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Chapter 22

Spatial Resolution Properties
ch,srp
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f ≈ B2x → Ideal System → ȳ(f) →
⊕
↑

noise

→ y → estimator → x̂ =⇒ f̂ = B2 x̂ .

Figure 22.1.1: General model for imaging systems and reconstruction methods.
fig,srp,system

22.1 Introduction (s,srp,intro)s,srp,intro

This chapter analyzes the spatial resolution properties of image reconstruction methods. This analysis is important for
understanding the trade-offs between spatial resolution and noise, both for imaging system design and for fine tuning
the estimators. In particular, analysis of resolution properties is important for the design of regularization methods that
lead to reconstructed images with desired properties, such as uniform spatial resolution.

The definition of “resolution” in imaging has proven to be a somewhat elusive concept, dating back at least to
Rayleigh’s criterion [1]. Numerous papers have considered various definitions and surveys thereof e.g., [2–5], partic-
ularly in the context of super resolution in diffraction limited optical imaging e.g., [6–11]

We analyze spatial resolution in the context of the block diagram shown in Fig. 22.1.1. An image reconstruction
method operates on a measurement vector y ∈ Cnd to yield an estimated object vector x̂(y) ∈ Cnp . If the estimator
were a linear function of y, and if ȳ = E[y] were a linear function of the true object f true, then analysis of the spatial
resolution properties of the estimator would be relatively straightforward. However, many of the image reconstruction
methods described in this book are nonlinear, so spatial resolution analysis is more subtle. Furthermore, even for linear
image reconstruction methods, spatial resolution analysis can be complicated by shift-varying system or estimator
properties.

For nonlinear estimators, the local resolution properties can depend on many factors: the imaging system’s resolu-
tion properties, the measurement statistics, the type of regularization used, and even the unknown object f true itself.
To analyze the resolution properties in such situations, we examine the local impulse response. Intuitively, the local
impulse response should describe how the estimate x̂ would change due to a point-like perturbation of the true object
at a given spatial location. In the case of nonlinear estimators, there is not a single canonical way to define spatial
resolution. The next section describes a few different ways to formalize this concept mathematically.

22.2 Definitions of impulse response (s,srp,def)
s,srp,def

There are two families of definitions for local impulse response functions, depending on whether one considers the
entire problem as a discrete-space problem, or whether one acknowledges that the underlying object is continuous
(even if the reconstruction is based on a vector estimate x̂). This section considers both frameworks.

22.2.1 Discrete-discrete local impulse response
We focus first on the discrete-space formulation, i.e., a discrete-space object xtrue leads to a noisy measurement vector
y with mean E[y] = ȳ(xtrue) from which we compute a discrete-space estimate x̂(y). Each definition below provides
a different way of quantifying how a perturbation of the object of the form x + εej will influence the estimator x̂,
where ej denotes the jth unit vector in Rnp .

22.2.1.1 Data-dependent definition

The following definition of local impulse response depends on the particular noisy measurement vector y:

l̄(j)(y;x) ≜ lim
ε→0

x̂(y + [ȳ(x+ εej)− ȳ(x)])− x̂(y)

ε

= lim
ε→0

x̂(y + ε∇ ȳ(x) ej)− x̂(y)

ε
= ∇ x̂(y) ∇ ȳ(x) ej , (22.2.1)

where ∇ x̂ is a np × nd matrix and ∇ ȳ and is a nd × np matrix. The quantity l̄(j)(y;x) describes how much the
estimator x̂ changes due to a perturbation of the jth pixel in the true object x. Often ȳ is affine in x, i.e., ȳ = Ax+r,
in which case ∇ ȳ(x) = A. If x̂ were an affine function of y, e.g., x̂ = Zy then this definition would simplify to that
of the usual (local) impulse response: l̄(j)(y;x) = ZAej .

22.2.1.2 Data mean definition

Often we would like to examine separately the spatial resolution properties and the noise properties of a reconstruction
method, so the inclusion of a noisy vector y in the definition (22.2.1) can be unnatural. It may seem more reasonable
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to define the local impulse response in terms of the ensemble mean of the measurements:

l̄(j)(x) ≜ lim
ε→0

x̂(ȳ(x+ εej))− x̂(ȳ(x))

ε
= ∇ x̂(ȳ(x)) ∇ ȳ(x) ej . (22.2.2)

e,srp,lir,ljx

This definition results in the same expression as (22.2.1) but with y replaced by ȳ. In practice, we usually use ȳ for
simulation studies, but for real data we usually use y, because ȳ(xtrue) is unavailable for real data. Alternatively, the
“plug in” estimate ȳ(x̂) is often an adequate approximation to ȳ(xtrue) for the purposes of resolution analysis.

22.2.1.3 Estimator mean definition

Another natural definition is to express the resolution properties in terms of the mean reconstructed object vector:

µ(x) ≜ Ex[x̂(y)] =

∫
x̂(y) p(y |x) dy, (22.2.3)

e,srp,mean,x

leading to the following definition:

l̄(j)(x) ≜ lim
ε→0

µ(x+ εej)−µ(x)

ε
= ∇µ(x) ej . (22.2.4)

e,srp,lir,mu,x

For general nonlinear estimators it is very difficult to determine the mean function µ(·) exactly. In practice, we often
assume that the mean µ approximately equals the estimate one would obtain from noiseless data:

µ(x) = Ex[x̂(y)] ≈ x̂(ȳ(x)) . (22.2.5)
e,srp,mean,approx,x

If this approximation is accurate, then ∇µ(x) = ∇ x̂(ȳ)∇ ȳ(x), so the definitions (22.2.4) and (22.2.2) become
equivalent. Therefore, in the usual case where an exact expression for µ(x) is unavailable, it seems more “honest”
to use (22.2.2) as the definition of local impulse response directly rather than using (22.2.4) and then invoking the
approximation (22.2.5). In fact, the definition (22.2.1) seems the most general because one can always substitute ȳ for
y in (22.2.1) if desired.

Each of the above definitions involves the measurement mean vector ȳ or its gradient. So one must have a system
model ȳ(x) to analyze spatial resolution properties. If that system model is inaccurate, then the analytical predictions
may poorly match the resolution properties of the estimator when applied to real data.

22.2.2 Continuous-discrete local impulse responses,srp,def,cont

In practice, the true object f true is a continuous-space function, even though we compute a finite-dimensional estimate
x̂. (Subsequently we can form an estimate f̂ using the object basis function expansion (10.1.1).) As an alternative
method for quantifying resolution properties, one could explore how an impulse at some continuous-space location x⃗
affects the estimator x̂.

One definition of local impulse response is specific to each noisy measurement vector y:

l̄(y, x⃗) ≜ lim
ε→0

x̂(y + εp(⃗x))− x̂(y)

ε
= ∇ x̂(y) p(⃗x), (22.2.6)

e,srp,lir,lye

where the differential change in the mean measurements due to a perturbation of the true object at spatial location x⃗ is
denoted

p(⃗x) ≜ ∆ ȳ(f, x⃗) .

In particular, for an affine model of the form ȳi =
∫
si(⃗x) f (⃗x) dx⃗+ri, then the perturbation vector p(⃗x) has elements

pi(⃗x) = si(⃗x), i = 1, . . . , nd.
Alternatively it may seem more reasonable to define the local impulse response in terms of the mean measurements:

l̄(f, x⃗) ≜ lim
ε→0

x̂(ȳ(f + εδx⃗))− x̂(ȳ(f))

ε
= ∇ x̂(ȳ(f))p(⃗x), (22.2.7)

e,srp,lir,yb

where δx⃗ denotes a Dirac impulse centered at spatial location x⃗, and where p was defined above. This definition results
in the same expression as (22.2.6) but with y replaced by ȳ.

Another natural definition is to express the resolution properties in terms of the mean reconstructed object vector:

µ(f) ≜ Ef [x̂(y)] =

∫
x̂(y) p(y | f) dy, (22.2.8)

e,srp,mean

leading to

l̄(f, x⃗) ≜ lim
ε→0

µ(f +εδx⃗)−µ(f)

ε
= ∆µ(f, x⃗) . (22.2.9)

e,srp,lir,mu
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Again, for general nonlinear estimators it is very difficult to determine the mean µ exactly. One could invoke the
following approximation:

µ(f) = Ef [x̂(y)] ≈ x̂(ȳ(f)), (22.2.10)
e,srp,mean,approx

in which case the definitions (22.2.9) and (22.2.7) are equivalent. Or one can simply use (22.2.7) as the definition of
local impulse response rather than using (22.2.9) and then invoking the approximation (22.2.10).

