aliasing effects of radial sampling, for conventional FBP reconstruction.

We first analyze the spectrum of the sampled sinogram data ȳϕ[n] defined in (4.3.1). Let ȳϕ[n] = qϕ(r)|r=n4R
,

where qϕ(r) , pϕ(r) ∗ bϕ(r) . Then by the Fourier slice theorem and the convolution property of the 1D FT:

qϕ(r)
FT←→ Qϕ(ν) = Pϕ(ν)Bϕ(ν) = F◦(ν, ϕ)Bϕ(ν) .

By the sampling theorem:

ȳϕ[n]
DTFT←→ Ȳϕ(ω) =

1

4R

∞∑
k=−∞

Qϕ

(
ω

2π4R

− k

4R

)
=

1

4R

∞∑
k=−∞

F◦

(
ω

2π4R

− k

4R

, ϕ

)
Bϕ

(
ω

2π4R

− k

4R

)
.

This is aliasing of the object spectrum along the direction ϕ.
Ignoring noise, we apply a ramp filter to the sampled sinogram data ȳϕ[n]. Specifically, we use samples of the

impulse response of the band-limited ramp filter defined in (3.4.14), possibly with additional apodization A(ν). In
other words:

q̌ϕ[n] , h[n] ∗ ȳϕ[n],

where h[n] = hA(n4R) and hA(r)
FT←→ HA(ν) = |ν|A(ν). Thus by the sampling theorem:

h[n]
DTFT←→ H(ω) =

1

4R

∞∑
k=−∞

HA

(
ω

2π4R

− k

4R

)
.

By the (discrete-time) convolution property:

q̌ϕ[n]
DTFT←→ Q̌ϕ(ω) = H(ω) Ȳϕ(ω)

=

[
1

4R

∞∑
k=−∞

HA

(
ω

2π4R

− k

4R

)][
1

4R

∞∑
k=−∞

F◦

(
ω

2π4R

− k

4R

, ϕ

)
Bϕ

(
ω

2π4R

− k

4R

)]
.

Prior to backprojection, we use some interpolation kernel c(r) to interpolate the filtered projections q̌ϕ[n]:

q̂ϕ(r) =

∞∑
n=−∞

q̌ϕ[n] c(r − n4R)
FT←→ Q̂ϕ(ν) = C(ν)

∞∑
n=−∞

q̌ϕ[n] e−ı2πn4R ν = C(ν) Q̌ϕ(ω)
∣∣
ω=2π4R ν

.

Thus the spectra of the filtered and interpolated projections are:

Q̂ϕ(ν) = C(ν)

[
1

4R

∞∑
k=−∞

HA

(
ν − k

4R

)][
1

4R

∞∑
k=−∞

F◦

(
ν − k

4R

, ϕ

)
Bϕ

(
ν − k

4R

)]
.
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Applying (3.3.10), which considers a continuum of projection angles ϕ, the spectrum of the FBP reconstruction is:

Fb(ρ,Φ) =
1

|ρ|
C(ρ)

[
1

4R

∞∑
k=−∞

HA

(
ρ− k

4R

)][
1

4R

∞∑
k=−∞

F◦

(
ρ− k

4R

,Φ

)
BΦ

(
ρ− k

4R

)]
.

In particular, if HA(ν) = |ν| rect(ν4R)A(ν), then the spectrum of the FBP reconstruction is:

Fb(ρ,Φ) = C(ρ)A(ρ) rect(ρ4R)

[
1

4R

∞∑
k=−∞

F◦

(
ρ− k

4R

,Φ

)
BΦ

(
ρ− k

4R

)]
. (4.3.25)

e,topo,alias,fbp

The k 6= 0 terms correspond to aliasing due to radial sampling. (See §3.7.2 and Problem 3.6 for angular sampling.) Al-
though generally blur is considered undesirable, the blur spectrumBΦ(ρ) within the summation can have the beneficial
effect of helping to reduce aliasing.

4.4 Local shift invariance (s,tomo,local)s,tomo,local

The preceding sections’ analyses of spatial resolution properties focused on shift-invariant situations for which Fourier
methods are applicable easily. For linear systems with shift-varying PSFs, often we can apply local shift-invariance
approximations to formulate useful predictions of resolution and noise properties.

4.4.1 Local impulse response
Consider a linear operator L defined by the superposition integral

g = Lf ⇐⇒ g(~x) =

∫
h(~x,~x′)f(~x′) d~x′ . (4.4.1)

e,tomo,super

If this integral described a shift-invariant operator, then its kernel h would satisfy

h(~x,~x′) = h(~x− ~x′, 0),

and the superposition integral would become a convolution integral. For shift-varying operators, an exact convolution
expression is unattainable. But often the position dependence of the PSF h(·,~x′) varies slowly as a function of ~x′, in
which case we can define a local shift invariance property as follows.

def,tomo,local

Definition 4.4.1 A linear operator of the form (4.4.1) with kernel h(~x,~x′) is said to be locally shift invariant near a
point ~x0 if

~x′ ≈ ~x0 and ~τ ≈ ~0 =⇒ h(~x′ + ~τ ,~x′) ≈ h(~x0 + ~τ ,~x0),

i.e.,
h(~x,~x′) ≈ h(~x− ~x′ + ~x0,~x0).

When this property holds near some spatial location ~x0 of interest, we define the following local impulse response:

h0(~τ) = h(~τ + ~x0,~x0).

If a linear operator is locally shift invariant near ~x0, and if an object f0(·) is spatially “concentrated” around ~x0,
i.e., |f0(~x)| � |f0(~x0)| for ~x far from ~x0, then we can approximate the superposition integral as follows:

g(~x) =

∫
h(~x,~x′)f0(~x′) d~x′ =

∫
h(~x′ + (~x− ~x′), ~x′)f0(~x′) d~x′

≈
∫
h0(~x− ~x′)f0(~x′) d~x′ = h0(~x) ∗ f0(~x) .

This approximation is exact if f0 is “perfectly” concentrated around ~x0, meaning that f0(~x) = δ(~x− ~x0), because in
this case h0(~x) ∗ f0(~x) = h0(~x − ~x0) = h(~x,~x0), agreeing with (4.4.1). In other words, for a linear operator that
is locally shift invariant near ~x0 and an object f0 that is spatially localized around that point, e.g., a small lesion, the
superposition integral is approximately the convolution of the object with the local impulse response. This local shift
invariance property is very useful for analyzing the resolution and noise properties of image formation methods. In
the frequency domain, we write

L ≈ F−1
d D(H0(~ν))Fd,

where H0(·) denotes the d̄-dimensional FT of h0(·). Often it is left implicit that this approximation is accurate only
for objects that are spatially localized around ~x0. See also Chapter 22.
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4.4.2 Radially-dependent weighting and position-dependent blurs,tomo,local,radial

Previous sections focused on weighting functions w(ϕ) that depend only on the angle ϕ. In practice, the desired
weighting function will also depend on the radial position r, i.e., the weighting function W in (4.2.5) or (4.3.5) should
have a “diagonal” of the form wϕ(r) . Furthermore, tomographic systems can have position-dependent blur, such as
the effects of crystal penetration in PET, e.g., [18, 19], and depth-dependent detector response in SPECT. So the system
model operator A in (4.3.3) should be generalized to an integral of the form

q = A f ⇐⇒ qϕ(r) =

∫
a(r, ϕ;x, y) f(x, y) dxdy,

where a(r, ϕ;x, y) denotes the response4 of the system to an impulse at (x, y). For the usual L2 inner products, the
adjoint of this operator is

(A∗q)(x, y) =

∫ π

0

∫ ∞
−∞

a∗(r, ϕ;x, y) qϕ(r) dr dϕ .

Strictly speaking, the analyses of the preceding section do not apply directly to these generalizations. However,
often the system response functions a(·) are locally shift invariant, and in some cases the weighting function wϕ(r)
varies slowly with r. Then because the PSF of QPWLS estimators (cf. (4.3.17)) are spatially concentrated, as are the
autocorrelation functions (cf. (4.3.21)), we can develop useful approximations to the local impulse response functions
and autocorrelation functions of the QPWLS estimator even for the generalized A and W above.

