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Chapter 1

Image Restoration
ch,restore
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1.1 Introduction (s,res,intro)s,res,intro

Although this book emphasizes tomographic image reconstruction problems, many of the concepts apply to the
related inverse problem known as image restoration. The physical models used in basic image restoration problems
are often simpler than those of realistic tomographic reconstruction problems, so image restoration problems provide
a convenient framework in which to describe many of the principles of image recovery problems1 in general, both
restoration and reconstruction problems2. This chapter uses the context of image restoration problems to provide an
overview of the concepts that will follow later in the book. By no means is this an exhaustive treatment of image
restoration; the focus is on principles that are common to both restoration and reconstruction. Readers familiar with
statistical image restoration methods could simply skim this chapter for the notation conventions. For further reading,
see [2–6].

In 2D image restoration problems, we are given a blurry, noisy image

{g[m,n] ∈ R :m = 0, . . . ,M − 1, n = 0, . . . , N − 1} (1.1.1)
e,res,gmn

of some object or scene, recorded, for example, by a camera with a digital detector such as a CCD array [7, 8].
Restoration of astronomical images from the Hubble Space Telescope is a famous example of such a problem [9]. Our

1There is not universal terminology for image recovery problems. Typically image reconstruction means forming an image from measured
data that is not interpretable directly as an image, such as a sinogram in tomography. In contrast, in image restoration problems one begins with
an image (usually noisy and blurry) and tries to improve it. A special case is image denoising where one tries to reduce noise without considering
blur. We use image recovery to encompass all such problems.

2In the context of medical imaging, iterative methods for image restoration were applied as far back as 1967 [1].
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goal is to use the measured image to form an estimate of the underlying “true” object, i.e., to eliminate or reduce the
blur and the noise. We focus on 2D problems, but the concepts generalize readily to 3D restoration problems like
confocal microscopy [10] and to problems with multiple views of the same object [11–14].

Fig. 1.1.1 illustrates image restoration using a method described in §1.8.2.

Figure 1.1.1: The left image was degraded by a 11×11 uniform blur b[m,n] and additive gaussian noise corresponding
to 60 dB blurred signal-to-noise ratio (BSNR). The right image illustrates deblurring using the method in §1.8.2.

fig_res_ex2afig_res_ex2b

To proceed, we must define the restoration goal more precisely. An ambitious goal would be to try to reconstruct
the image that would be recorded by an imaging device with perfect spatial resolution, sufficiently large field of view,
arbitrary dynamic range, and no measurement errors (noiseless). Practical formulations are usually less ambitious, as
described next.

1.2 Conventional discrete measurement model
The simplest formulations of image restoration problems assume that the object to be recovered is also a discrete-space
array with the same domain as g[m,n]. In other words, we wish to estimate the latent image (unknown object)

{f [m,n] ∈ R :m = 0, . . . ,M − 1, n = 0, . . . , N − 1} (1.2.1)
e,res,domain

from the measurements {g[m,n]}. The first step in formulating any inverse problem is to define a system model that
relates the unknown quantities to the observed measurements. In the signal processing literature, this is known as
the input-output relationship of the system. In the inverse problems field, this is called the forward model for the
problem. Several of the subsequent chapters focus on system models for tomographic systems.

For image restoration, the simplest model is to assume that the imaging system is linear and shift-invariant. The
input-output relationship of any linear shift-invariant (LSI) system can be represented by a convolution operation. For
a discrete-space LSI system, the convolution sum is3

ḡ[m,n] = b[m,n] ∗∗ f [m,n] ≜
M−1∑
k=0

N−1∑
l=0

b[m− k, n− l] f [k, l], (1.2.2)
e,res,conv

where b[m,n] denotes the impulse response of the system, or specifically the point spread function (PSF) in the
context of imaging problems. Typically b[m,n] causes blur.

The convolution model (1.2.2) by itself is incomplete because any real imaging system has measurement errors,
known as “noise.” (This terminology comes from the influence of audio signals in the signal processing field). Several
subsequent chapters describe statistical models for tomographic measurements. For image restoration, the simplest
model assumes that the measurement noise ε[m,n] is additive:

g[m,n] = b[m,n] ∗∗ f [m,n] + ε[m,n], m = 0, . . . ,M − 1, n = 0, . . . , N − 1. (1.2.3)
e,res,g=h*f+e

Often it is assumed that the noise is zero mean and has a gaussian distribution. Fig. 1.2 illustrates this model.

3The notation ḡ[m,n] = (b ∗ ∗ f)[m,n] would be more precise. The standard definition of the 2D convolution sum is (b ∗ ∗ f)[m,n] =∑∞
k=−∞

∑∞
l=−∞ b[m− k, n− l] f [k, l] . For now, we treat f [·, ·] as being zero for arguments outside its domain (1.2.1). We revisit this

assumption in §1.4.
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Figure 1.2.1: Graphical illustration of the imaging model (1.2.3) for the extended end conditions of §1.4.1.2.

With the statistical model (1.2.3) in hand, we can state that the goal of image restoration is to recover {f [m,n]}
from {g[m,n]}, using knowledge of the PSF b[m,n] and a statistical model for the noise ε[m,n]. A challenging
variation of this problem is blind restoration in which the PSF b[m,n] is also unknown or partially unknown, e.g.,
[15–37]. This problem is particularly interesting when given multiple images with different blurs [12, 28, 38–43].

Although (1.2.3) is the classical model for image restoration that has been the focus of numerous publications, there
are very few, if any, realistic problems that exactly match the underlying assumptions! The unknown object is rarely a
discrete-space function, imaging systems are rarely perfectly shift invariant (due to problems like optical aberrations),
and in optical imaging the noise is rarely exactly gaussian due to the quantum effects of photons. Furthermore, digital
detectors always quantize the measurements. There are also subtle effects at the borders of the field of view that
require consideration.

The mismatch between the classical model and physical reality is not unique to image restoration problems; many
tomography papers have also been based on over-simplified models. Simplified models are certainly very important
for developing intuition and, in many cases, for finding fast (albeit approximate) algorithms. But one of the goals
of subsequent chapters is to describe reasonably complete models for tomographic systems because one of the most
important benefits of statistical methods for image reconstruction is that they can incorporate realistic models, whereas
analytical reconstruction methods usually are limited to relatively simplified models.

As a preview of the types of system models that are described in subsequent chapters, we consider next a somewhat
more realistic model for many image restoration problems, and attempt to relate it to (1.2.3).

1.3 Continuous-discrete model (s,res,cd)s,res,cd

Although no physical system can be perfectly linear over an arbitrary dynamic range, practical systems are usually
designed to operate within the linear range of the system components. So the linearity assumption that underlies
(1.2.2) is often reasonable. However, in most image restoration problems the (unknown) “true object” is a function
of continuous arguments, called a continuous-space function, e.g., {f(x, y) : x, y ∈ R}, so using a discrete-space
object and PSF in (1.2.2) is a simplification. Compared to (1.2.2), a more realistic measurement model for image
restoration problems is the following [44]:

g[m,n] = ḡ[m,n] + ε[m,n], ḡ[m,n] =

∫∫
b(m,n;x, y) f(x, y) dxdy, (1.3.1)

e,res,cd,model

where b(m,n;x, y) denotes the contribution that an impulse object located at (x, y) would make to the expected
value of g[m,n]. The function b(m,n;x, y), combined with the assumption of linearity, completely describes the
non-statistical aspects of the imaging system, so we refer to b(m,n;x, y) as the system model.

The model (1.3.1) is known as a continuous to discrete mapping. With this model, we could pose the problem as
one of estimating f given {g[m,n]}. This problem is the epitome of under-determined; there are uncountably many f
that agree exactly with the measurements g[m,n], even for noiseless data where ε[m,n] = 0.

1.3.1 Ill-posed problems
Trying to reconstruct f from {g[m,n]} is an example of an ill-posed problem. Problems are called well-posed in the
sense of Hadamard [45, p. 63] when a solution exists that is unique and stable (continuous) with respect to the data.
Otherwise a problem is called ill-posed.
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In imaging problems with a underlying continuous-space object f but a finite number of measurements, non-
uniqueness is the principal challenge. Clearly we must impose some type of prior knowledge (or prior assumptions)
about f to proceed.

Most methods in the literature avoid the complications of the continuous-discrete model (1.3.1) by adopting ei-
ther a continuous-continuous formulation, or, more often, the discrete-discrete formulation (1.2.2). An example of a
continuous-continuous model is

g(x, y) = b(x, y) ∗∗ f(x, y)+ ε(x, y), (1.3.2)
e,res,cc,g=b*f+e

where b(x, y) denotes a continuous-space PSF and ε(x, y) denotes a random noise process. One can derive estima-
tors f̂(x, y) in terms of the “given” continuous-space image g(x, y) in this framework. One simple example is the
continuous-space Wiener filter (cf. the discrete-space version in (1.7.11)). Another broader family of methods uses
partial differential equation (PDE) methods to address (1.3.2) [46]. Of course in practice we never have a continuous-
space g(x, y) available in a computer, so one must somehow discretize any such solution expressions to implement a
practical estimator in terms of g[m,n].

Although subsequent sections focus on the discrete-discrete formulation (1.2.3), for completeness we mention one
particular approach that is formulated directly from the continuous-discrete model (1.3.1).

1.3.2 Minimum norm estimate
Even if there were no noise in (1.3.1), i.e., if ε[m,n] = 0, there would still be many images f that satisfy exactly
the equalities in (1.3.1). One way to pick a solution from this infinite set is to choose the solution with minimum
L2 norm (i.e., minimum energy in signal processing terminology). By the projection theorem (an important result
from functional analysis [47, p. 51]), a unique solution with minimum norm exists. It can be expressed as

f̂ = argmin
f∈C(g)

∫∫
|f(x, y)|2 dxdy, (1.3.3)

e,res,cd,minnorm

where C(g) denotes the following convex set (see §29.9.1):

C(g) ≜
{
f :

∫∫
b(m,n;x, y) f(x, y) dxdy = g[m,n], ∀m,n

}
. (1.3.4)

e,res,C(g)

One can calculate the minimum norm solution using a certain singular value decomposition (SVD) [48]. The result-
ing solution has the form

f̂(x, y) =
∑
m,n

cm,n b(m,n;x, y) (1.3.5)
e,res,mnls

for some coefficients {cm,n} that depend on the data {g[m,n]} and on the system model b(·). This minimum-norm
solution is convenient for analysis, but rarely is there any physical reason why real objects should be of minimum
norm, so this criterion for picking one of many solutions is just as ad hoc as any alternative. (In fact, one could replace
the usual norm in (1.3.3) with many alternative norms (or semi-norms) [49–51].) Furthermore, enforcing strict data
consistency in (1.3.4) essentially means that noise is ignored.

The subject of regularization is closely related to this problem of choosing from an infinite collection of solutions,
and is a major focus of Chapter 2 and other portions of several chapters of this book.

1.3.3 Object models
The minimum norm approach is one way to impose (fairly weak) prior information to select a solution. A different
approach would be to assume that the unknown object f lies in a subspace of L2, i.e., a linear combination of some
basis functions. This type of assumption serves to bridge the continuous-discrete model (1.3.1) with the discrete-
discrete model (1.2.2). Typically the basis functions are just equally spaced versions of a common kernel β0(x, y) as
used in the following representation:

f(x, y) =
∑
m,n

f [m,n]β0(x−m△X, y − n△Y), (1.3.6)
e,res,fbasis

where △X and △Y denote the spacing of the basis functions. Under such a model, the image restoration goal is to
estimate the coefficients {f [m,n]} from the measurements {g[m,n]}.
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For example, a common assumption in signal processing is that f is a band-limited function. If so, then by the 2D
sampling theorem [52, p. 238] there exist sample distances△X and△Y for which (1.3.6) is exact with an appropriate
sinc kernel:

β0(x, y) = sinc2(x/△X, y/△Y)

sinc2(x, y) ≜ sinc(x) sinc(y)

sinc(x) ≜

{
sin(πx)
πx , x ̸= 0

1, x = 0.
(1.3.7)

e,res,sinc

In general, however, (1.3.6) is merely an approximation.
Another common choice is to use 2D rectangular functions as basis functions: β0(x, y) = rect2(x/△X, y/△Y),

which correspond to rectangular (or square in the usual case when△X = △Y) pixels of uniform value f [m,n].
Often the basis functions satisfy the interpolation property

β0(m△X, n△Y) =

{
1, n = m = 0
0 ∀m,n ∈ Z− {0, 0} ,

in which case f [m,n] = f(m△X, n△Y) . The sinc and rect examples both satisfy this property.
Substituting the object model (1.3.6) into the integral in (1.3.1) yields

ḡ[m,n] =

∫∫
b(m,n;x, y) f(x, y) dxdy

=

∫∫
b(m,n;x, y)

∑
k,l

f [k, l]β0(x− k△X, y − l△Y)

dxdy

=
∑
k,l

b[m,n; k, l] f [k, l], (1.3.8)
e,res,cd,sub

where the “discrete-discrete” impulse response is

b[m,n; k, l] ≜
∫∫

b(m,n;x, y)β0(x− k△X, y − l△Y) dx dy . (1.3.9)
e,res,cd,b,mnkl

Suppose we further assume that the imaging system is shift invariant in the following sense:

b(m,n;x, y) = b0(x−m△X, y − n△Y), (1.3.10)
e,res,band,shift

for some 2D PSF b0(x, y). An imaging system having a system response that satisfies (1.3.10) has the property that
shifting the input object by an integer number of sample distances causes a corresponding shift of the output image.
The model (1.3.10) is often a reasonable approximation, with the caveat that (1.3.10) assumes implicitly that the
detector sample spacing is matched to the object model. Under this assumption, the discrete-discrete impulse response
is also shift invariant:

b[m,n; k, l] =

∫∫
b(m,n;x, y)β0(x− k△X, y − l△Y) dxdy

=

∫∫
b0(x−m△X, y − n△Y)β0(x− k△X, y − l△Y) dxdy

=

∫∫
b0(x− (m− k)△X, y − (m− l)△Y)β0(x, y) dx dy

= b[m− k, n− l; 0, 0],

assuming appropriate limits for the integrals. With these assumptions, we have

ḡ[m,n] =
∑
k,l

b[m− k, n− l; 0, 0] f [k, l], (1.3.11)
e,res,cd,si

which is equivalent to (1.2.2) except for (nontrivial!) details about the summation limits, as detailed in §1.4. So we
have established that there is at least one set of conditions (namely (1.3.6) and (1.3.10)) under which the continuous-
discrete model (1.3.1) will (almost) simplify to the discrete-discrete model (1.2.2).

https://creativecommons.org/licenses/by-nc-nd/4.0/
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If the true f(x, y) contains sharp edges, then the model (1.3.6) may lead to blurred estimates of those edges. To
preserve such edges, it may be desirable to use a basis for f(x, y) that has smaller pixels than the sample spacing of
the measurements g[m,n]. This will result in an under-determined problem, but this can be addressed using edge-
preserving regularization, as discussed in §1.10. Even if an image is band-limited, using the object model (1.3.6) with
the sinc basis (1.3.7) is usually inconvenient for implementation. On the other hand, the expansion (1.3.5) also seems
awkward because it is imaging system dependent. Chapter 10 describes various basis functions for representing a
continuous object f in terms of a finite set of parameters or expansion coefficients.

1.4 Matrix-vector representations of convolution (s,res,mat1)
s,res,mat1

The convolution notation (1.2.3) is ubiquitous in signal processing, and corresponding Fourier concepts are commonly
expressed in these terms. For example, the very important convolution property of the 2D Fourier transform can be
written:

ḡ[m,n] = b[m,n] ∗∗ f [m,n] DSFT←→ Ḡ(Ω1,Ω2) = B(Ω1,Ω2)F (Ω1,Ω2), (1.4.1)
e,res,dsft2,conv

where the 2D (discrete space) Fourier transform (DSFT) of b[m,n] is defined by:

B(Ω1,Ω2) =
∑
m,n

b[m,n] e−ı(Ω1m+Ω2n) , (1.4.2)
e,res,dsft2

and Ω1,Ω2 denote digital frequencies having units radians/sample. However, the convolution notation becomes in-
convenient when one wants to relate signal processing concepts to methods from numerical linear algebra or statistics.
Convolution is a linear operator, so we can represent the convolution operator using matrix-vector notation. Matrix-
vector notation is also more convenient for describing system models that generalize (1.2.3), such as shift variant
imaging systems and tomographic imaging systems. Facility with both signal processing notation and matrix-vector
representations is essential for working with image recovery problems, so this section describes in detail how to relate
these representations.

1.4.1 1D matrix-vector representations
For simplicity we first consider a 1D version of the signal restoration problem. Consider a 1D convolution relationship
for an input signal f [n] as follows:

g[n] = ḡ[n] + ε[n], ḡ[n] = b[n] ∗ f [n] =
∑
k

b[n− k] f [k], n = 0, . . . , N − 1. (1.4.3)
e,res,conv1

We want to represent the preceding “DSP-style” formula in the following matrix-vector form

y = Ax+ ε, (1.4.4)
e,res,y=Ax+e

where y, ε, and x are column vectors (with y and x possibly having somewhat different lengths), and A is a matrix
whose entries depend solely on the values of b[n]. When stored in a computer, the vectors y and x must have finite
length, whereas the convolution sum in (1.4.3) above can have arbitrary indices “on paper,” even

∑∞
k=−∞, but that is

impractical for computation. There are various choices for A depending on how we handle the “end conditions,” i.e.,
depending on how we choose the limits of the summation in (1.4.3). In all cases we form the measurement vector y
from the measurements g[n] in the obvious way:

y =

 y1
...
yN

 =

 g[0]
...

g[N − 1]

 , (1.4.5)
e,res,y=g

i.e., yi = g[i− 1] . For consistency with matrix algebra conventions, the vector index i starts at 1, whereas for consis-
tency with signal processing (and ANSI C) conventions, the sample index n starts at 0. We define the noise vector ε
similarly.

