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2.1 Introduction (s,reg,intro)s,reg,intro

The previous chapter on image restoration described some basic methods for regularization of ill-posed inverse
problems. This chapter describes several regularization methods, including implementation details.

The subject of regularization dates back at least to the early work of Phillips [1], Tikhonov [2] and Miller [3].
Survey papers on the topic include [4, 5]. There are also several related books, including [6, 7] and [8, §5.1]. Software
tools are also available, e.g., [9].

The sections in this chapter address different aspects of regularization, and are largely independent.
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2.2 Splines and nonparametric function estimation (s,reg,spline)
s,reg,spline

The desirability of regularization can be illustrated by considering the following simple problem, known as nonpara-
metric regression or nonparametric function estimation. Suppose we measure the value of a function (or signal)
f(t) at several distinct points t1, . . . , tnd

with measurement error:

yi = f(ti) + εi, i = 1, . . . , nd, (2.2.1)
e,spline,yi

where the measurement noise is independent and, for simplicity, normally distributed: εi ∼ N
(
0, σ2

)
. We would like

to estimate the function f(·) from the measurements y = (y1, . . . , ynd
).

2.2.1 ML estimation / interpolation
For gaussian measurement errors, maximum-likelihood estimation of f corresponds to the following minimization
problem:

f̂ = arg min
f

nd∑
i=1

1

2
|yi − f(ti)|2 .

However, there is an infinite collection of choices f̂ that fit the data exactly, i.e., for which yi = f̂(ti), ∀i. So the ML
criterion does not specify a unique estimate. This 1D example is a classic under-determined problem.

In many cases, we expect f to be a smooth function. So one method for choosing among the many ML estimates
is to select the f̂ that has minimal roughness. A reasonable roughness measure is the energy of one of its derivatives
[1, 10, 11]:

f̂ = arg min
f

∫ ∣∣∣f (m)(t)
∣∣∣2 dt (2.2.2)

e,spline,fh,interp,cost

s.t.yi = f(ti), i = 1, . . . , nd, (2.2.3)
e,spline,yi=f(ti)

where f (m) denotes the mth derivative of f . The questions then become: (i) how does one compute f̂ , (ii) what are
the properties of f̂ , (iii) how should we choose m, and (iv) are there better measures than (2.2.2)?

The Euler-Lagrange equation for the variational problem (2.2.2) is [12–14]

f̂ (2m)(t) =

nd∑
i=1

λi δ(t− ti),

where δ(·) denotes the Dirac impulse. The λi values are Lagrange multipliers that one must choose to satisfy the
constraints (2.2.3). Integrating this equation 2m times yields the following expression for f̂ :

f̂(t) =

2m−1∑
k=0

ck
1

k!
tk +

nd∑
i=1

λi
1

(2m− 1)!
[t− ti]2m−1+ , (2.2.4)

e,spline,fh,plus

where [t]+ equals t if t > 0 and is otherwise zero. The ck values denote 2m free coefficients that one must select
based on the desired boundary conditions, i.e., the desired behavior of f̂ for t < t1 and t > tnd

. The usual choice is
to require that f̂ (n)(t) = 0 for all t < t1 for n ≥ m, which implies that cm = cm+1 = · · · = c2m−1 = 0. In addition,
requiring f̂ (n)(t) = 0 for all t > tnd

for n ≥ m implies that 0 =
∑nd

i=1 λit
k
i , for k = 0, . . . ,m − 1. Therefore, we

can determine λ = (λ1, . . . , λnd
) and c = (c0, . . . , cm−1) by solving the following (nd +m)× (nd +m) system of

equations [
A C
T 0m×m

] [
λ
c

]
=

[
y
0m×1

]
, (2.2.5)

e,spline,interp,sys

where 0m×n denotes the m × n array zeros, A is the lower triangular, nd × nd matrix with elements Ail =
1

(2m−1)! [ti − tl]2m−1+ , C is the nd × m matrix with elements Cik = 1
k! t

k
i , and T is the m × nd matrix with ele-

ments Tki = tki , for k = 0, . . . ,m− 1. Applying the transpose of the bracketed matrix to both sides yields[
A′A+ T ′T A′C
C ′A C ′C

] [
λ
c

]
=

[
A′y
C ′y

]
. (2.2.6)

e,spline,interp,sys,sq

Using the block inverse formula (26.1.11), the solution is:[
λ̂
ĉ

]
=

[ [
A′P⊥CA+ T ′T

]−1 −A′AC∆−1

−∆−1CAA′ ∆−1

]
,

where P⊥C = I −C [C ′C]
−1
C ′ and the Schur complement is ∆ = C ′C −C ′A [A′A+ T ′T ]

−1
A′C. However,

this simple approach is poorly conditioned and not recommended for implementation.
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The solution f̂ in (2.2.4) is called a spline of degree 2m − 1; it is a piece-wise polynomial with a knot at each
ti. In between the knots, f̂ is a polynomial of degree 2m − 1. At each knot, f̂ and its first 2m − 2 derivatives are
continuous. The usual choice is m = 2, in which case f̂ is called the cubic spline interpolator. In this case, one
can derive the solution f̂ without applying the calculus of variations [11, Ch. 2]. A simple derivation based on Fourier
transforms is also available [15].

Mat spapi
Fig. 2.2.1 illustrates spline interpolators for m = 0, 1, 2, for an example with noisy samples where σ = 1 and

nd = 80. As this example shows, the cubic spline interpolant, which is one of many possible “ML estimates,”
oscillates excessively for noisy data. Even though we penalized roughness in (2.2.2), the requirement in (2.2.3) that
the estimate f̂ interpolate the data exactly causes wild oscillations because it is fitting the noise.
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Figure 2.2.1: Spline interpolation of noisy data for m = 0 (nearest neighbor), m = 1 (linear interpolation), and
m = 2 (cubic spline). The noisy samples {yi} are the red points, the true function f(t) is the dashed blue curve, and
the interpolator f̂(t) is the solid green curve.

fig_spline_interp

An alternative to (2.2.2) is to replace the L2 norm of f (m) with the L1 norm, which is related to its total variation
(TV) when m = 1 [16].