The key to any such approximations is to analyze the Gram operator A∗WA that appears in (4.3.6). (We
ignore sampling here for simplicity.) Consider a certain spatial location of interest, say (x0, y0), and define δ0(x, y) =
δ2(x− x0, y − y0). Then the Gram operator corresponds to a superposition integral with kernel

h(x, y;x0, y0) = (A∗WA δ0)(x, y),

where
(A δ0)(r, ϕ) = a(r, ϕ;x0, y0) .

Using the above adjoint A∗, we see

h(x, y;x0, y0) =

∫ π

0

∫ ∞
−∞

a∗(r, ϕ;x, y)wϕ(r) a(r, ϕ;x0, y0) dr dϕ . (4.4.2)
e,tomo,rad,h

This is a shift-varying kernel for which we would like to find a locally shift-invariant approximation. One could
imagine a variety of criteria for developing such an approximation. In the spirit of our previous work [20, 21], we
adopt the criterion that we would like the approximation to the inner integral to be exact when (x, y) = (x0, y0),
because this is where the kernels usually have the largest values.

With some hindsight, we define the following “certainty” function:

κϕ(x, y) =

√√√√∫∞−∞ |a(r, ϕ;x, y)|2 wϕ(r) dr∫∞
−∞ |a(r, ϕ;x, y)|2 dr

, (4.4.3)
e,tomo,local,kap

which usually satisfies κϕ(x, y) ≈ wϕ(x cosϕ+y sinϕ) for 2D parallel-beam tomography. We also approximate the
kernel as follows

h(x, y;x0, y0) ≈
∫ π

0

κϕ(x, y)κϕ(x0, y0)

[∫ ∞
−∞

a∗(r, ϕ;x, y) a(r, ϕ;x0, y0) dr

]
dϕ .

To further simplify, define the following “local detector response” function for the object point (x0, y0):

b0(τ, ϕ) , a(τ + [x0 cosϕ+y0 sinϕ], ϕ;x0, y0),

so that
a(r, ϕ;x0, y0) = b0(r − [x0 cosϕ+y0 sinϕ], ϕ) .

Now assume that the detector response functions a(·) are locally shift invariant in the following sense5:

a(r, ϕ;x, y) ≈ b0(r − [x cosϕ+y sinϕ], ϕ), (4.4.4)
e,tomo,local,a,vs,b0

4 An ideal tomograph would have a(r, ϕ;x, y) = δ(r − [x cosϕ+y sinϕ]) .
5 This approximation is reasonable for a parallel-beam geometry but would require modification for fan-beam cases.
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for (x, y) ≈ (x0, y0). The assumption (4.4.4) leads to the following approximation for the inner integral:∫ ∞
−∞

a∗(r, ϕ;x, y) a(r, ϕ;x0, y0) dr

≈
∫ ∞
−∞

b∗0(r − [x cosϕ+y sinϕ], ϕ) b0(r − [x0 cosϕ+y0 sinϕ], ϕ) dr

=

∫ ∞
−∞

b∗0(τ, ϕ) b0(τ + (x− x0) cosϕ+(y − y0) sinϕ,ϕ) dτ

= (b0 ? b0)[(x− x0) cosϕ+(y − y0) sinϕ],

where ? denotes 1D autocorrelation (with respect to r). This relationship leads to our final approximations for the
kernel of the Gram operator:

h(x, y;x0, y0) ≈
∫ π

0

κϕ(x, y)κϕ(x0, y0) (b0 ? b0)[(x− x0) cosϕ+(y − y0) sinϕ] dϕ (4.4.5)

≈
∫ π

0

κ2
ϕ(x0, y0) (b0 ? b0)[(x− x0) cosϕ+(y − y0) sinϕ] dϕ . (4.4.6)

e,tomo,local,h,approx

This final shift-invariant approximation agrees with the exact expression (4.4.2) “along the diagonal” of A∗WA, i.e.,
when (x, y) = (x0, y0). And it agrees everywhere if wϕ(r) is independent of r and if the detector response functions
a(·) are shift invariant in the sense that (4.4.4) holds exactly.

Because κ2
ϕ depends only on the angle ϕ and not on the radial position r, it has been described as a “radially-

constant” approximation [21].
The following “local” approximation to the Gram operator then follows from (4.3.7) and (4.4.6):

A∗WA ≈ F−1
2 D

(
w0(Φ) |B0(ρ,Φ)|2

|ρ|

)
F2, (4.4.7)

e,tomo,local,AWA

where B0(·, ϕ) denotes the 1D FT of b0(·, ϕ), and

w0(ϕ) , κ2
ϕ(x0, y0) =

∫∞
−∞ |a(r, ϕ;x0, y0)|2 wϕ(r) dr∫∞
−∞ |a(r, ϕ;x0, y0)|2 dr

.

Therefore, generalizing (4.3.17), the local frequency response (the 2D FT of the local impulse response) near (x0, y0)
of the QPWLS estimator is

L0(ρ,Φ) ≈ w0(Φ) |B0(ρ,Φ)|2

w0(Φ) |B0(ρ,Φ)|2 + β |ρ|R(ρ,Φ)
. (4.4.8)

e,tomo,local,L0

We apply this result to regularizer design in §5.2.

4.4.3 Radially-dependent noise
The covariance (4.3.21) for QPWLS was derived under the assumption that the measurement variance depended only
on the projection angle. A more realistic model than (4.3.19) would also include a radial dependence:

Cov{yϕ1
[n1], yϕ2

[n2]} =

{
c(rn1

, ϕ1) δ(ϕ1 − ϕ2), n1 = n2

0, otherwise.

In this case, the expression (4.3.20) has the following (local) approximation

A∗W Cov{y}WA ≈ F−1
2 D

(
w̃0(Φ) |B0(ρ,Φ)|2

|ρ|

)
F2,

where

w̃0(ϕ) =

∫
|a(r, ϕ;x0, y0)|2 w2

ϕ(r) c(r, ϕ) dr∫
|a(r, ϕ;x0, y0)|2 dr

.

In the usual case where wϕ(r) = 1/c(r, ϕ), we have w̃0(ϕ) = w0(ϕ) . The expression (4.3.21) for the covariance the
QPWLS estimator has the following local approximation:

Kf̂ ≈ F−1
2 D

 w̃0(Φ) |ρ| |B0(ρ,Φ)|2(
w0(Φ) |B0(ρ,Φ)|2 + β |ρ|R(ρ,Φ)

)2

F2.
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The inner term is the local noise power spectrum (NPS) of the QPWLS estimator. When β = 0, the inner expression
is proportional to ∫

|a(r, ϕ;x0, y0)|2 w2
ϕ(r) c(r, ϕ) dr(∫

|a(r, ϕ;x0, y0)|2 wϕ(r) dr
)2 .

In contrast to the discussion in §4.3.6, here the weighting wϕ(r) does not cancel out. Using the Cauchy-Schwarz
inequality (26.4.2), one can show that this expression is minimized when we choose wϕ(r) = 1/c(r, ϕ), which is the
result expected from the Gauss-Markov theorem [14, p. 141].

Our experiences with similar approximations derived from matrix-vector formulations is that they can be quite
accurate and are useful for tasks such as the design of regularizers (see §5.2) and the prediction of noise properties
[16, 20–24].

4.4.4 Isotropic resolution revisited
Suppose we can choose the regularizer R(ρ,Φ) so that the local impulse response is approximately isotropic, i.e.,
L0(ρ,Φ) ≈ L0(ρ), which is independent of angle Φ. Then from (4.4.8), apparently

B∗0(ρ,Φ)

w0(Φ) |B0(ρ,Φ)|2 + β |ρ|R(ρ,Φ)
≈ L0(ρ)

w0(Φ)B0(ρ,Φ)

and

Kf̂ ≈ F−1
2 D

(
|ρ| 1

w0(Φ)

∣∣∣∣ L0(ρ)

B0(ρ,Φ)

∣∣∣∣2
)
F2,

so again we have anisotropic noise in the reconstructed image.
Can we again achieve comparable results with a BPF method like (4.3.24)? Choosing

Bsmooth(ρ,Φ) =
L0(ρ)

B0(ρ,Φ)

and making the (somewhat questionable) approximation

P∗ Cov{y}P ≈ F−1
2 D(|ρ| c0(Φ))F2,

where c0(Φ) = c(x0 cosΦ +y0 sinΦ,Φ), leads to the following BPF covariance approximation

Kf̂BPF
≈ F−1

2 D
(
|ρ| c0(Φ)

∣∣∣∣ L0(ρ)

B0(ρ,Φ)

∣∣∣∣2
)
F2.

