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Chapter 5

Analytical Regularization Design for
Tomography

ch,tomo-design
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5.1 Introduction (s,tomo,design,intro)s,tomo,design,intro

This chapter describes some specialized methods for regularization design for tomographic image reconstruction. The
methods in this chapter are based on the “analytical” approach to tomography described in Chapter 3 and Chapter 4.
See Chapter 22 for further discussion of how regularization design affects spatial resolution.

5.2 Regularization design for isotropic spatial resolution (s,tomo,design,2)
s,tomo,design,2

In Chapter 4, §4.3.8 and §4.6.4 described the frequency responses of some “ideal” quadratic regularization methods
that would lead to isotropic spatial resolution. However, the target frequency responses (4.3.23) and (4.6.23) are diffi-
cult to achieve using practical regularization methods based on the differences between neighboring pixel values. This
section describes practical methods for designing regularizers that achieve approximately isotropic spatial resolution.

5.2.1 2D cases,tomo,design,2d

As described in §1.10, for a discrete-space 2D object f [m,n], a typical quadratic roughness penalty has the following
form:

R(f) =
∑
n,m

L∑
l=1

rl
1

2

∣∣(cl ∗∗ f) [n,m]
∣∣2,

where the rl values are design parameters that affect the directionality of the regularization and hence the shape of the
PSF, and each cl[m,n] is a (typically) high-pass filter. This section describes a method for choosing the rl values to
achieve approximately isotropic spatial resolution in 2D [1, 2].

For regularizers using first-order finite differences:

cl[m,n] =
1√

n2
l +m2

l

(δ2[m,n]− δ2[m−ml, n− nl]) ,

whereas for 2nd-order finite differences:

cl[m,n] =

(
1√

n2
l +m2

l

)2

(δ2[m,n]− δ2[m−ml, n− nl]) ∗∗ (δ2[m,n]− δ2[m+ml, n+ nl]) .
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For example, for first-order differences using the nearest horizontal, vertical, and diagonal neighbors, we usually use1

c1[m,n] = δ2[m,n]− δ2[m− 1, n]]

c2[m,n] = δ2[m,n]− δ2[m,n− 1]

c3[m,n] =
1√
2

(δ2[m,n]− δ2[m− 1, n− 1])

c4[m,n] =
1√
2

(δ2[m,n]− δ2[m− 1, n+ 1]) . (5.2.1)
e,tomo,blur,iso,p4

To generalize (4.3.17) for such regularizers, we move to the frequency domain by applying Parseval’s theorem:

R(f) =

L∑
l=1

∫ π

−π

∫ π

−π

1

2
rl |Cl(Ω1,Ω2)F (Ω1,Ω2)|2 dΩ1

2π

dΩ2

2π
,

where the Fourier transform of a first-order cl[m,n] has the following approximation:

|Cl(Ω1,Ω2)|2 =
1

n2
l +m2

l

∣∣∣1− e−ı(Ω1nl+Ω2ml)
∣∣∣2 =

1

n2
l +m2

l

4 sin2

(
Ω1nl + Ω2ml

2

)
≈ 1

n2
l +m2

l

(Ω1nl + Ω2ml)
2
.

More generally, if the lth term is a Mlth order difference, where Ml ∈ N, then

|Cl(Ω1,Ω2)|2 ≈
(

1

n2
l +m2

l

)Ml

(Ω1nl + Ω2ml)
2Ml .

By the frequency relationships associated with sampling, Ω1 = 2π4X u = 2π4X ρ cos Φ and Ω2 = 2π4Y ρ sin Φ.
Thus

|Cl(Ω1,Ω2)|2 ≈
(

1

n2
l +m2

l

)Ml

(2π4X ρnl cos Φ + 2π4Y ρml sin Φ)2Ml

=

(
1

n2
l +m2

l

)Ml

(2πρ)2Ml(nl cos Φ +ml sin Φ)2Ml

= (2πρ)2Ml cos2Ml(Φ− ϕl),
where

ϕl , tan−1 ml

nl

and we assume 4Y = 4X = 1 hereafter for simplicity. For such practical regularization methods, the frequency
domain expression (4.3.10) for the regularization operator becomes R(f) = 1

2 〈Rf, f〉, with

R = F−1
2 D(R(ρ,Φ; r))F2

where r = (r1, . . . , rL) and

R(ρ,Φ; r) ≈
L∑
l=1

rl(2πρ)2Ml cos2Ml(Φ− ϕl) . (5.2.2)
e,tomo,design,R(p,q,r)

Similarly, the frequency response expression (4.3.17) for regularized WLS tomographic image reconstruction becomes

L(ρ,Φ) ≈ L(ρ,Φ; r) ,
w(Φ) |BΦ(ρ)|2

w(Φ) |BΦ(ρ)|2 + β |ρ|R(ρ,Φ; r)
.