2.2.2 B-splines
Although the form of the solution (2.2.4) arises naturally from the Euler-Lagrange equation, the system of equations
(2.2.5) is unstable for large m due to the nature of the unbounded one-sided polynomials [t]

2m−1
+ . Fortunately, there

are alternative bases for the space of spline functions. In particular, any spline of the form (2.2.4) can be written

f̂(t) =

nd∑
k=1

αkbk(t), (2.2.7)
e,spline,basis,interp

on the interval [t1, tnd
]. Each bk is a B-spline, a spline of degree 2m − 1 that is supported on the finite interval

[tj−m, tj+m] with knots at each of the ti values in that interval. Because of this finite and local support, there are
stable methods for computing the B-spline interpolation coefficients [14].

For equally spaced knots, i.e., ti − ti−1 = ∆, a B-spline of degree n is simply the convolution of n + 1 rect
functions:

bk(t) =

rect
( ·

∆

)
∗ · · · ∗ rect

( ·
∆

)
︸ ︷︷ ︸

n+ 1 times

(t− k∆) .

For example, for n = 2m− 1 with m = 1, each B-spline is a triangle function, resulting in linear interpolation.
Note that we began this discussion without any assumptions about polynomials or splines. We chose the cost

function in (2.2.2), a measure of the bending energy of a thin rod, and the solution turned out to be a spline. And then
it was found that splines can be expressed in the form (2.2.7). This suggests that splines are inherently natural tools for
problems with smoothness constraints. Indeed, the series representation (2.2.7) is used even in problems with more
complicated models than (2.2.1) where the variational solution may be intractable.
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2.2.3 PL estimation / smoothing

For problems with noisy data, a preferable alternative to interpolation is to relax the requirement that f̂ fit the noisy data
exactly, and instead find an estimate that compromises between data fit and smoothness. A natural way to compromise
between such conflicting goals is to minimize a cost function that is a weighted sum of two terms, such as the following
penalized least-squares criterion:

f̂ = arg min
f

1

nd

nd∑
i=1

1

2
|yi − f(ti)|2 + β

∫
1

2

∣∣∣f (m)(t)
∣∣∣2 dt, (2.2.8)

e,spline,fh,pls

where β is a regularization parameter (or smoothing parameter or hyper-parameter) that controls the trade-off
between data fit and roughness. This type of penalized-LS estimator is known as nonparametric regression or
nonparametric function estimation, because we have not assumed any parametric model for f . The generalization
to 2D is known as surface recovery or surface interpolation in computer vision, e.g., [17]. See [18] for related `1
versions of trend filtering.

Again it follows from the Euler-Lagrange equations that the unique minimizer f̂ is a spline of degree 2m − 1.
In the usual case where m = 2, this method is called cubic spline smoothing. Again the form (2.2.7) is applicable,
and there is a simple linear relationship between the coefficients of that spline and the data y [10]. In particular, the
roughness penalty (2.2.2) is a quadratic function of the spline coefficients, i.e.,∫ ∣∣∣f̂ (m)(t)

∣∣∣2 = ‖Cα‖2 , (2.2.9)
e,spline,deriv,norm

for some matrixC with nd columns and approximately nd rows, where α denotes the B-spline coefficients in (2.2.7).
As a concrete example, if m = 1, then the basis functions in (2.2.7) are 1st-degree splines. In the unit-spaced case

with ti = i, the basis functions are bk(t) = tri(t− k) = rect(t) ∗ rect(t− k) which has the following derivative:

d

dt
bk(t) = rect(t− k + 1/2)− rect(t− k − 1/2) .

So f̂ (1)(t) =
∑nd

k=1 αk [rect(t− k + 1/2)− rect(t− k − 1/2)] and it follows from a small calculation that (2.2.9)
holds with C defined to be the following (nd + 1)× nd differencing matrix (cf. (1.8.7)):

C =



1 0 0 0 . . . 0
−1 1 0 0 . . . 0

0 −1 1 0 . . . 0

0 0
. . . . . . . . . 0

0 . . . 0 −1 1 0
0 . . . 0 0 −1 1
0 . . . 0 0 0 1


.

The penalty Hessian C ′C is tri-diagonal with elements {−1, 2,−1}. Because in this case of unit-spaced knots we
have f(ti) = αi, we can rewrite (2.2.8) as follows:

α̂ = arg min
α

1

nd

1

2
‖y −α‖2 + β

1

2
α′C ′Cα. (2.2.10)

e,spline,smooth,valf

The solution is
α̂ = [I + ndβC

′C]
−1
y.

There are fast algorithms for solving such banded systems of equations, even for the more complicated case of nonuni-
form knot spacing and/or m > 1 [13, 19].

Mat spaps
Fig. 2.2.2 illustrates cubic spline smoothing for a range of values of the regularization parameter β. As β→ 0, the

estimator will approach the spline interpolator. As β → ∞, the estimator will approach the best-fit line (for m = 2).
Automatic methods for selecting β have been studied extensively [10].