Althoughwϕ(r) = 1/c(r, ϕ), in generalw0(Φ) 6= 1/c0(Φ).However, if the variance c(r, ϕ) varies slowly with r, then
w0(Φ) ≈ 1/c0(Φ). On the other hand, if there are substantial ray-to-ray fluctuations in variance, due to nonuniform
detector efficiencies for example, then it seems that here there is a hint of a possibility that the QPWLS method could
have lower noise than BPF at matched isotropic spatial resolution. Furthermore, the so-called BPF method above
would require a different inverse filter for every pixel, spoiling some of the computational advantage of analytical
methods over iterative methods. (However, see [3] for clever approximations.)

Interestingly, the noise in this BPF method seems to depend directly on the measurement noise covariance c(r, ϕ),
where as the (approximate) noise of the QPWLS method depends on the reciprocal of this average:∫

|a(r, ϕ;x0, y0)|2 1

c(r, ϕ)
dr,

assuming wϕ(r) = 1/c(r, ϕ). Perhaps this averaging helps reduce the influence of particularly noisy rays that cause
streaks in FBP images.

4.5 2D fan beam geometry (s,topo,fan)
s,topo,fan

This section analyzes the Gram operator of the WLS cost function for the case where the projection operator P
corresponds to the fan-beam geometry considered in (3.9.11). The primary motivation for this section is its relevance
to regularization design [25].

The usual inner product for fan-beam projection space is

〈p1, p2〉 =

∫ βmax

0

∫ smax

−smax

p1(s, β) p2(s, β) dsdβ .
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This is the natural inner product when considering the usual case of samples that are equally-spaced in arc length s
and in source angle β. For this inner product, the adjoint of P is given by

(P∗p)(x, y) =

∫ βmax

0

∫ smax

−smax

δ(x cosϕ(s, β) +y sinϕ(s, β)− r(s)) p(s, β) dsdβ,

where r(s) and ϕ(s, β) were defined in (3.9.7).
Define a “diagonal” weighting operator W in fan-beam sinogram space by

(Wp)(s, β) = w2π(s, β) p(s, β),

where w2π(s, β) is a user-selected nonnegative weighting function. Following (4.3.13), the natural QPWLS estimator
for this problem has the form

f̂ = arg min
f

‖p−P f‖2W1/2 + R(f) (4.5.1)
e,tomo,fan,qpwls

where R was defined in (4.3.12).
We assume hereafter that w2π(s, β) is chosen such that w2π(s, β) = 0 when β > βmax. Thus we can as-

sume βmax = 2π for the analysis, yet the results are still applicable to “short” scans provided w2π(s, β) is cho-
sen appropriately. To analyze the impulse response of the Gram operator P∗WP , consider an impulse object
δ0(x, y) = δ(x− x0, y − y0) as follows:

h(x, y;x0, y0) = (P∗WP δ0) (x, y)

=

∫ 2π

0

∫ smax

−smax

δ(x cosϕ(s, β) +y sinϕ(s, β)− r(s))

δ(x0 cosϕ(s, β) +y0 sinϕ(s, β)− r(s))w2π(s, β) dsdβ .

For convenience, we may also express the point (x0, y0) in polar coordinates (r0, ϕ0).
In the spirit of local shift invariance described in §4.4, consider the following local impulse response:

h0(r, ϕ) , h(x0 + r cosϕ, y0 + r sinϕ; x0, y0)

=

∫ 2π

0

∫ smax

−smax

δ((x0 + r cosϕ) cosϕ(s, β) +(y0 + r sinϕ) sinϕ(s, β)− r(s))

δ(x0 cosϕ(s, β) +y0 sinϕ(s, β)− r(s))w2π(s, β) dsdβ .

Applying the sampling property of the (second) Dirac impulse and simplifying with trigonometry yields:

h0(r, ϕ) =

∫ 2π

0

∫ smax

−smax

δ(r cos(ϕ(s, β)−ϕ)) δ(r0 cos(ϕ(s, β)−ϕ0)− r(s))w2π(s, β) dsdβ .

Convert from fan to parallel coordinates by making the change of variables r′ = Ds0 sin γ(s), ϕ′ = β + γ(s) as
defined in (3.9.7), assume hereafter that roff = 0 for simplicity. The local impulse response simplifies to

h0(r, ϕ) =

∫ 2π

0

∫ rmax

−rmax

δ(r cos(ϕ′ − ϕ)) δ(r0 cos(ϕ′ − ϕ0)−r′)w1(r′, ϕ′) dr′ dϕ′,

incorporating the Jacobian determinant in (3.9.19) into the following modified weighting function (cf. (3.9.15)):

w1(r, ϕ) ,
w2π(s, β)

J(s)

∣∣∣∣
s=s(r),β=β(r,ϕ)

=
w2π

(
γ−1(arcsin(r/Ds0)) , ϕ− arcsin(r/Ds0)

)
J(γ−1(arcsin(r/Ds0)))

.

Applying the sifting property to the second Dirac impulse and the scaling property to the first Dirac impulse yields

h0(r, ϕ) =
1

|r|

∫ 2π

0

δ(cos(ϕ′ − ϕ))w2(r0 cos(ϕ′ − ϕ0), ϕ′) dϕ′,

where we define
w2(r, ϕ) , w1(r, ϕ) I{|r|≤rmax}.

The preceding integral depends only on ϕ and point location (x0, y0). Thus, similar to the parallel-beam case in
Theorem 3.3.1, for the fan-beam case the local impulse response of the Gram operator has the following form:

h0(r, ϕ) =
1

|r|
w0(ϕ+ π/2), (4.5.2)

e,topo,fan,h0,w0
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where here the weighting function is

w0(ϕ) ,
∫ 2π

0

δ(cos(ϕ′ − ϕ+ π/2))w2(r0 cos(ϕ′ − ϕ0), ϕ′) dϕ′

=

∫ 2π

0

δ(sin(ϕ− ϕ′))w2(r0 cos(ϕ′ − ϕ0), ϕ′) dϕ′ .

Simplifying by applying the sifting property (3.3.8) yields

w0(ϕ) = w2(r0 cos(ϕ− ϕ0), ϕ) +w2(r0 cos(ϕ− ϕ0 + π), ϕ+ π)

= w2(r0(ϕ), ϕ) +w2(−r0(ϕ), ϕ+ π),

where we define
r0(ϕ) , r0 cos(ϕ− ϕ0) .

Using (3.9.2) define
γ0(ϕ) , arcsin(r0(ϕ)/Ds0)

s0(ϕ) , γ−1(γ0(ϕ)) .

Then because J(−s) = J(s) we have our final expression for the weighting:

w0(ϕ) =
1

J(s0(ϕ))
[w2π(s0(ϕ), ϕ− γ0(ϕ)) +w2π(−s0(ϕ), ϕ+ π + γ0(ϕ))] I{|r0(ϕ)|≤rmax}. (4.5.3)

e,topo,fan,w0

In other words, w0(ϕ) is the sum of the weights in the sinogram w2π(s, β) corresponding to the two rays that intersect
the point (x0, y0) at angle ϕ, adjusted by the Jacobian of the fan-to-parallel coordinate transformation. It follows then
from Theorem 3.3.2 that the local frequency response of the Gram operator is

H0(ρ,Φ) =
1

|ρ|
w0(Φ) .

It is interesting that the local impulse response and local frequency response have the same form in the fan-beam
and parallel-beam cases, disregarding detector blur. Generalizing the above analysis to consider detector blur is an
open problem. (Detector response has an anisotropic effect in the fan-beam geometry due to the distant-dependent
magnification.)

In the equiangular case, where Dfs = 0 and γ(s) = s/Dsd, we have the following simplifications:

s0(ϕ) = Dsd arcsin(r0(ϕ)/Ds0) (4.5.4)

J(s0(ϕ)) = Ds0 cos(arcsin(r0(ϕ)/Ds0))
1

Dsd
=
Ds0

Dsd

√
1−
(
r0(ϕ)

Ds0

)2

. (4.5.5)
e,topo,fan,s0,bet0,equiang

For typical fan-beam geometries, the FOV is much smaller than Ds0, so the Jacbian factor is nearly uniform.
The design of regularization methods for the fan-beam case has been explored using the above relationships [25].
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4.6 3D tomography (s,3d,intro)
s,3d,intro

The preceding sections focused on the case of 2D objects f(x, y). This section considers the 3D case. There are a
variety of methods for parameterizing line integrals of 3D objects. The various parameterizations describe the same
information for noiseless continuous measurements, but correspond to different sampling patterns and have differing
noise properties for discrete, noisy measurements.