To achieve isotropic spatial resolution, we want to choose the regularization coefficients r so that the above expression
is approximately independent of Φ. We could even go one step further and try to choose r to so that L(ρ,Φ; r)
approximates some desired frequency response shape, such as that corresponding to a gaussian bell PSF. Our practical
experience is that arbitrary isotropic PSF shapes can be difficult to achieve with practical penalty neighborhood sizes.
A realistic goal is to approximate the shape of the frequency response associated with unweighted regularized least-
squares reconstruction. So our goal is to choose r such that

L(ρ,Φ; r) =
w(Φ) |BΦ(ρ)|2

w(Φ) |BΦ(ρ)|2 + β |ρ|R(ρ,Φ; r)
≈ L0(ρ,Φ) ,

|B(ρ)|2

|B(ρ)|2 + β |ρ| |2πρ|2MR
,

1 Note that the diagonal differences are divided by
√
2, so the penalty includes terms of the form

∣∣ f[m,n]− f[m−1,n−1]√
2

∣∣2. This differs fromfootnote,sqrt2

the common practice [3, 4] of dividing the square of the diagonal differences by
√
2, i.e., 1√

2
|f [m,n]− f [m− 1, n− 1]|2 . The analysis of this

section suggests that the common practice is suboptimal in terms of producing isotropic spatial resolution.
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where B(ρ) is some Φ-independent detector response, such as the angular average response

B(ρ) =
1

π

∫ π

0

BΦ(ρ) dΦ .

There are many possible approaches to choosing r. A particularly simple approach is based on a continuous-space
extension of [5]. Cross multiplying, we want

w(Φ) |BΦ(ρ)|2
(
|B(ρ)|2 + β |ρ| |2πρ|2MR

)
≈ |B(ρ)|2

(
w(Φ) |BΦ(ρ)|2 + β |ρ|R(ρ,Φ; r)

)
,

or equivalently
w(Φ) |2πρ|2MR |BΦ(ρ)|2 ≈ |B(ρ)|2R(ρ,Φ; r).

Hereafter we choose Ml = MR, in which case our goal becomes to choose r such that

w(ϕ) |Bϕ(ρ)|2 ≈ |B(ρ)|2
L∑
l=1

rl cos2MR(ϕ− ϕl) .

A natural approach is nonnegative weighted least-squares fitting of r:

r̂ = arg min
r�0

1

π

∫ π

0

∫ ∞
−∞

v(ρ)
1

2

(
w(ϕ) |Bϕ(ρ)|2 − |B(ρ)|2

L∑
l=1

rl cos2MR(ϕ− ϕl)

)2

dρdϕ, (5.2.3)
e,tomo,design,rh,int

where v(ρ) is a user-selected weighting function. We allow these weights to depend on spatial frequency ρ because it
is unclear whether high or low spatial frequencies will be more important for achieving isotropy. However, we do not
allow v to depend on angle ϕ because intuition suggests that all angles should be equally important when isotropy is
the goal. The nonnegativity constraint ensures that R is positive-semidefinite.

Expanding the quadratic, integrating over ρ, and completing the square leads to the following simplified expression:

r̂ = arg min
r�0

1

π

∫ π

0

1

2

(
w̄(ϕ)−

L∑
l=1

rl cos2MR(ϕ− ϕl)

)2

dϕ,

where

w̄(ϕ) , w(ϕ)

∫∞
−∞ v(ρ) |B(ρ)|2 |Bϕ(ρ)|2 dρ∫∞

−∞ v(ρ) |B(ρ)|4 dρ
.

In the case of angularly-independent blur with Bϕ(ρ) = B(ρ), then we simply have w̄(ϕ) = w(ϕ) .

A convenient choice for the weights is v(ρ) = 1/ |B(ρ)|2, in which case it follows from Parseval’s theorem that

w̄(ϕ) = w(ϕ)

∫∞
−∞ |Bϕ(ρ)|2 dρ∫∞
−∞ |B(ρ)|2 dρ

= w(ϕ)

∫∞
−∞ |bϕ(r)|2 dr∫∞
−∞ |b(r)|

2
dr

. (5.2.4)
e,tomo,design2,wangb

We can approximate these integrals easily by finite sums in the realistic case of discrete radial samples. The denomi-
nator is just a constant so it is essentially irrelevant and can be absorbed into β.