For vectorizing the measurements, (1.4.5) is the only natural choice because N is a particular value depending on
the measurement system. However, there is somewhat more flexibility when we choose A and x, because these are

https://creativecommons.org/licenses/by-nc-nd/4.0/
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merely models. For concreteness, we illustrate the various choices using a hypothetical 1D imaging system that has
the following 3-point impulse response:

b[n] = b[−1] δ[n+ 1]+ b[0] δ[n] + b[1] δ[n− 1],

where the Kronecker impulse function is denoted

δ[n] ≜

{
1, n = 0
0, otherwise.

(1.4.6)
e,kronecker

For each of the end conditions described below, Fig. 1.4.1 gives an example of the corresponding matrix A.

1.4.1.1 Zero end conditions

The simplest model is to assume that f [n] is zero for n < 0 and for n ≥ N , and to use
∑N−1
k=0 in the convolution sum

(1.4.3). If this “zero end condition” (also known as a Dirichlet boundary condition) assumption is appropriate, then
natural choices for x and A are as follows:

A =



b[0] b[−1] 0 · · · 0 0 0
b[1] b[0] b[−1] 0 · · · 0 0
0 b[1] b[0] b[−1] 0 · · · 0

. . .
0 · · · 0 b[1] b[0] b[−1] 0
0 0 · · · 0 b[1] b[0] b[−1]
0 0 0 · · · 0 b[1] b[0]


, x =

 f [0]
...

f [N − 1]

 . (1.4.7)
e,res,A,zero

This N ×N matrix A is Toeplitz (constant along the diagonals), and there are reasonably fast algorithms for manipu-
lating (e.g., inverting) such matrices [53, 54]. In this 1D case, the elements {aij} of A are related to a general impulse
response function b[n] as follows:

aij = b[i− j], i, j = 1, . . . , N. (1.4.8)
e,res,aij,bn

However, in the shift-invariant case, relatively rarely does one actually implement A literally as a matrix. Com-
puting Ax yields the same result as convolving b[n] and f [n], so usually one would simply pass the elements of b[n]
and f [n] to a convolution routine. So for shift-invariant problems, the matrix-vector representation is more for conve-
nience of mathematical analysis than for implementation. On the other hand, for shift-variant problems, storing A as
a matrix is often appropriate, although a sparse matrix representation [55, p. 78] is usually most efficient due to the
small percentage of nonzero elements in A when b[n] has just a few non-zero values.

1.4.1.2 Extended end conditionss,res,mat1,extend

In many situations, e.g., optical imaging, the measurements are influenced by a larger scene than the field of view of
the aperture due to the spreading caused by the imaging system PSF. In such cases, assuming zero end conditions
can be unrealistic and one may need to allow for objects of extended size (relative to the measurements) in the system
model4 [57–61]. With regularization (discussed later) or constraints, partial recovery of an extended object can be
possible, i.e., the object vector x can have somewhat more elements than the measurement vector y. In such cases,
natural choices for x and A include the following:

A =


b[1] b[0] b[−1] 0 · · · 0 0
0 b[1] b[0] b[−1] 0 · · · 0

. . . . . . . . .
0 0 · · · 0 b[1] b[0] b[−1]

 , x =


f [−1]
f [0]

...
f [N − 1]
f [N ]

 . (1.4.9)
e,res,A,extend

Here A is a N × (N + L − 1) rectangular matrix where L is the length of the impulse response (L = 3 for this
particular b[n]).

In my view, these extended end conditions are more realistic that the other end conditions for most restoration
problems and should be used in practice whenever feasible. However, often engineers like to “cut corners” to save

4This problem is so important in helical cone-beam tomography that it has been dubbed the “long object problem” [56].

https://creativecommons.org/licenses/by-nc-nd/4.0/
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computation. The next sections describe the “replicated,” “mirror” and “periodic” end conditions that are often used
in practice, essentially as approximations to the extended end conditions.

Mat If b is the row vector [b[−1] b[0] b[1]], the MATLAB command A = convmtx(fliplr(b),N) generates this A.
Again, the matrix representation of convolution is more useful for analysis than for computation.

Mat This model is related to MATLAB’s valid option for the 2D convolution routine conv2.

1.4.1.3 Replicated end conditions

If the zero end conditions are unrealistic but the extended end conditions are considered infeasible, an alternative is
to assume that the signal beyond the field of view is similar to the signal at the borders of the field of view, i.e.,
f [n] = f [0] for n < 0 and f [n] = f [N − 1] for n ≥ N in 1D. For the case L = 3 this assumption corresponds
to models where f [−1] = f [0] and f [N ] = f [N − 1]. In matrix-vector form this leads to the same N -point x as in
(1.4.7), but where A has the following N ×N square form:

A =


b[0] + b[1] b[−1] 0 · · · 0 0
b[1] b[0] b[−1] 0 · · · 0

. . .
0 · · · 0 b[1] b[0] b[−1]
0 0 · · · 0 b[1] b[0] + b[−1]

 . (1.4.10)
e,res,A,repeat

All rows of this A have the same cumulative sum; this property is desirable because if x is a uniform image then so is
Ax.

1.4.1.4 Mirror end conditions

A variation on the previous approach is to use mirror end conditions [62, Box 2], also known as reflective boundary
conditions or Neumann boundary conditions [63], where we assume that f [−n] = f [n] and f [N − 1 + n] =
f [N − 1− n] for n = 0, . . . , N − 1. Specifying the corresponding A is left to Problem 1.8.

1.4.1.5 Periodic end conditions

Another choice for end conditions in (1.4.3) is to assume that f [n] is N -periodic, i.e., that5 f [n] = f [nmodN ] .
Periodic end conditions rarely (if ever) hold exactly in practical imaging systems, but are a very useful approximation
for analyzing algorithms in the frequency-domain, as described in §1.4.3.1 below. Under this assumption, one can
show (Problem 1.3) that the linear convolution (1.4.3) becomes a N -point circular convolution:

ḡ[n] = b̃[n]⊛N f [n] ≜
N−1∑
k=0

b̃[(n− k)modN ] f [k], n = 0, . . . , N − 1, (1.4.11)
e,res,circ1,cconv

where the periodic superposition of b[n] is defined by

b̃[n] ≜
∑
l

b[n− lN ] . (1.4.12)
e,res,circ1,bt

Usually we assume that the blur kernel b[n] is zero for |n| ≥ N , in which case (1.4.12) simplifies to

b̃[n] = b[n] + b[n−N ], n = 0, . . . , N − 1.

For the circular convolution model, the matrix-vector representation uses the same x as in (1.4.7), but the N ×N
system matrix A becomes

A =


b̃[0] b̃[N − 1] b̃[N − 2] · · · b̃[2] b̃[1]

b̃[1] b̃[0] b̃[N − 1] b̃[N − 2] · · · b̃[2]
. . .

b̃[N − 1] b̃[N − 2] b̃[N − 3] · · · b̃[1] b̃[0]

 . (1.4.13)
e,res,circ1,A

5Here, the modulo operator is defined by nmodN = n−N ⌊n/N⌋ , where the floor function ⌊t⌋ denotes the largest integer no greater than
t. See §29.12.

https://creativecommons.org/licenses/by-nc-nd/4.0/
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Zero:


4 2 0 0 0 0
1 4 2 0 0 0
0 1 4 2 0 0
0 0 1 4 2 0
0 0 0 1 4 2
0 0 0 0 1 4

 Extended:


1 4 2 0 0 0 0 0
0 1 4 2 0 0 0 0
0 0 1 4 2 0 0 0
0 0 0 1 4 2 0 0
0 0 0 0 1 4 2 0
0 0 0 0 0 1 4 2



Replicated:


5 2 0 0 0 0
1 4 2 0 0 0
0 1 4 2 0 0
0 0 1 4 2 0
0 0 0 1 4 2
0 0 0 0 1 6

 Mirror:


4 3 0 0 0 0
1 4 2 0 0 0
0 1 4 2 0 0
0 0 1 4 2 0
0 0 0 1 4 2
0 0 0 0 3 4



Periodic/circulant:


4 2 0 0 0 1
1 4 2 0 0 0
0 1 4 2 0 0
0 0 1 4 2 0
0 0 0 1 4 2
2 0 0 0 1 4


Figure 1.4.1: Concrete examples of system matrices A for 1D convolution with various end conditions, for b[n] =
{2 4 1} = 2 δ[n+ 1]+4 δ[n] + δ[n− 1], for the case N = 6.

fig,mat1

In this case aij = b̃[(i− j)modN ] . This matrix A is called circulant, and can be considered to be an approximation
to the Toeplitz form (1.4.7).

See [64–66] for discussion of restoration using anti-reflective boundary conditions, and [67] for further alterna-
tives.

1.4.2 2D matrix-vector representations (s,res,mat2)s,res,mat2

For 2D (and higher dimensional) problems, the same general principles apply when representing convolutions with
matrix-vector notation. The expressions relating the convolution form to the matrix-vector representation are messier,
but, when expressed in matrix-vector form, both the 1D and 2D cases look like (1.4.4).

1.4.2.1 Lexicographic ordering

The first step is to represent a finite-sized image g[m,n] using a “long” vector via a lexicographic order. Specifically,
if g[m,n] has the M × N domain defined in (1.1.1), then the corresponding vector y is of length MN and the ith
element of y is given by

yi = g[m(i), n(i)], i = 1, . . . ,MN, (1.4.14)
e,res,lexico2

where vector index i maps to pixel coordinates[m(i), n(i)] as follows:

m(i) ≜ (i− 1)modM

n(i) ≜

⌊
i− 1

M

⌋
. (1.4.15)

e,res,mat2,mn

Again the index i starts at 1, for consistency with matrix algebra, and the indices[m,n] start at 0, for consistency with
signal processing conventions. Spatial index[m,n] corresponds to i = 1 +m+ nM , i.e.,

g[m,n] = yi

∣∣∣
i=1+m+nM

. (1.4.16)
e,res,mat2,i=1+m+nM

The following figure summarizes the relationship between the vector y and the 2D image g[m,n]. One can define

https://creativecommons.org/licenses/by-nc-nd/4.0/
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Figure 1.4.2: Illustration of system matrices A for 1D blur with different end conditions, for N = 9. The colors of
the values used in A match those shown in the PSF b[n].

fig_res_mat1

a vec operator, vec : RM×N → RMN , such that y = vec(g). This operation is called vectorization.

y1 = g[0, 0] y2 = g[1, 0] . . . yM = g[M − 1, 0]
yM+1 = g[0, 1] yM+2 = g[1, 1] . . . y2M = g[M − 1, 1]

...
yM(N−1)+1 = g[0, N − 1] yM(N−1)+2 = g[1, N − 1] . . . yMN = g[M − 1, N − 1]

→ m↓
n

Mat MATLAB’s reshape, colon, (:), sub2ind, and ind2sub routines are useful for such conversions.
We define vector x = vec(f) in terms of the latent image f [m,n] in a manner similar to (1.4.14). The length of x

depends on the boundary conditions used. For zero or periodic or mirror boundary conditions, x is a vector of length
MN where xj = f [m(j), n(j)] where [m(·), n(·)] were defined in (1.4.15). For extended end conditions the vector
x is longer.

Using such lexicographic ordering, by linearity we can always write the 2D convolution expression (1.2.2), or the
more general superposition sum (1.3.8), in the matrix-vector form (1.4.4), i.e.,

y = Ax+ ε.

The exact form of A depends again on the chosen end conditions.

1.4.2.2 Zero-end conditions

Consider the general discrete-space superposition sum

ḡ[m,n] =
∑
k,l

b[m,n; k, l] f [k, l],
m = 0, . . . ,M − 1
n = 0, . . . , N − 1.

(1.4.17)
e,res,superposition2

This sum characterizes the input-output relationship of any 2D discrete-space linear system, and this generality is
needed for shift-variant systems. If one uses the end conditions that f [m,n] is zero outside the domain m=0,. . . ,M-1,
n=0,. . . ,N-1, then the corresponding system matrix A has size MN ×MN and has entries

aij = b[m(i), n(i);m(j), n(j)], (1.4.18)
e,res,mat2,aij,sup

https://creativecommons.org/licenses/by-nc-nd/4.0/
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where m(·) and n(·) were defined in (1.4.15). Expressed another way:

a1+m+nM, 1+m+nM = b[m,n; k, l]

for m, k = 0, . . . ,M − 1 and n, l = 0, . . . , N − 1. Any such matrix A has the following block matrix form:

A =

 A0,0 · · · A0,N−1

...
. . .

...
AN−1,0 · · · AN−1,N−1

 , (1.4.19)
e,res,mat2,block

where theM×M submatrix Anl describes how the lth row of the input image contributes to the nth row of the output
image and has elements

[Anl]mk = b[m,n; k, l] .

See Fig. 1.4.3 for an example.
Other end conditions have similar expressions (see Problem 1.9) with different values for the elements of A

corresponding to pixels at the borders of the image. In general, we can always write (1.4.17) as ȳ = Ax using such
an A.

See [68] for statistical methods for dealing with boundary artifacts that arise from end condition choices.
Mat MATLAB’s convmtx2 uses zero-end conditions but produces a sparse matrix that has more rows than columns.

1.4.2.3 Shift-invariant 2D blur and Toeplitz matrices

If the 2D blur is shift invariant, i.e., if b[m,n; k, l] = b[m− k, n− l], then the superposition sum (1.4.17) becomes a
convolution. In such cases, and for zero end conditions, the system matrix A has elements

aij = b[m(i)−m(j), n(i)− n(j)], (1.4.20)
e,res,mat2,aij,si

and again has the block form (1.4.19) where the submatrices have elements

[Anl]mk = b[m− k, n− l] . (1.4.21)
e,res,mat2,Anlmk

Because of the m − k dependence, each of the blocks in (1.4.19) is Toeplitz in this shift invariant case, so A is said
to have Toeplitz blocks. Furthermore, because of the n− l dependence, all of the blocks along each “diagonal” in the
block form (1.4.19) are the same, so A is said to be block Toeplitz. Combined, we say any such A is block Toeplitz
with Toeplitz blocks (BTTB) [54]. With a slight abuse of terminology, we will often simply call such matrices
Toeplitz.

ASPIRE The command wt gen with system 0 generates a sparse A with this form.
MIRT The object Glsi_blur represents such system matrices as operators.

1.4.2.4 Separable 2D blur

If b[m,n; k, l] is a separable PSF, i.e., if b[m,n; k, l] = b1[m; k] b2[n; l], then the superposition sum (1.4.17) can be
grouped as follows:

ḡ[m,n] =
∑
l

b2[n; l]

(∑
k

b1[m; k] f [k, l]

)
.

The inner summation operates on the first index of f [m,n]; the outer summation operates on the second index. In this
case the elements of A have the separable form

aij = b1[m(i);m(j)] b2[n(i);n(j)]

and the resulting matrix A has the special structure

A = A2 ⊗A1, (1.4.22)
e,res,mat2,kron

where A1 ∈ RM×M is one of the 1D matrix representations in §1.4 for the 1D PSF b1[m; k], A2 ∈ RN×N is likewise
defined in terms of b2[n; l], and “⊗” denotes the Kronecker product defined in (28.1.12).

When A1 and A2 are each a Toeplitz matrix, such as when we use zero end conditions and a shift-invariant blur
model, then A2 ⊗A1 is again block Toeplitz with Toeplitz blocks.

https://creativecommons.org/licenses/by-nc-nd/4.0/
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For separable a separable PSF, there is another matrix representation that also can be useful. If Ḡ denotes the
M ×N matrix with elements g[m,n], and F denotes the matrix corresponding to f [m,n], then

Ḡ = A1FAT
2 ,

where A1 and A2 are the 1D blur matrices defined above. This expression is closely related to (1.4.22) because of the
following property of vectorization:

ȳ = vec
(
Ḡ
)
= vec

(
A1FAT

2

)
= (A2 ⊗A1) vec(F ) = (A2 ⊗A1)x = Ax. (1.4.23)

e,res,mat2,vecop,kron

1.4.2.5 2D periodic end conditions

If we assume 2D periodic end conditions, i.e., that f [m,n] = f [mmodM,nmodN ], also called toroidal boundary
conditions, then the ordinary convolution (1.2.2) becomes a 2D circular convolution, defined by

ḡ[m,n] = b̃[m,n]⊛M,N f [m,n] ≜
M−1∑
k=0

N−1∑
l=0

b̃[(m− k)modM, (n− l)modN ] f [k, l], (1.4.24)
e,res,mat2,Cconv

where
b̃[m,n] ≜

∑
k

∑
l

b[m− kM, n− lN ] .

Although periodic end conditions rarely (if ever) hold in practice, circulant models are convenient for analysis.
This circular convolution relationship has the matrix-vector representation ȳ = Ax where the elements of the

MN ×MN matrix A are given by (cf. (1.4.20))

aij = b̃[(m(i)−m(j))modM, (n(i)− n(j))modN ], i, j = 1, . . . ,MN, (1.4.25)
e,res,mat2,aij,circ2

wherem(·) and n(·) were defined in (1.4.15). Such a matrix is called block circulant with circulant blocks (BCCB).
In particular, in this case A has the form (1.4.19) where

[Anl]mk = b̃[(m− k)modM, (n− l)modN ] .
x,res,mat2

Example 1.4.1 See Fig. 1.4.3 for examples of the system matrix A for a small image with M = 6 and N = 8. Each
black rectangle outlines one of the (typically N ×N ) blocks Anl ∈ RM×M .

[RQ1]

1.4.3 Circulant analysis of shift-invariant blur (s,res,circ)s,res,circ

For linear shift-invariant image restoration problems, A is always Toeplitz (or nearly Toeplitz depending on the chosen
end conditions). However, most of the methods described in this book are also applicable to shift-variant problems,
where the form of A depends on the physics and can be non-square and non-Toeplitz. For example, in tomography
the elements of A correspond to a discretization of the Radon transform, which is usually non-square and hence
non-Toeplitz. Despite the prevalence of non-Toeplitz problems, we can still obtain substantial insight by considering
the Toeplitz case. In fact, we get the most signal processing insight by considering the case where A is circulant6, i.e.,
the special family of Toeplitz matrices that correspond to periodic end conditions. Analysis using circulant matrices
helps us relate matrix algebra solutions to signal processing principles. Equally importantly, circulant approximations
are useful for reducing computation by replacing large matrix operations with simpler fast Fourier transform (FFT)
calculations.