2.2.4 Parametric function estimation
For models that are more complicated than (2.2.1), the variational solution can be intractable so one may need to use
parametric approach instead of the nonparametric approach in (2.2.8). Motivated by (2.2.7), a natural approach is to
parameterize f at the outset using a linear combination of basis functions:

f(t) ≈
np∑
j=1

xj bj(t), (2.2.11)
e,spline,basis
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Figure 2.2.2: Cubic spline smoothing of noisy data for various regularization parameter values.
fig_spline_smooth

where bj(t) denotes the jth basis function (chosen by the algorithm designer). Now the problem is to estimate the
unknown coefficients x = (x1, . . . , xnp) from the data y. To relate the data y to the coefficients x, note that

E[yi] = f(ti) ≈
np∑
j=1

xjbj(ti) = [Ax]i , (2.2.12)
e,reg,spline,A

where aij = bj(ti). So we have the ordinary linear model

y = Ax+ ε,

with corresponding ML or LS estimate

x̂ = arg min
x

‖y −Ax‖2 = [A′A]−1A′y. (2.2.13)
e,spline,ls

When the number of parameters is small, i.e., np � nd, usually the LS estimate is stable for reasonable choices
of basis functions. However, if np is too small, then the approximation (2.2.11) will be poor. So for an accurate
approximation to f , we would like to increase np. But when np ≈ nd, the LS estimate becomes unstable, and if
np > nd then the problem is under determined. Choosing a model order like np is another extensively studied
problem [20–26].
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Figure 2.2.3: Cubic B-spline regression of noisy data. Noisy samples yi shown in red dots, interpolator f̂(t) in green,
for several values of M = np.

fig_spline_regress

Fig. 2.2.3 illustrates B-spline regression for various values of np. For large np, the estimate becomes oscillatory,
much like the spline interpolator.
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2.2.5 Penalized B-spline fits with fine parameterization
Now we present a final alternative that is the most analogous to what is done in image reconstruction. To ensure a
reasonable approximation to f , we want to use many narrow basis functions (e.g., small pixels), so we want np to be
large, i.e., np ≈ nd. And for computational convenience, usually we want to use equally spaced basis functions, even
if the data is in some sense nonuniformly spaced. But to control noise, we include a regularization term in the cost
function rather than using the unregularized choice (2.2.13). Motivated by (2.2.10), we use a penalized least-squares
cost function of the following form:

x̂ = arg min
x

1

2
‖y −Ax‖2 + β

1

2
‖Cx‖2 , (2.2.14)

e,spline,xh,pls

where A is defined in 2.2.12 and C is one of the 1D finite-differencing matrices defined in §1.8.1, typically (1.8.4).
This form is closely related to (2.2.8), but (2.2.14) generalizes more easily to situations with more complicated noise
models, physical models, and regularization methods.
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{bj(t)}, j = 1, . . . , 50
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t

-9

0

9

f
(t
)

f(t)

f̂(t)
yi

Figure 2.2.4: Penalized least-squares cubic B-spline smoothing of noisy data. The noisy samples {yi} are the red
points, the true function f(t) is the dashed blue curve, and the interpolator f̂(t) is the solid green curve.

fig_spline_pls

Fig. 2.2.4 illustrates a penalized LS B-spline fit for a large value of np and a reasonable value of β, chosen by trial
and error. For large np, the estimate f̂ is indistinguishable from the spline smoothing estimate.

2.2.6 Splines with uniform sampling (s,reg,spline,unif)s,reg,spline,unif

The properties of nonparametric regression are easily understood in signal processing terms by considering the case
where the sample points are uniformly spaced.

Suppose we measure the value of a function (or signal) f(t) at N points over the unit interval:

yn = f(n/N) + εn, n = 0, . . . , N − 1, (2.2.15)
e,spline,unif,yn

where εn has zero mean and variance Var{εn} = Nσ2.
We would like to estimate the function f(·) from the measurements {yn : n = 0, . . . , N − 1}. A parametric ap-

proach to this problem would assume that f is linear or has some other simple parametric form, and would estimate
the parameters that describe f using criteria like maximum-likelihood or least-squares.

A nonparametric approach is to find a compromise between fit to the data and smoothness of the estimated function,
as quantified by the following cost function and estimator:

f̂ = arg min
f

1

N

N−1∑
n=0

1

2
|yn − f(n/N)|2 + β

∫ 1

0

1

2

∣∣∣∣ dmdtm f(t)

∣∣∣∣2 dt .

The adjustable parameters in such an approach are β and m.
When the samples are uniformly spaced, we can find the solution for f̂ analytically using a Fourier series expansion

of f over the interval [0, 1]:

f(t) =

∞∑
k=−∞

ck eı2πkt . (2.2.16)
e,spline,unif,series
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(This choice imposes periodic boundary conditions.) The derivatives of f(t) are thus

dm

dtm
f(t) =

∞∑
k=−∞

ck (ı2πk)
m

eı2πkt ,

so Parseval’s theorem expresses the roughness penalty in the frequency domain:∫ 1

0

∣∣∣∣ dmdtm f(t)

∣∣∣∣2 dt =

∞∑
k=−∞

|ck|2 (2πk)2m.

Thus, in terms of the ck values the cost function becomes:

Ψ(c) =
1

N

N−1∑
n=0

1

2

∣∣∣∣∣yn −
∞∑

k=−∞

ck eı
2π
N kn

∣∣∣∣∣
2

+ β

∞∑
k=−∞

1

2
|ck|2 (2πk)2m.

Because eı
2π
N kn is N -periodic in k, there is redundancy in the Fourier series expansion (2.2.16) for this problem.

Because the penalty function increases as |k|2, to minimize Ψ we must use the set of ck values with the smallest
possible k values, i.e., the set −N/2 ≤ k < N/2 (for N even). In terms of these ck values the cost function becomes:

Ψ(c) =
1

N

N−1∑
n=0

1

2

∣∣∣∣∣∣yn −
N/2−1∑
k=−N/2

ck eı
2π
N kn

∣∣∣∣∣∣
2

+ β

N/2−1∑
k=−N/2

1

2
|ck|2 (2πk)2m.