For a shift-varying detector response and radial-dependent weighting, it follows from (4.4.3) and (4.4.8) that w̄(ϕ)
in (5.2.4) becomes

w̄(ϕ) =

∫
|b(r, ϕ;x0, y0)|2 wϕ(r) dr∫

|b(r)|2 dr
. (5.2.5)

e,tomo,design2,wangb,nuyts

This expression is remarkably similar to the weighting proposed by Nuyts in [4] using a quite different derivation.
Hereafter we focus on the first-order difference case where MR = 1, and expand the cosines in terms of a 3-term

basis that is orthonormal with respect to the inner product 〈f, g〉 = 1
π

∫ π
0
f(ϕ)g(ϕ) dϕ as follows:

cos2(ϕ− ϕl) =
1

2
+

1

2
cos(2ϕ− 2ϕl) =

1

2
+

1

2
[cos(2ϕl) cos(2ϕ) + sin(2ϕl) sin(2ϕ)]

=
1

2
· 1 +

cos(2ϕl)

2
√

2

[√
2 cos(2ϕ)

]
+

sin(2ϕl)

2
√

2

[√
2 sin(2ϕ)

]
.

Using the second-order neighborhood (5.2.1), we find ϕ1 = 0, ϕ2 = π/2, ϕ3 = π/4, ϕ4 = −π/4, so the minimiza-
tion problem (5.2.3) simplifies to

r̂ = arg min
r�0

Ψ(r), Ψ(r) =
1

2
‖Ar−w‖22 , (5.2.6)

e,tomo,design,rh
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Figure 5.2.1: First octant of quadratic penalty design space showing the four regions where different constraints are
active.

fig,tomo,design,octant

where

A = 1
2

 1 1 1 1

1/
√

2 −1/
√

2 0 0

0 0 1/
√

2 −1/
√

2


w =

 d1√
2d2√
2d3

 , d =


1
π

∫ π
0
w̄(ϕ) dϕ

1
π

∫ π
0
w̄(ϕ) cos(2ϕ) dϕ

1
π

∫ π
0
w̄(ϕ) sin(2ϕ) dϕ

 .
(5.2.7)

e,tomo,design,w

The null space ofA is spanned by the vector (1, 1,−1,−1). When w̄(ϕ) is the inverse of the variance of the projection
data at angle ϕ, one can think of d1 as quantifying the overall “certainty,” d2 is related to the horizontal and vertical
directions, and d3 is related to the diagonal directions.

This under-determined 3×4 system could be solved by the iterative NNLS algorithm [6, p. 158]. However, using
the properties of A and d, we can avoid iterations entirely by solving (5.2.6) analytically. Any solution r of (5.2.6)
must satisfy the following KKT conditions: rl > 0 =⇒ ∂

∂rl
Ψ(r) = 0 and rl ≤ 0 =⇒ ∂

∂rl
Ψ(r) ≥ 0, where

∇Ψ(r) = A′Ar−A′w =
1

8


3 1 2 2
1 3 2 2
2 2 3 1
2 2 1 3

 r−1

2


1 1 0
1 −1 0
1 0 1
1 0 −1

d.
We assume hereafter that w̄(ϕ) ≥ 0. It follows from (5.2.7) that

√
d2

2 + d2
3 ≤ d1. The structure of A leads to

eight-fold symmetry that simplifies analysis.
• If d2 < 0 we can solve for r using |d2| and then swap r1 with r2.
• If d3 < 0 we can solve for r using |d3| and then swap r3 with r4.
• If d3 > d2 we can solve for r with d2 and d3 interchanged, and then swap r1 with r3 and r2 with r4.

Therefore, hereafter we focus on cases where 0 ≤ d3 ≤ d2 ≤ d1. Fig. 5.2.1 shows these first octant cases, where
0 ≤ d3/d1 ≤ d2/d1 ≤ 1. The cases are numbered according to the number of nonzero elements of r. We used
MATLAB to “discover” the approximate region boundaries and then verified them analytically as follows.