4.6.1 Parallel beam geometry (s,3d,par)s,3d,par

4.6.1.1 Definition of 3D parallel-beam X-ray transform

For 3D tomography with parallel rays, there are two projection angles: the azimuthal angle ϕ, and a polar angle θ.
We use a coordinate system in which ϕ ∈ [−π, π], and θ ∈ T ⊂ [−π/2, π/2]. Define ~γ = (ϕ, θ) and define the
following orthogonal unit vectors

~e(~γ) =

 − sinϕ cosθ
cosϕ cosθ

sinθ

 , ~e1(~γ) =

 cosϕ
sinϕ

0

 , ~e2(~γ) =

 sinϕ sinθ
− cosϕ sinθ

cosθ

 , (4.6.1)
e,3d,par,e

and the following point in R3:

~p = ~p(u, v;~γ) = u~e1 +v ~e2 = (u cosϕ+v sinϕ sinθ, u sinϕ−v cosϕ sinθ, v cosθ). (4.6.2)
e,3d,par,p

Letting (u, v) denote the coordinates on any 2D projection plane, define the (X-ray) projection of a 3D object f(~x) as

p(u, v;~γ) =

∫
f(~p+`~e) d` =

∫ ∞
−∞

f(~p(u, v;~γ) +`~e(~γ)) d`, (4.6.3)
e,3d,puvat

i.e., the line integrals along the lines {~p+`~e : ` ∈ R}, where u, v ∈ R. Another way of writing this operation is

p(u, v;~γ) =

∫
f

(
T~γ

[
u
`
v

])
d`, (4.6.4)

e,3d,puvg,T

where T~γ = [~e1(~γ) ~e(~γ) ~e2(~γ)] is a unitary matrix, so T−1 = T ′ =

 cosϕ sinϕ 0
− sinϕ cosθ cosϕ cosθ sinθ
sinϕ sinθ − cosϕ sinθ cosθ

 . The

matrix T is the product of two 3D rotation matrices [26, p. 100]:

T = R12(ϕ)R23(θ), R12(ϕ) =

 cosϕ − sinϕ 0
sinϕ cosϕ 0

0 0 1

 , R23(θ) =

 1 0 0
0 cosθ − sinθ
0 sinθ cosθ

 .
Problem 4.14 gives examples of 3D X-ray transform pairs. The goal in 3D tomography is to reconstruct f from a

collection of (noisy) samples of p(u, v;~γ). See §3.10. Here, we focus on analyzing the properties of this 3D transform,
rather than describing analytical 3D reconstruction methods.

4.6.1.2 Properties

• Central plane property
If θ = 0, then

p(u, v;ϕ, 0) =

∫ ∞
−∞

f(u cosϕ−` sinϕ, u sinϕ+` cosϕ, v) d`, (4.6.5)
e,3d,puvat,0

which generalizes (3.2.4) to 3D.
• Symmetry property

The 3D projection (4.6.3) satisfies the following symmetry property:

p(−u, v;ϕ± π,−θ) = p(u, v;ϕ, θ) .

So in the usual case where T = −T , it would suffice to restrict ϕ to the range ϕ ∈ [0, π]. However, this restriction
would complicate some of the analysis below so we focus on the case where ϕ ∈ [−π, π].
• Shift property

The 3D projection operation also satisfies the following shift property:

f(~x)
3D Xray←→ p(u, v;ϕ, θ) =⇒

f(~x− (a, b, c))
3D Xray←→ p(u− (a cosϕ+b sinϕ), v − (a sinϕ sinθ−b cosϕ sinθ+c cosθ);~γ) . (4.6.6)

e,3d,par,shift
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• Spherical symmetry property
If f(~x) is spherically symmetric, then p(u, v;~γ) is a function only of u2 + v2, i.e., all the projection views are
identical and are circularly symmetric.
• Scaling property

If f(~x)
3D Xray←→ p(u, v;ϕ, θ), then we have the following (isotropic) scaling property:

f(x/a, y/a, z/a)
3D Xray←→ |a| p(u/a, v/a;~γ) . (4.6.7)

e,3d,par,scale

4.6.1.3 Fourier slice theorem in 3D

For the definition (4.6.3), one can establish the following projection integral theorem:∫∫
p(u, v;~γ)h(u, v) dudv

=

∫∫∫
f(~p+`~e)h(u, v) dudv d` =

∫∫∫
f(~x)h(~x · ~e1(~γ), ~x · ~e2(~γ)) d~x

=

∫∫∫
f(~x)h(x cosϕ+y sinϕ, x sinϕ sinθ−y cosϕ sinθ+z cosθ) d~x, (4.6.8)

e,3d,pit

which holds for any (suitably regular) function h(u, v). To show this equality, simply make the change of variables

~x = T

 u
`
v

 where T was defined above.

Using this 3D projection integral theorem, one can establish the following 3D Fourier slice theorem simply by
substituting h(u, v) = e−ı2π(uν1+vν2) into (4.6.8), yielding

P (ν1, ν2;~γ) = F (ν1 ~e1(~γ) +ν2 ~e2(~γ)), (4.6.9)
e,3d,fourier,slice

where F (~ν) denotes the 3D FT of f(~x), and the 2D FT of the projection view at angle ~γ is

P (ν1, ν2;~γ) =

∫∫
p(u, v;~γ) e−ı2π(uν1+vν2) dudv .

The vectors ~e1 and ~e2 define a plane in R3, so (4.6.9) says that the 2D FT of a projection view taken at angle ~γ equals
a planar slice of the 3D FT of the object.

4.6.1.4 System blur

Rather than considering the idealized line integrals described by (4.6.3), a more realistic model includes the effects of
detector blur. For simplicity, we assume the blur is shift-invariant within each view, but allow it to vary between views
as follows:

q(u, v;~γ) =

∫∫
b0(u− u′, v − v′;~γ) p(u′, v′;~γ) du′ dv′ . (4.6.10)

e,3d,par,blur

Taking the 2D FT of both sides yields

Q(ν1, ν2;~γ) = B0(ν1, ν2;~γ)P (ν1, ν2;~γ) = B0(ν1, ν2;~γ)F (ν1 ~e1(~γ) +ν2 ~e2(~γ)),

where B0(ν1, ν2;~γ) is the 2D frequency response corresponding to blur b0(u, v;~γ). We write this in operator notation
as follows:

q = Af, A = BP3,

where B denotes the blur operator in (4.6.10), and P3 denotes the 3D projection operator in (4.6.3).

4.6.1.5 SVD for 3D case (s,3d,svd)s,3d,svd

For analyzing properties like spatial resolution, we want to write A in the SVD-like representation A = U DF3,
where U and F3 are unitary operators (with respect to suitable Hilbert spaces) and where D is something like a
“diagonal” operator. Toward that end, define the following Hilbert spaces.
• H2 = L2(R3) with the usual inner product 〈f1, f2〉 =

∫∫∫
f1(~x) f∗2 (~x) d~x .

• H4 = L2(R2 × [0, π]× T ) with the following inner product6:

〈P1, P2〉4 =

∫
T

∫ π

−π

∫∫
P1(ν1, ν2;~γ)P ∗2 (ν1, ν2;~γ)w4(ν1, ν2;~γ) dν1 dν2 dϕdθ .