To minimize, we equate the partial derivatives of Ψ to zero (cf. §28.2):

0 =
∂

∂ ck
Ψ(c) =

1

N

N−1∑
n=0

(
− e−ı

2π
N kn

)yn − N/2−1∑
l=−N/2

cl e
ı 2πN ln

+ β ck (2πk)
2m

,

so

Yk ,
1

N

N−1∑
n=0

yn e−ı
2π
N kn =

N/2−1∑
l=−N/2

cl
1

N

N−1∑
n=0

eı
2π
N (l−k)n + β ck (2πk)

2m

=

N/2−1∑
l=−N/2

cl δ[(k − l) modN ] +β ck (2πk)
2m

= ck +β ck (2πk)
2m

,

where Yk denotes the N -point DFT of yn. Thus the optimal Fourier coefficients are

ĉk =
1

1 + β(2πk)2m
Yk.

Thus, we can find the ck values by windowing the DFT of the signal samples with the Butterworth-like filter having
frequency response 1

1+β(2πk)2m .

So for the simple model of equally spaced samples (2.2.15), spline smoothing is equivalent to Butterworth filtering.
However, the principles that underly spline smoothing generalize to nonuniform sample spacing and to problems with
more complicated forward models than (2.2.15).

2.2.7 Summary (s,reg,spline,summ)s,reg,spline,summ

Although the 1D spline smoothing problem is much simpler than typical image reconstruction problems, it illustrates
many of the challenges faced in inverse problems, including ill-posedness, object parameterization, and regularization.
This section focused on cases where the unknown function f(t) is thought to be smooth. In cases where f(t) is piece-
wise smooth, we might prefer to replace the quadratic roughness measure in (2.2.2) with a L1 norm:

∫ ∣∣f (m)(t)
∣∣dt .

This is equivalent to assuming that the mth derivative of f is sparse. Form = 1 this roughness measure is called total
variation (TV). (See §2.4.)
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2.3 Regularization implementations (s,reg,irt)
s,reg,irt

As discussed in §1.10.2, this book focuses on regularizers having the general form (1.10.10), repeated here:

R(x) =

K∑
k=1

ψk([Cx]k), (2.3.1)
e,reg,irt,Rx

where [Cx]k =
∑np

j=1 ckjxj . The matrixC isK×np where x ∈ Cnp or x ∈ Rnp . This form is sufficiently general to
represent most, but not all, penalty functions (and log priors) that have been described in the literature. §2.7 describes
choices for the potential functions ψk in more detail. Typical choices for C include finite differences, as described
in §1.8.1 and §1.10, or wavelet transforms, as mentioned in §1.12.3.

Most iterative optimization algorithms need to evaluate either R(x) or its gradient, or both, where the gradient was
given in (1.10.13) and is also repeated here for convenience:

∇R(x) =

K∑
k=1

∇ψk(c′kx) =

K∑
k=1

ck ψ̇k([Cx]k) (2.3.2)
e,reg,irt,R,cgrad,dpot

=

K∑
k=1

ck ωk([Cx]k)[Cx]k = C ′D(x)Cx, (2.3.3)
e,reg,irt,R,cgrad,wpot

where c′k = e′kC denotes the kth row of C and we define the following K ×K diagonal weighting matrix:

D(x) , diag{ωk([Cx]k)} . (2.3.4)
e,reg,irt,D

The potential weighting function ωk(z) , ψ̇k(z)
z was introduced in (1.10.12) and we assume it is nonnegative and

finite whenever we use ωk.
There are many ways to implement in software the operations required for regularization. This section describes

some of the options that are available in the Michigan Image Reconstruction Toolbox . For simplicity we focus on
2D regularization but the principles generalize readily. We focus on 1st-order finite differences but the principles
generalize to 2nd-order differences and other linear combinations. We focus on methods for computing the gradient
(2.3.3) because that is usually more essential for implementation than the cost function (2.3.1) itself. In particular, we
focus primarily on methods for computing all elements of∇R(x) simultaneously, as required for most gradient-based
algorithms.

2.3.1 Basic matrix implementations,reg,irt,basic

A direct implementation of the gradient (2.3.2) uses the following steps.
• Use some type of matrix-vector multiplication to compute d = Cx.
• Compute the vector g defined by gk = ψ̇k(dk), k = 1, . . . ,K.

• Use some type of matrix-vector multiplication to compute∇R(x) = C ′ g =
∑K
k=1 ckgk.

The matrix C is usually extremely sparse in image reconstruction problems. Specifically, if we use 1st-order
differences as described in (1.10.1), then each row of C has at most two nonzero elements (out of np). Therefore,
one natural way to storeC is as a sparse matrix, meaning a data structure that stores only the nonzero values and the
locations of those values in a list. However, there are even more efficient methods for computing Cx that exploit the
structure of C. See §2.14 for more details.

2.3.2 General 1st-order roughness penalty in 2D
To illustrate the practical challenges in implementing the procedure described in §2.3.1, consider the case of 2D
regularization based on 1st-order differences. For a M ×N image f [m,n], a general roughness penalty has the form

R(f) =

L∑
l=1

βl Rl(f) (2.3.5)
e,reg,irt,Rf,L

Rl(f) =

M−1+min(ml,0)∑
m=max(ml,0)

N−1+min(nl,0)∑
n=max(nl,0)

ψm,n,l(f [m,n]− f [m−ml, n− nl]) (2.3.6)
e,reg,irt,Rf_l

for some integers ml ∈ {−(M − 1), . . . ,M − 1} and nl ∈ {−(N − 1), . . . , N − 1} chosen by the algorithm de-
signer.