1 If d2 ≥ 1
2d1 and d3 ≤ 2

3d2 − 1
3d1, then

r1 =
4

3
(d1 + d2) , r2 = r3 = r4 = 0

because ∇Ψ(r) =
[

0 2
3 (d2 − 1

2d1) 1
2

(
2
3d2 − 1

3d1 − d3

)
1
3 (d2 − 1

2d1) + 1
2d3

]
satisfies the KKT con-

ditions. That solution has only one nonzero penalty coefficient (r1), so it alone does not ensure that R is
positive-semidefinite.
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2 If d3 ≥ 2
3d2 − 1

3d1 and d3 + d2 ≥ 1
2d1, then

r1 =
8

5

(
1

2
d1 +

3

2
d2 − d3

)
, r3 =

12

5

[
d3 −

(
2

3
d2 −

1

3
d1

)]
, r2 = r4 = 0

because∇Ψ(r) =
[

0 2
5

(
d2 + d3 − 1

2d1

)
0 2

5

(
d2 + d3 − 1

2d1

) ]
satisfies the KKT conditions.

3 If d3 +d2 ≤ 1
2d1 and d2 ≥ 1

4d1, then there are multiple nonnegative r choices that are exact solutions satisfying
∇Ψ(r) = 0. The solution with minimum norm is

r1 = 4d2, r2 = 0, r3 = d1 − 2d2 + 2d3, r4 = 2

[
1

2
d1 − (d2 + d3)

]
. (5.2.8)

e,tomo,design,case3

4 If d2 ≤ 1
4d1, then there are multiple nonnegative r that are exact solutions satisfying ∇Ψ(r) = 0. The natural

choice is the minimum-norm r given by the pseudo-inverse solution r = A†w, where

r1 = 2

(
1

4
d1 + d2

)
, r2 = 2

(
1

4
d1 − d2

)
, r3 = 2

(
1

4
d1 + d3

)
, r4 = 2

(
1

4
d1 − d3

)
.

As a sanity check, consider what happens in the unweighted case where w̄(ϕ) = 1. Then d = (1, 0, 0) so the 4th
case is applicable, so rl = 1/2, l = 1, . . . , 4 and R(ρ,Φ; r) in (5.2.2) simplifies to (2πρ)2, yielding isotropic spatial
resolution (provided the

√
2 factors are handled appropriately as discussed in footnote 1).

The analytical solution presented above is for the usual first-order differences with the second-order neighborhood
(5.2.1). For higher-order differences or neighborhoods, it would appear to become increasingly cumbersome to solve
(5.2.3) analytically, so the iterative NNLS approach may be more appealing.

The analytical solution above is a continuous function of d, which in turn is a continuous function of w̄(ϕ). (In
contrast, MATLAB’s NNLS solution is discontinuous in d, presumably because it does not use the minimum norm
condition in regions where there are multiple solutions.) This continuity property would seem to be desirable for
avoiding artifacts in the reconstructed images.

MIRT This analytical solution is in penalty2_design.m, which includes a built-in comparison to the NNLS algorithm,
called lsqnonlin in MATLAB.

Up to this point, everything has been solved analytically. For practical implementation, only the three simple
integrals in (5.2.7) need discretization.

Using the local shift invariance concept and the local angular weighting concept described in Chapter 22, this
approach can be extended to be a simple and practical design method even for systems with more realistic noise
models than (4.3.19).

5.2.2 3D case (s,tomo,design,3)s,tomo,design,3

A 3D quadratic roughness penalty has the form

R(f) =
∑
~n∈Z3

L∑
l=1

1

2
|(cl ∗∗∗ f) [~n]|2 ,

where ∗∗∗ denotes 3D convolution and cl [~n] is a 3D high-pass filter. For the usual first-order differences,

cl [~n] =
1

‖~nl‖
(δ[~n]− δ[~n− ~nl]) ,

where ~nl ∈ {−1, 0, 1}3. The corresponding magnitude response is

|Cl(~ω)|2 =
1

‖~nl‖2
∣∣1− e−ı~ω·~n

∣∣2 ≈ 1

‖~nl‖2
(~ω · ~nl)2 (5.2.9)

e,tomo,design,3,Cl,approx

for ~ω ∈ [−π, π]3. Now we convert to spherical coordinates with unit vector

~e(Φ,Θ) = (cos(Θ) cos(Φ), cos(Θ) sin(Φ), sin(Θ)) .

Then ~ω = 2π%~e(Φ,Θ) and ~nl = ‖~nl‖ ~e(Φl,Θl) for suitable (Φl,Θl). Then the magnitude response is

|Cl(~ω)|2 ≈ (2π%)2 (~e(Φ,Θ) · ~e(Φl,Θl))
2
.