6 In all of the expressions involving
∫
T in this section, the integral could be replaced by a sum if T is a discrete set as it is in practice.
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• Hproj = L2(R2 × [0, π]× T ) with the following inner product

〈p1, p2〉proj =

∫
T

∫ π

−π

∫∫
p1(u, v;~γ) p∗2(u, v;~γ)wp(u, v;~γ) dudv dϕdθ,

where w4 and wp are real, positive weighting functions that depend on the type of sampling used.
Define the following operators

F3 : H2 → H2, F = F3f ⇐⇒ F (~ν) =

∫∫∫
f(~x) e−ı2π~x·~ν d~ν

D : H2 → H4, G = D F ⇐⇒ G(ν1, ν2;~γ) = w2(ν1, ν2;~γ)B0(ν1, ν2;~γ)F (ν1 ~e1(~γ) +ν2 ~e2(~γ))

U : H4 → Hproj, q = UG ⇐⇒ q(u, v;~γ) =

∫∫
1

w2(ν1, ν2;~γ)
G(ν1, ν2;~γ) eı2π(uν1+vν2) dν1 dν2,

where w2 is some weighting function to be determined below. One can verify easily that A = U DF3.
The inverse of U is clearly

G = U−1q ⇐⇒ G(ν1, ν2;~γ) = w2(ν1, ν2;~γ)

∫∫
q(u, v;~γ) e−ı2π(uν1+vν2) dudv .

One can show that the adjoint of U with respect to the above Hilbert spaces is given by

G = U∗p ⇐⇒ G(ν1, ν2;~γ) =
1

w2(ν1, ν2;~γ)w4(ν1, ν2;~γ)

∫∫
wp(u, v;~γ) p(u, v;~γ) e−ı2π(uν1+vν2) dudv .

(4.6.11)
e,3d,Uop,adj

It follows that U will be unitary if wp is independent of (u, v) and if we choose w2 =
wp

w2 w4
or equivalently that

w2(ν1, ν2;~γ) =

√
wp(~γ)

w4(ν1, ν2;~γ)
. (4.6.12)

e,3d,svd,w2

To determine the adjoint of D, note that

〈G, D F 〉4 =

∫
T

∫ π

−π

∫∫
w4(u1, u2;~γ)G(u1, u2;~γ)

[w2(u1, u2;~γ)B0(u1, u2;~γ)F (u1 ~e1(~γ) +u2 ~e2(~γ))]
∗

du1 du2 dϕdθ .

For any given θ, make the change of variables7

u1 = u1(~ν, θ) = sgn(ν2)
√
ν2

1 + ν2
2 − ν2

3 tan2θ (4.6.13)

u2 = u2(~ν, θ) = ν3/ cosθ (4.6.14)

ϕ = ϕ(~ν, θ) = sgn(ν2) arccos

(
−ν3 tanθ√
ν2

1 + ν2
2

)
−π/2 + ∠(ν1, ν2) (4.6.15)

e,tomo,3d,sv,change

for which one can verify that

~ν = u1 ~e1(~γ) +u2 ~e2(~γ)

= (u1 cosϕ+u2 sinϕ sinθ, u1 sinϕ−u2 cosϕ sinθ, u2 cosθ).

This transformation is well defined when
|ν3 tanθ| ≤

√
ν2

1 + ν2
2 . (4.6.16)

e,tomo,3d,svd,range3

Its Jacobian is

J =

 cosϕ sinϕ sinθ −u1 sinϕ+u2 cosϕ sinθ
sinϕ − cosϕ sinθ u1 cosϕ+u2 sinϕ sinθ

0 cosθ 0


and its Jacobian determinant is

|detJ | = |u1 cosθ| = cosθ
√
ν2

1 + ν2
2 − ν2

3 tan2θ.

So by defining

~u(~ν, θ) , (u1(~ν, θ), u2(~ν, θ))

7 In this expression, sgn(x) =

{
1, x ≥ 0,
−1, x < 0.

Also, ∠(b, a) = π/2− ∠(a, b) and ∠(a,−b) = −∠(a, b).
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~γ(~ν, θ) , (ϕ(~ν, θ), θ)

w2(~ν, θ) , w2(~u(~ν, θ);~γ(~ν, θ))

wθ(~ν) ,
1

cosθ
√
ν2

1 + ν2
2 − ν2

3 tan2θ
I{|ν3 tanθ|≤

√
ν2
1+ν2

2

}, (4.6.17)
e,tomo,3d,svd,wthet

we have shown

〈G, D F 〉4 =

∫∫∫ [∫
T
wθ(~ν)w2(~ν, θ)B∗0(~u(~ν, θ);~γ(~ν, θ))G(~u(~ν, θ);~γ(~ν, θ)) dθ

]
F ∗(~ν) d~ν .

Thus the adjoint of D with respect to the above Hilbert spaces is given by

F2 = D∗G ⇐⇒ F2(~ν) =

∫
T
wθ(~ν)w2(~ν, θ)B∗0(~u(~ν, θ);~γ(~ν, θ))G(~u(~ν, θ);~γ(~ν, θ)) dθ .

4.6.1.6 The Gram operator

Let W : Hproj → Hproj denote an angle-dependent weighting operator defined by

p2 = Wp1 ⇐⇒ p2(u, v;~γ) = wε(~γ) p1(u, v;~γ) .

Then when (4.6.12) is satisfied, one can show that U∗WU = W , i.e.,

G2 = U∗WU G ⇐⇒ G2(u1, u2;~γ) = wε(~γ)G(u1, u2;~γ) .

Having analyzed the above adjoints, we can analyze the properties of 3D reconstruction by examining the Gram
operator of the WLS cost function as follows:

A∗WA = F−1
3 D∗ U∗WU DF3 = F−1

3 D∗W DF3,

where F2 = D∗W D F if

F2(~ν) =

∫
T
wθ(~ν)w2(~ν, θ)B∗0(~u(~ν, θ);~γ(~ν, θ))wε(~γ(~ν, θ))

· [w2(~u(~ν, θ);~γ(~ν, θ))B0(~u(~ν, θ);~γ(~ν, θ))F (~ν)] dθ

= H(~ν)F (~ν),

and where the general form of the frequency response of the Gram operator of the WLS cost function is

H(~ν) ,
∫
T
wθ(~ν)w2

2(~ν, θ)wε(ϕ(~ν, θ), θ) |B0(~u(~ν, θ);~γ(~ν, θ))|2 dθ

=

∫
T

wθ(~ν)wp(ϕ(~ν, θ), θ)

w4(u1(~ν, θ), u2(~ν, θ);ϕ(~ν, θ), θ)wε(ϕ(~ν, θ), θ)
|B0(~u(~ν, θ);~γ(~ν, θ))|2 dθ . (4.6.18)

e,tomo,3d,svd,Hpu

(Compare to (4.3.7) in the 2D case.)
Now express this frequency response in the following spherical coordinates

~ν = (% cosΦ cosΘ, % sinΦ cosΘ, % sinΘ),
Θ ∈ [−π/2, π/2]
Φ ∈ [0, 2π)
% ∈ [0,∞),

for which
√
ν2

1 + ν2
2 = % cosΘ . Hence the weighting function (4.6.17) becomes

wθ =
1

% cosΘ cosθ
√

1− tan2θ tan2Θ
I{|tanθ|≤1/|tanΘ|}

=
1

% cosθ

1√
1−
(

sinθ
cosΘ

)2
(

cosθ

cosΘ

)
I{|θ|≤π2−|Θ|}.

Hereafter we assume that T = [−θmax, θmax], so the frequency response in spherical coordinates is

H(%,Φ,Θ) =
1

%

∫ min(θmax,
π
2−|Θ|)

−min(θmax,
π
2−|Θ|)

(
cosθ
cosΘ

)√
1−
(

sinθ
cosΘ

)2
· wp(ϕ(~ν, θ), θ)wε(ϕ(~ν, θ), θ)

cosθ w4(u1(~ν, θ), u2(~ν, θ);ϕ(~ν, θ), θ)
|B0(~u(~ν, θ);~γ(~ν, θ))|2 dθ .
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4.6.1.6.1 Unweighted case Suppose for simplicity that the weighting functions have the form

wp wε
w4

=
1

2
cosθ,

and that T = [−θmax, θmax] where 0 < θmax < π/2. Then in the absence of blur, i.e., when B0 = 1, the frequency
response integral (4.6.18) becomes

H(%,Φ,Θ) =
1

%

∫ min(θmax,
π
2−|Θ|)

0

1√
1−
(

sinθ
cosΘ

)2
(

cosθ

cosΘ

)
dθ

=
1

%
sin−1

(
sinθ

cosΘ

)∣∣∣∣
θ=min(θmax,

π
2−|Θ|)

=
1

%
sin−1

(
min(sin θmax, cosΘ)

cosΘ

)
.

This frequency response expression agrees with [27].