The link between circulant matrices and circular convolution is the convolution property of the discrete Fourier
transform (DFT). We show next that “circular convolution” and “circulant matrix” are extremely closely related
concepts.

6In analyses in later chapters, we will assume only that the square matrix A′A is circulant, rather than making such an assumption about the
possibly non-square matrix A.
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Figure 1.4.3: Illustration of system matrices A for 2D convolution for different end conditions, for M = 6 and
N = 8. The upper-right figure illustrates (1.4.20), the lower-left figure illustrates (1.4.25), and the lower-right figure
illustrates a 2D analogue of (1.4.9). Note that the spatial scale of the blur b[m,n] figure differs from the others.

fig_res_mat2
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1.4.3.1 Circulant analysis in 1D (s,res,circ1)s,res,circ1

In 1D, the convolution property of the discrete Fourier transform (DFT) can be expressed:

ḡ[n] = b[n]⊛N f [n]
DFT←→ Ḡk = BkFk, (1.4.26)

e,conv,dft

where the N -point DFT of b[n] is the following:

b[n]
DFT←→ Bk ≜

N−1∑
n=0

b[n] e−ı
2π
N kn = B(Ω)

∣∣∣
Ω= 2π

N k
, k = 0, . . . , N − 1, (1.4.27)

e,res,dft1

where the corresponding discrete-time Fourier transform (DTFT) of b[n] is

B(Ω) ≜
∞∑

n=−∞
b[n] e−ıΩn . (1.4.28)

e,res,dtft

Similarly Fk and Ḡk are defined in terms of f [n] and ḡ[n] respectively.
Mat The convolution property (1.4.26) corresponds to the following MATLAB commands

g = ifft(fft(b) .* fft(f)), or equivalently, g = ifft(diag(fft(b)) * fft(f)).

It is useful to rewrite (1.4.26) in matrix-vector notation as Ḡ0

...
ḠN−1


︸ ︷︷ ︸
N × 1

=

 B0 0
. . .

0 BN−1


︸ ︷︷ ︸

N ×N

 F0

...
FN−1


︸ ︷︷ ︸
N × 1

i.e., G⃗ = ΓF⃗ ,

where G⃗ = (Ḡ0, . . . , ḠN−1) and F⃗ = (F0, . . . , FN−1) are the vectors of N -point DFT coefficients of ḡ[n] and f [n]
respectively, and Γ = Diag{Bk} is theN×N diagonal matrix with elementsB0, . . . , BN−1 along its diagonal, where
the Bk values were defined in (1.4.27). Defining the vector ȳ in terms of ḡ[n] as in (1.4.5) and x in terms of f [n] as in
(1.4.7), we have

G⃗ = Qȳ, F⃗ = Qx,

where Q is the N ×N DFT matrix having elements

qnk = e−ı
2π
N kn , k, n = 0, . . . , N − 1. (1.4.29)

e,res,qkn

The inverse 1D N -point DFT corresponds to the inverse of this matrix and is given by

Q−1 =
1

N
Q′, (1.4.30)

e,res,idft,1/N,fdft

where “Q′” denotes the Hermitian transpose of Q. Combining these relationships leads to a very useful tool for
analysis, the following matrix-vector representation of the convolution property:

ȳ = Q−1ΓQx.

Comparing the above relationships, we conclude that any circulant matrix, e.g., the system matrix (1.4.13), has the
following matrix decomposition:

A = Q−1ΓQ =
1

N
Q′ΓQ. (1.4.31)

e,res,A,dft

This is an eigenvector decomposition with eigenvalues {Bk}. So the eigenvalues of any circulant matrix are the DFT
coefficients of the first column of that matrix. When viewing an expression like (1.4.31), one can think of A as a
(circularly shift-invariant) filter whose frequency response is embedded in the diagonal elements of Γ.

Mat Although Q is used primarily for theoretical analysis, if needed it can be computed in MATLAB for modest values of
N using Q = dftmtx(N) .
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1.4.3.2 Circulant analysis in 2D (s,res,circ2)s,res,circ2

The frequency-domain expression corresponding to 2D circular convolution (1.4.24) is

Ḡ[k, l] = B[k, l]F [k, l], k = 0, . . . ,M − 1, l = 0, . . . , N − 1,

where the (M ×N)-point 2D DFT of b̃[m,n] is defined as follows:

B[k, l] =

M−1∑
m=0

N−1∑
n=0

e−ı(2πmk/M+2πnl/N) b̃[m,n]

=

N−1∑
n=0

e−ı2πnl/N

[
M−1∑
m=0

e−ı2πmk/M b̃[m,n]

]
. (1.4.32)

e,dft2

If we order lexicographically the 2D DFT coefficients {F [k, l]} as a MN vector F and the 2D image f [m,n] as a
MN vector x per (1.4.14), then we can express the 2D DFT by a linear operator, i.e., F = Qx, where Q denotes the
following MN ×MN matrix

Q = QN ⊗QM , (1.4.33)
e,res,circ2,fdft

where QN denotes the 1DN -point DFT matrix defined in (1.4.29). One can also derive (1.4.33) using the vectorization
property in (1.4.23). The double sum in the 2D DFT expression (1.4.32) becomes the above Kronecker product when
expressed in matrix notation. (See §28.1.6.) Thus, a circulant-block-circulant system matrix defined by (1.4.25) has
the following eigenvector decomposition:

A = Q−1ΓQ =
1

MN
Q′ΓQ,

where Γ is a diagonal matrix with diagonal elements that are the eigenvalues of A, namely the 2D DFT coefficients
{B[k, l]} ordered lexicographically. So in 2D (and higher) we get the same form as (1.4.31) but with Q corresponding
to a DFT of whatever dimension we are using. This decomposition is central to subsequent analyses.

Caution! In 1D the eigenvalues of a circulant matrix A were simply the 1D DFT coefficients of its first column. �

To find such eigenvalues in 2D, we take the first column of A and reshape it into a M × N array, and then compute
the 2D DFT of that array. [RQ2]

1.5 Simple restoration methods (s,res,inv)
s,res,inv

Having established two convenient notations, we return to the image restoration problem of recovering f [m,n] from
g[m,n] under the model (1.2.3). We describe two “solutions,” both of which are inadequate in general, for essentially
the same reason, as will be analyzed.

1.5.1 The deconvolution solution
The convolution property of the Fourier transform (1.4.1), where Ḡ(Ω1,Ω2) = B(Ω1,Ω2)F (Ω1,Ω2), suggests the
following inverse-filter solution:

F̂ (Ω1,Ω2) =

{
G(Ω1,Ω2) /B(Ω1,Ω2), B(Ω1,Ω2) ̸= 0
?, B(Ω1,Ω2) = 0.

(1.5.1)
e,res,1/H

Equivalently,
f̂ [m,n] = binv[m,n] ∗∗ g[m,n],

where binv[m,n] is the inverse Fourier transform of 1/B(Ω1,Ω2). Such restoration methods are called deconvolu-
tion. Unfortunately, usually b[m,n] is a lowpass type of filter, so B(Ω1,Ω2) is zero or near zero for high spatial
frequencies. So the simple inverse filter approach greatly amplifies high spatial-frequency noise. This property should
be unsurprising because we did not consider noise when proposing (1.5.1).

Similar noise-amplifying phenomena are present in typical analytical solutions to tomographic reconstruction
problems, because those solutions also ignore noise in the problem formulation. This book emphasizes methods
where noise considerations are fundamental to the formulation.
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1.5.2 The matrix inverse solution
By examining the matrix-vector expression (1.4.4), one could be tempted to propose the solution

x̂ = A−1y, (1.5.2)
e,res,x=A,inv,y

at least when A is an invertible (and hence square) matrix [69]. We analyze this type of solution in more detail
in Chapter 17, where the desirability of regularization is emphasized. For initial understanding of why this matrix
inverse solution is inadequate, consider the case where A is circulant (e.g., (1.4.13)) so that the decomposition (1.4.31)
applies. Then we have A−1 = Q−1Γ−1Q so

x̂ = Q−1Γ−1Qy.

This solution is essentially the same as (1.5.1) because Q corresponds to the DFT and Γ−1 has reciprocals of samples
of the system frequency response B(Ω1,Ω2) along its diagonal. Solutions of the form (1.5.2) are known as alge-
braic reconstruction techniques because they are based on linear algebra concepts only. Hereafter we will focus on
methods that use linear algebra combined with appropriate statistical considerations. [RQ3]
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1.6 Statistical image restoration (s,res,stat)
s,res,stat

Statistical methods for image restoration improve on the simple methods described in §1.5 by incorporating both
statistical models for the noise in the measurements y and prior knowledge about the unknown object x.

If one has confidence in the statistical model for y (and perhaps in a statistical model for x as well), then a
theoretically appealing approach is to apply the tools of estimation theory to find an estimator x̂ = x̂(y) of x.

Even within the framework of statistical estimation one must choose between differing philosophical approaches.
The most frequently studied methods are maximum-likelihood (ML) estimation, Bayesian estimation, and regu-
larized- or penalized-likelihood estimation, all of which are described next. These approaches apply both to image
restoration and to image reconstruction.

1.6.1 Noise models (s,res,noise)s,res,noise

This section summarizes a few of the statistical models for the measurement noise that are most popular in image
restoration problems. Once again, the matrix-vector notation facilitates the presentation.

1.6.1.1 Additive gaussian noise

The most prevalent statistical model for image restoration problems corresponds to (1.2.3), i.e.,

y = Ax+ ε, (1.6.1)
e,res,y=A*x+e

where7 y, ε ∈ Rnd , x ∈ Rnp , and A ∈ Rnd×np . For a M × N image, for most cases, including where zero end
conditions are used, we have np = nd = MN . But we may have nd ̸= np for other end conditions, such as the
extended end conditions, and for other image recovery problems.

To describe the noise statistics, we will often refer to the nd × nd covariance matrix of ε, defined by

Kε = Cov{ε} = E[(ε− E[ε])(ε− E[ε])′], (1.6.2)
e,res,noise,cov

where E[·] denotes statistical expectation. The elements of Kε are given as follows:

[Kε]ij = e′iKεej = Cov{εi, εj} = E[(εi − E[εi])(εj − E[εj ])], (1.6.3)
e,res,noise,cov,ij

where ej denotes the jth unit vector of length nd.
Usually one assumes that additive noise has a gaussian distribution with zero mean and a known covariance matrix

Kε that is symmetric positive definite. Then (1.6.1) is equivalent to saying that y is a gaussian random vector with the
following probability density function (pdf):

p(y |x) = 1√
(2π)nd det{Kε}

exp

(
−1

2
(y −Ax)′K−1

ε (y −Ax)

)
, (1.6.4)

e,res,gauss,pdf

where det{Kε} denotes the determinant of the noise covariance matrix Kε.

1.6.1.2 Poisson measurements

For some illumination conditions, the random quantum effects of photons may dominate over other sources of mea-
surement errors. This variability is called shot noise. Often the statistics of these effects are modeled by Poisson
distributions, so an alternative to (1.6.1) is to assume that the elements yi of the measurement vector y are independent
Poisson random variables whose means are given by the ith element of Ax. To denote such independent Poisson
variates, we write

yi ∼ Poisson{ȳi(x)}, i = 1, . . . , nd, (1.6.5)
e,res,poisson

where yi ∈ {0, 1, 2, . . .} and where

ȳi(x) ≜ E[yi |x] = [Ax]i =

np∑
j=1

aijxj .

7The notation “x ∈ Rnp” indicates that x is a column vector of length np.
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Specifically, the shorthand (1.6.5) implies statistical independence and denotes the following assumption for the
probability mass function (PMF) of y:

P{y |x} =
nd∏
i=1

P{yi |x} =
nd∏
i=1

e−[Ax]i ([Ax]i)
yi/(yi!), (1.6.6)

e,res,noise,poisson

where “!” denotes the factorial. This model is particularly appropriate for measurement systems that count photon
interactions, as described in Chapter 8.

1.6.1.3 Poisson+gaussian measurements

The additive gaussian noise model of (1.6.1) is inexact in optical imaging systems such as those using CCD arrays [7,
8]. A more realistic model would account for the quantum effects of photons that interact with the detector, as well as
the additional noise in the readout electronics. A combination of Poisson and gaussian distributions is appropriate for
such systems, although the resulting distribution is somewhat inconvenient and requires approximation for practical
implementation [7, 8].

Similar inconveniences arise in PET scans that are precorrected for random coincidences [70, 71], and in X-ray CT
systems with current integrating detectors [72].

1.6.2 Maximum-likelihood estimation (s,res,stat,ml)s,res,stat,ml

One can think of a statistical model p(y |x) as quantifying the “agreement” between the measurement vector y and a
candidate object vector x. For maximum-likelihood estimation, one finds the x that maximizes this agreement, i.e.,
the x̂ that best fits the data, using the log-likelihood

L(x) ≜ log p(y |x) .

(Typically the dependence of L on the data y is suppressed in the notation because we have only one vector y in a
given experiment, but need to consider many candidate x vectors.) The ML estimator is defined by

x̂ML = argmax
x

L(x),

where the maximization is restricted to the set of acceptable values of x. For example, often we only allow vectors x
having nonnegative elements because light intensity is nonnegative.

1.6.2.1 Poisson noise and the Richardson-Lucy iteration

The log-likelihood associated with the Poisson model (1.6.6) is

L(x) ≡
nd∑
i=1

yi log([Ax]i)− [Ax]i = y′ log(Ax)−1′Ax,

where we use the nonstandard (but convenient) notation “≡” to indicate that the two expressions differ only by an
irrelevant constant that is independent of x, and here log acts element-wise on a vector argument. Lucy considered
this model [73], and derived the following iteration8:

x(n+1)
j =

x(n)

j∑nd

i=1 aij

nd∑
i=1

aijyi/[Ax(n)]i. (1.6.7)
e,res,stat,lr

Richardson had earlier derived this same iteration using Bayes rule [74]. In the image restoration field, this is known
as the Richardson-Lucy (or Lucy-Richardson) deconvolution procedure. It turns out to be the same formula as the
ML-EM algorithm for emission tomography, as described in detail in Chapter 18. An appealing characteristic of the
iteration (1.6.7) is that if the initial image x(0) is nonnegative, then so are all the iterates {x(n)}. However, as the
iterations proceed the images become increasingly noisy, due to the nature of unregularized ML restoration.

MIRT See eml_em.m.
Mat See deconvlucy.

8Lucy’s derivation assumed
∑nd

i=1 aij = 1.
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1.6.2.2 Gaussian noise

The limitations of the ML approach are illustrated easily by considering the gaussian model (1.6.4), for which the
log-likelihood is

L(x) = −1

2
(y −Ax)′K−1

ε (y −Ax)− 1

2
log(det{2πKε})

≡ −1

2
(y −Ax)′K−1

ε (y −Ax) = −1

2

∥∥∥K−1/2
ε (y −Ax)

∥∥∥2
2
.

This L(x) is a concave function (see §29.9). If A has full column rank (which is rare in deblurring problems due to
zeros in the frequency response), then the ML estimate for gaussian noise is

x̂ML =
[
A′K−1

ε A
]−1

A′K−1
ε y. (1.6.8)

e,res,stat,ml,wls

In addition to having full column rank, if A is also square then it is invertible, and the unconstrained maximizer of L
is

x̂ML = A−1y. (1.6.9)
e,res,xh,ml,inv

So the ML estimation criterion can again lead to the “inverse” solution (1.5.2), yielding unacceptably noisy images in
most practical problems.

To reduce this noise, one must impose some type of constraints on the estimator x̂, or otherwise incorporate prior
information about x. Bayesian estimation and penalized-likelihood estimation are two related ways to achieve this
goal. [RQ4]

1.7 Bayesian estimation (s,res,stat,bayes)
s,res,stat,bayes

For ML estimation, the only statistical model required is that of the measurements, namely the likelihood p(y |x).
For Bayesian estimation, one must also postulate a probability distribution p(x) for the unknown object vectors.
This distribution is called the prior distribution for x, because it describes object properties that are assumed to be
“known” before the measurements y are acquired.

1.7.1 MMSE estimation
Given a statistical model p(y |x) and a prior p(x), in the Bayesian framework one can devise estimators that minimize
an expected cost, called the risk or loss, averaged over the family of possible objects x. The simplest risk function is
simply the mean-squared error (MSE) of an estimator x̂, defined by

MSE(x̂) = E
[
∥x̂−x∥2

]
=

∫∫
∥x̂(y)−x∥2 p(y |x) p(x) dy dx .

A classical result in Bayesian estimation theory [75, p. 419] is that the minimum mean-squared error (MMSE)
estimator for x given y is the following conditional expectation or conditional mean:

x̂MMSE = argmin
x̂

MSE(x̂) = E[x |y] =
∫

x p(x |y) dx . (1.7.1)
e,res,mmse

Unfortunately this conditional expectation is difficult to compute for many problems, so MMSE estimation is used
only in relatively rare cases.

In general the MMSE estimator is nonlinear. If this is undesirable or intractable, another option is to try to find
the linear or affine estimator that minimizes MMSE. This too can be challenging in cases where the MSE is itself
analytically intractable.

1.7.2 MAP estimation
In part because of these difficulties, the Bayesian estimator that is often used in practice is the maximum a posteriori
(MAP) approach, defined as the maximizer of the posterior distribution p(x |y) as follows:

x̂MAP = argmax
x

p(x |y) .
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This approach finds the image that has the highest posterior probability9 given the data y. By Bayes’ rule:

p(x |y) = p(y |x) p(x)
p(y)

,

where, by total probability, the overall data distribution p(y) =
∫
p(y | x̃) p(x̃) dx̃ is independent of the true, un-

known value of the image x. Because the logarithm function is monotone, an equivalent formulation is:

x̂MAP = argmax
x

[log p(y |x)+ log p(x)] , (1.7.2)
e,res,map

where we can ignore log p(y) because it is independent of x.
In a few special cases there are analytical expressions for the MAP estimator. However, most interesting problems

lack such an analytical solution, so an iterative algorithm is needed to perform the maximization. Such iterative
algorithms are a primary focus of this book .