Thus the regularization operator (cf. (4.3.12)) is

R = F−1
3 D(R(%,Φ,Θ; r))F3

https://creativecommons.org/licenses/by-nc-nd/4.0/
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where r = (r1, . . . , rL) and

R(%,Φ,Θ; r) ≈ (2π%)2
L∑
l=1

(~e(Φ,Θ) · ~e(Φl,Θl))
2
rl. (5.2.10)

e,tomo,design,R(p,q,r),3d

Considering (4.6.23), we would like to design the penalty coefficients r using something like the following mini-
mization criterion:

r̂ = arg min
r�0

1

π2

∫ π

0

∫ π/2

−π/2
v(Φ,Θ)

∣∣∣∣∣T (Φ,Θ)−
L∑
l=1

(~e(Φ,Θ) · ~e(Φl,Θl))
2
rl

∣∣∣∣∣
2

dΘ dΦ, (5.2.11)
e,tomo,design,rh,int,3d

where T (Φ,Θ) denotes a target frequency response for the regularizer and v(Φ,Θ) denotes some user-selected weight-
ing function.

The natural choices of weighting functions have the form v(Φ,Θ) = cosm(Θ) for m = 0 or m = 1; the latter is
natural for spherical coordinates [7].

Letting ~e(Φl,Θl) = (xl, yl, zl), we can expand the inner squared terms in (5.2.11) in terms of 6 functions defined
for (Φ,Θ) ∈ [0, π]× [−π/2, π/2] as follows:

(~e(Φ,Θ) · ~e(Φl,Θl))
2

= (xl cos(Θ) cos(Φ) +yl cos(Θ) sin(Φ) +zl sin(Θ))
2

=

=

6∑
k=1

bkl gk(Θ,Φ)

bl =
(
x2
l , y

2
l , z

2
l , xlyl, xlzl, ylzl

)
g1(Θ,Φ) = cos2(Θ) cos2(Φ)

g2(Θ,Φ) = cos2(Θ) sin2(Φ)

g3(Θ,Φ) = sin2(Θ)

g4(Θ,Φ) = cos2(Θ) sin(2Φ)

g5(Θ,Φ) = sin(2Θ) cos(Φ)

g6(Θ,Φ) = sin(2Θ) sin(Φ) .

It is somewhat disheartening that, at least to within the approximation (5.2.9), no matter how many neighbors we
use, the local frequency response of R is spanned by just 6 functions. Even if we use all L = 13 nearest neighbors in
3D, the regularizer’s local frequency response can provide only modest angular variations.

In light of the above expansion, we rewrite the NNLS problem (5.2.11) as follows

r̂ = arg min
r�0

Ψ(r), Ψ(r) ,
1

π2

∫ π

0

∫ π/2

−π/2
cosm(Θ) |T (Φ,Θ)− (B r)(Φ,Θ)|2 dΘ dΦ, (5.2.12)

e,tomo,design,rh,int,3d,new

where the operator B : RL 7→ L2([0, π]× [−π/2, π/2]) is defined by

(B r)(Φ,Θ) =

L∑
l=1

(~e(Φ,Θ) · ~e(Φl,Θl))
2
rl =

L∑
l=1

6∑
k=1

bkl gk(Θ,Φ) rl = GB r,

where

(G u)(Φ,Θ) =

6∑
k=1

gk(Θ,Φ)uk

andB is the 6× L matrix whose lth column is given by bl above.
It will be convenient to find a QR decomposition for B, i.e., B = QAwhereA ∈ R6×L and the 6 “columns” of Q,

i.e., {qk(Φ,Θ)}6k=1 , are an orthonormal basis for the span of B. Note that by construction, A = Q∗B = (Q∗G)B,
where (Q∗G) is a 6× 6 matrix.

Defining an orthonormal basis requires a suitable inner product. The two natural inner products for (5.2.12) are

〈f, g〉m ,
1

π2

∫ π

0

∫ π/2

−π/2
cosm(Θ) f(Φ,Θ) g∗(Φ,Θ) dΘ dΦ, m ∈ {0, 1} . (5.2.13)

e,tomo,design,3,inprod

With either of these two inner products, we can rewrite (5.2.12) as

Ψ(r) = ‖T −B r‖2m = ‖T −QAr‖2m = ‖T‖2m − 2 〈T, QAr〉m + ‖QAr‖2m (5.2.14)

= ‖T‖2m − 2 〈Q∗T, Ar〉2 + ‖Ar‖22 ≡ ‖t−Ar‖
2
2 , (5.2.15)

e,tomo,design,rh,int,3d,vr
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where

t , Q∗T ∈ R6, tk = [Q∗T ]k =
1

π2

∫ π

0

∫ π/2

−π/2
cosm(Θ)T (Φ,Θ) qk(Φ,Θ) dΘ dΦ, k = 1, . . . , 6.