4.6.1.6.2 SPECT case For 360◦ SPECT scans, we have wp = δ(θ) and w4 = 1 so w0 = 1√
ν2
1+ν2

2

. Thus the

frequency response of the Gram operator is

H(ρ cosΦ, ρ sinΦ ν3) =
1

|ρ|
wε(Φ, 0) |B0(ρ, 0; Φ, 0)|2 ,

or equivalently in spherical coordinates

H(%,Φ,Θ) =
1

|%| cosΘ
wε(Φ, 0) |B0(% cosΘ, 0; Φ, 0)|2 .

4.6.1.6.3 Extensions The local frequency response of the Gram matrix for the cone-beam case is derived in [28]
and has been applied to predicting noise for axial [29] and helical [30] CT scans with iterative reconstruction. Such
local frequency response expressions have also been used for designing 3D regularization methods [31, 32].
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4.6.2 3D cylindrical PET (s,3d,cyl)s,3d,cyl

This section considers a 3D parameterization that is suitable for cylindrical PET scanners [33]. We parameterize the
line-integral projections, p = P f , of a 3D object f(~x) = f(x, y, z) as follows:

p(r, z̃;ϕ, τ) =

∫ ∞
−∞

f

(
r cosϕ− `√

1 + τ2
sinϕ, r sinϕ+

`√
1 + τ2

cosϕ, z̃ +
`√

1 + τ2
τ

)
d`

=
√

1 + τ2

∫ ∞
−∞

f(r cosϕ−t sinϕ, r sinϕ+t cosϕ, z̃ + tτ) dt

=
√

1 + τ2

∫∫∫
f(x, y, z) δ(x cosϕ+y sinϕ−r)

δ(z − (−x sinϕ+y cosϕ)τ − z̃) dx dy dz, (4.6.19)
e,tomo,3d,cyl

where τ denotes the tangent of the angle between the line and the transaxial plane at axial position z̃, and the variable
of integration t is along the projection of the line in that plane. The angle of that projected line with respect to the
y axis is ϕ ∈ [0, π). The variable r is the signed distance of the point where that line intersects the plane to the

origin. Specifically:
[
r
t

]
=

[
cosϕ sinϕ
− sinϕ cosϕ

] [
x
y

]
. In typical multi-ring PET scanners, τ is proportional to the

difference between the ring indices [33]. The goal of 3D reconstruction is to estimate f(x, y, z) from (noisy) samples
of p(r, z̃;ϕ, τ).

4.6.2.1 Backprojection

We consider the hypothetical case of an infinitely long cylindrical scanner with an infinite radius, so r, z̃ ∈ R. How-
ever, practical systems only accept coincidences for a maximum ring difference, so we limit τ to lie in an interval
[−τmax, τmax]. (If τmax = 0, then the problem reverts to the ordinary 2D Radon transform for each slice.)

The projection operation (4.6.19) satisfies the following shift property. If f2(~x) = f1(~x− ~x0), p1 = P f1, and
p2 = P f2, then

p2(r, z̃;ϕ, τ) = p1

(
r − (x0 cosϕ+y0 sinϕ), z̃ − z0 + (−x0 sinϕ+y0 cosϕ); ϕ, τ

)
.

Natural inner products for this parameterization of projection space have the form

〈p1, p2〉 =

∫ π

0

∫ ∫∫
p1(r, z̃;ϕ, τ) p2(r, z̃;ϕ, τ) dr dz̃

1√
1 + τ2

w0(ϕ, τ) dτ dϕ,

where w0(ϕ, τ) is a user-selectable weighting function that is positive on [−τmax, τmax] and zero otherwise. For this
inner product, and the usual L2(R3) inner product for object space, the adjoint of the projection operator P is given
by the backprojection operator b = P∗p defined as follows:

b(x, y, z) =

∫ π

0

∫ ∫∫
p(r, z̃;ϕ, τ) δ(x cosϕ+y sinϕ−r)

δ(z − (−x sinϕ+y cosϕ)τ − z̃) dr dz̃ w0(ϕ, τ) dτ dϕ

=

∫ π

0

∫
p(x cosϕ+y sinϕ, z − (−x sinϕ+y cosϕ)τ ;ϕ, τ) w0(ϕ, τ) dτ dϕ .

The combined projection/backprojection operation P∗P is shift invariant, i.e., if f2(~x) = f1(~x− ~x0), b2 = P∗P f2,
and b1 = P∗P f1, then b2(~x) = b1(~x− ~x0), because

b1(~x− ~x0)

=

∫ π

0

∫
p1((x− x0) cosϕ+(y − y0) sinϕ,

z − z0 − (−(x− x0) sinϕ+(y − y0) cosϕ)τ ;ϕ, τ) w0(ϕ, τ) dτ dϕ

=

∫ π

0

∫
p1(x cosϕ+y sinϕ−(x0 cosϕ+y0 sinϕ),

z − (−x sinϕ+y cosϕ)τ − z0 + (−x0 sinϕ+y0 cosϕ)τ ;ϕ, τ) w0(ϕ, τ) dτ dϕ

=

∫ π

0

∫
p2(x cosϕ+y sinϕ, z − (−x sinϕ+y cosϕ)τ ;ϕ, τ) w0(ϕ, τ) dτ dϕ

= b2(x, y, z) .

The weighted projection/backprojection operator P∗WP is shift invariant if W depends only on ϕ and τ , i.e.

p2 = Wp1 =⇒ p2(r, z̃;ϕ, τ) = w1(ϕ, τ) p1(r, z̃;ϕ, τ),
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where w1(ϕ, τ) is another user-selectable nonnegative weighting function. As in §3.3, due to this shift invariance we
can examine the behavior of b = P∗WP f at the origin:

b(0, 0, 0) =

∫ π

0

∫
w1(ϕ, τ) p(0, 0;ϕ, τ) w0(ϕ, τ) dτ dϕ

=

∫ π

0

∫
w1(ϕ, τ)

√
1 + τ2

∫
f(0 cosϕ−` sinϕ, 0 sinϕ+` cosϕ, 0 + `τ) d` w0(ϕ, τ) dτ dϕ

=

∫∫∫
w(∠π(−t, s), τ) f

(
−s,−t,

√
s2 + t2 τ

) 1√
s2 + t2

dsdtdτ

=

∫∫∫
w

(
∠(s, t) + π/2,

−z′√
s2 + t2

)
f(−s,−t,−z′) 1

(
√
s2 + t2)2

dz′ dsdt,

where (cf. (3.3.5)) s = ` sinϕ, t = −` cosϕ, ϕ = ∠π(−t, s), ` = ±
√
s2 + t2, z′ = −

√
s2 + t2τ , and we define

w(ϕ, τ) ,
√

1 + τ2 w1(ϕ, τ)w0(ϕ, τ) .

Applying shift invariance, it follows that

b(x, y, z) = f(x, y, z) ∗∗∗h(r, ϕ, z), where h(r, ϕ, z) = w

(
ϕ+

π

2
,
−z
|r|

)
1

r2
, (4.6.20)

e,tomo,3d,h

where r = ±
√
x2 + y2.

Converting to spherical coordinates using r3 = r/ cos θ and tan θ = z/|r|, where θ ∈ [−π/2, π/2], we have:

h(r3, ϕ, θ) =
1

r2
3

w
(
ϕ+

π

2
,− tan θ

) 1

cos2 θ
.

In the case where w(ϕ, τ) = 1/
(
1 + τ2

)
= cos2 θ, and when all possible rays are considered, i.e., τmax = ∞,

then this impulse response is simply 1/r2
3 , which is the classical PSF for a spherical system. At the other extreme, if

w(ϕ, τ) = 1
2τmax

rect
(

τ
2τmax

)
, then as τmax → 0, this impulse response approaches the expected response of the 2D

case: 1
r δ(z).