Each of the above definitions involves the measurement mean vector ȳ. So one must have a continuous-discrete
system model ȳ(f) to analyze spatial resolution properties using any of these definitions.

22.3 Estimator gradient (s,srp,grad)
s,srp,grad

All of the definitions of local impulse response given in §22.2 lead to expressions that depend on the gradient of the
estimator x̂(·). Thus to determine the local impulse response the key step is to find the estimator gradient ∇ x̂(y) . If
x̂ is affine in y, i.e., if x̂ = Zy + u for some np × nd matrix Z, then of course the gradient is simply ∇ x̂(y) = Z.
But many estimators of interest are defined implicitly as the minimizer of a cost function:

x̂(y) = argmin
x

Ψ(x,y) . (22.3.1)
e,srp,xh

To analyze the gradient of x̂ in this case, we assume that the cost function Ψ satisfies the following regularity condi-
tions.
• For each y, there exists a unique minimizer of Ψ(·,y).
• Ψ is differentiable with respect to x, i.e., ∇[1,0] Ψ is well defined, where ∇[1,0] Ψ(x,y) denotes the np × 1 column

vector with elements [
∇[1,0] Ψ(x,y)

]
j
=

∂

∂xj
Ψ(x,y) . (22.3.2)

e,srp,grad,10

• ∇[1,0] Ψ(x,y) is continuously differentiable with respect to both its arguments, i.e., ∇[2,0] Ψ(x,y) denotes the
np × np Hessian matrix with elements[

∇[2,0] Ψ(x,y)
]
jk

=
∂2

∂xj ∂xk
Ψ(x,y),

and ∇[1,1] Ψ(x,y) denotes the np × nd matrix with elements[
∇[1,1] Ψ(x,y)

]
ji
=

∂2

∂xj ∂yi
Ψ(x,y) . (22.3.3)

e,srp,grad,11

• The Hessian ∇[2,0] Ψ(x,y) is invertible. (A sufficient condition for this would be for Ψ to be strictly convex.)
Then by the implicit function theorem [12, p. 331], the estimator x̂(y) is a well-defined and continuously differen-

tiable function of y.
Disregarding any constraints (such as the nonnegativity), the minimizer must satisfy

0np×1 = ∇[1,0] Ψ(x,y)
∣∣∣
x=x̂(y)

= ∇[1,0] Ψ(x̂(y),y), (22.3.4)
e,srp,grad=0

where 0n×m denotes the n×m matrix of zeros. Next we apply the chain rule to differentiate (22.3.4) with respect to
y as follows:

0np×nd
= ∇[2,0] Ψ(x̂(y),y)∇ x̂(y)+∇[1,1] Ψ(x̂(y),y) . (22.3.5)

e,srp,grad,chain

Rearranging and solving yields the following general expression for the estimator gradient:

∇ x̂(y) =
[
∇[2,0] Ψ(x̂(y),y)

]−1 [
−∇[1,1] Ψ(x̂(y),y)

]
. (22.3.6)

e,srp,grad,xh

This key expression is the foundation for all subsequent analysis.
x,srp,wls

Example 22.3.1 Consider the WLS estimator with cost function Ψ(x,y) = 1
2 ∥y −Ax∥2W 1/2 . Then one can show

that ∇[1,0] Ψ = −A′W (y − Ax), ∇[2,0] Ψ = A′WA, and −∇[1,1] Ψ = A′W . So the estimator gradient is
∇ x̂(y) = [A′WA]

−1
A′W . This expression is consistent with the fact that this estimator is linear, i.e., x̂(y) = Zy.

where Z = [A′WA]
−1

A′W .

Note that we disregarded the nonnegativity constraint in (22.3.1). In problems with such constraints, one should
consider the estimator gradient expression (22.3.6) to be an approximation, the accuracy of which can be suspect in
image regions where the nonnegativity constraint is active.
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Distribution g(z, y) g[1,0](z, y) g[2,0](z, y) − g[1,1](z, y)

Normal
1

2σ2
(z − y)2

1

σ2
(z − y)

1

σ2

1

σ2

Symmetric:
ψ(t) = ψ(−t) ψ(ℓ− y) ψ̇(ℓ− y) ψ̈(ℓ− y) ψ̈(ℓ− y)

Poisson z − y log z 1− y

z

y

z2
1

z

Table 22.1: Derivatives of marginal negative log-likelihoods g(z, y) for various measurement noise models.
(Irrelevant additive constants independent of z are ignored.)

t,srp,table,g

22.4 Penalized-likelihood estimators (s,srp,pl)s,srp,pl

Penalized-likelihood estimators are based on cost functions of the form

Ψ(x,y) = L- (x,y)+R(x), (22.4.1)
e,srp,pl,kost

where L- denotes the negative log-likelihood and where the regularization function R(x) is usually independent1 of the
data y. For such cost functions, the estimator gradient (22.3.6) becomes

∇ x̂(y) =
[
∇[2,0] L- (x,y)+R(x)

]−1 [
−∇[1,1] L- (x,y)

] ∣∣∣∣
x=x̂(y)

, (22.4.2)
e,srp,pl,grad,xh

where R(x) = ∇2 R(x) denotes the Hessian of the regularizer. Combining with (22.2.1) yields the following expres-
sion for the local impulse response:

l̄(j)(y;x) = ∇ x̂(y)∇ ȳ(x) ej

=
[
∇[2,0] L- (x̂(y),y)+R(x̂(y))

]−1 [
−∇[1,1] L- (x̂(y),y)

]
∇ ȳ(x) ej . (22.4.3)

Typically one expects that as R approaches zero, the local impulse response should approach the Kronecker im-
pulse ej , at least for reasonably well-conditioned problems. This property is not evident immediately in (22.4.3).
However, for most statistical models used in imaging problems, the negative log-likelihood L- is minimized at the true
parameter x when given noiseless data. In other words, usually x = argminz L- (z, ȳ(x)) or equivalently

∇[1,0] L- (x, ȳ(x)) = 0. (22.4.4)
e,srp,pl,noiseless

Differentiating both sides with respect to x yields

∇[2,0] L- (x, ȳ(x))+∇[1,1] L- (x, ȳ(x))∇ ȳ(x) = 0.

We would like to combine this with (22.4.3) but the terms do not exactly match in general. To proceed, first we adopt
the definition (22.2.2) where y 7→ ȳ(x), yielding

l̄(j)(x) = l̄(j)(ȳ(x),x) =
[
∇[2,0] L- (x̌, ȳ(x))+R(x̌)

]−1 [
−∇[1,1] L- (x̌, ȳ(x))

]
∇ ȳ(x) ej ,

where x̌ ≜ x̂(ȳ(x)) . Still the terms do not exactly match because of the x̌ terms. However, as the regularization
strength decreases, usually x̌ approaches x, so

−∇[1,1] L- (x̌, ȳ(x))∇ ȳ(x) ≈ ∇[2,0] L- (x̌, ȳ(x)) .

Substituting this yields the following final general expression for the local impulse response of penalized-likelihood
estimators that satisfy (22.4.4):

l̄(j)(x) ≈
[
∇[2,0] L- (x̌, ȳ(x))+R(x̌)

]−1
∇[2,0] L- (x̌, ȳ(x)) ej . (22.4.5)

e,srp,pl,ljyx,20

In this expression it is clear that l̄(j) approaches ej as R approaches zero, for well-conditioned problems.

1Some of the regularization design methods described in §( penalty design ) are data dependent. Determining the effect of this dependence on
resolution properties is an open problem.
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Distribution h(ℓ, y) h[1,0](ℓ, y) h[2,0](ℓ, y) − h[1,1](ℓ, y)

Normal
1

2σ2
(ℓ− y)2

1

σ2
(ℓ− y)

1

σ2

1

σ2

Symmetric:
ψ(t) = ψ(−t) ψ(ℓ− y) ψ̇(ℓ− y) ψ̈(ℓ− y) ψ̈(ℓ− y)

Poisson
General ȳi(ℓ)−y log ȳi(ℓ) ˙̄yi

[
1− y

ȳi

]
¨̄yi

[
1− y

ȳi

]
+ y

˙̄y2i
ȳ2i

˙̄yi
ȳi

Poisson
Emission ȳi(ℓ) = cℓ+ r c

[
1− y

ȳi

]
y
c2

ȳ2i

c

ȳi

Poisson
Transmission ȳi(ℓ) = b e−ℓ + r −b e−ℓ

[
1− y

ȳi

] [
1− yr

ȳ2i

]
b e−ℓ −

[
1− r

ȳi

]
Table 22.2: Derivatives of marginal negative log-likelihoods h(ℓ, y) for various measurement noise models.