For m = 0, the following 6 functions {qk(Φ,Θ)} span the range of B and are orthonormal w.r.t. (5.2.13) [8,
p. 44]:

1√
2 cos(2Θ)

4√
3

cos2(Θ) cos(2Φ)
4√
3

cos2(Θ) sin(2Φ)

2 sin(2Θ) cos(Φ)
2 sin(2Θ) sin(Φ) .

For this choice of Q, symbolic integration determines the elements ofA = Q∗GB using

Q∗G =



2 2 4 0 0 0√
2
√

2 −2
√

2 0 0 0√
3 −

√
3 0 0 0 0

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 . (5.2.16)
e,tomo,design,3,qg0

For m = 1, the following 6 functions {qk(Φ,Θ)} span the range of B and are orthonormal2 w.r.t. (5.2.13):

√
15π



√
1
30√

3
32

(
cos(2Θ)− 1

3

)√
15π
8 cos2(Θ) cos(2Φ)√
1
8 cos2(Θ) sin(2Φ)√
1
8 sin(2Θ) cos(Φ)√
1
8 sin(2Θ) sin(Φ)


.

For this choice of Q, symbolic integration determines the elements of A = Q∗GB. The final expressions are messy
but have the same sparsity pattern as (5.2.16).

For a 3D penalty, typically L = 3 or L = 13. In either case, it would seem to be tedious to try to solve (5.2.15)
analytically, so we resort to the iterative nonnegative least-squares (NNLS) method. Because L is small, the number
of iterations required is modest.

In the practical use of this method, one would need to consider the fact that T (Φ,Θ) is space variant. In particular,
slices near the end of a cylindrical PET scanner have a smaller acceptance angle θmax than slices in the middle.

At first glance there appears to be a significant difference between the 2D case and the 3D case. In the 2D case, if
we use uniform weighting, w(ϕ) = 1, then we can easily “design” a 2D penalty function to achieve isotropic spatial
resolution. However, in the 3D case, even if we use w(ϕ) = 1, the function T (Φ,Θ) is nonuniform (see (4.6.21)), and
cannot be expressed exactly as a linear combination of the 6 basis functions above, except in the unrealistic case where
θmax = π/2, corresponding to a complete spherical detector. This situation provides further rationale for adopting
the “hybrid” regularization/smoothing approach proposed in [9], where one uses a modest amount of regularization
(designed to be nearly isotropic) for iterative reconstruction, followed by post-filtering with an isotropic filter such as
a separable gaussian. With a closer look, perhaps the 2D and 3D problems are not really so different. The difficulty in
the 3D case arises due to the finite limit θmax. A more realistic 2D model would include a finite maximum radius rmax,
and such a limit would also introduce a space-varying anisotropy that could not be overcome perfectly with practical
regularizers.

Given that there are only 6 basis functions, it could be somewhat wasteful to solve the highly under-determined
NNLS problem (5.2.15), where r might have 13 elements in the 3D case. It seems plausible that most of the solutions
lie in or close to a lower-dimensional subspace (or manifold) and we could parameterize that subspace, e.g., r̂ = Sθ̂
for some matrix S. We could then search over

θ̂ = arg min
θ :Sθ�0

‖ASθ −w‖22 ,

and store only θ̂ for each voxel rather than r̂. A natural choice would be S = A†. An open problem is to determine
whether this would give the same family solutions, or almost the same.

2 The version in [8, p. 44] is not quite correct. That version is essentially m = 2 not m = 1.
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5.3 Summary (s,tomo,design,summ)
s,tomo,design,summ

This short chapter just scratches the surface of methods for regularization design. See also Chapter 22 and [7].

5.4 Problems (s,tomo,design,prob)s,tomo,design,prob

Problem 5.1 Verify that (5.2.8) is indeed a minimum norm solution for Case 3.

Problem 5.2 Use appropriate KKT conditions to show that if L = 2, i.e., only horizontal and vertical neighbors are
used, then the solution to (5.2.3) is

r1 =

 d1 + 2d2, |d2| < d1/2
4
3 (d1 + d2), d2 > d1/2
0, otherwise,

r2 =

 d1 − 2d2, |d2| < d1/2
4
3 (d1 − d2), d2 < −d1/2
0, otherwise.
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