A philosophical difficulty with the Bayesian paradigm is that the “priors” p(x) that are commonly used in Bayesian
image restoration methods capture only very local properties of images. If one generates random draws from typical
Bayesian image priors, the results look very little like natural images. (See Fig. 1.7.1.) This is contrary to the usual
sense of the term “prior” in statistical estimation, where values drawn from the prior distribution are representative of
the objects under investigation.

1.7.3 Bayesian estimation in linear gaussian models (s,res,stat,gauss)s,res,stat,gauss

As a concrete example of Bayesian estimation, we consider the linear model (1.6.1) with additive gaussian noise and
assume that the prior distribution for x is also gaussian. This example is one of the few where analytical solutions are
available. The MAP and MMSE estimators turn out to be identical in this problem, unlike in more general cases.

Specifically, consider the following statistical assumptions.
• y = Ax+ ε with A ∈ Rnd×np

• ε ∼ N(0,Kε)
• x ∼ N(µx,Kx)
• ε and x are independent
• µx, Kε, and Kx are all known.

Due to the independence of x and ε, the likelihood is:

p(y |x) = py|x(Ax+ ε |x) = pε(y −Ax)

=
1√

(2π)nd det{Kε}
e−

1
2 (y−Ax)′K−1

ε (y−Ax) . (1.7.3)
e,res,pyx,gauss

By assumption, the prior distribution for x is:

p(x) =
1√

(2π)np det{Kx}
e−

1
2 (x−µx)

′K−1
x (x−µx) . (1.7.4)

e,res,px,gauss

1.7.3.1 MAP estimators,res,map,gauss

Combining the likelihood and the prior leads to the following form for the MAP estimator:

x̂MAP = argmax
x

[log p(y |x)+ log p(x)]

= argmin
x

Ψ(x),

where we ignore irrelevant constants in defining the following cost function (also known as a loss function):

Ψ(x) ≜
1

2
(y −Ax)′K−1

ε (y −Ax) +
1

2
(x− µx)

′K−1
x (x− µx). (1.7.5)

e,res,Kx,map,gauss

9The MAP estimator also minimizes the “hit-or-miss” risk function [76, p. 343]. The suitability of that risk function for imaging problems is
somewhat debatable because it assigns the same loss to all incorrect estimates. For a discussion of a canonical loss function, see [77].
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This cost function consists of a data-fit or discrepancy term and a prior term. By expanding Ψ(x) and completing
the square, one can show that

Ψ(x) ≡ 1

2

∥∥∥H1/2x−H−1/2(A′K−1
ε y +K−1

x µx)
∥∥∥2 ,

where10 H ≜ A′K−1
ε A+K−1

x . It is clear from the preceding expression that a minimizer of Ψ(x) is

x̂MAP = H−1(A′K−1
ε y +K−1

x µx)

=
[
A′K−1

ε A+K−1
x

]−1
(A′K−1

ε y +K−1
x µx)

= µx +
[
A′K−1

ε A+K−1
x

]−1
A′K−1

ε (y −Aµx). (1.7.6)
e,res,map,gauss,1

Finding the minimizer of a function by “completing the square” is rarely a convenient approach. An alternative is
to equate the gradient of Ψ(x) to zero, provided no constraints such as nonnegativity are desired. Let ∇f denote the
row gradient of a function f : Rnp → R, i.e.,

∇f(x) =
[
∂

∂x1
f(x) . . .

∂

∂xnp

f(x)

]
.

Then one can easily verify the following very useful gradient relationships
• ∇x v′ x = v′ for v ∈ Rnp

• ∇x
1
2x

′Mx = x′ 1
2 (M +M ′) for M ∈ Rnp×np .

We let ∇ denote the column gradient operator, the transpose of∇. It follows that

∇x
1

2
(y −Ax)′K−1

ε (y −Ax)

= ∇x

[
1

2
y′K−1

ε y − y′K−1
ε Ax+

1

2
x′A′K−1

ε Ax

]
= −A′K−1

ε y +A′K−1
ε Ax

= −A′K−1
ε (y −Ax). (1.7.7)

e,res,stat,cgrad,wls

Using these properties, the column gradient of Ψ(x) defined in (1.7.5) above is

∇Ψ(x) = −A′K−1
ε (y −Ax) +K−1

x (x− µx)

= −A′K−1
ε (y −Aµx) + [A′K−1

ε A+K−1
x ](x− µx).

Equating this gradient to zero yields the MAP estimator

x̂MAP = µx +
[
A′K−1

ε A+K−1
x

]−1
A′K−1

ε (y −Aµx),

which is equivalent to (1.7.6).
What happens to the MAP estimator as our confidence in the prior information decreases? If Kx → ∞, then

K−1
x → 0 and

x̂MAP →
[
A′K−1

ε A
]−1

A′K−1
ε y,

which is the conventional weighted least-squares (WLS) estimator, which also happens to be the ML estimator in
this case. In particular, if Kε = σ2I and A is invertible, then x̂MAP → A−1y, the inverse estimator. So the prior
information is essential to avoid the noise problems associated with ML estimation.

A significant practical problem with this analytical solution is the apparent need to “invert” large matrices. In prac-
tice we usually minimize Ψ(x) with an iterative algorithm, e.g., Chapter 16, rather than using the explicit analytical
form.

10The matrix H is invertible because A′K−1
ε A is positive semidefinite and K−1

x is positive definite so their sum is positive definite.
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1.7.3.2 MMSE estimator

Because x and y are jointly gaussian under the assumptions in this example, it is straightforward to evaluate the
conditional mean estimator (1.7.1). In general for jointly gaussian random vectors [78, p. 302] [76, p. 325], the
conditional mean has the following form:

E[x |y] = E[x] +Cov{x,y}Cov{y}−1(y − E[y]).

In this case, Cov{x,y} = Cov{x,Ax+ ε} = KxA
′ and Cov{y} = Cov{Ax+ ε} = AKxA

′ + Kε, so the
MMSE estimator has the following affine form:

x̂MMSE = µx +KxA
′ [AKxA

′ +Kε]
−1

(y −Aµx). (1.7.8)
e,res,stat,gauss,mmse

Using the matrix inversion lemma (see (28.1.9) and (28.1.10)), one can show that this expression is identical to
(1.7.6). Thus, the MAP and MMSE estimators are identical in this linear gaussian problem. This gives further
motivation for using MAP estimation because many problems are “nearly” gaussian.

1.7.3.3 Interpretation of MAP/MMSE estimatorss,res,stat,gauss,xmean=0

For the linear gaussian model with a gaussian prior, we can rewrite the MAP/MMSE estimators in (1.7.6) and (1.7.8)
as follows:

x̂MAP/MMSE =
[
A′K−1

ε A+K−1
x

]−1
A′K−1

ε y +
(
I −

[
A′K−1

ε A+K−1
x

]−1
A′K−1

ε A
)
µx.

The first term depends on the data, whereas the second term depends on the prior mean image µx. In other words,
the second term is unrelated to the measurements, so it could be viewed before taking any data! That term would be
important quantitatively in terms of minimizing MSE, but qualitatively it provides no useful “new” information. All
of the useful information about the scene (or patient in the medical context) is in the first term that depends on the
data y. Therefore in my view it is best to simply choose µx = 0 (or adopt another approach altogether) in which case
the second term disappears. Indeed most modern image reconstruction methods do not include any µx term. The first
term above also depends on the prior covariance Kx, and that prior can strongly influence the image quality as shown
below.

1.7.3.4 White gaussian case

The simplest special case of this MAP estimator is when the noise is white and gaussian, i.e., Kε = σ2I , and when
one assumes that the object vector is zero mean (µx = 0) and has independent and identically distributed components,
i.e., Kx = 1

β
I . Under these (unrealistic) assumptions, the cost function is a simple combination of a least-squares

data-fit term (negative log-likelihood) and an energy penalty term:

Ψ(x) =
1

2σ2
∥y −Ax∥2 + 1

2
β ∥x∥2 (1.7.9)

e,res,map,energy

and the corresponding MAP estimator simplifies to:

x̂MAP = argmin
x

Ψ(x) =
[
A′A+ βσ2I

]−1
A′y. (1.7.10)

e,res,map,gauss,I

In statistics, this estimation method is known as ridge regression [79, 80] because the βI term reduces “ridges” in the
cost function Ψ(x). Such ridges are associated with singular vectors of A having small singular values. Chapter 17
discusses such estimators in more detail.

x,res,stat,gauss,white

Example 1.7.1 Fig. 1.7.1 shows a random image x, called a gaussian random field (GRF), drawn from the gaussian
prior distribution (1.7.4) where x ∼ N(0, I) .

https://creativecommons.org/licenses/by-nc-nd/4.0/
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White Noise
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Figure 1.7.1: Random images drawn from the prior distribution for gaussian random fields (1.7.4) with µx = 0. Left:
Kx = I . Right: Kx = [C ′C]

−1 for the 2D differencing matrix C defined in (1.10.8).
fig_res_prior1

1.7.3.5 Circulant approximation in white gaussian case (Wiener filter)

The MAP estimator (1.7.10), involves a large matrix inverse that may provide little intuition. For insight into the MAP
estimator’s properties, consider the case where A is circulant, so A = Q−1ΓQ, where Γ = Diag{Bk} and Bk was
defined in (1.4.27). In the circulant case with white gaussian noise the MAP estimator (1.7.10), simplifies as follows:

x̂MAP =
[
(Q−1ΓQ)′(Q−1ΓQ) + βσ2I

]−1
(Q−1ΓQ)′y

=
[
Q−1Γ′ΓQ + βσ2Q−1Q

]−1
Q−1Γ′Qy

= Q−1 [Γ′Γ+ βσ2I
]−1

Γ′Qy = Q−1 Diag{Lk}Qy. (1.7.11)
e,res,map,gauss,circ

This is just a filter having the following frequency response:

Lk =
B∗
k

|Bk|2 + βσ2
. (1.7.12)

e,res,map,gauss,Lk

This is a DFT-based Wiener filter that has the following properties.
• As β→ 0, this filter approaches the inverse filter 1/Bk.
• As β→∞, the frequency response of this filter approaches zero.

A limit of zero is “sensible” because the assumed prior mean is 0; large β corresponds to high prior confidence in
that mean, so the MMSE estimation strategy degenerates to the zero estimate.

0 π

Ω

0

1

B
(Ω

)

System Response

0 π

Ω
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1
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L
(Ω

)

Image Restoration Filters

Inverse Filter (βσ2 = 0)
Wiener Filter, βσ2 = 0.1
Wiener Filter, βσ2 = 1

Figure 1.7.2: Illustration of DFT-based Wiener filter frequency response L(Ω) for three values of βσ2.
fig_dft_wiener

Fig. 1.7.2 illustrates the properties of this filter for the case b[n] = 1
5 δ[n− 1]+3

5 δ[n] +
1
5 δ[n+ 1] for which the

DFT coefficients are Bk = B(2πk/N) where the corresponding DTFT, defined in (1.4.28), is B(Ω) = 3
5 + 2

5 cosΩ
and Lk = L(2πk/N).
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Demo See demo_res_wiener.m.
Shrinking the entire estimate down to zero is unnatural for most imaging problems. So apparently the gaussian

prior with mean zero and covariance Kx = (1/β)I is an unrealistic model for typical real-world images. Although
one could certainly improve on this simplistic prior, it is nevertheless quite difficult in general to formulate realistic
priors. Therefore, throughout the remainder of this book, we abandon the Bayesian philosophy and focus instead on
a close cousin: penalized-likelihood estimators. The implementations of MAP methods and penalized-likelihood
methods are quite similar, but the the philosophy and terminology differ somewhat. In the end it is something of a
matter of personal preference.

1.8 Penalized-likelihood estimation (s,res,stat,pl)s,res,stat,pl

The general form of a MAP estimator (1.7.2) involves maximizing a function that consists of a log-likelihood term
that quantifies agreement with the measurements, and another term that quantifies agreement with prior expectations.
For the gaussian example (1.7.9) the log-prior was simply proportional to the negative of the energy of the signal, i.e.,
log p(x) = −β ∥x∥2 .

In the framework of penalized-likelihood estimation, one also finds the minimizer of a cost function consisting of
two terms. Specifically, one finds x̂ by minimizing a cost function of the following form:

x̂ = argmin
x

Ψ(x)

Ψ(x) = − log p(y |x)+βR(x) . (1.8.1)
e,res,pl

The first term is the negative of the log-likelihood, which quantifies the disagreement between x and the measurements
y. We would like this term to be small. The second term is a regularizing penalty function R : Rnp → R that penalizes
an object x according to how much it departs from our assumptions about image properties.

The regularization parameter β controls the trade-off between the fit to the data and (typically) the smoothness
of x̂. For very small β, x̂ will closely fit the data, which usually means very good spatial resolution in the absence of
noise, but very noisy estimates in the presence of noise. Conversely, for large β, x̂ will emphasize minimizing R(x),
which usually means a smooth estimate with low noise. Chapter 2 and Chapter 24 examine this trade-off in more
detail.

Choosing the penalty R(x) is an art involving a multitude of trade-offs that are discussed further in Chapter 2. For
example, if we expect objects to have small values, then the energy penalty

R(x) =
1

2
∥x∥2 =

np∑
j=1

1

2
|xj |2 (1.8.2)

e,res,stat,pl,energy

could be reasonable. (This approach is also known as Miller regularization [81].) But in most imaging problems we
expect the object to have nonzero energy, so this choice is not the best penalty function.

Why do we need a penalty function in the first place? Because the absence of such a term in the cost function leads
again to the “inverse” solution (ML estimate) which greatly amplifies noise and leads to large image oscillations. These
oscillations are contrary to our prior expectations about what images look like. So penalty functions that discourage
highly oscillatory images usually are more natural than an energy penalty.

A penalty function that discourages high spatial frequency oscillations is called a roughness penalty. The simplest
type of roughness penalty discourages disparities between neighboring pixel values. It is easiest to first see the effects
of such a penalty function in a 1D example, as follows.

1.8.1 1D 1st-order roughness penaltys,res,stat,1d

Consider a 1D problem where the elements of x ∈ RN correspond to consecutive “pixel” values (f [0], . . . , f [N − 1]).
A natural measure of “roughness” of such a signal is the following penalty function that improves somewhat on (1.8.2):

R(x) =
N∑
j=2

1

2
|xj − xj−1|2 =

N−1∑
n=1

1

2
|f [n]− f [n− 1]|2 , (1.8.3)

e,res,pl,rough1

using (1.4.7). This penalty function assigns a high cost when neighboring pixel values are very different, thereby
discouraging roughness and favoring spatially smooth estimates.

https://creativecommons.org/licenses/by-nc-nd/4.0/
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To proceed, it will be convenient to translate this penalty function into a matrix-vector form. Towards that end,
consider the following (N − 1)×N finite differencing matrix:

C = DN ≜


−1 1 0 0 . . . 0
0 −1 1 0 . . . 0

. .
. . .

.

0 . . . 0 −1 1 0
0 . . . 0 0 −1 1

 , so Cx =

 x2 − x1
...

xN − xN−1

 . (1.8.4)
e,res,C,N-1,N

This C is a sparse matrix because most of its elements are zero. (See §2.14.1.3.) With C thus defined, clearly
[Cx]k = xk+1 − xk, so

R(x) =
N−1∑
k=1

1

2
|[Cx]k|2 =

1

2
∥Cx∥2 =

1

2
x′C ′Cx =

1

2
x′Rx. (1.8.5)

e,res,rough1,hess

The matrix R is the Hessian of the roughness penalty R(x), i.e., the matrix of its second partial derivatives. Here, R
is the following “nearly Toeplitz” matrix:

R ≜ C ′C =



1 −1 0 . . . 0 0
−1 2 −1 0 . . . 0

. . . . . . . . .

0 . . . 0 −1 2 −1
0 0 . . . 0 −1 1


. (1.8.6)

e,res,rough1,R

This type of penalty function is called a quadratic penalty because R(x) is a quadratic form in x. The quadratic form
is particularly convenient when the measurements have gaussian distributions. See [82] for analysis of the eigenvalues
and eigenvectors of (1.8.6) for various boundary conditions including Neumann boundary conditions and Dirichlet
boundary conditions.

Often it is expected that f [n] is zero near the ends of its support, such as in 2D tomography problems where there
is usually “black air space” surrounding the body. In such case, an alternate penalty function is

R(x) =
1

2
|f [0]−0|2 + 1

2
|f [N − 1]−0|2 +

N−1∑
n=1

1

2
|f [n]− f [n− 1]|2 .

In this case, the form R(x) = 1
2 ∥Cx∥2 in (1.8.5) still applies, but here the (N + 1) × N differencing matrix C has

the following form:

C =


1 0 . . . 0 0
. . . . . . . . . . . . . . . .

DN

. . . . . . . . . . . . . . . .
0 0 . . . 0 1

 , (1.8.7)
e,res,C,N+1,N

where DN was defined in (1.8.4). The Hessian R = C ′C for this penalty is exactly Toeplitz with elements

Rkj = 2 δ[k − j]− δ[k − j − 1]− δ[k − j + 1] .

Having a constant diagonal simplifies slightly the implementation of iterative algorithms that use diagonal precondi-
tioners.