(Irrelevant additive constants independent of ℓ are ignored.)
t,srp,table,h

22.4.1 Independent measurements (s,srp,pl,ind)s,srp,pl,ind

In the usual case where the measurements {yi} are statistically independent, the negative log-likelihood has the addi-
tively separable form

L- (x,y) =
nd∑
i=1

gi(ȳi(x), yi) (22.4.6)
e,srp,pl,ind,Lxy

for some functions {gi(·, ·)} that depend on the statistical model. For example, for a Poisson noise model, gi(z, y) =
z − y log z. Table 22.1 lists more examples. Such additively separable log-likelihoods have the following gradients:[

∇[1,0] L- (x,y)
]
j

=

nd∑
i=1

gi
[1,0](ȳi(x), yi)

∂

∂xj
ȳi(x)[

∇[1,1] L- (x,y)
]
ji

= gi
[1,1](ȳi(x), yi)

∂

∂xj
ȳi(x)[

∇[2,0] L- (x,y)
]
jk

=

nd∑
i=1

gi
[2,0](ȳi(x), yi)

∂

∂xj
ȳi(x)

∂

∂xk
ȳi(x)

+ gi
[1,0](ȳi(x), yi)

∂2

∂xj ∂xk
ȳi(x), (22.4.7)

for k, j = 1, . . . , np and i = 1, . . . , nd.
For most statistical models, gi(z, y) is minimized (has highest log-likelihood) when z = y. In other words2:

gi
[1,0](y, y) = 0, (22.4.8)

e,srp,pl,ind,noiseless

cf. (22.4.8). Furthermore, gi[1,0](z, y) is usually smooth, so gi[1,0](z, y) ≈ 0 for z ≈ y. And typically we will consider
cases where ȳi(x) ≈ yi. In addition, ∂2

∂xj ∂xk
ȳi(x) is exactly zero for many system models. Thus, we disregard the

second term in (22.4.7), leading to the following matrix expressions for the gradients:

−∇[1,1] L- (x,y) = (∇ ȳ(x))
′
D1(x,y)

∇[2,0] L- (x,y) ≈ (∇ ȳ(x))
′
D2(x,y)∇ ȳ(x), (22.4.9)

where we define the following diagonal matrices:

D1(x,y) ≜ diag
{
− gi

[1,1](ȳi(x), yi)
}

D2(x,y) ≜ diag
{
gi

[2,0](ȳi(x), yi)
}
. (22.4.10)

Combining this with (22.4.3) yields the following expression for the local impulse response of a penalized-likelihood
estimator with independent measurements:

l̄(j)(y;x) ≈
[
(∇ ȳ(z))

′
D2(z,y)∇ ȳ(z)+R(z)

]−1
(∇ ȳ(z))

′
D1(z,y)∇ ȳ(x) ej

∣∣∣
z=x̂(y)

. (22.4.11)
e,srp,pl,ind,ljyx

2One exception is a saddle point approximation to the log-likelihood of the compound Poisson model for X-ray CT statistics [13].
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This expression is exact in cases where ∂2

∂xj ∂xk
ȳi(x) is zero, and in cases where y = ȳ(x), and is approximate

otherwise.
In the usual cases that satisfy (22.4.8), differentiating again yields

− gi
[1,1](y, y) = gi

[2,0](y, y).

Thus D1(x, ȳ(x)) = D2(x, ȳ(x)), but this is not quite what is needed to simplify (22.4.11). However, x̌ = x̂(ȳ(x))
approaches x as the regularization R decreases, so D1(x̌, ȳ(x)) ≈ D2(x̌, ȳ(x)), leading to the final approximation
for the local impulse response for independent measurements:

l̄(j)(x) ≈
[
(∇ ȳ(x̌))

′
D2(x̌, ȳ(x))∇ ȳ(x̌)+R(x̌)

]−1
(∇ ȳ(x̌))

′
D2(x̌, ȳ(x))∇ ȳ(x̌) ej . (22.4.12)

22.4.2 Image reconstruction cases,srp,pl,ir

For most image reconstruction problems, ȳi(x) is a function of [Ax]i for some system matrix A, in which case the
marginal log-likelihoods gi have the following form:

gi(ȳi(x), yi) = hi([Ax]i , yi) (22.4.13)
srp,pl,ind,ir,hi

for some functions {hi(ℓ, yi)}. Table 22.2 lists some examples. In these problems the negative log-likelihood (22.4.6)
has the following gradients:

∇[2,0] L- (x,y) = A′ diag
{
hi

[2,0]([Ax]i , yi)
}
A

∇[1,1] L- (x,y) = A′ diag
{
hi

[1,1]([Ax]i , yi)
}
.

Combining with (22.4.2) leads to the following expression for the gradient of penalized-likelihood image reconstruc-
tion methods:

D1(x,y) = diag
{
− hi

[1,1]([Ax]i , yi)
}

D2(x,y) = diag
{
hi

[2,0]([Ax]i , yi)
}

(22.4.14)

∇ x̂(y) ≈ [A′D2(x,y)A+ R(x)]
−1

A′D1(x,y)
∣∣∣
x=x̂(y)

. (22.4.15)

For affine models ȳ(·), this expression is exact except for any disregarded constraints such as nonnegativity.

22.4.3 Exampless,srp,pl,ind,ex

The following examples for typical image reconstruction problems reveal a common form for the local impulse re-
sponse.

22.4.3.1 Penalized weighted least squares (PWLS)

Consider the linear gaussian model with ȳ(x) = Ax and hi(ℓ, yi) = wi

2 (ℓ − yi)
2, i.e., a penalized weighted least

squares (PWLS) estimator. Note that gi(z, y) = hi(z, y) and gi[1,0](z, yi) = wi(z − yi) = 0 when z = yi, as in
(22.4.8) Combining (22.2.1) with (22.4.15) yields the following expression for the local impulse response:

l̄(j)(y;x) = [F+ R(x̂(y))]−1 Fej , (22.4.16)
e,srp,pl,ind,lir,pwls

where W = diag{wi} and F = A′WA is the Fisher information matrix associated with the model y = Ax + ε

where ε ∼ N
(
0,W−1) . This is an exact expression because ∂2

∂xj ∂xk
ȳi(x) = 0 as explained below (22.4.3).

22.4.3.2 Quadratically penalized weighted least squares (QPWLS)

As a preview to why “choosing the regularization parameter” is considered challenging by some, consider the simplest
case of white noise where wi = 1/σ2 and a quadratic penalty R(x) = β 1

2x
′Rx. Then (22.4.16) simplifies to

l̄(j) =
[
A′A+ σ2βR

]−1
A′Aej .

So the regularization parameter β effectively is scaled by the noise variance σ2. This type of noise-dependent resolu-
tion effect is exacerbated further in more complicated noise models. §22.10 describes regularization design methods
that address this issue.
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22.4.3.3 Poisson emission penalized likelihood

For the emission tomography problem with Poisson measurement noise where ȳ(x) = Ax + r and hi(ℓ, yi) =
ℓ+ri−yi log(ℓ+ ri), combining (22.2.1) with (22.4.15) yields the following expression for the local impulse response:

l̄(j)(y;x) =

[
A′ diag

{
yi

ȳ2i (x)

}
A+ R(x)

]−1
A′ diag

{
1

ȳi(x)

}
Aej

∣∣∣∣∣
x=x̂(y)

. (22.4.17)
e,srp,pl,lir,epl

This expression is approximate because one usually enforces nonnegativity in emission tomography. Typically the
fitted model agrees with the data reasonably well, i.e., ȳi(x̂(y)) ≈ yi, so the following “plug in” approximation is also
useful [14]:

l̄(j)(y;x) ≈ [A′D(y)A+ R(x)]
−1

A′D(y)Aej , (22.4.18)
e,srp,pl,lir,epl,approx

where D(y) = diag
{

1
max(yi,1)

}
. Other approximations for D have also been investigated [15, 16].

22.4.3.4 Poisson transmission penalized likelihood

For the monoenergetic transmission tomography problem ȳi(x) = bi e
−[Ax]i + ri and for Poisson measurement noise

hi(ℓ, yi) = bi e
−ℓ+ ri− yi log

(
bi e

−ℓ + ri
)
; combining (22.2.1) and (22.4.15) yields the following expression for the

local impulse response:

D1(x,y) = − diag

{
1− ri

ȳi(x)

}
D2(x,y) = diag

{[
1− yiri

ȳ2i (x)

]
(ri − ȳi(x))

}
l̄(j)(y;x) = [A′D2(x,y)A+ R(x)]

−1
A′D1(x,y) diag

{
−bi e−[Ax]i

}
Aej

∣∣∣
x=x̂(y)

. (22.4.19)

Invoking the assumption ȳi(x̂(y)) ≈ yi, this simplifies to an expression of the form (22.4.18) with

D(y) = diag

{
(yi − ri)

2

max(yi, 1)

}
.