4.6.2.2 Frequency response

Hereafter we assume that the weighting w(ϕ, τ) has the form

w(ϕ, τ) = w(ϕ)
1

1 + τ2
rect

(
τ

2τmax

)
,

where w(ϕ) is π-periodic. (This form means that any statistical weighting depends only on ϕ, rather than on τ , which
seems to be a reasonable starting point for systems having modest acceptance angles, i.e., small τmax.) The frequency
response corresponding to (4.6.20) is

H(ρ,Φ, ζ) =

∫ ∫ π

0

∫
h(r, ϕ, z) e−ı2πρr cos(ϕ−Φ) e−ı2πzζ r dr dϕdz

=

∫∫
rect

(
z/r

2τmax

)
1

1 + (z/r)2

∫ π

0

w
(
ϕ+

π

2

) 1

r2
e−ı2πzζ e−ı2πρr cos(ϕ−Φ) r dr dϕdz

=

∫ τmax

−τmax

1

1 + τ2

∫ π/2−Φ

−π/2−Φ

w(ϕ′ + Φ)

[∫
e−ı2πrτζ eı2πρr sinϕ′ dr

]
dϕ′ dτ

=

∫ τmax

−τmax

1

1 + τ2
δ(τζ − ρ sinϕ′)

∫ π/2−Φ

−π/2−Φ

w(ϕ′ + Φ) dϕ′ dτ

=
1

|ρ|

∫ τmax

−τmax

1

1 + τ2

∫ π/2−Φ

−π/2−Φ

w(Φ + ϕ′) δ

(
sinϕ′ − τζ

ρ

)
dϕ′ dτ

=
1

|ρ|

∫ τmax

−τmax

1

1 + τ2
w
(
Φ + sin−1(τζ/ρ)

) 1√
1− (τζ/ρ)2

I{|τ |≤|ρ/ζ|} dτ

≈ w(Φ)

|ρ|

∫ min(τmax,|ρ/ζ|)

−min(τmax,|ρ/ζ|)

1

1 + τ2

1√
1− (τζ/ρ)2

dτ

=
w(Φ)

|ρ|
√

1 + (ζ/ρ)2
2 sin−1

(
τ
√

1 + (ζ/ρ)2

√
1 + τ2

)∣∣∣∣∣
τ=min(τmax,|ρ/ζ|)

,
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where τ = z/r and ϕ′ = ϕ−Φ− π/2. The approximation relies on the fact that τmax is small; the final expression is
exact if w(ϕ) is a constant.

Now we express this frequency response in spherical coordinates where % = ρ/ cos Θ and tan Θ = ζ/ |ρ| . So√
1 + (ζ/ρ)2 = 1/| cos Θ|. Thus our final expression for the frequency response of the Gram operator is

H(%,Φ,Θ) =
1

|%|
Q(Φ,Θ), where Q(Φ,Θ) = w(Φ) 2 sin−1

(
min(sin θmax, cos Θ)

cos Θ

)
, (4.6.21)

e,tomo,3d,H

where tan θmax = τmax. This frequency response expression agrees with [27] for the case w(ϕ) = 1.

4.6.3 General 3D tomography
For any shift-invariant system having an impulse response of the form

h(r3, ϕ, θ) =
1

r2
3

q(ϕ, θ),

in spherical coordinates, the corresponding frequency response has the following form in spherical coordinates [34]:

H(%,Φ,Θ) =
1

|%|
Q(Φ,Θ),

where Q(Φ,Θ) is related by a 1D integral to q(ϕ, θ). The result (4.6.21) is a special case. In other words,

P∗WP = F−1
3 D(Q(Φ,Θ))F3,

where F3 denotes the 3D Fourier transform operator and D is defined as in (4.2.7).

4.6.4 Regularization in 3D (s,3d,reg)s,3d,reg

Generalizing (4.3.10), if we define a 3D regularizer for which

R =
1

2
F−1

3 D
(
(2π%)2MRR3(Φ,Θ)

)
F3,

then the QPWLS estimator that generalizes (4.3.13) has ensemble mean

E
[
f̂
]

= F−1
3 D(L(%,Φ,Θ))F3,

where (cf. (4.3.17)) ignoring detector blur, the frequency response is:

L(%,Φ,Θ) ≈ Q(Φ,Θ)

Q(Φ,Θ) + β |%| (2π%)2MRR3(Φ,Θ)
. (4.6.22)

e,tomo,3d,qpwls,L

To produce isotropic spatial resolution, evidently we would like to design the regularization method so that

R3(Φ,Θ) ≈ Q(Φ,Θ). (4.6.23)
e,tomo,3d,R,target

In 2D, such a design is simple in the statistically “unweighted” case where w(ϕ) = 1. In realistic 3D systems, i.e.,
excluding a spherical detector, even when w(ϕ) = 1 the other terms in Q(Φ,Θ) related to the geometry greatly
increase the challenge in designing R for isotropic spatial resolution. §5.2.2 describes a practical design method.

4.6.5 The “long object” problem (s,3d,long)s,3d,long

The preceding description assumes that the axial field of view of the scanner is sufficiently long that all “cross plane”
rays (those for which τ 6= 0) are measured over the entire object. In practice, in most scanners the axial field of view
is shorter than the physical length of the object, so τmax varies linearly from some maximum value at the axial center
of the scanner down to zero at the ends of the scanner. This limitation is known as the long object problem, and is
present in both 3D PET scanners and in cone-beam X-ray CT scanners. A solution to this problem was proposed in
N. Pelc’s thesis [35, p. 140].

[We can] first reconstruct the entire volume using only the in-plane rays. From that reconstruction we can
calculate values for the missing cross-plane rays that would make the blurring function invariant over the
entire field. By including these “forward projected” values into the set of measured cross-plane rays the
data set can be made into one that resembles that of a circularly symmetric spatially invariant geometry
with a field of view equal to the volume covered by the in-plane rays.

Apparently this idea was never published elsewhere until it was again proposed by Roger’s et al. [36], and then
finally implemented and evaluated by Kinahan et al. [37, 38]. Today it is known as the reprojection method or 3DRP
algorithm.

Such projection completion steps are unnecessary when iterative algorithms are used. Nevertheless, the long
object problem also complicates iterative reconstruction of CT scans because one must reconstruct extra slices at
each end of the object to account for all possible attenuation along the rays [39].
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4.6.6 Rebinning to 2D sinograms (s,3d,rebin)s,3d,rebin

Rather than performing fully 3D image reconstruction, which can be computationally expensive, an alternative is to
first rebin the projection measurements into a stack of 2D sinograms, and then perform 2D reconstruction for each
slice. Such methods have been proposed for a variety of imaging geometries including cylindrical PET [33, 40–42]
and cone-beam CT [43–48]. In practice, approximate rebinning methods are used frequently, the accuracy of which
decrease as the acceptance angle increases [49]. The most popular method for PET currently is Fourier rebinning
(FORE) [33]. Both 2D FBP and 2D iterative methods have been used to reconstruct the rebinned 2D sinograms.

4.6.7 Helical cone-beam CT geometry (s,3d,helix)s,3d,helix

In helical cone-beam CT, the X-ray source traverses a helical trajectory described by

~p0 = (Ds0 sinβ,−Ds0 cosβ,pitchβ),

where pitch denotes a pitch parameter with typical units cm / radian. The above expression is for a constant pitch;
variable pitch methods also have been investigated [50].

It is an open problem to analyze the local impulse response or local frequency response of a helical cone-beam CT
system. For such analysis it may be useful to consider the starting angle to be uniformly distributed over [0, 2π). See
[28].

4.7 Summary (s,topo,summ)
s,topo,summ

This chapter has considered analytical methods for tomographic image reconstruction that are based on a quadratically-
penalized weighted least-squares (QPWLS) reconstruction method. The methods were analyzed using Hilbert-space
operators. The QPWLS method becomes equivalent to the BPF method as the regularization parameter shrinks to
zero. The QPWLS “method” presented here may be of limited practical use, but the operator formulation serves as
a bridge between the integral formulation of Chapter 3 and the matrix-vector formulations that will be the focus of
all subsequent chapters. In fact, many of the main ingredients are here already: a system model, a cost function that
includes regularization and statistical (angular) weighting, an estimator that minimizes that cost function, and analysis
of the mean (spatial resolution) and variance (noise) of that estimator.

4.8 Problems (s,topo,prob)s,topo,prob

p,topo,proj

Problem 4.1 Reconcile the term projection used in tomography for Pϕ with a standard orthogonal projection P
used in Hilbert spaces. Hint. Consider functions on the unit disk that are are constant along rays at angle ϕ.

Problem 4.2 Prove the backprojection/convolution property (4.2.11). (Solve?)

Problem 4.3 Verify the adjoints shown in (4.2.16).