1.8.2 Linear gaussian case: QPWLS estimators,res,stat,pl,gauss

Combining the log-likelihood corresponding to the linear gaussian case (1.7.3) with the preceding quadratic penalty
function (1.8.5) yields the following cost function for penalized-likelihood estimation:

Ψ(x) =
1

2
(y −Ax)′K−1

ε (y −Ax) + β
1

2
x′Rx. (1.8.8)

e,res,gauss,pl,Kx
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By similar analysis as in §1.7.3.1, the minimizer11 of Ψ(x) is

x̂ =
[
A′K−1

ε A+ βR
]−1

A′K−1
ε y. (1.8.9)

e,res,xh,qpwls

This regularized solution dates back at least to [83, eqn. (7)] and it is simply a special case of the MAP estimator
(1.7.6), where µx = 0 and βR = K−1

x . In Bayesian language, the penalty function (1.8.3) corresponds to the
following improper gaussian prior:

p(x) = c e−β 1
2x

′Rx . (1.8.10)
e,res,stat,pl,prior

This is an improper prior or degenerate normal distribution because the R in (1.8.6) above is not invertible. Indeed
most useful quadratic penalty functions have singular Hessians, a property that is entirely acceptable in penalized-
likelihood estimation but is perhaps somewhat awkward for a Bayesian interpretation.

We refer to (1.8.8) and (1.8.9) as a quadratically penalized weighted least-squares (QPWLS) estimator.

1.8.3 Circulant analysis of QPWLS restorations,res,stat,pl,circ

For further insight into the properties of the QPWLS estimator (1.8.9), it is again convenient to apply circulant ap-
proximations.

First we observe that in typical tomographic imaging applications the object usually does not fill the entire field of
view (think of the “black air space” around the head in a brain scan). So we alter the form of R(x) to make it a circular
shift-invariant functional by analyzing the following roughness penalty function:

R(x) =
1

2
|x1 − xN |2 +

N∑
j=2

1

2
|xj − xj−1|2 . (1.8.11)

e,res,stat,pl,circ,Rx

The initial term is needed for analysis only and is rarely implemented in practice.
To put this penalty function in matrix-vector form, consider the following N ×N modified C matrix:

C =


−1 1 0 . . . 0
0 −1 1 . . . 0

. .
. . .

.

0 . . . 0 −1 1
1 0 . . . 0 −1

 , where Cx =


x2 − x1

...
xN − xN−1

x1 − xN

 . (1.8.12)
e,res,stat,pl,C,circ

This C matrix again satisfies (1.8.5) for the preceding R(x), where now R is the following circulant matrix12

R ≜ C ′C =


2 −1 0 . . . 0 −1
−1 2 −1 0 . . . 0

. .. . .. . ..

0 . . . 0 −1 2 −1
−1 0 . . . 0 −1 2

 . (1.8.13)
e,res,stat,pl,R

Because R is circulant, it is diagonalized by the DFT matrix Q−1, i.e., R = Q−1ΠQ where Π is diagonal with entries
Rk. In particular, evaluating the DFT of the first column of this R shows that its eigenvalues (DFT coefficients) are13

Rk = 2− e−ı2πk/N − eı2πk/N = 2− 2 cos(2πk/N) . (1.8.14)
e,res,stat,pl,eRk

Suppose further that the system matrix A is also circulant, i.e., A = Q−1ΓQ, and that the noise is white: Kε =
σ2I . Substituting these assumptions into the QPWLS estimator (1.8.9) yields

x̂ = argmin
x

Ψ(x) =
[
A′A+ βσ2R

]−1
A′y

11One must address the invertibility of A′K−1
ε A+ βR in (1.8.9), because in general A′K−1

ε A and R are each only positive semidefinite. For
penalty functions based on first-order differences, like (1.8.3) and (1.10.1), the null space of R is spanned by 1, the vector of all ones. For most
imaging systems, A1 ̸= 0, so the null spaces of A′K−1

ε A and R are disjoint. For such systems, their sum is invertible.
12To realize how special this matrix is, see http://www.siam.org/news/news.php?id=1697.
13 For the special case of the first-order roughness penalty (1.8.3), one can determine its eigenvalues and eigenvectors exactly without imposing

f,eig,R

the circulant model, e.g., [84]. The eigenvalues of (1.8.6) are Rk = 2−2 cos(πk/N), k = 0, . . . , N−1.Nevertheless, the circulant approximation
provides more intuition because of its frequency response interpretation.
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= Q−1 [Γ′Γ+ βσ2Π
]−1

Γ′Qy = Q−1 Diag{Lk}Qy. (1.8.15)
e,res,xh,qpwls,circ

So once again our estimator x̂ is a linear, circularly shift-invariant, Wiener-like filter14 with frequency response

Lk =
B∗
k

|Bk|2 + βσ2Rk
. (1.8.16)

e,res,wiener,Lk

Again, as β → 0, this filter approaches the inverse filter: Lk → 1/Bk. This property is inherent to the form (1.8.1).
However, because R0 = 0, as β→∞, we have the following:

Lk →
{

1/B0, k = 0
0, otherwise.

This behavior is preferable to that of the energy penalty (1.8.2) because at least the DC term (k = 0) is unaffected by
the regularizing penalty function (1.8.11).

x,res,stat,lpl,gauss

Example 1.8.1 Fig. 1.8.1 illustrates these properties for the same example considered in Fig. 1.7.2. As desired, the
QPWLS filter response at low frequencies is nearly unity here, unlike in Fig. 1.7.2.

Mat See deconvreg and deconvwnr.
Demo See demo_res_wiener.m.
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Figure 1.8.1: Illustration of properties of the Wiener-like filter (1.8.16) corresponding to QPWLS estimation for 1D
signal restoration example.

fig_dft_wiener_R

1.8.4 Discussion
Although the roughness penalty function (1.8.3) yields behavior that is preferable to the energy penalty function
(1.8.2), it still yields a linear method that is essentially a lowpass filter, so we can reduce noise only by compromis-
ing spatial resolution. This is a fundamental resolution-noise trade-off in all (linear) imaging systems and image
processing methods. This trade-off can be overcome only by considering nonlinear estimators. Nonquadratic penalty
functions can smooth noise while preserving image edges so are a focus of the algorithms discussed in this book .
However, being nonlinear they are less amenable to the types of “signal processing” analysis described above.

As discussed in Chapter 24, in certain imaging problems it can be desirable to formulate a penalty function R(x)
that depends on the measurements y, e.g., [86–88]. Such formulations are perfectly compatible with the penalized-
likelihood philosophy, but seem at odds with the Bayesian notion of a “prior.” This is another reason why we prefer
the former philosophy. [RQ5]

14Technically speaking the term Wiener filter is a Bayesian concept because it was derived originally using a prior model for the object x. In
image restoration, the traditional non-Bayesian term for this approach is constrained least-squares [85]. Here we treat R(x) as a penalty function
rather than as a constraint.

https://creativecommons.org/licenses/by-nc-nd/4.0/
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1.9 Mean and variance analysis (resolution-noise trade-offs) (s,res,pl,mav1)
s,res,pl,mav1

For further insight into the resolution-noise trade-off associated with penalized-likelihood estimation, this section
analyzes the first two moments of the 1D linear QPWLS estimator x̂ in (1.8.15). Chapter 24 and Chapter 25 consider
more complicated nonlinear problems. Ideally we would analyze the entire statistical behavior of an estimator x̂ by
studying its probability distribution p(x̂). Unfortunately, for nonlinear estimators such analysis is intractable except
in some special cases, e.g., [89]. Therefore, we focus on the first two moments of x̂, or, in nonlinear cases, the
approximations thereof.

The QPWLS estimator x̂ in (1.8.15) is linear, and we can write it as x̂ = Ly where

L ≜
[
A′K−1

ε A+ βR
]−1

A′K−1
ε = Q−1 [Γ′Γ+ βσ2Π

]−1
Γ′Q.

Recall that y = Ax + ε where ε ∼ N
(
0, σ2I

)
, so E[y |x] = Ax and Kε = Cov{y |x} = σ2I. Thus, by the

linearity of expectation, the mean of x̂ for a given x is

E[x̂ |x] = E[Ly |x] = LE[y |x] = LAx =
[
A′A+ βσ2R

]−1
A′Ax

= Q−1 [Γ′Γ+ βσ2Π
]−1

Γ′ΓQx = Q−1 Diag{Mk}Qx. (1.9.1)
e,res,pl,mean

So the expectation of x̂ is simply a filtered version of the true object x with filter frequency response

Mk =
|Bk|2

|Bk|2 + βσ2Rk
= LkBk, (1.9.2)

e,res,pl,mean,Mk

because Γ = Diag{Bk} and Π = Diag{Rk}, where Lk was defined in (1.8.16). For good spatial resolution, we would
like this “filter” to pass all spatial frequencies with a gain of unity, which means we would like βRk to be small.

To analyze the covariance of x̂, we use the following particularly important property of covariance matrices:

Cov{Lz} = LCov{z}L′, (1.9.3)
e,cov(Ax)

which follows directly from the definition (1.6.2). Thus the covariance of x̂ for a given true object x is:

Cov{x̂ |x} = Cov{Ly |x} = LCov{y |x}L′ = L(σ2I)L′

= σ2
[
A′A+ βσ2R

]−1
A′A

[
A′A+ βσ2R

]−1
. (1.9.4)

e,res,pl,cov,mat

This matrix expression may not be particularly intuitive, so again we consider the circulant model (1.4.31). Then the
covariance simplifies as follows:

Cov{x̂ |x} = σ2Q−1 [Γ′Γ+ βσ2Π
]−1

Γ′Γ
[
Γ′Γ+ βσ2Π

]−1
Q

= Q−1 Diag{Pk}Q, (1.9.5)
e,res,pl,cov

where the following diagonal entries correspond to the noise power spectrum (NPS) of the estimator x̂:

Pk ≜
σ2 |Bk|2(

|Bk|2 + βσ2Rk
)2 = σ2 |Lk|2 . (1.9.6)

e,res,pl,nps

For a low-noise restoration, we would like the variance of x̂j to be small. The variance of x̂j is given by

Var{x̂j |x} = e′j Cov{x̂ |x} ej = e′jQ
−1 Diag{Pk}Qej

=
1

N

N−1∑
k=0

Pk =
σ2

N

N−1∑
k=0

|Lk|2 , (1.9.7)
e,res,pl,var,xhj

because the DFT of a Kronecker impulse is unity, i.e., |Qej |k = 1, and we use (1.4.30). In 2D the factor σ2

N is
σ2

MN . Reducing image noise is equivalent to having a low variance. From (1.9.6) and (1.9.7), having a small variance
requires βRk to be large whenever Bk is small.

Comparing (1.9.2) and (1.9.7) illustrates succinctly the fundamental resolution-noise trade-off in any linear image
restoration method. For good spatial resolution, we want (1.9.2) to be approximately unity, which means βRk ≈ 0,
but for low noise, (1.9.7) requires that βRk be large.

https://creativecommons.org/licenses/by-nc-nd/4.0/


© J. Fessler. [license] March 10, 2024 1.30

As a concrete example, consider the image denoising problem where the system impulse response in (1.2.3) is
b[n] = δ[n], so Bk = 1. If β = 1 and σ2 = 1, then (1.9.2) gives 1

1+R whereas (1.9.7) gives 1
(1+R)2 . We cannot

simultaneously make the first equation near unity and the second equation near 0. Consequently, if we use a nonzero
R to reduce noise, we will also reduce high spatial frequencies. The principal visual effect of this attenuation will be
blurring of edges in the image.

The origin of this undesirable trade-off is the quadratic roughness penalty function itself. In Bayesian terms, a
quadratic roughness penalty corresponds to a gaussian prior, yet most real world images are not particularly gaussian.
To overcome this limitation we will consider nonlinear methods based on nonquadratic penalty functions. But first we
consider how to form roughness penalties for 2D images.

Fig. 1.9.1 illustrates this trade-off by showing the overall frequency response Mk in (1.9.2) and noise power
spectrum Pk in (1.9.6) for three values of the regularization parameter β. As β decreases, Mk improves towards unity,
but Pk increases.

0 1
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Overall frequency response M(Ω)

log2(β) = −4.4
log2(β) = −2
log2(β) = 1.2

0 1

Ω/π

0
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2

Noise power spectrum P (Ω)

log2(β) = −4.4
log2(β) = −2
log2(β) = 1.2

Figure 1.9.1: Illustration of trade-off between spatial resolution (over all frequency response) and noise power spec-
trum in image restoration with a quadratic roughness penalty, for three values of the regularization parameter β.

fig_res_wiener_nps

Demo See demo_res_wiener.m. [RQ6]
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1.10 Roughness penalties in 2D (s,res,penal2)
s,res,penal2

Thus far we have considered only the simple 1D roughness penalty of the form (1.8.3). Applying penalized-likelihood
methods to image restoration problems requires 2D roughness penalty functions.

1.10.1 Quadratic regularization
Extrapolating (1.8.3) from 1D signals to 2D objects f [m,n] suggests the following simple roughness penalty:

R(f) =
M−1∑
m=1

N−1∑
n=0

1

2
|f [m,n]− f [m− 1, n]|2 +

M−1∑
m=0

N−1∑
n=1

1

2
|f [m,n]− f [m,n− 1]|2 . (1.10.1)

e,res,penal2,Rf,hv

This quadratic penalty function discourages disparities between horizontal and vertical neighboring pixels. For 2D
roughness penalty functions, it is often useful to include diagonal neighboring pixels, i.e., to include terms of the form
|f [m,n]− f [m− 1, n− 1]|2 for example. See §2.3 for further generalizations.

The notation in (1.10.1) becomes even more cumbersome in 3D, particularly as one uses more neighbors. For a
more concise expression, write the penalty function in terms of the vector x instead of the 2D array f [m,n], recalling
(1.4.16), as follows:

R(x) =

np∑
j=1

∑
l∈Nj

1

2
|xj − xl|2 , (1.10.2)

e,res,penal2,Rx

where Nj denotes the set of neighbors of the jth pixel, or more precisely, half of that set of neighbors. For a M ×N
object, a first-order neighborhood means15

Nj = {j − 1, j −M} (1.10.3)
e,res,penal2,Nj,1

and a 2nd-order neighborhood means

Nj = {j − 1, j −M, j −M − 1, j −M + 1} .

To help understand these sets, the following diagram illustrates the distinction between 2D pixel coordinates and 1D
vector element indexes of lexicographically ordered arrays for a 3× 3 neighborhood in a M ×N image.

1D indexes 2D coordinates
j −M − 1 j −M j −M + 1
j − 1 j j + 1

j +M − 1 j +M j +M + 1

[m− 1, n− 1] [m,n− 1] [m+ 1, n− 1]
[m− 1, n] [m,n] [m+ 1, n]

[m− 1, n+ 1] [m,n+ 1] [m+ 1, n+ 1]

→ m↓
n

(1.10.4)
e,res,penal2,j,m,n

Again, an appropriate matrix-vector representation can further greatly simplify notation. Each term in (1.10.1)
or (1.10.2) involves a difference of nearby pixel values, e.g., xj − xl, which is a simple linear combination. For a
first-order neighborhood, the 2D roughness penalty (1.10.2) has the following concise matrix-vector form:

R(x) =
1

2
∥C1x∥2 +

1

2
∥C2x∥2 , (1.10.5)

e,res,penal2,Rx,hv

provided we define appropriately the matrices C1 and C2. Each row of C1 corresponds to one term in the first
summation in (1.10.1). The natural choice for C1 would have size (M − 1)N ×MN, because this is the number of
terms in the first sum in (1.10.1). However, it can be more convenient for implementation to choose C1 and C2 to
both have size MN ×MN , allowing each matrix to have a few rows that are entirely zero. Such zero rows do not
change the value of the penalty function. (Instead of being entirely zero, those rows could have entries that correspond
to other end conditions.) See Fig. 1.10.1 and Problem 1.14.

Recalling (1.4.16), we can identify the term f [m,n]− f [m− 1, n] with the kth row of C1, where k = 1+m+nM.
With this natural ordering, the elements of C1 are as follows:

[C1]kj =

 1, k = j = 1 +m+ nM
−1, k = 1 +m+ nM, j = k − 1
0, otherwise,

(1.10.6)
e,res,penal2,C1kj

15(1.10.3) must be modified slightly when the jth pixel is on the left or top border of the image.
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for m = 1, . . . ,M − 1, n = 0, . . . , N − 1, i.e., for k = 2, . . . , np =MN. Each nonzero row of C1 has a single “−1”
entry and a “1” entry, and all other elements are zero. Thus C1 is a very sparse matrix. One can define C2 similarly.
(See §2.3.) One can verify that if x denotes the lexicographic representation of f [m,n] per (1.4.14), then

[C1x]k

∣∣∣
k=1+m+nM

=

 f [m,n]− f [m− 1, n],
m = 1, . . . ,M − 1
n = 0, . . . , N − 1

0, otherwise.

We can write the quadratic roughness penalty (1.10.5) even more concisely as follows:

R(x) =
1

2
∥Cx∥2 , (1.10.7)

e,res,penal2,Rq

by defining the following 2MN ×MN matrix

C =

[
C1

C2

]
. (1.10.8)

e,res,penal2,C

See Chapter 2 for extensions and details about implementing such C matrices.
Fig. 1.10.1 illustrates C1 and C2 in (1.10.8) for a small 2D image. Each matrix has N × N blocks of M ×M

elements. Likewise, Fig. 1.10.2 shows the case where we use periodic boundary conditions. In this latter case, both
C1 and C2 are block circulant with circulant blocks (BCCB).