22.5 Computing the local impulse response (s,srp,comp)
s,srp,comp

The preceding section described analytical approximations for the local impulse response of estimators defined im-
plicitly as the minimizer of some cost function. This section describes methods for evaluating those approximations
numerically.

22.5.1 Perturbation approximation
To evaluate the local impulse response of an estimator x̂(y) for some measurement vector y (or for ȳ), one can simply
choose a small ε > 0 and compute

l̄(j)(y;x) ≈ x̂(y + εp(x))− x̂(y)

ε
, (22.5.1)

e,srp,comp,ljyx

where p(x) ≜ ∇ ȳ(x) ej for computing (22.2.1), or p(x) ≜ ∆ ȳ(f, x⃗) for computing (22.2.6). In other words, we
reconstruct two images: from the original data y, and one from modified data with an additional contribution due to a
perturbing object point. Either of these cases can be applied even to real data where xtrue is unknown. In either case,
the approximation accuracy will depend on the quality of the system model.

22.5.2 Monte Carlo estimator
For computing the local impulse response defined in (22.2.4) when no analytical expression for the estimator mean
µ(x) is known, one must resort to Monte Carlo methods. In the context of computer simulations, one can estimate
µ(x) by performing multiple realizations of the measurements y1, . . . ,yM , reconstructing x̂ from each, and comput-
ing the sample mean to yield µ̂(x) = 1

M

∑M
m=1 x̂(y

m) . Then one can repeat this process for measurements that are
perturbed by the effect of a small point object, to yield µ̂(x+ εej) . Then one can estimate the local impulse response
using

l̄(j)(x) ≈ µ̂(x+ εej)− µ̂(x)

ε
.

This is an computationally demanding approach.
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22.5.3 Unbiased estimator
An unbiased estimate for the local impulse response (22.2.4) was proposed in [14] by an insightful reviewer:

l̄
(j)
unb(x) ≜

1

M − 1

M∑
m=1

[x̂(ym)− µ̂(x)]
∂

∂xj
log p(ym;x) .

See [17] for proof that this is unbiased. However, this is again relatively computationally demanding.

22.5.4 Matrix-based approximations
§22.4 showed that in many cases the local impulse response has the form (22.4.16). To compute this local impulse
response, it would be inefficient to try to invert literally the np × np Hessian matrix. Instead, the practical approach is
to apply an iterative algorithm such as preconditioned conjugate gradients (PCG) (see §14.6.2) to solve the following
system of equations approximately:

[F+ R] l̄(j) = Fej . (22.5.2)
e,srp,comp,system

Computing this by PCG for a single pixel location j requires approximately the same work as iteratively reconstructing
x̂. So usually it is feasible to perform for at most a small number of pixel locations. The next sections explore further
approximations that can reduce computation.

IRT The qpwls_pcg1.m routine is suitable when F = A′WA.

22.6 Local shift-invariance (s,srp,local)s,srp,local

Local impulse response expressions such as (22.4.16) involve one or more np×np matrices. In general, these matrices
are not Toeplitz and hence not circulant. However, often these problems exhibit approximate local shift invariance, as
described in §4.4. We can exploit local shift invariance to accelerate computation of local impulse response functions
and local noise properties.

Let M denote one of these np × np matrices, such as F or R, or inverses of sums thereof. Then the matrix-vector
operation z = Mx can be expressed equivalently as

z[n⃗] = 1{n⃗∈S}
∑
m⃗∈S

h(n⃗, m⃗)x[m⃗] = 1{n⃗∈S}
∑
m⃗

h(n⃗, m⃗) 1{m⃗∈S} x[m⃗], (22.6.1)
e,srp,local,super

where S ≜ {n⃗j : j = 1, . . . , np} and n⃗j denotes the spatial location corresponding to the jth column of M . In other
words, the elements of M correspond to Mkj = h(n⃗k, n⃗j) . Fig. 22.6.1 illustrates an example of a set S.

(0, 0)

n⃗9

n⃗1 n⃗2

n⃗3 n⃗4 n⃗5 n⃗6

n⃗7 n⃗8 n⃗10

n⃗11 n⃗12

(N − 1,M − 1)(0,M − 1)

(N − 1, 0)

Figure 22.6.1: Illustration of N ×M image lattice with np = 12 pixels within support mask to be estimated.
fig,n,m,square,lattice

Near a given location n⃗0 of interest, we define a local impulse response as follows:

h0(n⃗) ≜ h(n⃗0 + αn⃗, n⃗0 − (1− α) n⃗)1{n⃗0+αn⃗∈S}1{n⃗0−(1−α)n⃗∈S}, (22.6.2)
e,src,loca,h0

where usually we take α = 1. However, sometimes we can approximate h even for noninteger arguments, in which
case α = 1/2 may also be useful. The subscript “0” in h0(n⃗) concisely reminds us of the dependence on location
n⃗0. There may be other definitions of h0(n⃗) that lead to better approximations below. One possibility is to consider
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optimal circulant approximations to Toeplitz (and non-Toeplitz) matrices, e.g., [18–20]. Investigating such alternatives
is an open problem.

If the operator M is approximately shift invariant, then we can approximate the superposition sum (22.6.1) by
(almost) a convolution sum:

z[n⃗] ≈ 1{n⃗∈S}
∑
m⃗

h0(n⃗− m⃗) 1{m⃗∈S} x[m⃗] . (22.6.3)
e,srp,local,approx

This approximation should be accurate provided n⃗ and m⃗ are “sufficiently close” to n⃗0 relative to the width of h0.
This expression is almost a convolution sum, except for the “edge conditions” of the indicator functions. If the point
n⃗0 is not “too close” to the boundaries of the support mask S, then we can disregard the indicator functions and treat
the expression as a convolution.

Define the matrix M0 by [M0]kj = h0(n⃗k − n⃗j) . Then this matrix represents the linear operation in (22.6.3).
However, in general the structure of this matrix is quite complicated due to the set S illustrated in Fig. 22.6.1. To
characterize M0, it is helpful to first let T be the NM × np matrix such that

T1+n+mN,j =

{
1, n⃗j = (n,m)
0, otherwise,

for n = 0, . . . , N − 1, m = 0, . . . ,M − 1 and j = 1, . . . , np. The purpose of T is to embed the np elements of

x, as shown in Fig. 22.6.1, back to the 2D N ×M lattice. Then M0 = T ′M̂0T , where
[
M̂0

]
n⃗,n⃗′

= h0(n⃗− n⃗′)

is an NM × NM matrix that is block Toeplitz with Toeplitz blocks (BTTB), at least if we disregard the indicator
functions in (22.6.2). Thus we can make a circulant approximation to M̂0 [21], as described in the next section.
Such approximations are often reasonably accurate except near the edges of the FOV, where the differences between
“Toeplitz”and “circulant” end conditions are largest. We have described the matrix T for a 2D example, but more
generally we need a Np × np matrix where Np is the number of pixels in the rectangular lattice that is needed for
taking the DFT of the appropriate dimension. In 2D we have Np = NM .

IRT The routine embed.m performs the role of T .
The next section uses such circulant approximations to accelerate computation of the local impulse response

(22.4.16).

22.7 Local Fourier approximations (s,srp,dft)
s,srp,dft

As described in §4.4, many image reconstruction methods are approximately locally shift invariant. For such methods,
we can apply local Fourier analysis to simplify greatly the computation of local impulse response functions. We focus
here on local impulse response functions of the form

l̄(j) = [F+ R]−1 Fej , (22.7.1)
e,srp,dft,lj,mat

where typically F = A′WA and W is some weighting matrix, possibly dependent on y, and R is the roughness
penalty Hessian, possibly dependent on x. §22.4 showed that many problems are of this form.

The key idea is that Fej and Rej are usually “concentrated” around the jth pixel. And furthermore we often find
that the operator F is locally shift invariant, meaning that Fej and Fej′ are similar except for the shift from the jth to
the j′th pixel. Likewise for the operator R.

Shift invariant operators can be represented exactly by Toeplitz matrices, and locally shift invariant operators can
be approximated by circulant matrices. This idea was perhaps first used in the context of tomography by Clinthorne et
al. [22] for developing preconditioners (see also [23]), and was used later for spatial resolution analyses [14,15,24,25].