Each (ml, nl) pair denotes the coordinate offset to a neighbor. For example, the simple case in (1.10.1) corresponds
to L = 2, (m1, n1) = (1, 0), (m2, n2) = (0, 1), and β1 = β2. When we include diagonal neighbors, then L = 4 and
the (ml, nl) pairs are

{(1, 0), (0, 1), (−1, 1), (1, 1)} , (2.3.7)
e,reg,irt,2d,hvd
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f [m,n]f [m− 1, n]

f [m− 1, n− 1] f [m,n− 1] f [m+ 1, n− 1]

Figure 2.3.1: Four neighbors used for 2D regularization with 1st-order differences.
fig,reg,penal2,4

as illustrated in Fig. 2.3.1.
We allow a different regularization parameter βl for each neighbor offset, because often we give less weight to

neighbors that are more distant, e.g., by choosing

βl ∝
1√

m2
l + n2l

.

In particular, often we give a weight of 1/
√

2 (or 1/2, see §5.2) for the diagonal neighbors relative to the horizontal
and vertical neighbors. A reasonably general form is

βl ∝

(
1√

m2
l + n2l

)p
,

for some power p; typically p = 0, p = 1 or p = 2.
MIRT The regularization functions Reg1 and Rweights have an option distance_power for selecting the power p.

The default is p = 1 for historical reasons but p = 2 may be preferable in terms of resolution properties per §5.2.
For generality, we allow ψm,n,l in (2.3.7) to depend on spatial location, because space-varying regularization can

be useful in some applications, and possibly even to apply different amounts of regularization in the various directions,
e.g., [27, 28]. Often the generality needed is to have

ψm,n,l(z) = rl[m,n]ψ(z), (2.3.8)
e,reg,irt,pot,rmn_l

where the possibly space-varying regularization coefficients {rl[m,n] : l = 1, . . . , L} must be designed somehow,
e.g., as described in Chapter 5 and [27–29].

MIRT The regularization functions Reg1 and Rweights have an option ’user_wt’ for providing a M ×N × L array
specifying the {rl[m,n]} values.

We can express (2.3.6) in matrix-vector notation as

Rl(x) =
∑
k

ψk([Clx]k)

provided we define appropriately the matrices Cl for l = 1, . . . , L. Each row of Cl corresponds to one term in the
summation (2.3.6), because each difference of nearby pixel values, f [m,n]− f [m−ml, n− nl], is a simple linear
combination of the f [m,n] values. The natural choice forCl would have size (M − |ml|)(N − |nl|)×MN, because
this is the number of terms in the sum (2.3.6). However, it can be more convenient for implementation to chooseCl to
have size MN ×MN , allowing Cl to have a few rows that are entirely zero. Such zero rows do not change the value
of the penalty function. Or, instead of being entirely zero, those rows may have entries that correspond to other end
conditions.

Recalling (1.4.16), we can identify the term f [m,n]− f [m−ml, n− nl] with the kth row of Cl, where k =
1 +m+ nM. With this natural ordering, the elements of Cl are as follows:

[Cl]kj =


1, k = j = 1 +m+ nM, m ∈ S(ml,M), n ∈ S(nl, N)

−1,
k = 1 +m+ nM
j = 1 +m−ml + (n− nl)M

, m ∈ S(ml,M), n ∈ S(nl, N)

0, otherwise,

(2.3.9)
e,reg,irt,Cl

where we define the support set

S(n,N) , {max(n, 0), . . . , N − 1 + min(n, 0)} .
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Each row ofCl has (at most) a single “−1” entry and one “1” entry, and all other elements are zero. ThusCl is a very
sparse matrix. One can verify that if x denotes the lexicographic representation of f [m,n] per (1.4.14), then

[Clx]k

∣∣∣
k=1+m+nM

=

{
f [m,n]− f [m−ml, n− nl], m ∈ S(ml,M), n ∈ S(nl, N)
0, otherwise.

Having defined these Cl matrices, we can write the 2D penalty function (2.3.5) in the general form (2.3.1) by
defining the following LMN ×MN matrix that generalizes (1.10.8):

C =

 C1

...
CL

 . (2.3.10)
e,reg,irt,C,stack

Thus, in the usual 2D case (2.3.5), we have K = LMN in (2.3.1).
MIRT The function Cdiff1 generates such Cl objects using several methods, including MATLAB indexing, or a MEX file,

or a sparse matrix, or a convolution operation. The function Cdiffs represents C by stacking up objects generated
by Cdiff1 via (2.3.10). See §2.14.

2.3.3 Stacked matrix implementation
The three-step approach described above in §2.3.1 has the appeal of being modular and appearing simple, but it has the
serious drawback of requiring considerable extra memory for storing the intermediate results. Consider a 3D problem
where x represents aN3 image. For 1st-order finite differences with the 26 nearest neighbors to each voxel, the vector
of differences d has length about LN3, where L = 13. For an X-ray CT problem with N = 512, this is 6.5 GB for
4-byte floating point numbers, which would be inconveniently large.

To reduce memory overhead, we can use the stacked form (2.3.10) that is available for penalties of the form (2.3.5).
In particular, for such penalty functions we can rewrite the regularizer (2.3.1) and its gradient (2.3.3) as follows:

R(x) =

L∑
l=1

∑
k

ψk,l([Clx]k), ∇R(x) =

L∑
l=1

C ′lDl(x)Clx (2.3.11)
e,reg,irt,Rx,grad,Cl

whereDl(x) = diag{ωk,l([Clx]k)} and k ranges from 1 to np, where np = MN in 2D.
This expanded form suggests the following procedure for computing∇R(x) .

g :=0
for l = 1, . . . , L

d :=Clx
dk := ψ̇k,l(dk), k = 1, . . .
b :=C ′ld
g := g+b

end

(2.3.12)
e,reg,irt,Cl,alg

In this version the intermediate vectors d and b are the same size as x, so the extra intermediate storage is only 2N3

instead of LN3.