Horizontal finite differences

1 20

j

1

20

k

-1

0

1

Vertical finite differences

1 20

j

1

20

k

-1

0

1

Figure 1.10.1: Illustration of finite-differencing matrices C1 and C2 for a 2D image with M = 5 and N = 4. There
are N ×N blocks each of size M ×M .

fig_res_c2hfig_res_c2v

The Hessian of the quadratic regularizer (1.10.7) is R = ∇2 R = C ′
1C1 + C ′

2C2. Fig. 1.10.3 illustrates this
Hessian for the case of periodic boundary conditions, for which R is BCCB. Following the analysis in §1.4.3.2, the
eigenvalues of this R correspond to the 2D DFT of the (suitably reshaped) first column of R. That first column, when
reshaped, corresponds to the impulse response

r[m,n] = 4 δ[m] δ[n]− δ[m− 1] δ[n]− δ[m+ 1] δ[n]− δ[m] δ[n− 1]− δ[m] δ[n+ 1]

which has corresponding 2D DFT{
4− 2 cos

(
2π

M
k

)
−2 cos

(
2π

N
l

)
: k = 0, . . . ,M − 1, l = 0, . . . , N − 1

}
,

and these are the MN eigenvalues of R. See Problem 1.16.
x,res,penal2,prior

Example 1.10.1 As discussed in §1.8.2, using a penalty function of the form (1.10.7) is equivalent to a gaussian prior
model of the form (1.8.10) in a Bayesian formulation. Fig. 1.7.1 shows an example of a random image (a gaussian
random field) drawn from this “prior,” having covariance Kx = R−1, where R = C ′C. This matrix is not quite
invertible, so Fig. 1.7.1 used the pseudoinverse of a circulant approximation to R. See Problem 1.28.
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Figure 1.10.2: Illustration of finite-differencing matrices C1 and C2 for a 2D image with M = 5 and N = 4 for the
case of periodic boundary conditions.
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Figure 1.10.3: Illustration of quadratic regularizer Hessian R = C ′
1C1 + C ′

2C2 for a 2D image with M = 5 and
N = 4 for the case of periodic boundary conditions. This Hessian matrix is BCCB.
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1.10.2 Nonquadratic (edge preserving) regularizations,res,penal2,nonquad

As discussed in §1.9, a quadratic roughness penalty causes blurring of object edges, because squaring the differences
between neighboring pixels strongly encourages neighboring values to be similar. To try to preserve edges, we can
replace the quadratic function16 ψ(z) = 1

2 |z|
2 in (1.10.1) with a nonquadratic function ψ that rises less rapidly than

the quadratic when the difference |xj − xk| exceeds some user-selected threshold δ > 0. One way to avoid over-
regularizing the differences between neighboring pixels is to use the Huber function illustrated in Fig. 1.10.4:

ψ(z) = ψδ(z) ≜

{
1
2 |z|

2
, |z| ≤ δ

δ |z| − 1
2δ

2, |z| > δ
= δ2 ψ1(z/δ) . (1.10.9)

e,res,penal2,huber

Often such edge preserving potential functions are quadratic near zero, but roughly linear far from zero. Large
disparities between neighboring pixels, such as might arise near object edges, are penalized less by such a potential
function17 than by quadratic penalty functions. (See §1.10.3.)

It is possible to use different potential functions for different spatial locations. Therefore, most of the algorithms
described in this book are derived for roughness penalty functions having the following general form:

R(x) =
K∑
k=1

ψk([Cx]k), (1.10.10)
e,res,Rx

where [Cx]k =
∑np

j=1 ckjxj . The matrix C is K × np where np = MN , and for the simple 2D case (1.10.1) with
horizontal and vertical neighbors, we have K = 2MN . This form is sufficiently general to represent many, but not
all, regularizers (and log priors) that have been described in the literature. §2.7 describes many other choices for ψk.
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z = xj − xk
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Figure 1.10.4: Illustration of some potential functions ψ used for regularization: the quadratic function, the Huber
function, and the “broken-parabola” function (see §1.13.1).

fig_broken

1.10.3 Analysis of least-squares with nonquadratic regularization (s,res,npls)s,res,npls

Although analysis of the properties of penalized-likelihood estimates x̂ is more difficult when the regularizer is non-
quadratic, we can still get some insight into the edge-preserving characteristics by deriving a recursive expression for
x̂ as shown in this section.

We focus on penalized least-squares cost functions of the form

Ψ(x) =
1

2
∥y −Ax∥2 + βR(x) (1.10.11)

e,res,Kx,nqls

where the penalty function has the general form (1.10.10) but with ψk = ψ. In (1.10.11) we have dropped the noise
variance σ2 from (1.7.9) because it often is unknown and we can always absorb into β anyway. We will not consider
circulant approximations here because nonquadratic penalty functions introduce local shift-variant effects.

For the analysis in this section, we assume the potential function ψ satisfies the following two conditions.

16I use the letter z as the argument of the potential function ψ(z) because the regularizer encourages its argument to be close to zero.
17The term potential function for ψ is prevalent in the Bayesian restoration literature, but originates even earlier in physics literature on the

energy of various configurations of spatial models.
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• ψ is everywhere differentiable with derivative ψ̇.
• The following weighting function [90, p. 179] is defined (finite) and nonnegative for all z ∈ R:

ωψ(z) ≜
ψ̇(z)

z
. (1.10.12)

e,res,npls,wpot

For later algorithm derivations and convergence analysis (cf. §14.5.4 and [91]) we will make stronger assumptions
about ψ, but these two conditions suffice here. Fig. 1.10.5 illustrates the weighting functions ωψ for the potential
functions shown in Fig. 1.10.4. (Fig. 2.7.1 illustrates many more from Table 2.1.) As detailed in §2.7, usually ωψ(z)
is a decreasing function of |z|.
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Figure 1.10.5: The potential weighting functions ωψ(z) for a quadratic potential, Huber potential, and a broken
parabola potential, illustrated using δ = 1.

fig_res_wpot_huber

Typical edge-preserving potential functions have the property that they are nearly quadratic near zero, and nearly
linear when the argument exceeds δ. The parameter δ controls the transition between smoothing and edge-preservation,
so one must have in advance a rough idea of the anticipated differences between neighboring pixels that straddle
region boundaries, or use trial and error to find δ. As elaborated below, the nonquadratic property will encourage
most neighboring pixel values to be similar, but will also allow them to be different in image locations where there are
sufficient discrepancies between neighbors, i.e., near object edges.

To explore the properties further, first we examine the column gradient of the penalty function:

∇R(x) =
K∑
k=1

∇ψ(c′kx) =
K∑
k=1

ck ψ̇([Cx]k) =

K∑
k=1

ck ωψ([Cx]k)[Cx]k = C ′ D(x)Cx (1.10.13)
e,res,R,cgrad

where c′k = e′kC denotes the kth row of C and we define the following x-dependent, K × K diagonal weighting
matrix:

D(x) ≜ Diag{ωψ([Cx]k)} . (1.10.14)
e,res,npls,Df

(The weighting function (1.10.12) was constructed to enable the final form (1.10.13).) Thus the gradient of the cost
function (1.10.11) is

∇Ψ(x) = −A′ (y −Ax) + βC ′ D(x)Cx, (1.10.15)
e,res,npls,cgcost

which equated to zero yields
A′y = A′Ax̂+βC ′ D(x̂)C x̂ .

Rearranging yields the following recursive expression for the estimator x̂:

x̂ = [A′A+ βC ′ D(x̂)C]
−1

A′y. (1.10.16)
e,res,npls,xh
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This is a somewhat remarkable expression, but it is not quite in closed form because x̂ is present on the right-hand
side. Nevertheless, it provides insight into the properties of nonquadratic penalty functions. (A closed form is known
for the 1D case with ideal step-function data for the Huber potential function [92].)

First reconsider the quadratic case where ψ(z) = z2/2. Then ωψ(z) = 1 so D(x̂) = I and we are back to the
usual quadratic penalized least-squares estimator (1.8.9) with its edge-blurring properties.

For more insight into (1.10.16), consider again the 1D problem described in §1.8.1. If we knew where the edges
were, we would use a spatially weighted penalty function [93]

R(x) =
N∑
j=2

wj ψ(xj − xj−1) (1.10.17)
e,res,npls,R,ideal

where we would set wj = 0 between pixels straddling an edge, and wj = 1 for pixels in relatively uniform regions.
This would provide smoothing and hence noise reduction in uniform regions without causing regularization-induced
blurring across edges. In the quadratic case where ψ(z) = z2/2, this “oracle weighted” regularizer would lead to the
solution

x̂ = [A′A+ βC ′ Diag{wj}C]
−1

A′y,

which would provide ideal edge-preserving restoration. However, in practice we (usually) do not know where the
edges are in advance, so we must “let the algorithm find them.” Comparing this expression to (1.10.16), we see that
the “only” difference is that in (1.10.16) the weights ωψ depend on the estimate x̂.

For example, consider the Huber potential function given in Table 2.1 and its corresponding weighting function
shown in Fig. 1.10.5. When the difference [C x̂]k between neighboring pixels exceeds δ, the corresponding weight is
reduced from unity by ωψ , thereby approximating the effect described in (1.10.17). In other words, instead of needing
to know the edge locations in advance, a nonquadratic penalty function can provide estimate-based weighting. (See
Example 1.11.3 and Fig. 1.11.2 for an example.) In the denoising case where A = I , one can think of x̂ as an iterative
form of adaptive smoothing.

There are explicitly adaptive methods for image restoration where one processes the image y to attempt to locate
edge regions, e.g., by using local statistics [94–99]. Such methods are applicable to image restoration problems where
y is already an image, but not to other inverse problems such as tomography where y is not an image.

1.11 Minimization algorithms (s,res,alg.tex)
s,res,alg.tex

Typically closed-form solutions are unavailable for the minimizer x̂ of the cost functions (1.8.1) of interest in inverse
problems, so finding x̂ requires iterative optimization algorithms. Chapters 11 - 14 describe such algorithms in detail;
here we preview just two.

An iterative algorithm is a procedure that starts with an initial guess x(0) for x̂, and then recursively generates a
sequence18 x(1),x(2), . . ., also denoted {x(n)}. Ideally, the iterates {x(n)} should rapidly approach the minimizer x̂.

1.11.1 Gradient-based algorithms
Most algorithms involve the gradient of the cost function Ψ(x), as described in detail in Chapter 11, Many of the
algorithms reduce to the following form:

x(n+1) = x(n) − αnD∇Ψ(x(n)), (1.11.1)
e,res,alg

where D is some diagonal preconditioning matrix, and αn is a step size that affects the convergence rate of the
sequence {x(n)}. Such an algorithm will be of limited use unless it converges to the solution x̂. To preview the
convergence analyses described in later chapters, consider the case where Ψ(x) is quadratic, such as in (1.7.5). Such
functions can also be written in the following two forms:

Ψ(x) = c− b′x+
1

2
x′Hx = Ψ(x̂)+∇Ψ(x̂) (x− x̂) +

1

2
(x− x̂)′H (x− x̂) ,

where H ≜ ∇2 Ψ(x) is the Hessian of the cost function Ψ and the elements of H are given by Hjk = ∂2

∂xj∂xk
Ψ(x) .

(For a quadratic cost function this Hessian is independent of x.) Recalling that ∇Ψ(x̂) = 0 in the absence of
constraints, we have

∇Ψ(x(n)) = H (x(n) − x̂) .

18Throughout this book , all superscripts (such as (n) and (n+ 1)) on vectors such as x denote iteration indices.
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Subtracting x̂ from both sides of (1.11.1) and substituting in the above yields

x(n+1) − x̂ = x(n) − x̂−αnDH (x(n) − x̂) = (I − αnDH)(x(n) − x̂). (1.11.2)
e,res,alg,xn-xh

So the distance x(n) − x̂ to the solution should decrease each iteration if the matrix I − αnDH is “small” in some
appropriate sense.

For further insight, consider the penalized least-squares cost function (1.8.8) and suppose that A and R are circu-
lant, D = I , and Kε = σ2I . Then the Hessian is

H =
1

σ2
A′A+ βR = Q−1

[
1

σ2
Γ′Γ+ βΠ

]
Q,

where Q is a DFT matrix and Γ and Π were defined in §1.8.3. Let E(n) ≜ Q (x(n) − x̂) denote the DFT coefficients
of the error vector at the nth iteration. Then from the recursion (1.11.2) we have

E(n+1) =

(
I − αn

(
1

σ2
Γ′Γ+ βΠ

))
E(n).

Therefore, all error frequency components will decrease at the nth iteration if and only if one chooses αn such that∣∣∣∣∣1− αn
(
|Bk|2

σ2
+ βRk

)∣∣∣∣∣ < 1, ∀k.

Of course, in the circulant case with a quadratic cost function, there is no need to use an iterative algorithm in the first
place because a direct solution of the form (1.8.15) is available. But even in nonquadratic, non-circulant problems,
similar convergence conditions arise, as discussed in more detail in Chapters 11 and 16.

1.11.2 Huber’s iteration (s,res,npls,alg)s,res,npls,alg

The recursive form of the “solution” (1.10.16) is suggestive of the following fixed-point iteration:

x(n+1) = [A′A+ βC ′ D(x(n))C]
−1

A′y

= x(n) − [A′A+ βC ′ D(x(n))C]
−1

([A′A+ βC ′ D(x(n))C]x(n) −A′y)

= x(n) − [A′A+ βC ′ D(x(n))C]
−1∇Ψ(x(n)), (1.11.3)

e,res,npls,alg

using (1.10.15). This is a form of preconditioned gradient descent. Often fixed-point iterations do not converge,
but this algorithm, derived by Huber [90, p. 182], decreases Ψ(x) monotonically each iteration, and converges to the
minimizer of Ψ(x) under mild conditions; see §14.5.4.4 and Chapter 15.

However, this algorithm is somewhat impractical for imaging problems due to the matrix inverse. Chapter 14
describes several practical alternatives. A particularly simple choice is the diagonally-preconditioned gradient descent
method (14.6.13), which has the form

x(n+1) = x(n) − Diag

{
1

d(n)

j

}
∇Ψ(x(n)) (1.11.4)

e,res,npls,alg,sps

d(n)

j =

nd∑
i=1

|aij | |a|i + β

K∑
k=1

|ckj | |c|k ωψ([Cx(n)]k), (1.11.5)
e,res,npls,alg,denj

where

|a|i ≜
np∑
j=1

|aij | , |c|k ≜
np∑
j=1

|ckj | .

This iteration was used for the following example and for Fig. 1.11.1.
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1.11.3 Restoration example (s,res,ex1)s,res,ex1

Fig. 1.11.1 illustrates the methods summarized in this chapter. The normalized root mean-squared (NRMS) errors of
each method are shown along the vertical axis of each image, where

NRMS ≜

√∑np

j=1 |x̂j − xj |
2√∑np

j=1 |xj |
2

.

This figure of merit leaves much to be desired as a measure of image quality, but it serves as a starting point. Later
chapters discuss more interesting figures of merit such as resolution (Chapter 24), noise (Chapter 25), and signal
detection (Chapter 23).
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Figure 1.11.1: Illustration of 2D image restoration by: unregularized methods, quadratically regularized least-squares
methods, and edge-preserving nonquadratically regularized least-squares methods. Each vertical axis shows the cor-
responding NRMS error.

fig_tomos

The figure includes the following images.
• The true object xtrue, a grayscale image of the Greek word τóµoσ (“a slice”, the root of tomography) where

white=100 and black=0.
• Noiseless blurry image ȳ = Ax where A corresponds to shift-invariant blur having the separable PSF b[m,n] =
b[n] b[m], where b[n] =

[
1
9 ,

1
9 ,

5
9 ,

1
9 ,

1
9

]
.

• Noisy blurry image y = Ax+ ε where the noise is zero-mean additive white gaussian distributed with σ = 10.
• The ML (inverse filter) reconstruction x̂ML defined in (1.6.9), computed via a circulant deconvolution approxima-

tion, both from the noiseless data ȳ and the noisy data y. For noiseless data, the deconvolution method works fine,
but even for this moderately noisy data there is excessive noise amplification.
• In this case the image is (nearly) binary, so we can improve on x̂ML by rounding each pixel value in x̂ML to 0 or

100, whichever is nearer. (This is the ML classifier ignoring pixel correlations introduced by the deconvolution.)
However, this only reduces the NRMS error from 141% to 114%.
• A quadratically penalized least-squares estimator computed using the first-order roughness penalty (1.10.1) in the

penalized-likelihood cost function (1.8.1) which reduces to (1.8.8) because the noise is gaussian. The quadratic
regularization reduces noise relative to y, but the edges are so seriously blurred that the overall NRMS error, which
accounts for both noise and resolution effects, actually increases relative to y.
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• Finally, a nonquadratically penalized least-squares estimate with hyperbola potential function and a 2nd-order
neighborhood (including nearest diagonal neighbors), for δ = 0.1 and β = 28. This approach gives the lowest
NRMS of all methods shown for the noisy data. This example is ideal for such edge-preserving regularization
because the true object is piece-wise smooth, indeed it is piece-wise constant.
Fig. 1.11.2 shows the weighting terms ωψ([C x̂]k) for the nonquadratic restoration example shown in Fig. 1.11.1.

The weights are greatly reduced towards zero (black) from unity (white) near object edges, thereby helping preserve
the edges in the restored image x̂.

MIRT See restore_example.m.

Horizontal Vertical

Diagonal Up−Left Diagonal Up−Right

Figure 1.11.2: Weighting terms ωψ([C x̂]k) associated with Fig. 1.11.1.
fig_tomos_wpot

[RQ7]

1.12 Sparsity models (s,res,sparse)
s,res,sparse

This section provides a brief overview of regulized image formation methods based on sparsity models. We discuss
both synthesis and analysis formulations, also known as generative models and discriminative models.

1.12.1 Synthesis formulations (generative models)s,res,sparse,synth

In some applications the image itself is expected to be sparse, e.g., when imaging some star fields [100] or in angiog-
raphy [101]. In other applications, one might be willing to assume that the object is sparse with respect to some basis
B. In such applications, we can “synthesize” the unknown image x in terms of a small number of basis vectors by
writing

x = Bz, (1.12.1)
e,res,sparse,synth

where B denotes a np × K matrix whose columns are basis vectors and z is an unknown vector of coefficients.
In some cases B is overcomplete, meaning K > np. (In those cases, B is no longer a basis and often one uses
generalizations called frames [102].) Sometimes B is selected to be a standard basis such as wavelets or the discrete
cosine transform (DCT). In other cases, one learns B from the data [103–106]. In methods based on sparsity models,
one expects only a small subset of the elements of z to be nonzero. Let ∥z∥0 denote19 the number of nonzero elements
of z, i.e.,

∥z∥0 ≜
K∑
k=1

I{zk ̸=0}. (1.12.2)
e,norm0

Substituting the synthesis model (1.12.1) into the standard linear measurement model (1.4.4) yields the model

y = A Bz︸︷︷︸
x

+ε. (1.12.3)
e,res,y=ABz+e

For such models, reasonable approaches to image recovery include the following.