Consider the 2D case of N ×M images. Let F(j)
k denote the N ×M -point DFT coefficients for the vector TFej ,

and let R(j)
k denote the DFT coefficients for the vector TRej . Then for j′ ≈ j the locally circulant approximation is:

TFej′ ≈ Q−1 diag
{
F
(j)
k

}
QTej′ , (22.7.2)

e,srp,dft,F

where Q denotes theN×M -point DFT matrix for 2D images defined in (1.4.31). (See [15] for the 3D case.) Similarly,

TRej′ ≈ Q−1 diag
{
R
(j)
k

}
QTej′ .

We combine these approximations as follows:

T [F+ R]−1 ≈ Q−1 diag
{
F
(j)
k + R

(j)
k

}−1
QT .

Combining these approximations with (22.7.1) yields the following local Fourier approximation for the local impulse
response (22.7.1):

T l̄(j) ≈ Q−1 diag

{
F
(j)
k

F
(j)
k + R

(j)
k

}
QTej . (22.7.3)

e,srp,dft,lj,dft
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One can compute this approximation with just a few FFT operations, so it is quite practical.
There is one subtle point in computing the F(j)

k and R
(j)
k values. Assuming that W is symmetric positive semidef-

inite (e.g., diagonal with nonnegative elements), the matrix F = A′WA is Hermitian positive semidefinite, so it is
only natural to require its circulant approximation to also be Hermitian positive semidefinite. This means that the
F
(j)
k values should be nonnegative real numbers when ej corresponds to the pixel at the center of the field of view.

In practice, if the FFT operation yields complex or negative values, we take the real part of F(j)
k and set the negative

elements to zero. Similarly for the Rk values in the usual case where R is positive semidefinite. When F
(j)
k and R

(j)
k

are so treated, the denominator of (22.7.3) will be real positive numbers.
IRT See qpwls_psf.m for examples.

22.8 Complex data, real images (s,srp,complex)
s,srp,complex

When the data y and the system model A are complex valued, but the image x is real valued, such as in certain MRI
applications, then the gradient expression (22.4.15) must be modified. For simplicity, consider the QPWLS problem

x̂ = argmin
x∈Rnp

∥y −Ax∥W 1/2 + β ∥Cx∥ = [real{A′WA}+βC ′C]
−1

real{A′Wy}

for which
E[x̂] = [real{A′WA}+βC ′C]

−1
real{A′WA}x.

In this case, the general local impulse form (22.7.1) still holds for F = real{A′WA}, but the local frequency
response values Fk in (22.7.2) must be modified due to the real{} operator. Roughly, the usual Fk must be replaced
by 1

2 (Fk + F−k) where “ F−k” denotes the local frequency response value at the mirror image location in frequency
space. In 1D we have F−k = FN−k. See also Example 28.3.2 and [26].

22.9 Fisher information approximations (s,srp,fish)
s,srp,fish

In several of the cases described in §22.4.3, the matrix F = A′WA is the Fisher information, or an approximation
thereof, for estimating x from y. This matrix has a central role in the analysis of both spatial resolution and noise
properties of image reconstruction methods based on estimation principles. Although one can use FFTs as described in
§22.7 to compute local impulse response functions for a few spatial locations of interest, if one wants to compute them
for many spatial locations (e.g., for regularization design) then even the DFT approach can become impractical. This
has motivated the development of several approximations to F that facilitate rapid computation of the local impulse
response.

22.9.1 Certainty approximation
In some applications such as emission tomography, the system matrix A can be factored as follows:

A = diag{ci}G diag{sj},

where the ci values are ray-dependent factors such as detector efficiencies, PET attenuation factors, etc., the sj values
are pixel-dependent factors such as spatial sensitivity variations and (in SPECT) “first order” attenuation factors (cf.
the image-space Chang method [27] for SPECT attenuation correction), and G denotes an object-independent, shift-
invariant system model. When this factorization is applicable, the Fisher information “simplifies” as follows:

F = A′WA = diag{sj}G′ diag
{
c2iwi

}
G diag{sj},

assuming W = diag{wi} . Now consider the approximation

G′ diag
{
c2iwi

}
G ≈ diag{κj}G′G diag{κj}, (22.9.1)

e,srp,fish,approx1

where we define the following “certainty” factors

κj =

√∑nd

i=1 g
2
ijc

2
iwi∑nd

i=1 g
2
ij

. (22.9.2)
e,srp,fish,kapj

This leads to the following certainty-based Fisher information approximation:

F ≈ diag{sjκj}G′G diag{sjκj} . (22.9.3)
e,srp,fish,cert

We chose the κj factors in (22.9.2) so that this approximation is exact along its diagonal, which is usually where the
largest elements of F are located due to the 1/r response of tomographic systems.
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Substituting (22.9.3) into (22.4.16) and simplifying yields the following local impulse response approximation:

l̄(j) ≈ [diag{sjκj}G′G diag{sjκj}+R]
−1

(diag{sjκj}G′G diag{sjκj}) ej

= diag

{
1

sjκj

}[
G′G+ diag

{
1

sjκj

}
R diag

{
1

sjκj

}]−1
G′G (sjκj) ej (22.9.4)

≈

[
G′G+

1

s2jκ
2
j

R

]−1

G′Gej . (22.9.5)

The final approximation is reasonable when the regularization strength is weak enough that the local impulse response
is narrow. In other words, the certainty approximation suggests that the local impulse response for the jth pixel
corresponds to a penalized LS estimator with system matrix G and with a regularization parameter that is scaled down
by s2jκ

2
j . This approximation captures how the width of the local impulse response changes with the noise statistics,

but does not accurately model the shape of the local impulse response [28].
The g2ij terms in (22.9.2) are inconvenient for many projection / back-projections methods, so in practice we usually

use the following approximation instead:

κj ≈

√∑nd

i=1 gijc
2
iwi∑nd

i=1 gij
. (22.9.6)

e,srp,fish,kapj,1

It is very simple to compute these κj values prior to iterating, as follows.
• First determine the factors w̃i = wic

2
i in sinogram space using the statistics of the measurements.

• Compute
∑nd

i=1 gijw̃i by backprojecting the w̃i “sinogram data” into image space.
• Compute

∑nd

i=1 gij by backprojecting a “sinogram data” array full of the value 1.0 into image space. This factor
does not depend on the patient, so it can be precomputed and stored for a given system geometry. (It does depend
on the selected FOV.)
In parallel beam CT, usually

∑nd

i=1 gij is a scalar constant. In fan beam CT it probably depends on the pixel’s
distance from isocenter in 2D and it may depend on other factors such as the pitch in helical CT scans.

• Divide those two image space arrays over the FOV of interest, and take the square root.
For efficient implementation, it is quite reasonable to use a highly angularly downsampled backprojector for com-

puting the κj factors. So computer κj can add very minimal computation time prior to iterating.
Here is a block diagram of the data flow.

Sinogram data → wi → Angularly downsampled backprojection → κj → Regularizer R(x)

Fig. 22.9.1 compares the “exact” formula (22.9.2) with the approximation (22.9.6) for the case of CT imaging of the
image shown [29]. For the approximation (22.9.6), I downsampled by a factor of 10 along the angular dimension. The
profile illustrates that (22.9.6) is a very good approximation even with substantial down sampling. See Problem 22.4.

take limit as dr → 0 to prove that not squaring is reasonable!
illustrate (22.9.1) using fig_srp_kappa_approx1.m

22.9.2 Angular dependent approximation
In the preceding analysis, variations in certainty as a function of projection angle are not captured because the index
“i” sweeps over both radial and angular position. To form a more accurate approximation, here we replace i with lm,
where l = 1, . . . , L is the radial position index, and m = 1, . . . ,M is the projection angle index. (This is for 2D
image reconstruction; one can generalize easily to the 3D case.) So almj denotes the system matrix element for the
contribution of the jth pixel to the lth radial position and the mth angular position in the sinogram. With this notation,
the Fisher information matrix can be approximated as follows [30]:

Fjk = sj
[
G′ diag

{
c2iwi

}
G
]
jk
sk

= sjsk
∑
m

∑
l

glmjc
2
i(l,m)wi(l,m)glmk

≈ sjsk
∑
m

wmj

∑
l

glmjglmk

where i(l,m) = (m− 1)L+ l denotes the measurement index corresponding to indices l,m, and where we define the
following angle-dependent certainty factors:

wmj ≜
∑

l g
2
lmjc

2
i(l,m)wi(l,m)∑
l g

2
lmj

. (22.9.7)
e,srp,fish,wmj
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Figure 22.9.1: Empirical comparison of (22.9.2) “kappa2” with the approximation (22.9.6) “kappa1.”
fig_srp_fish_kappa1

Again, this approximation is exact along the diagonals of the Fisher information matrix F. It is also exact if ci(l,m)

and wi(l,m) depend only on the projection angle m, rather than on the radial position l. This is rarely exactly the case,
but is often a very close approximation. In matrix form:

Fej ≈ s2j

M∑
m=1

wmjG
′
mGmej ,

where Gm denotes the L× np matrix with elements glmj for l = 1, . . . , L and j = 1, . . . , np.
The angular certainty factors (22.9.7) are useful for regularization design; see §5.1.
For further approximations and their use in the design of regularization methods, see [24, 25, 31].