2.3.4 Reduced memory for regularization coefficients and 3D regularization
For the general type of weighting for the potential functions given in (2.3.8), the procedure in (2.3.12) would require
storing all of the regularization coefficients {rl[m,n] : l = 1, . . . , L} (or computing these on-the-fly), which may be
prohibitively large or expensive in some 3D problems. A useful family of space-variant regularizers1 that uses less
memory is

rl[m,n] = κ[m,n]κ[m−ml, n− nl], (2.3.13)
e,reg,irt,rmn_l,kap

where the 2D array κ[m,n] describes pixel-dependent regularization factors. This form requires storing only {κ[m,n]}
and {βl}. This family was used in [31] for example. (See Chapter 22.) However, this family is not general enough to
accommodate some more complicated regularizers with direction-dependent factors [27–29].

For 3D problems, the generalization of the form (2.3.13) is rl[m,n, k] = κ[m,n, k]κ[m−ml, n− nl, k − kl] .
Combining with (2.3.8) and (2.3.5) yields the following 3D regularizer

R(f) =

L∑
l=1

βl
∑
m,n,k

κ[m,n, k]κ[m−ml, n− nl, k − kl]ψ(f [m,n, k]− f [m−ml, n− nl, k − kl]), (2.3.14)
e,reg,irt,3D

where the limits on the sums overm,n, k follow (2.3.6). In practice, to approach isotropic spatial resolution, it is often
necessary to choose the values of βl that correspond to a scanner’s axial direction (typically z, i.e., k) differently from
the values of βl that correspond to the transaxial plane (typically x, y, i.e., m,n).

1 See [30] for smoothing splines with varying regularization parameters.
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2.3.5 2nd-order differences
In some applications one can improve image quality by using 2nd-order differences, generalizing (2.3.6) with (2.3.8)
as follows:

Rl(f) =

N−1−|nl|∑
n=|nl|

M−1+|ml|∑
m=|ml|

rl[m,n]ψ(2 f [m,n]− f [m−ml, n− nl]− f [m+ml, n+ nl]) . (2.3.15)
e,reg,irt,Rlf,2nd,nm

More concisely, letting ~n = (m,n) and ~nl = (ml, nl) we write

Rl(f) =

M−1−|ml|∑
m=|ml|

N−1−|nl|∑
n=|nl|

rl[~n]ψ(2 f [~n]− f [~n− ~nl]− f [~n+ ~nl]) . (2.3.16)
e,reg,irt,Rlf,2nd

MIRT The form (2.3.13) is for 1st-order differences. For 2nd-order differences we use

rl[m,n] = κ[m,n]
√
κ[m−ml, n− nl]κ[m+ml, n+ nl]. (2.3.17)

e,reg,irt,rmn_l,kap,2

2.3.6 Non-matrix implementations
A drawback of the procedure (2.3.12) is that it accesses sequentially the memory used for storing x a total of L times.
Thus, for large 3D problems the execution time for this procedure can be constrained by the memory bandwidth.

To overcome this limitation, one can abandon the general matrix form (2.3.11) and focus instead on the specific
form given in (2.3.5). For simplicity, consider the case where the potential functions have the common form (2.3.8).
In this case, for voxels away from the image borders, the partial derivatives of R(f) have the form

∂

∂ f [m,n]
R(f) =

L∑
l=1

βl

(
rl[m,n] ψ̇(f [m,n]− f [m−ml, n− nl])

+ rl[m+ml, n+ nl] ψ̇(f [m,n]− f [m+ml, n+ nl])
)
. (2.3.18)

e,reg,irt,d,fnm,local

(Slightly different formulas are needed for pixels that lie on the image borders.) One can loop over all the pixels and
evaluate this sum using relatively local memory accesses and with only one pass over the image memory.

For 2nd-order finite differences (2.3.16) the partial derivatives have the form

∂

∂ f [~n]
R(f) =

L∑
l=1

βl

(
2 rl[~n] ψ̇(2 f [~n]− f [~n− ~nl]− f [~n+ ~nl])

− rl[~n+ ~nl] ψ̇(2 f [~n+ ~nl]− f [~n+ 2~nl]− f [~n])

− rl[~n− ~nl] ψ̇(2 f [~n− ~nl]− f [~n− 2~nl]− f [~n])
)
. (2.3.19)

e,reg,irt,d,fnm,local,2nd

In particular, if rl[~n] = 1 and ψ̇(z) = z then (2.3.19) requires at least 11L operations per pixel.
MIRT The function Reg1.m creates an object that can evaluate the roughness penalty (2.3.5) and its gradient (2.3.18). It is

designed to accommodate regularizers of the general form (2.3.8) and (2.3.13). The method R.cgrad computes the
gradient of R(x) using (2.3.18). The ’offsets’ option defines what set of (ml, nl) pairs are to be used. For the
case (2.3.7), ’offsets’ would be [1 M M+1 M-1]. In general in 2D, neighbor (ml, nl) corresponds to offset
ml + nlM because of lexicographic ordering of a M ×N image as a vector.

2.3.7 Support mask considerations
The penalty function formula (2.3.6) assumes that all pixels in the image are to be reconstructed. In practical medical
imaging, often we need only to reconstruct a subset of the image, because the scanner field of view (e.g., as defined by
the patient portal) is often circular rather than square. Let χ[m,n] denote the binary function that is nonzero for pixels
that are to be reconstructed and is zero otherwise. We refer to χ[m,n] as the reconstruction mask. The length np of
the parameter vector x that denotes all the unknown pixel values is

np =

M−1∑
m=0

N−1∑
n=0

χ[m,n] ≤MN.