19This norm notation is a slight abuse, because ∥x∥p ≜
(∑

j |xj |
p
)1/p

is a norm when p ≥ 1 but not when p < 1. Nevertheless, when p < 1

the summation is still well defined, and one can show that ∥x∥pp converges to ∥x∥0 as p → 0. Technically (1.12.2) is called counting measure,
not a norm.

https://creativecommons.org/licenses/by-nc-nd/4.0/
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• Finding the image that best fits the data subject to a sparsity constraint:

θ̂ = argmin
z

∥y −ABz∥ s.t. ∥z∥0 ≤ L ∈ N,

where L < K. An iterative hard thresholding algorithm for this problem is derived in [107] using the optimiza-
tion transfer methods of Chapter 14. The sparsity L is rarely known, so L is essentially a tuning parameter.
• Finding the sparsest set of coefficients for which the corresponding image fits the data exactly [101, 108]:

θ̂ = argmin
z

∥z∥0 s.t. y = ABz.

This formulation is free of tuning parameters, but presumably is most useful only in the unlikely situation that the
data is noiseless!
• Finding the sparsest set of coefficients for which the corresponding image fits the data to within some constraint:

θ̂ = argmin
z

∥z∥0 s.t. ∥y −ABz∥ ≤ ε. (1.12.4)
e,res,sparse,l0,eps

This formulation may be particularly well suited to highly under-determined problems [109].
• Finding the image that minimizes a cost function that includes a data fidelity term and sparsity regularizer:

θ̂ = argmin
z

1

2
∥y −ABz∥2 + β ∥z∥0 . (1.12.5)

e,res,sparse,reg0

Often this regularized approach is equivalent, for suitable β and ϵ. to the constrained approach (1.12.4), but not
always (particularly in nonconvex problems [110, 111]). The units of ϵ are more intuitive than those of β so (1.12.4)
may simplify parameter selection. (See §2.5.2.1.) However, (1.12.4) is a constrained optimization problem so it
may be more challenging to implement than (1.12.5).
• Including both a sparsity regularizer and another image regularizer:

θ̂ = argmin
z

1

2
∥y −ABz∥2 + β1 ∥z∥0 + β2 R(Bz) . (1.12.6)

e,res,sparse,synth,R

All of the above estimates are in the synthesis form because after finding the estimate θ̂ of the coefficients we use
(1.12.1) to synthesize the final image by computing x̂ = Bθ̂.

1.12.2 Synthesis formulations: regularizeds,res,sparse,synth,reg

An equivalent way to write the regularized form (1.12.5) is:

x̂ = argmin
x

min
z

{
1

2
∥y −Ax∥2 + β ∥z∥0

}
s.t. x = Bz. (1.12.7)

e,res,sparse,synth,R,con

Note the strict equality constraint that corresponds to the model (1.12.1). Indeed, all of the formulations in §1.12.1
treat (1.12.1) as a strict constraint. However, the synthesis model (1.12.1) with sparse coefficient vector z may not
be able to describe all signals of interest depending on the basis B and the sparsity of z.

An alternative to (1.12.7) is treat (1.12.1) as an approximation, i.e., x ≈ Bz for some sparse z, suggesting that
we use a regularizer rather than a constraint. One regularized version of (1.12.7) is:

x̂ = argmin
x

min
z

{
1

2
∥y −Ax∥22 + β1

1

2
∥x−Bz∥22 + β2 ∥z∥0

}
. (1.12.8)

e,res,sparse,synth,R,reg1

An equivalent expression that more clearly reveals the regularizer is the following:

x̂ = argmin
x

{
1

2
∥y −Ax∥22 + β1 R(x)

}
, R(x) ≜ min

z

{
1

2
∥x−Bz∥22 +

β2

β1
∥z∥0

}
. (1.12.9)

e,res,sparse,synth,R,reg2

Here we see that R(x) favors images x that closely match Bz for some sparse coefficient vector z. These regularized
forms are may be less sensitive to imperfections in the synthesis model, but have the drawback of requiring more
tuning parameters.
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1.12.3 Analysis formulations (discriminative models)s,res,sparse,anal

An alternative to the synthesis formulations above is to use an analysis form such as the following regularized cost
function:

x̂ = argmin
x

1

2
∥y −Ax∥2 + β1 ∥Cx∥0 + β2 R(x), (1.12.10)

e,res,sparse,anal,R

where here the rows of C are used to “analyze” the image x. The 0-norm penalizes the number of nonzero coefficients
in the transform domain Cx. One can also define analysis formulations of the other variations in §1.12.1.

When C is invertible, the analysis form (1.12.10) is equivalent to the synthesis form (1.12.6) with B = C−1

[112]. But more generally the analysis and synthesis forms differ and it is unclear which approach is best [112–114].
If C corresponds to the undecimated Haar analysis wavelets at the finest scale, which (in 1D) use the filter

δ[n]− δ[n− 1], then this latter form is closely related to the roughness regularizer (1.8.3).

1.12.4 Convex relaxations
All of the above approaches have been investigated for imaging problems. The “norm” ∥z∥0 is nonconvex and non-
differentiable, greatly complicating minimization. Often it is replaced by ∥z∥1, which is convex. This replacement is
called a convex relaxation. For example, often we replace the ℓ0 regularized minimization problem (1.12.5) with:

θ̂ = argmin
z

1

2
∥y −ABz∥2 + β ∥z∥1 . (1.12.11)

e,res,sparse,reg1

This problem is known as least absolute shrinkage and selection operator (LASSO) in the statistics literature [115–
120]. This cost function also is non-differentiable at the origin, so conventional optimization algorithms for it can be
quite slow. This is a very active research area with a rapidly growing literature. See [121–130].

When A is under-determined, yet another approach is bi-level optimization of the form [131]:

argmin
x∈X

R(x) where X ≜

{
argmin

x
∥y −Ax∥

}
,

i.e., X denotes the set of minimizers of a data-fit term.
For other variations such as convolutional dictionary models see §10.4.8.

1.13 Other formulations

1.13.1 Bayesian line-site models (s,res,line)s,res,line

A nonquadratic but convex potential function can only partially preserve edges because large disparities between
neighboring pixels are still discouraged, just less vigorously than the quadratic penalty function would. To penalize
edges even less, one could use a non-convex potential function such as a broken-parabola function:

ψ(z) =

{
|z|2 /2, |z| < δ
δ2/2, |z| ≥ δ. (1.13.1)

e,res,broken

This potential function, illustrated in Fig. 1.10.4, assigns the same cost (δ2/2) to any value of the difference between
two neighboring pixels exceeding δ.

Such potential functions are non-convex, which complicates the problem of finding the minimizer of the cost
function Ψ(x). Nevertheless, for piece-wise constant images, impressive restoration results have been reported.

Such methods originated in the Bayesian image restoration literature, but can be described equally well in the
language of penalized-likelihood estimation. For neighboring pixels j and k, let ljk denote a “line site” variable that
should indicate the presence of an object edge “between” the jth and kth pixel. Typically we would like to have
ljk = 1 if there is an object intensity edge between pixels j and k, and to have ljk = 0 if pixels j and k are both within
an object region having uniform values. Intermediate values of ljk can also be used if desired. Of course in practice
we do not know which pixels are in the same region and which pairs straddle object edges, so we must estimate the
ljk values along with the object x.

If we did know good ljk values, then in the same spirit as (1.10.17) we would want to use a roughness penalty
function of the following form to avoid smoothing across edges:

R(x, l) =

np∑
j=1

∑
k∈Nj

(1− ljk)
1

2
|xj − xk|2 , (1.13.2)

e,res,line,Rxl
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where Nj denotes (half of) the set of neighbors of the jth pixel, as defined in §1.10, and where l = {ljk}.
This formulation increases the number of unknowns from the np elements of x to at least (1 + 2)np unknowns

if we use ljk parameters corresponding to horizontal and vertical neighbors. To provide a useful solution, we must
include some type of penalty function for the ljk values as well, to discourage unlikely configurations of edges. Let
U(l) denote this penalty function. Then the overall penalized-likelihood estimate for such an approach is given by:

(x̂, l̂) = argmin
x,l

Ψ(x, l)

Ψ(x, l) = − log p(y |x)+β1 R(x, l)+β2U(l), (1.13.3)
e,res,K(x,l)

where each ljk is constrained to the interval [0, 1]. One can show that as β2 → 0, l̂jk → 1, because l̂jk = 1
minimizes (1.13.2), and x̂ degenerates to the ML estimate. So a nonzero β2 and an appropriate U(l) are essential for
this approach.

The simplest approach is to choose U(l) to count the number of edge sites:

U(l) =
∑
j,k

ljk. (1.13.4)
e,res,U(l),noninteract

This penalty function discourages the formation of “too many” edges, but is indifferent to the shape of region bound-
aries. This is called a non-interacting line-site model. One can show [132–135] that this non-interacting model
simplifies to ordinary penalized-likelihood estimation with the broken-parabola (1.13.1) as the potential function
(Problem 1.13). One can show that replacing 1

2 |xj − xk|
2 with |xj − xk| in (1.13.2) for a non-interacting model

simplifies to ordinary PL estimation with a truncated absolute difference potential function [136] of the form ψ(z) =
min(|z| ,β2/β1).

To somewhat encourage object boundary continuity, line-site interactions are needed in the design of U(l). Most
papers e.g., [137–140], have used small cliques that have an inherently local effect and thus only partially encourage
boundary continuity. There are also similar variational formulations, e.g., [141].

In the context of blurred image restoration, comparatively large line-site neighborhood sizes that match the size of
the PSF of the imaging system have been proposed [142, 143]. (How to apply that principle in tomography problems
is unclear because each tomographic measurement is influenced by long strips traversing the entire object.) None of
these line-site models address global connectivity or continuity of object boundaries, and thus are inherently local.

One of the few previous methods to capture global properties is a region-based Bayesian prior that has been applied
successfully in tomography [144, 145]. That method uses discrete region identifiers (motivated by image segmentation
problems) and assigns costs that prohibit disconnected regions, encourage regularly shaped regions, and discourage
having too many regions. (The number of regions need not be specified a priori.) Some of these costs involve the
entire image and are therefore global. The Bayesian formalism permits the exploration of estimate uncertainty, but
using discrete region labels is challenging for computing point estimates.

An alternative method to encourage global boundary regularity is to use level sets to model object boundaries
[146–148]. Such approaches are boundary based rather than region based; boundaries are continuous-valued, so
simple gradient-descent methods are available for computing point estimates (at local minima of the cost function).

This book focuses on penalized-likelihood problems of the form (1.8.1) rather than on the line-site form (1.13.3).
Nevertheless, many of the concepts would also apply to line-site formulations. When restoring multiple images simul-
taneously with common boundaries, line-site methods may be useful [149]. See §2.8.

1.13.2 Maximum entropy restoration (s,res,maxent)s,res,maxent

An alternative to maximum-likelihood and penalized-likelihood methods are the maximum entropy methods for
image restoration [150–163]. These methods use a version of entropy to quantify image smoothness or irregularity. (A
uniform image, when treated as a uniform distribution, has high entropy, whereas an image that is a single Kronecker
impulse has zero entropy in this framework.) This approach has been applied in many application domains, including
spectral estimation [164] and tomographic reconstruction, e.g., [44, 165–169].

Some maximum entropy formulations ignore measurement noise, e.g., [170], as follows:

x̂ = argmax
x⪰0

−
np∑
j=1

xj log xj such that y = Ax.
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Other formulations allow for some noise, e.g.,

x̂ = argmax
x⪰0

−
np∑
j=1

xj log xj such that ∥y −Ax∥2 ≤ Lσ2,

where L is a parameter that one must select. By the theory of constrained optimization [47, p. 188], this latter approach
is equivalent to a form of penalized least-squares estimation:

x̂ = argmin
x⪰0

1

2
∥y −Ax∥2 + β

np∑
j=1

xj log xj ,

for some value of β that depends on L above. In this setting, the (negative) entropy penalty function R(x) =∑np

j=1 xj log xj is just one of many possible choices, as is not in any sense canonical. Yet another option (partic-
ularly for the under-determined case) is to choose, among all the LS solutions, the one having maximum entropy.
Lyon et al. attempt this by minimizing R(x) subject to x′1 = 1, x ⪰ 0, and−A′(y−Ax) = 0. The latter expression
characterizes the family of unconstrained LS solutions, but not the set of nonnegativity-constrained LS solutions, so
formulating maxent rigorously remains an open problem.

Although there are philosophical arguments that might be made in favor of maximum entropy in the absence of
measurement noise, those arguments seem weaker in the presence of noise. The maximum entropy method is popular
in astronomical image restoration because it favors “nearly black” objects [171, 172]. It is appropriately less popular
in the tomographic imaging field.

1.13.3 Super-resolution problems (s,res,super)s,res,super

This chapter has focused on restoring an image x from a single noisy, blurred image y. In some applications one
can acquire multiple images y1, . . . ,yK each of which is related to a single unknown image x by a possibly different
system model Ak and noise model:

yk = Akx+ εk.

If the system models differ by subpixel spatial translations, then one can attempt to recover x at a finer spatial resolu-
tion than the measured images {yk}. This problem is known as super-resolution. A typical approach is based on a
cost function of the form (for white gaussian noise):

Ψ(x) =

K∑
k=1

1

2
∥yk −Akx∥2 + R(x) .

In many cases, the system model Ak depends on motion parameters that one also must estimate. See references [173–
190] and these surveys [191, 192]. For medical imaging applications, including some controversies, see [193–202].

1.14 Summary (s,res,summ)
s,res,summ

This chapter has used the image restoration application as a vehicle for introducing many of the concepts and notational
conventions that are used throughout this book for image reconstruction problems. The principal concepts include
• the deficiencies of inverse filtering (deconvolution),
• matrix-vector representation of linear models for imaging systems,
• circulant approximations for linear shift-invariant problems,
• ML, MAP, and penalized-likelihood estimation criteria,
• and roughness penalty functions and their effects.

The field of image restoration remains an active area of research with a growing number of applications.
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1.15 Problems (s,res,prob)s,res,prob

p,res,blur,fbasis

Problem 1.1 An image restoration method uses object model (1.3.6) with a 2D rectangular basis function: β0(x, y) =

rect2(x/△X, y/△Y) . The sensor is shift invariant with a rectangular blur: b(x, y) = 1
4△X△Y

rect2

(
x

2△X
, y
2△Y

)
.

Assuming zero end conditions, determine the values of elements aij of the system matrix A. Assume both the spacing
of the sensor elements and the spacing of the object basis functions are (△X,△Y).

Problem 1.2 Consider a 1D signal restoration problem for a linear shift-invariant system with additive white gaussian
noise and impulse response

b[n] = δ[n− 2]+8 δ[n] + δ[n+ 2] .

Would the deconvolution method be a suitable restoration approach for this system? Explain why or why not.
p,circ,ht

Problem 1.3 Derive the circular convolution formulas (1.4.11) and (1.4.12) for periodic boundary conditions.

Problem 1.4 Use the principles of §1.4.3.1 to find analytically the eigenvalues and eigenvectors of the following
matrix 

5 2 1 0 1 2
2 5 2 1 0 1
1 2 5 2 1 0
0 1 2 5 2 1
1 0 1 2 5 2
2 1 0 1 2 5

 .

Verify your eigenvalues using MATLAB’s eig function. Your eigenvectors may differ from those of MATLAB; why?

Problem 1.5 Consider a 1D system with impulse response b[n] = 3 δ[n] + δ[n− 1]+ δ[n+ 1] . Using MATLAB’s
eig command, compute and plot the “exact” eigenvalues of the Toeplitz representation (1.4.7) for N = 8, N = 16,
and N = 128. Determine analytically the eigenvalues of the circulant approximation (1.4.13) for N = 1000 and
superimpose on the preceding plot. For superposition, sort the eigenvalues from largest to smallest, and normalize the
eigenvalue indices as (k − 1)/N . Discuss.

p,circ,vs,toep3b

Problem 1.6 [204, Eqn. (2.7)] states that λmin(A) ≤ λmin(c(A)) ≤ λmax(c(A)) ≤ λmax(A), where c(A) is
a certain circulant approximation to A. These inequalities provide the following bound on the condition number
(28.7.2):

κ(A′A) =
λmax(A

′A)

λmin(A′A)
≥ λmax(c(A

′A))

λmin(c(A′A))
= κ(c(A′A)). (1.15.1)

e,res,circ,cond

Evaluate these bounds for the preceding problem and compare to the eigenvalues of the Toeplitz matrices. See also
[205, 206]. (Need typed.)

Problem 1.7 Can you find bounds that are the other way around? Possible resources: [204, 207–210] and citations
therein. (Solve?)

p,res,mirror,a

Problem 1.8 Determine A for the mirror end conditions discussed in §1.4. (Need typed.)
p,res,mat2,rep

Problem 1.9 Generalize the expression (1.4.20) or (1.4.21) to the case of replicated end conditions. (Solve?)
p,res,non,circ

Problem 1.10 If a matrix M is square and circulant, then computing QMQ−1 will yield an exactly diagonal matrix,
where Q is the DFT matrix defined in (1.4.29). Consider the following four representations of a system matrix A:
(1.4.7), (1.4.9), (1.4.10), and (1.4.13). For each representation, using MATLAB to compute D = QA′AQ−1 for the
impulse response b[n] = δ[n− 1]+2 δ[n] + δ[n+ 1] and for N = 64. (Hint: you can create each of the A matrices
needed in one or two lines of MATLAB using convmtx.) Display for yourself the D matrices to visualize how close
to diagonal they are. Compute the fractional off-diagonal “energy” as follows:√∑

k ̸=j |dkj |
2√∑

k,j |dkj |
2
.

Compare the four models using this quantitative measure of “non-circulant-ness.”
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p,res,poisson,ml

Problem 1.11 Consider the statistical model yi ∼ Poisson{aix} where x is an unknown nonnegative scalar and
ai = i2, i = 1, . . . , 5. Find expressions for the log-likelihood and the ML estimate of x given y1, . . . , y5.

p,res,orth,shrink

Problem 1.12 For any np × np unitary matrix U , consider the regularized LS cost function

Ψ(z) =
1

2
∥y −Uz∥2 + β

np∑
j=1

ψ(zj) .