Problem 4.4 Verify the SVD of A given in (4.2.15) (Need typed.)
p,tomo,commutative

Problem 4.5 Let d(|ρ|) denote any (suitably regular) function of ρ, and define the following two operators:

g = Q2 f ⇐⇒ G(u, v) = d
(√

u2 + v2
)
F (u, v)

q = Q1p ⇐⇒ Qϕ(ν) = d(|ν|)Pϕ(ν).

Use the SVD of P to show the following “commutative” property:

Q1P = PQ2.

When d(ν) = |ν|α, it is called a Riesz potential [4, p. 5]. One can use this result to derive the FBP method [4, p. 11].
(Need typed.)

p,topo,svd,2

Problem 4.6 Generalize the 2D SVD analysis in §4.2.4 by using weighted inner products forH◦ andHsino, mimicking
the weighted inner products used in §4.6.1.5. Determine the frequency response of the Gram operator A∗WA for the
WLS cost function, generalizing (4.3.7). In the 3D case this frequency response depends on the inner product weights,
as seen in (4.6.18). Does it in the 2D case?

p,topo,reg,1_3

Problem 4.7 As noted in [51], for 2D parallel-beam tomography, the FWHM of the PSF is proportional to β1/3,
which can provide a useful rule of thumb for choosing the regularization parameter.
Starting with the local frequency response expression (4.4.8), assume equal statistical weighting w0(Φ) = 1, no detec-

tor blur B0 = 1, and R(ρ) = ρ2, so that L0(ρ) = 1
1+βρ3 . Determine the RMS bandwidth ρRMS =

√ ∫∞
0
ρ2|L0(ρ)|2ρ dρ∫∞

0
|L0(ρ)|2ρ dρ

as a function of β.
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Problem 4.8 Prove the equality (4.3.1). (Need typed.)
p,topo,svd,c-d

Problem 4.9 Establish an SVD decomposition for a continuous-to-discrete system operator A like that in (4.3.3).
(Solve?)

p,tomo,finite,angles

Problem 4.10 Generalize the analysis in §4.3 by considering a measurement model with a finite number of “angular
samples” having the following general form

ȳl[n] =

∫ π

0

ηl(ϕ) pϕ(r) ∗ bϕ(r) dϕ

∣∣∣∣
r=rn

, l = 1, . . . , L,

where ηl(ϕ) characterizes the angular sampling. For example, in a “step and shoot” system we would have ηl(ϕ) =
δ(ϕ− ϕl) whereas for a continuous rotation system with equally-spaced angular intervals we would have ηl(ϕ) =
I{πl/L≤ϕ<π(l+1)/L}. Hint. Consider Problem 3.6 and Theorem 3.3.1. (Need typed.)

Problem 4.11 Find an operator C such that the continuous-space penalty (2.4.1) can be written in the following form:

R(f) =
1

2
‖C f‖2 ,

for the usual L2(R2) norm. Extend to the general case (4.3.12). (Need typed.)

Problem 4.12 Repeat Example 4.3.1 for a tomographic system with a rectangular detector PSF: b(r) = rect(r).
Comment on the sidelobe behavior. (Need typed.)

Problem 4.13 Prove the equality (4.3.20). (Need typed.)
p,topo,ex

Problem 4.14 Verify the following 3D X-ray transform pairs (of a 3D Dirac impulse and a 3D unit sphere, respec-
tively) using (4.6.3):

δ3(x− a, y − b, z − c) 3D Xray←→ δ2(u− (a cosϕ+b sinϕ), v − (a sinϕ sinθ−b cosϕ sinθ+c cosϕ))

I{√
x2+y2+z2≤1

} 3D Xray←→ 2
√

1− (u2 + v2)I{√u2+v2≤1}.

(Need typed.)
p,topo,x3,ell

Problem 4.15 Some 3D functions, including an ellipsoid, can be written as f(~x) = I{‖M~x‖≤1}, for some 3×3 matrix
M . For an ellipsoid, M = diag{1/rx, 1/ry, 1/rz} . Assuming that M ′M is positive definite, verify that the 3D
X-ray transform of such an f is given by

p(u, v;ϕ, θ) =
2

A

√
B2 −ACI{B2≥AC}

A = ‖M ~e‖2

B = (M ~e)′M ~p

C = ‖M ~p‖2 − 1,

where ~e = ~e(~γ) and ~p = ~p(u, v;~γ) were defined in (4.6.1) and (4.6.2).
p,topo,x3,cyl

Problem 4.16 An elliptical cylinder of height h can be written as f(~x) = I{‖M~x‖≤1}I{|z|≤h/2}, where M =
diag{1/rx, 1/ry, 0} . Verify that the corresponding 3D X-ray transform is given by

p(u, v;ϕ, θ) = [`2 − `1]+ I{B2≥AC}

`2 = min
{
`+, ˜̀

+

}
`1 = max

{
`−, ˜̀−

}
`± =

−B ±
√
B2 −AC
A

˜̀± = ±(h/2− v cosθ)/ sinθ

A = ‖M ~e‖2

B = (M ~e)′M ~p

C = ‖M ~p‖2 − 1,

where ~e = ~e(~γ) and ~p = ~p(u, v;~γ) were defined in (4.6.1) and (4.6.2).
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Problem 4.17 Prove (4.3.7). For simplicity, ignore the effects of sampling.
p,topo,shift

Problem 4.18 Prove the shift property (4.6.6).

Problem 4.19 If f(~x)
3D Xray←→ p(u, v;ϕ, θ), then prove the following affine scaling property:

f(x/a, y/b, z/c)
3D Xray←→ p(u′, v′;ϕ′, θ′) (4.8.1)

tanϕ′ =
b

a
tanϕ (4.8.2)

tan θ′ =
ab

c

1√
(a cosϕ)2 + (b sinϕ)2

tan θ (4.8.3)

u′ =
1√

(a cosϕ)2 + (b sinϕ)2
u (4.8.4)

v′ =

[(
b

a
− a

b

)
sinϕ cosϕ sin θ′

]
u+

1

c

cos θ′

cos θ
v. (4.8.5)

e,3d,par,affine

(Need typed.)
p,topo,par3

Problem 4.20 For an X-ray point source at location ~x0 ∈ R3 and a detector element at location ~x1 ∈ R3, the integral
of f along the ray between those points is ∫

f(~x0 + α~e0) dα,

where ~e0 , (~x1 − ~x0)/ ‖~x1 − ~x0‖ . Relate this line integral to a corresponding parallel-beam projection given in
§4.6.1. If ~e0 = (a, b, c), show that the correspondence is

ϕ = − arctan(a/b)

θ = − arcsin c

u = ~e1 ·~x0

v = ~e2 ·~x0.

MIRT See ir_coord_cb_flat_to_par.m.

Using (4.6.3), clearly u = ~e1 ·~x0 and v = ~e2 ·~x0. Furthermore, ~e = ±~e0, so

a = ∓ sinϕ cosθ

b = ± cosϕ cosθ

c = ± sinθ .

Thus θ = ± arcsin c and cosθ = 1/
√

1− c2 and a/b = − tanϕ.
p,topo,cone,par

Problem 4.21 It can be useful to relate cone-beam geometry coordinates, such as described in (3.10.4), to the corre-
sponding parallel-beam coordinates given in §4.6.1. If (s, t) denote the detector coordinates, then define

xs =

{
s, Dfd =∞
Dfd sin(s/Dfd), D0d ≤ Dfd <∞

ys =

{
−D0d, Dfd =∞
Dfs +Ds0 −Dfd cos(s/Dfd), D0d ≤ Dfd <∞.

Show that the correspondence is

ϕ = β + arctan(s/Dsd)

θ = − arctan

(
t√

x2
s + (ys −Ds0)2

)
u = Ds0 sin(ϕ− β) = Ds0

s√
D2

sd + s2

v = −Ds0 sin θ cos(ϕ− β) = Ds0
t√

x2
s + (ys −Ds0)2 + t2

Dsd√
D2

sd + s2
.

(Note that when Dfd =∞, we have ys −Ds0 = Dsd.)
MIRT See ir_coord_cb_flat_to_par.m.

Problem 4.22 Generalize the fan-beam BPF analysis in §3.9.4 to include the effects of detector blur, e.g., p′(s, β) =
p(s, β) ∗h(s). (Solve?)

Problem 4.23 Prove (4.6.11). (Need typed.)
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