Fig. 2.3.2 illustrates a rectangular image in which only a subset of the pixels are to be estimated. Each ~nj denotes the
coordinates[m,n] of the pixels to be estimated. If we define S =

{
~n1, . . . , ~nnp

}
then χ[m,n] = I{[m,n]∈S}.
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~n1 ~n2

~n3 ~n4 ~n5 ~n6

~n7 ~n8

(0, 0)

(0, N − 1) (M − 1, N − 1)

(M − 1, 0)

n
↓

−→
m

Figure 2.3.2: A M ×N = 6× 5 lattice with approximately circular FOV. Only the pixels with indices are estimated.
In this example, np =

∑M−1
m=0

∑N−1
n=0 χ[m,n] = 8.

fig,reg,mask

When designing a roughness penalty function, one choice that arises is whether to penalize the differences between
pixel values that lie on the edge of the reconstruction mask but still within the mask and their neighbors that lie outside
of that mask. Usually we do not want to penalize such differences, i.e., we want rl[m,n] = 0 if χ[m,n] = 1 and
χ[m−ml, n− nl] = 0. We refer to this as a tight boundary condition. (Otherwise we call it a leaky boundary
condition.) A simple way to ensure this property is to use regularization coefficients of the form (2.3.13) and to choose
κ[m,n] such that χ[m,n] = 0 =⇒ κ[m,n] = 0.

MIRT The ’tight’ and ’leak’ choices of the ’edge_type’ option of Rweights.m control this behavior.

2.3.8 Coordinate-wise implementation
For algorithms that update one pixel at a time, such as iterative coordinate descent (ICD), instead of computing all
of ∇R(x) simultaneously, we only need to compute a single element of that gradient vector, i.e.,

∂

∂xj
R(x) =

K∑
k=1

ckj ψ̇k(c′kx) =
∑
k∈Kj

ckj ψ̇k(c′kx),

where Kj , {k = 1, . . . ,K : ckj 6= 0} . Note that c′kx =
∑
j∈Jk ckjxj where Jk , {j = 1, . . . , np : ckj 6= 0} . In

practice this usually is implemented like (2.3.18).
MIRT This capability exists in the compiled ASPIRE software [32], but not in the Michigan Image Reconstruction Toolbox

because coordinate-wise methods are poorly suited to interpreted languages like MATLAB.

2.4 Regularization in variational formulations (s,reg,var)
s,reg,var

The regularizing roughness penalty functions introduced in §1.10 and §2.3 were formulated in terms of discrete-
space images f [m,n]. And in practice numerical implementations of regularization always involve discretization.
Nevertheless, for insight it can be useful to consider regularization functionals defined in terms of continuous-space
images f(x, y). These are called variational formulations, and they are multidimensional generalizations of the
nonparametric spline methods of §2.2.

2.4.1 Thin membrane regularization
The 1st-order roughness penalty function (1.10.1) or (2.3.5), with quadratic potential functions, is a discrete approxi-
mation to the following roughness penalty function for a continuous-space image f(x, y):

RTM(f) =

∫∫
1

2

∣∣∣∣ ∂∂x f(x, y)

∣∣∣∣2 +
1

2

∣∣∣∣ ∂∂y f(x, y)

∣∣∣∣2 dxdy =

∫
1

2
‖∇ f‖2 , (2.4.1)

e,reg,var,Rf,quad

where ∇ f(x, y) ,
(
∂
∂x f(x, y), ∂∂y f(x, y)

)
. The functional R

TM
(f) is related to the bending energy of a thin

membrane [33–35].

2.4.2 Rotation invariances,reg,var,rot,inv

One can show that the penalty function (2.4.1) is invariant to spatial rotations of f , i.e., if we define

fθ(x, y) = f(x cos θ + y sin θ,−x sin θ + y cos θ),

https://creativecommons.org/licenses/by-nc-nd/4.0/
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then RTM(fθ) = RTM(f) . This invariance seems to be a desirable property for most imaging problems. However,
implementation requires discretization, e.g., on a 2D Cartesian grid, which usually loses rotation invariance.

2.4.3 Thin plate regularization
Grimson [36] considered rotationally invariant penalty functions involving second derivatives (see Problem 2.5) and
presented arguments favoring the following choice in the context of surface reconstruction:

RTP(f) =

∫∫ ∣∣∣∣ ∂2∂x2 f
∣∣∣∣2 + 2

∣∣∣∣ ∂2

∂x ∂y
f

∣∣∣∣2 +

∣∣∣∣ ∂2∂y2 f
∣∣∣∣2 dxdy . (2.4.2)

e,reg,var,tps

This is the energy associated with thin-plate splines [37, 38], a popular deformation model for nonrigid image regis-
tration. This penalty function is zero if f(x, y) is an affine function. In surface reconstruction and image registration
problems often it is natural for affine functions to be unpenalized. In contrast, in many image reconstruction problems,
uniform images may be more likely than affine images, so the rotationally invariant 1st-order penalty (2.4.1) is used
more frequently than (2.4.2).

2.4.4 Edge preserving variational regularization
Suppose we replace the squaring operations in (2.4.1) with nonquadratic potential functions:

R1(f) =

∫∫
ψ

(
∂

∂x
f(x, y)

)
+ψ

(
∂

∂y
f(x, y)

)
dxdy .