22.10 Regularization design based on spatial resolution properties (s,srp,design)
s,srp,design

Using the type of spatial resolution analysis described in this chapter, several methods have been proposed for
designing modified regularization methods. Some methods have focused on achieving uniform spatial resolution
e.g., [14, 24, 25, 30], others on uniform contrast recovery, e.g., [15]. In general the design of quadratic regularization
methods has been the most successful; the nonquadratic case is largely an open problem, although there has been
recent progress using local perturbation analysis [32, 33].

22.10.1 Certainty-based design
The earliest and simplest approach [14,34] used the certainty-based Fisher information approximation (22.9.3) and the
corresponding local impulse response approximation (22.9.4) to propose the following modified quadratic roughness
penalty function:

R(x) = β

np∑
j=1

∑
k∈Nj

κjκk ψ(xj − xk),

where ψ(t) = t2/2, the κj values were defined in (22.9.2), and Nj denotes a neighborhood of the jth pixel. This very
simple modified penalty yields approximately uniform average spatial resolution at each pixel, but the local impulse
response can still be very anisotropic [14].
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IRT See Reg1.m for an example.

22.10.2 Analytical Fourier-based design
Regularization designs based on analytical approximations have also been successful; see [31, 35] and §5.1. Wang et
al. designed regularizer coefficients to induce a certain desired frequency spectrum [36].

22.11 Resolution analysis of iterations (s,srp,iter)
s,srp,iter

The preceding analyses have considered estimators that have been iterated until convergence to a minimizer of a cost
function. For iterative reconstruction methods that are not based on a cost function, it may still be of interest to
examine the spatial resolution properties. The material in this section was inspired by the work of Mustafovic and
Thielemans [37].

Consider an iteration of the form
x(n+1) = M(x(n),y), (22.11.1)

e,srp,iter,g

and assume that this iteration converges to a limit x̂(y). To analyze the spatial resolution properties of x̂, once again
the key step is to find ∇ x̂(y) .

If the iteration converges to a limit x̂(y), then that limit must satisfy the following fixed-point relationship

x̂(y) = M(x̂(y),y). (22.11.2)
e,srp,iter,fixed

Taking the row gradient of both sides with respect to y yields

∇ x̂(y) = ∇[1,0]M(x̂(y),y)∇ x̂(y)+∇[0,1]M(x̂(y),y).

Rearranging and “solving” yields

∇ x̂(y) =
[
I −∇[1,0]M(x̂(y),y)

]−1
∇[0,1]M(x̂(y),y),

assuming that I −∇[1,0]M is invertible.
As an example, consider a “smoothed” diagonally preconditioned gradient descent iteration of the form

M(x,y) = S
(
x−D(x)∇[1,0] Ψ(x,y)

)
(22.11.3)

e,srp,g,pgd

for some np × np smoothing matrix S (possibly the identity matrix) and some preconditioning matrix D. Then

∇[0,1]M(x,y) = −SD(x)∇[1,1] Ψ(x,y)

and

∇[1,0]M(x,y) = S

I −D(x)∇[2,0] Ψ(x,y)−
np∑
j=1

ej∇[1,0] Ψ(x,y)∇D′
j(x)

 ,
where Dj denotes the jth row of D. Suppose D is diagonal with jth diagonal element dj(xj). Then

np∑
j=1

ej∇[1,0] Ψ(x,y)∇D′
j(x) = diag

{
ḋj(xj)∇[1,0]

j Ψ(x,y)
}
.

Combining we have

∇ x̂(y) =
[
I − S

(
I −D(x)∇[2,0] Ψ(x,y)− diag

{
ḋj(xj)∇[1,0]

j Ψ(x,y)
})]−1

SD(x)
[
−∇[1,1] Ψ(x,y)

]∣∣∣
x=x̂(y)

.

Substituting into (22.2.6) yields an exact expression for the local impulse response. Ignoring the nonnegativity con-
straint, if the filtering is modest, then the gradient of the cost function should be zero or nearly zero at the limit x̂(y).
Thus we assume the ∇[1,0]

j Ψ(x,y) terms are zero for x ≈ x̂(y). This leads to the simplified expression:

∇ x̂(y) ≈
[
I − S

(
I −D(x̂)∇[2,0] Ψ(x̂,y)

)]−1
SD(x̂)

[
−∇[1,1] Ψ(x̂,y)

]
.

Substituting into (22.2.6) yields an approximate expression for the local impulse response.
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In particular, if S = I , then

l̄(j)(y) ≈
[
∇[2,0] Ψ(x̂,y)

]−1 [
−∇[1,1] Ψ(x̂,y)

]
p,

an expression that is familiar from §22.4 and [24, 28].
As a concrete example, consider the EMS algorithm [38], in which

Ψ(x,y) = (Ax+ r)′1− y′ log(Ax+ r)

∇[1,0] Ψ(x,y) = A′1−A′(y ⊘ ȳ(x))

∇[2,0] Ψ(x,y) = A′ diag
{
yi/ ȳ

2
i (x)

}
A

−∇[1,1] Ψ(x,y) = A′ diag{1/ ȳi(x)}
D(x) = diag{xj/aj},

where aj =
∑nd

i=1 aij = [A′1]j . Thus we have

∇ x̂(y) ≈
[
I − S

(
I −D(x̂)A′ diag

{
yi/ ȳ

2
i (x̂)

}
A
)]−1

SD(x̂)A′ diag{1/ ȳi(x̂)} .

Usually yi ≈ ȳi(x̂(y)), so

∇ x̂(y) ≈ [I − S (I −D(x̂)A′ diag{1/yi}A)]
−1

SD(x̂)A′ diag{1/yi} .

In particular, if S = I (no smoothing) and x̂ > 0, then the local impulse response (22.2.6) approximation
simplifies to

l̄(j)(y) ≈ [A′ diag{1/yi}A]
−1

A′ diag{1/yi}p.

When p = Aej , this further simplifies to l̄(j)(y) ≈ ej . This result is consistent with the conventional wisdom that the
unregularized (and unfiltered) EM algorithm converges to an image with approximately perfect spatial resolution.

Unfortunately, this analysis is inapplicable to typical OS-type algorithms because the form of such algorithms
differs in important ways from (22.11.3). In fact, even (22.11.1) is inapplicable to OS-EM because the diagonal
preconditioners used in OS-EM change with each subset, so we would need to write something like M(n)(x(n),y).
Furthermore, most OS algorithms do not converge, so the limiting argument (22.11.2) is inapplicable.

Relaxed OS algorithms with subset-invariant diagonal preconditioning [39], if modified for some reason to include
inter-iteration filtering, may still be amenable to this type of analysis.

22.12 PSF of denoising with quadratic regularization (s,srp,denoise)
s,srp,denoise

This section analyzes the spatial resolution properties of quadratically penalized least squares deblurring and denoising
problems.

22.12.1 1D analysis of impulse response (s,srp,dtft)s,srp,dtft

For simplicity, consider the case of a 1D discrete-time signal of infinite extent: x = {x(n)} , n ∈ Z. This type of
analysis is described in [40]. Consider the measurement model

y(n) = g(n) ∗ x(n) + ϵ(n),

where g(n) represents linear shift-invariant blur. A natural quadratically penalized least squares cost function for
estimating x from {y(n)} for this problem is the following:

Ψ(x) =
∑
n

1

2
|y(n)− (g ∗ x)(n)|2 + β

∑
n

1

2
|(c ∗ x)(n)|2 .