• Defining b = U ′y, and using the fact that

∥y −Uz∥2 = ∥U ′y − z∥2 = ∥b− z∥2 =

np∑
j=1

|bj − zj |2 ,

find an analytical solution for ẑ in terms of b, for the l1 regularized case where ψ(z) = |z|. Sketch ẑj vs bj ∈ R.
• Compare (by plotting or sketching) to the solution when an l2 penalty is used where ψ(z) = 1

2 |z|
2.

Repeat for at least one more of the following potential functions.
• l0 potential: ψ(z) = I{z ̸=0}.
• The truncated absolute value potential: ψ(z) = min(|z| , δ).
• The broken parabola potential: ψ(z) = min

(
1
2 |z|

2
, 1

2δ
2
)

.
• Huber potential (1.10.9).
• Generalized-gaussian potential (challenging!): ψ(z) = |z|p, for p ̸= 1.

(Focus on p ∈ {1/2, 4/3, 3/2, 2, 3, 4} [211].) For other values of p, see Newton’s method in [212].

• The hyperbola potential (challenging!): ψ(z) = δ2(

√
1 + |z/δ|2 − 1).

This problem relates to wavelet-based denoising using shrinkage [213] and soft thresholding [214, 215].
p,res,non,line,site

Problem 1.13 Show that when the non-interacting line-site penalty function (1.13.4) is used in the joint penalized-
likelihood estimator (1.13.3), the solution to x̂ reduces to the ordinary penalized-likelihood form (1.8.1) with R(x) as
in (1.10.10) and ψ as the broken parabola in (1.13.1).

p,res,C,hv

Problem 1.14 Let DN denote the (N − 1)×N one-dimensional finite-differencing matrix shown in (1.8.4), and IN
denote the N × N identity matrix. Show that the simple quadratic penalty (1.10.1) that uses only horizontal and
vertical differences can be written in the form (1.10.7), where C is the following [N(M − 1) +M(N − 1)] ×MN
matrix:

C =

[
IN ⊗DM

DN ⊗ IM

]
, (1.15.2)

e,res,penal2,C,hv

and “⊗” denotes the Kronecker product defined in (28.1.12).
p,res,C,kron

Problem 1.15 For regularized restoration of a M ×N image using a penalty function R(x) = 1
2 ∥Cx∥2 , one option

is to use

C =

[
DMN

T

]
, (1.15.3)

e,res,C,kron

where T is an M(N − 1)×MN Toeplitz matrix with first row [−1 0′
M−1 1 0′

MN−M−1], where 0′
K denotes the row

vector of K zeros. Another option is to use C defined in (1.15.2). Using (1.15.3) may be slightly faster (in ANSI C).
Explain the advantage of using (1.15.2).

p,res,eig,R

Problem 1.16 The 1D regularizer Hessian matrix in (1.8.6) has eigenvalues given in footnote 13.
Consider the 2D regularizer C for a M × N image given in (1.15.2), and define the Hessian matrix R = C ′C.
Determine analytically the eigenvalues of R.

p,res,srp,dtft1

Problem 1.17 Consider the discrete-space denoising problem with no boundary conditions and zero-mean white
noise:

g[n] = f [n] + ε[n], n ∈ Z, .

Analyze the spatial resolution properties of the following quadratically-regularized denoising estimator for β > 0:

f̂ = argmin
f∈ℓ2

∞∑
n=−∞

1

2
|g[n]− f [n]|2 + β

∞∑
n=−∞

1

2
|f [n]− f [n− 1]|2 .
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Hint. Using the DTFT, first find the frequency-domain relationship between E
[
f̂
]

and f .

Optional: show that E
[
f̂
]
= h ∗ f, where the impulse response is

h[n] = ab|n| = a e−|log b||n| , b =
1 + 2β−

√
1 + 4β

2β
=

2β

1 + 2β+
√
1 + 4β

,

where a = 1+b2

1−b2
1

1+2β . Note that 0 < b < 1. Use §29.6.1. This is one of the few cases where we can find an explicit
expression for the impulse response of a regularized problem [216, 217].
Determine the FWHM of the impulse response in terms of b.

p,res,srp,dtft2

Problem 1.18 Generalize Problem 1.17 to the case where the regularizer is
∑∞
n=−∞

1
2 |c[n] ∗ f [n]|

2
, where the filter

c[n] corresponds to 2nd-order finite differences: c[n] = 2 δ[n]− δ[n− 1]− δ[n+ 1] . This is called Hodrick-Prescott
filtering [218] in some fields.

p,res,srp,dtft,ma

Problem 1.19 Generalize Problem 1.17 to the case where the regularizer is
∑∞
n=−∞

1
2 |f [n]− c[n] ∗ f [n]|

2
, where

the filter h[n] is the 3-point moving average: c[n] = 1
3 (δ[n] + δ[n− 1]+ δ[n+ 1]) .

p,res,srp,dsft3

Problem 1.20 Consider the 3D discrete-space denoising problem with no boundary conditions and zero-mean white
noise:

g[l,m, n] = f [l,m, n] +ε[l,m, n], l,m, n ∈ Z, .
Analyze the spatial resolution properties of the following quadratically-regularized denoising estimator for βi > 0:

f̂ = argmin
f∈ℓ2(Z3)

∞∑
l,m,n=−∞

1

2
|g[l,m, n]− f [l,m, n]|2 + β1

∞∑
l,m,n=−∞

1

2
|f [l,m, n]− f [l − 1,m, n]|2

+ β2

∞∑
l,m,n=−∞

1

2
|f [l,m, n]− f [l,m− 1, n]|2

+ β3

∞∑
l,m,n=−∞

1

2
|f [l,m, n]− f [l,m, n− 1]|2 .

Optional: Think about the case of anisotropic 3D voxel and how one would adjust {βi} to get reasonably similar
FWHM in all three directions. (Solve?)

p,res,srp

Problem 1.21 Analyze the spatial resolution properties of the following different denoising problems, where in each
case we form an estimate f̂ = argminf Ψ(f) .
• Continuous-continuous formulation (use Fourier transform):

Ψ(f) =
1

2
∥g − f∥2 + β

∫
1

2

∣∣∣ḟ ∣∣∣2
• Continuous-discrete formulation (use Fourier series?):

Ψ(f) =

N−1∑
n=0

1

2
|gn − f(n/N)|2 + β

∫ 1

0

1

2

∣∣∣ḟ ∣∣∣2 .
In each case one can find an expression similar to (1.9.1) or (1.9.2).
Hint. Yet another formulation is the finite-length discrete case with periodic end conditions:

Ψ(f) =

N−1∑
n=0

1

2
|g[n]− f [n]|2 + β

N−1∑
n=0

1

2
|f [n]− f [nmodN ]|2 .

Letting Fk denote the N -point DFT of f [n], by Parseval’s relation for the DFT, we can express the cost function as

N−1∑
n=0

1

2
|Gk − Fk|2 + β

N−1∑
n=0

1

2

∣∣∣Fk − e−ı2πk/N Fk

∣∣∣2 =

N−1∑
n=0

1

2
|Gk − Fk|2 + β

N−1∑
n=0

Rk
1

2
|Fk|2 ,

where Rk =
∣∣1− e−ı2πk/N

∣∣2 = 2− 2 cos(2πk/N) . Differentiating w.r.t. Fk and equating to zero yields F̂k = LkGk,

where Lk was defined in (1.8.16), so the resolution properties here are E
[
F̂k

]
= 1

1+βRk
Fk.
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p,res,srp,cs1d

Problem 1.22 Consider the 1D continuous-space denoising problem g(t) = f(t) + ε(t) with estimator

f̂ = argmin
f

Ψ(f), Ψ(f) =

∫
1

2
|g(t)− f(t)|2 dt+β

∫
1

2

∣∣∣f (p)(t)∣∣∣2 dt,
where f (p) denotes the pth derivative of f . Analyze the spatial resolution properties of the estimator f̂ . (i) Find a gen-
eral expression for the frequency response, akin to (1.9.2). (ii) Using [220] and/or §29.4.1, verify the following specific
expressions for the impulse response for p = 1 (1st-order regularization) and p = 2 (2nd-order regularization):

h1(t) =
1

2
√
β
e−|t|/

√
β , h2(t) =

1

2β1/4
e−|t|/(

√
2β1/4) sin

(
|t|√
2β1/4

+
π

4

)
.

(iii) Show also that FWHM1 = (2 log2)β
1/2 and FWHM2 ∝ β1/4. (iv) Use the plot in Fig. 1.15.1 of these two PSFs

(at matched FWHM) to compare them qualitatively. (v) For even p ≥ 2 and β = 1, use §29.4.1 to find a general
expression for the impulse response of the following form:

hp(t) =
1

p

p/2−1∑
l=0

[
b2l
al

cos(blt)+
a2l
bl

sin(bl |t|)
]
e−al|t| . (1.15.4)

e,res,srp,cs1d,hp
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Figure 1.15.1: PSFs of 1st-order and 2nd-order regularization for 1D continuous-space denoising.
fig_prob_res_srp_cs1d

p,res,up2

Problem 1.23 Consider the 1D “regularized interpolation” or “super-resolution” problem, where we measure the
even (or odd) samples of a 1D signal x[n] with noise:

y[n] = x[2n] + ε[n],

and we wish to recover x[·] by a quadratically penalized LS method:

x̂ = argmin
x

∞∑
n=−∞

1

2
|y[n]− x[2n]|2 + β

∞∑
n=−∞

1

2
|(c ∗ x)[n]|2 ,

where c[n] is a (typically high-pass) filter. We want to determine the frequency-domain relationship between x̂[n] and
y[n]. Towards this end, consider the model yk[n] = sk[n] + εk[n] where for k = 0, 1:

sk[n] =
1 + (−1)k(−1)n

2
x[n]

DTFT←→ Sk(Ω) =
X(Ω) + (−1)kX(Ω± π)

2
.

So y0[n] is the even samples and y1[n] is the odd samples of x[n] plus noise. Let

x̂k = argmin
x

∑
n

∣∣∣∣yk[n]− 1 + (−1)k(−1)n

2
x[n]

∣∣∣∣2 + β
∑
n

|(c ∗ x)[n]|2 .
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• Determine the frequency domain relationship between x̂k[n] and yk[n].
• Does regularization overcome the possible aliasing associated with down sampling a signal?

p,res,up2,psf

Problem 1.24 Continuing Problem 1.23, analyze the resolution properties. Let x̂ ≜ 1
2 (x̂0 + x̂1) , and show that

E
[
X̂(Ω)

]
= L(Ω)X(Ω) where L(Ω) =

R(Ω± π)
R(Ω) +R(Ω± π) + 2βR(Ω)R(Ω± π)

.

p,res,up3

Problem 1.25 Generalizing Problem 1.23, consider a 1D “super-resolution” problem where we measure every 3rd
sample of a blurred 1D signal x[n], n = 0, . . . , N − 1 with noise:

y[m] = (b ∗ x)[3m] + ε[m], m = 0, . . . ,M − 1,

where in this problem we consider periodic convolution throughout and N = 3M . Here we recover x[·] by a quadrat-
ically penalized LS method expressed in a matrix formulation:

x̂ = argmin
x

1

2
∥y −Ax∥22 +

1

2
∥Cx∥22 ,

where C ′C is a circulant matrix, typically representing a high-pass filter, and A = SB is aM×N matrix where B is
a N ×N circulant matrix corresponding to the blur b[n] and S = IN ⊗ [1 0 0] is a M ×N “down-sampling” matrix.
Find a matrix expression for the solution and show how one can use FFT’s to implement that solution efficiently. Note
that A is not circulant (it is rectangular) nor is A′A is circulant.

p,res,convex1

Problem 1.26 This problem considers whether the penalized least-squares cost function Ψ(x) in (1.10.11) has a
unique minimizer in the usual cases where A and C have disjoint null spaces (other than 0).
• Prove that if the potential function ψ used in (1.10.11) is twice differentiable with a positive second derivative, then
Ψ is strictly convex (and thus has a unique minimizer).
• What if ψ is strictly convex, but does not necessarily have a positive second derivative? An example would be
ψ(z) = |z|4.
• What if ψ is merely convex, like the Huber function? Hint: see Fig. 1.15.2.

Data fit

-4 0 4

x1

-4

0

4

x
2

Regularizer

-4 0 4

x1

-4

0

4

x
2

Cost function

-4 0 4

x1

-4

0

4

x
2

Figure 1.15.2: Contours of data-fit term, regularizer, and cost function Ψ(x) for Problem 1.26.
fig_prob_res_convex1

p,res,fixed

Problem 1.27 Consider the regularized least-squares problem (1.10.11) with regularizer (1.10.10) and the usual 1st-
order finite differencing matrix C.
• Ken uses the generalized-gaussian potential function ψ(z) = |z|q with q = 1.5, and states that the solution x̂

satisfies the recursive expression (1.10.16). Discuss.
• Maria uses the Geman & McClure potential function ψ(z) = |z|2 /(1 + |z|2) and also states that the solution x̂

satisfies the recursive expression (1.10.16). Discuss.
p,res,grf2

Problem 1.28 Use circulant end conditions to synthesize a gaussian random field image like that in Fig. 1.7.1, for the
2D finite differencing matrix C defined in (1.10.8).
Hint. The goal is to draw x ∼ N(0,Kx), so let x = K

1/2
x w where w ∼ N(0, I) . In this case, Kx = [C ′C]

−1
.

Because Kx is not invertible, use its pseudoinverse. Do not use the pinv command; use FFTs.

https://creativecommons.org/licenses/by-nc-nd/4.0/
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p,res,auto2

Problem 1.29 Any (stationary) gaussian random field (GRF) is defined solely by its mean and autocorrelation func-
tion. Fig. 1.15.3 illustrates that the autocorrelation of a random field provides limited insight into its nature. The
random process y[m,n] was generated by filtering white noise with the filter h1[m,n] = I{|n|≤2}I{|m|≤2}. Random
process z[m,n] was generated by first defining a Bernoulli random field that takes the value 1 − p with probabil-
ity p and the value −p with probability 1 − p for some p ∈ (0, 1), and then convolving that field with the filter
h2[m,n] = h1[m,n] /

√
p(1− p). Show that y[m,n] and z[m,n] have identical mean and autocorrelation functions.

y[m,n]

m
1 64

n
1

64 -19.9

16.2

Ry[m,n]

m
-10 0 10

n

-10

-5

0

5

10

0

25

z[m,n]

m
1 64

n

1

64 -3.57

25

Rz[m,n]

m
-10 0 10

n

-10

-5

0

5

10

0

25

Figure 1.15.3: Two different wide-sense stationary random fields with identical mean and autocorrelation functions.
fig_prob_res_auto2

p,res,psf,noise

Problem 1.30 Consider a 1D deconvolution problem with blur b[n] = 1
4 δ[n+ 1]+ 1

2 δ[n] +
1
4 δ[n− 1] . Assuming

periodic end conditions for N = 64, use the circulant analyses of §1.8.3 and §1.9 to make a single plot showing the
trade-off between spatial resolution (such as FWHM of the PSF) and noise (Var{x̂j} /σ2) over a range of values of
β. (Horizontal axis should be FWHM; vertical axis should be noise standard deviation:

√
Var{x̂j}. Plot curves for

regularization based on both first- and second-order finite differences and compare.
p,res,icm

Problem 1.31 The iterated conditional modes (ICM) algorithm [221] for MAP estimation from the model y = x+ε
uses the following recursion:

x(n+1)
j = argmax

xj

p
(
xj | yj ,x(n)

Nj

)
= argmax

xj

[
log(p(yj |xj))+ log

(
p
(
xj |x(n)

Nj

))]
,

where Nj denotes the neighborhood of the jth pixel.
Derive the ICM algorithm for the case where ε is zero-mean white gaussian noise with variance σ2 and where the MRF
prior has (improper) gaussian distribution: p(x) = 1

Z e−
β
2 R(x) with R(x) =

∑N−1
n=0

1
2 |x[n]− x[(n− 1)modN ]|2 =

1
2 ∥Cx∥2 where C is the circulant finite-differencing matrix defined in (1.8.12). Show that this ICM algorithm is con-
vergent by relating it to a gradient descent (GD) algorithm with a suitable step size.

p,res,fir,wiener

Problem 1.32 From §1.8.3, image denoising with quadratic regularizer (1.8.11) is equivalent to applying a low-pass
Wiener-like filter (1.8.16) with frequency response

LIIR(Ω) =
1

1 + βR(Ω)
, R(Ω) = 2− 2 cos(Ω) .

https://creativecommons.org/licenses/by-nc-nd/4.0/
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This is an IIR filter and in some situations it may be preferable to use a FIR filter. Rearranging, we can solve for
βR(Ω) in terms of L(Ω) to design a IIR regularizer for a given desired response L(Ω):

βR(Ω) =
1

L(Ω)
− 1.

Because quadratic regularization blurs edges, often we would use a small value of β, so the FWHM of the low-pass
filter is at most 2 or 3 pixels, in which case a FIR filter need only have a few taps, for which

LFIR(Ω) = b0 + 2b1 cos(Ω)+2b2 cos(2Ω) .

Determine the values of the FIR filter taps b0, b1, b2 so that
LFIR(0) = LIIR(0), LFIR(π) = LIIR(π), and d

dΩLFIR(Ω) ≤ 0, 0 ≤ Ω ≤ π.

Problem 1.33 Prove or disprove whether the following two sparsity formulations are equivalent if B is a Parseval
tight frame

(restricted) synthesis: x̂ = Bθ̂, θ̂ = argmin
z

∥z∥p sub. to ∥y −ABz∥2 < ε and B′Bz = z

analysis: x̂ = argmin
x

∥B′x∥p sub. to ∥y −Ax∥2 < ε.

(Solve?)

https://creativecommons.org/licenses/by-nc-nd/4.0/
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