For example, if c(n) = δ[n]− δ[n− 1], then the penalty term simplifies to
∑

n
1
2 |x(n)− x(n− 1)|2 . The simplest

way to find the minimizer of this cost function is to first apply Parseval’s theorem and work in the frequency domain:

4πΨ(x) =

∫ π

−π

|Y (ω)−G(ω)X(ω)|2 + β |C(ω)X(ω)|2 dω

≡
∫ π

−π

(
|G(ω)|2 + |C(ω)|2

) ∣∣∣∣X(ω)− G∗(ω)Y (ω)

|G(ω)|2 + β|C(ω)|2

∣∣∣∣2 dω,
by completing the square. Thus we have the following expression for the DTFT of the minimizer of Ψ(x):

X(ω) =
G∗(ω)

|G(ω)|2 + β|C(ω)|2
Y (ω).
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Thus, the frequency response of this (linear, shift invariant estimator) is

H(ω) =
G∗(ω)

|G(ω)|2 + β|C(ω)|2
.

As a concrete example, consider the “denoising” problem where g(n) = δ[n] and hence G(ω) = 1, and c(n) =
δ[n]− δ[n− 1] so C(ω) = 1− z−1, where z = eıω. Thus, in terms of the Z transform:

H(z) =
1

1 + β (1− z−1) (1− z)
=

1

1 + 2β − βz−1 − βz
.

Applying a partial fraction expansion, we have

H(z) =
1√

1 + 4β

(
1

1− rz−1
− 1

1− r−1z−1

)
,

where
r = α−

√
α2 − 1, α = 1 +

1

2β
.

Taking the inverse Z transform, we find that the impulse response is

h(n) =
1√

1 + 4β

(
1 +

1

2β
−
√

1

β
+

1

4β2

)|n|

.

The parenthesized argument lies in the interval (0, 1), so this impulse response is a double-sided decaying geometric
series. Interestingly, this expression seems simpler than the solution to Problem 1.17.

22.12.2 N-D analysis
Now consider the N-D shift-invariant deblurring problem:

y(n⃗) = g(n⃗) ∗ x(n⃗) + ε(n⃗),

where now “n⃗” denotes a point in Zd̄ where d̄ is the spatial dimensionality. In multi-dimensional problems we usually
penalize roughness in several directions, so the a natural quadratically regularized least-squares cost function is

Ψ(x) =
∑
n⃗

1

2
|y(n⃗)− (g ∗ x)(n⃗)|2 +

K∑
k=1

βk
∑
n⃗

1

2
|(ck ∗ x)(n⃗)|2 ,

where ck(n⃗) denotes the impulse response of the penalty in the kth direction. By similar arguments as above, the
corresponding frequency response is

H(ω) =
G∗(ω)

|G(ω)|2 +
∑K

k=1 βk|Ck(ω)|2
,

where ω ∈ Rd.
Again, consider the denoising case where g(n⃗) = δ[n⃗] and hence G(ω) = 1. In 2D, the simplest type of penalty

uses c1[n,m] = δ2[n,m]− δ2[n− 1,m] and c2[n,m] = δ2[n,m]− δ2[n,m− 1], so Ck(ω1, ω2) = 1− eıωk . Usually
we use β = β1 = β2 also. Thus

H(ω1, ω2) =
1

1 + β
(
|1− eıω1 |2 + |1− eıω2 |2

)
=

1

1 + 2β ([1− cosω1] + [1− cosω2])

≈ 1

1 + β (ω2
1 + ω2

2)
,

using the Taylor expansion cosx ≈ 1−x2/2. Thus,H is approximately circularly symmetric. Finding h[n,m] exactly
is an open problem.
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22.13 Dynamic problems (s,srp,dynam)
s,srp,dynam

Although this chapter focuses primarily on static image reconstruction, many of the general principles also apply
to dynamic imaging. This section analyzes the spatial resolution properties of one family of dynamic image recon-
struction methods. For simplicity we focus on the case of quadratic spatial regularization and quadratic temporal
regularization [41].

Consider a dynamic model of the form

ym = Amxm + εm, m = 1, . . . ,M,

where each xm ∈ Cnp and the number of columns of each Am is np. (The number of rows of each Am may differ.)
Equivalently:

y = Ax+ ε

where y = (y1, . . . ,yM ), x = (x1, . . . ,xM ), ε = (ε1, . . . , εM ) and

A = blockdiag{A1, . . . ,AM} .

Now consider a PWLS estimator of the form

x̂ = argmin
x

Ψ(x) (22.13.1)

Ψ(x) =
1

2
∥y −Ax∥2W 1/2 + βRS(x)+αRT(x), (22.13.2)

where W = blockdiag{W1, . . . ,WM} and each Wm is the inverse of the covariance of εm, at least approximately.
(We assume the noise is uncorrelated between frames.) Assume the quadratic spatial regularizer has the “frame-by-
frame” form

RS(x) =

M∑
m=1

1

2
∥CS0xm∥2 (22.13.3)

e,srp,dynam,Rsx

and the quadratic temporal regularizer has a “pixel-by-pixel” form such as

RT(x) =
M∑

m=2

1

2
∥xm − xm−1∥2 . (22.13.4)

e,srp,dynam,Rtx

It will simplify analysis to put both regularizers in a concise matrix form. Because the same spatial regularizer is
used for each frame in (22.13.3), we can rewrite it using a Kronecker product:

RS(x) =
1

2
∥CSx∥2 ,

where
CS ≜ IM ⊗CS0.

Because the same temporal regularizer is used for every pixel in (22.13.4), we can rewrite it as

RT(x) =
1

2
∥CTx∥2 ,

where
CT = CT0 ⊗ Inp

for some M ×M temporal differencing matrix CT.
The spatial resolution properties of the PWLS estimator (22.13.2) are given by (22.4.16):

E[x̂] = [F+ R]−1 Fx,

where the Mnp ×Mnp Fisher information matrix is F = A′WA, and where the Hessian of the regularizer is

R = βC ′
SCS + αC ′

TCT = βIM ⊗ (C ′
S0CS0) + α(C ′

T0CT0)⊗ Inp .

Because C ′
T0CT0 is symmetric positive semidefinite, it has a M ×M matrix decomposition:

C ′
T0CT0 = Q−1

T ΩQT,

where Ω = diag{ωm} . Furthermore, because static signals are not penalized by (22.13.4), we know that CT01M = 0
and hence, without loss of generality, QT1M = eT0 ≜ (1, 0, . . . , 0) and ω1 = 0, i.e., the response of the temporal
regularizer to DC is zero.
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22.13.1 Static system matrix
If the same system matrix (and weighting) is used for each frame repeatedly, i.e., Am = A1 and Wm = W1, then

F = IM ⊗ F1

F1 ≜ A′
1W1A1

H = IM ⊗HS + α(C ′
T0CT0)⊗ Inp ,

where
HS = F1 + βC ′

S0CS0.

Thus
H =

(
Q−1

T ⊗ Inp

) [
IM ⊗HS + αΩ⊗ Inp

] (
QT ⊗ Inp

)
so

H−1 =
(
Q−1

T ⊗ Inp

)
blockdiag

{[
HS + αωmInp

]−1}M

m=1

(
QT ⊗ Inp

)
.

Similarly,
F =

(
Q−1

T ⊗ Inp

)
(IM ⊗ F1)

(
QT ⊗ Inp

)
so the overall PSF matrix is

H−1F =
(
Q−1

T ⊗ Inp

)
blockdiag

{[
HS + αωmInp

]−1
F1

}M

m=1

(
QT ⊗ Inp

)
.

22.13.1.1 Static object case

To analyze the influence of the spatial regularization parameter β, it may be helpful to consider the case where the
object is static, i.e.,

x = 1M ⊗ x0.

In this case, (
QT ⊗ Inp

)
x = eT0 ⊗ x0,

so, using the property ω1 = 0, the resolution properties are:

E[x̂] = H−1Fx = (Q−1
T ⊗ Inp)blockdiag

{[
HS + αωmInp

]−1
F1

}M

m=1
(eT0 ⊗ x0)

= (Q−1
T ⊗ Inp)

(
eT0 ⊗

([
HS + αω1Inp

]−1
F1x0

))
= (Q−1

T ⊗ Inp)
(
eT0 ⊗

(
H−1

S F1x0

))
= 1⊗

(
H−1

S F1x0

)
= 1⊗

(
[F1 + βC ′

S0CS0]
−1

F1x0

)
.

In words, we have shown mathematically the intuitive result that if the same system model A1 is used for all frames,
then the temporal regularization parameter α has no effect on the spatial resolution. This result holds for any system
model, regardless of whether it is spatially shift invariant. So in this special case, the spatial regularization parameter
can be set by the spatial resolution properties of a single frame, i.e., by using

[F1 + βC ′
S0CS0]

−1
F1. (22.13.5)

e,srp,dynam,psf,static

22.13.2 General system matrices
More generally, the overall Fisher information matrix is

F = blockdiag{Fm}Mm=1

where the np × np Fisher information matrix for the mth frame is

Fm = A′
mWmAm.

To proceed, we assume that the per-frame Fisher information matrices and the spatial regularizer all have a common
eigenspace:

Fm = Q−1
S Λm QS, m = 1, . . . ,M

C ′
S0CS0 = Q−1

S ΓQS,
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where
Λm = diag

{
λm1, . . . , λmnp

}
.

This eigenspace assumption is applicable to single-coil dynamic MRI where each frame involves a subset of Carte-
sian k-space samples and the spatial regularizer uses periodic boundary conditions. Whether it also applies (at least
approximately) to parallel MRI is an open problem.

Under this assumption,

F+ βC ′
SCS =

(
IM ⊗Q−1

S

)
blockdiag{Λm +βΓ}Mm=1 (IM ⊗QS)

so
H−1 =

(
IM ⊗Q−1

S

) [
blockdiag{Λm +βΓ}Mm=1 + α (C ′

T0CT0)⊗ Inp

]−1
(IM ⊗QS)

and

H−1F =
(
IM ⊗Q−1

S

)([
blockdiag{Λm +βΓ}Mm=1 + α (C ′

T0CT0)⊗ Inp

]−1
blockdiag{Λm}Mm=1

)
(IM ⊗QS) .

Thus far we have used a lexicographic ordering in which the spatial index varies fastest and the temporal index
varies slowest. Now we consider the permutation of that ordering in which the time index varies fastest and the spatial
index varies slowest. In this ordering, the PSF becomes

H̃−1F̃ =
(
Q−1

S ⊗ IM
)([

blockdiag{Dj + βγjIM}np

j=1 + αInp ⊗ (C ′
T0CT0)

]−1
blockdiag{Dj}np

j=1

)
(QS ⊗ IM )

=
(
Q−1

S ⊗ IM
)
blockdiag

{
[Dj + βγjIM + α (C ′

T0CT0)]
−1

Dj

}np

j=1
(QS ⊗ IM ) ,

where each M ×M matrix Dj is defined by

Dj = diag{λ1j , . . . , λMj} .

In words, the expression
[Dj + βγjIM + α (C ′

T0CT0)]
−1

Dj

corresponds to temporal smoothing of the jth frequency component.

22.13.2.1 Static object case

When the object is static, then in the “time fastest” lexicographic ordering:

x̃ = x0 ⊗ 1M .

In this case,
(QS ⊗ IM ) x̃ = (QSx0)⊗ 1M .

Let X0 = QSx0 = (X1, . . . , Xnp) denote the spatial transform of x0. Then

H̃−1F̃x̃ = (Q−1
S ⊗ IM )blockdiag

{
[Dj + βγjIM + α (C ′

T0CT0)]
−1

Dj

}np

j=1
(X0 ⊗ 1M )

= (Q−1
S ⊗ IM )


...

Xj [Dj + βγjIM + α (C ′
T0CT0)]

−1
Dj1M

...

 .
Even though the object x̃ is static here, in general the mean reconstruction given above will have time-varying fre-
quency content due to changes in the system matrix between frames. For the purpose of choosing the spatial regular-
ization parameter it may be helpful to examine the time average of the mean reconstructed image:

(
Inp ⊗ 1

M
1′
M

)
H̃−1F̃x̃ =

(
Q−1

S ⊗ 1

M
1′
M

)
...

Xj [Dj + βγjIM + α (C ′
T0CT0)]

−1
Dj1M

...



= Q−1
S


...

Xj
1
M 1′

M [Dj + βγjIM + α (C ′
T0CT0)]

−1
Dj1M

...
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= Q−1
S L(β, α)X0,

where L is a np × np diagonal “frequency response” matrix with elements

Ljj(β, α) =
1

M
1′
M [Dj + βγjIM + α (C ′

T0CT0)]
−1

Dj1M .

In the case of a static system matrix, Dj = λ1jIM , and Ljj(β, α) =
λ1j

λ1j+βγj
which is independent of α and concurs

with (22.13.5).
Consider the case where α = 0:

Ljj(β, 0) =
1

M

M∑
m=1

λmj

λmj + βγj
.

Now assume that the jth frequency component is “sampled” 0 ≤ Mj ≤ M times, and suppose that for each such
sample we have the same eigenvalue: λmj = λj . (This is reasonable for single-coil MRI but investigating it for parallel
MRI is an open problem.) Then the frequency response elements simplify to

Ljj(β, 0) =
Mj

M

λj
λj + βγj

.

Compared to the static system matrix case, the jth frequency component is reduced by Mj/M when α is very small.
This does not change the spatial resolution, but simply attenuates the values of the (time averaged) mean reconstructed
image.

Now consider the limit as α→ ∞. By derivations analogous to (2.6.2):

lim
α→∞

[Dj + βγjIM + α (C ′
T0CT0)]

−1
= 1M (1′

M (Dj + βγjIM )1M )−11′
M ,

because CT0 in (22.13.4) uses finite differences in time. So

lim
α→∞

Ljj(β, α) =
1

1′
M (Dj + βγjIM )1M

1′
MDj1M =

∑M
m=1 λmj∑M

m=1 (λmj + βγj)
.

If the jth frequency component is sampled Mj out of M times, then

lim
α→∞

Ljj(β, α) =
Mjλ1j

Mjλ1j +Mβγj
=

λ1j

λ1j +
M
Mj

βγj
.

In other words, for large values of α, the effective spatial regularization parameter is increased by a factor M/Mj

relative to the static case.

22.14 Notes (s,srp,note)s,srp,note

Except for the continuous-discrete analysis in §22.2.2, this chapter focused on reconstruction problems where there is
no system model mismatch, i.e., we assume we have the correct system model A in ȳ = Ax. One can generalize the
analysis to consider effects of model mismatch [42].

In statistics literature, often regularization parameters are chosen to minimize expected squared error as the number
of data points increases asymptotically, e.g., [43].

Use local Fourier analytical approximation to Fk and Rk to help choose β via ΦGCV in (2.5.37)?
IRT See tomo2_beta_test.

To maintain consistent spatial resolution (in mm) as one varies nφ , △R, FOV, or △X, one must multiply β by
nφ/△R. (For consistent resolution in pixels, one would also multiply by △3

X.) This follows from analyzing how the
diagonal elements of A′A vary with those scan parameters.

[47] similar considerations used for partial volume correction
[48] trade-off between confocal pinhole size and amount of deconvolution needed
[49] used quadratic penalty based on system’s SVD to make uniform variance.
[50] Generalized matrix inverse reconstruction for SPECT using a weighted singular value spectrum @an uses

apodized SVD rather than truncated to get better PSFs. essentially local impulse response ”design” subject to variance
constraint!

[15] uniform contrast recovery coefficient (CRC). iterative coordinate descent to optimize a modified quadratic
penalty function.

[51, 52] oriented approach
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22.15 Problems (s,srp,prob)s,srp,prob

p,srp,four,cart

Problem 22.1 Analysis the local impulse response of a PWLS estimator for the case: white noise, W = I; Cartesian
Fourier samples, A = Q; and Tikhonov regularization, R(x) = β 1

2 ∥x∥
2.

p,srp,eql

Problem 22.2 For a Poisson emission tomography problem with a penalized-likelihood estimator, compute the local
impulse response using the perturbation approximation (22.5.1), the system of equations (22.5.2), and the DFT ap-
proximation (22.7.3) and compare. (Need
typed.)

p,srp,step

Problem 22.3 For linear shift invariant systems, there is a simple relationship between a system’s impulse response
and its step response. In the context of imaging problems, “step response” could be important in terms of analyzing
how well edges are preserved by a given reconstruction method.
Propose a criterion for the step response of nonlinear image reconstruction methods and analyze it for penalized-
likelihood estimators with edge preserving regularization. Hint: see [32]. The 1D case for a Huber potential function
was considered in [53]. (Solve?)

p,srp,fish,kapj,1

Problem 22.4 Compare (22.9.2) with the approximation (22.9.6) for a single projection view in the limit as the radial
sampling approaches zero.

(Solve?)

Problem 22.5 Consider a reconstruction problem with noiseless data under the linear model y = Ax and convex,
differentiable, edge-preserving regularization. Examine center point x̂j of the local impulse response x̂(y+εAej)− x̂(y)

ε
as a function of ε varying between nearly zero and much larger values. For small ε values the plot should be nearly
flat, but as ε increases there may be a knee in the curve. Analyze this problem to determine the approximate location
of the knee and find the slope for large ε, (assuming the curve is approximately affine beyond the knee). (Solve?)
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