Although this roughness penalty function will help preserve some edges, in general it is not rotation invariant. One
example of such an approach is a form of total variation (TV) regularization called anisotropic TV or bilateral TV
[39], where ψ(z) = |z|. To ensure rotation invariance, one can instead use the following form, e.g., [40]:

R2(f) =

∫∫
ψ

√∣∣∣∣ ∂∂x f(x, y)

∣∣∣∣2 +

∣∣∣∣ ∂∂y f(x, y)

∣∣∣∣2
 dxdy =

∫∫
ψ(‖∇ f‖) dx dy . (2.4.3)

e,reg,var,Rf2

However, the corresponding discrete representation is not of the general form given in (2.3.1). To attempt rotation
invariance in the discrete case, we can generalize (2.3.1) to the form

R(x) =

K∑
k=1

ψk

(√
|[CXx]k|2 + |[CYx]k|2

)
, (2.4.4)

e,reg,R,rot,inv

where CX and CY denote, for example, the top and bottom halves of C in (1.14.2) or (2.3.10).
If we choose a hyperbola potential function:

ψ(z) = δ2
(√

1 + |z/δ|2 − 1

)
, (2.4.5)

e,reg,hyperbola

then (2.4.3) and (2.4.4) become the Beltrami regularizer used in [41].
For notational simplicity, we focus primarily on the form (2.3.1) throughout this book . All of the algorithms that

are suitable for regularized estimation using (2.3.1) can be generalized fairly easily to accommodate (2.4.4). Such
generalizations are left as exercises for the reader, e.g., Problem 12.6.

2.4.5 Total variation (TV) methodss,reg,var,tv

Because the quadratic roughness penalty (2.4.1) blurs edges, a popular alternative is to replace it with the total varia-
tion (TV) regularizer [42–51].

For an arbitrary real-valued function f defined on an interval [a, b], its total variation is defined by the general
formula:

‖f‖TV , sup
P

|P |−1∑
i=0

|f(ti+1)− f(ti)| , (2.4.6)
e,reg,var,tv,1

where the supremum is taken over all partitions P of the interval [a, b]. Strictly speaking this is a semi-norm because
‖f‖TV = 0 for any constant function f . For a 1D continuously differentiable function, the total variation simplifies

to
∫ ∣∣∣ḟ(t)

∣∣∣dt . For a n-dimensional differentiable function the total variation is given by the “TV norm:”

RTV(f) , ‖f‖TV ,
∫
‖∇ f(~x)‖ d~x . (2.4.7)

e,reg,var,tv

https://creativecommons.org/licenses/by-nc-nd/4.0/
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A more general definition of ‖f‖TV requires only that f be absolutely integrable, i.e., does not require continuity or
differentiability [wiki]. However, such technicalities have limited practical interest in image reconstruction because
images must be discretized for computing. The TV regularizer is not everywhere differentiable in f , so in practice
often it is replaced by an approximation:

RTV(f) ≈
∫
ψ(‖∇f(~x)‖) d~x, (2.4.8)

e,reg,var,tv,corner

where ψ(z) =

√
|z|2 + ε2, for some small positive value of ε. This “corner rounding” approximation is simply the

hyperbola potential function (2.4.5), one of many possibilities described in Table 2.1. Thus, total variation methods
are simply a special case of edge-preserving regularization with a convex potential function.

Usually one uses the 2-norm in (2.4.7), which is called isotropic TV because it is invariant to rotations. Using the
1-norm in (2.4.7) leads to anisotropic TV or bilateral TV. To unify the anisotropic TV and isotropic TV formulations,
one can use the equality [52]√

a2 + b2 =
1

2

∫ π/2

0

(|a cosϕ+b sinϕ|+ |b cosϕ−a sinϕ|) dϕ

=

∫ π/2
0

(|a cosϕ+b sinϕ|+ |b cosϕ−a sinϕ|) dϕ∫ π/2
0

(cosϕ+ sinϕ) dϕ

≈

∑
φ∈{0, π2K ,...,π(K−1)

2K } (|a cosϕ+b sinϕ|+ |b cosϕ−a sinϕ|)∑
φ∈{0, π2K ,...,π(K−1)

2K } (cosϕ+ sinϕ)
.

This leads to the following approximation of the TV semi-norm:

‖f‖TV ≈

∑
φ∈{0, π2K ,...,π(K−1)

2K }
∫ (∣∣∣ ∂∂xf cosϕ+ ∂

∂yf sinϕ
∣∣∣+
∣∣∣ ∂∂yf cosϕ− ∂

∂x sinϕ
∣∣∣)dxdy∑

φ∈{0, π2K ,...,π(K−1)
2K } (cosϕ+ sinϕ)

.

For K = 1 this simplifies to the usual anisotropic TV, whereas for K = 2 this simplifies to

‖f‖TV ≈

∫ ∣∣ ∂
∂xf

∣∣+
∣∣∣ ∂∂yf ∣∣∣dx dy+

√
2
2

∫ ∣∣∣ ∂∂xf + ∂
∂yf

∣∣∣+
∣∣∣ ∂∂xf − ∂

∂yf
∣∣∣dxdy

1 +
√

2
,

from which one can design a discrete-space TV approximation of the form (2.3.1).
In 2D, another way of writing the TV functional is in terms of its directional derivatives [53]:

RTV(f) =
√

2

∫∫ (
1

2π

∫ 2π

0

|Dφ f(x, y)|2 dφ

)1/2

dx dy,

where Dφ f(x, y) , cosφ ∂
∂x f(x, y) + sinφ ∂

∂y f(x, y) . This expression invites generalizations such as using higher-
order derivatives, called higher-degree TV (HDTV) [53].

Another generalization is total generalized variation (TGV) [54, 55], which encourages the image to be piecewise
smooth rather than piecewise constant, thereby reducing the stair-step artifacts that often plaque images based on
conventional TV. A method based on second derivatives [56] has similar motivations.

TV regularizers encourage piecewise constant functions. Fig. 2.4.1 illustrates this property, where one sees that∫ ∣∣∣ḟ3∣∣∣2 > ∫ ∣∣∣ḟ2∣∣∣2 > ∫ ∣∣∣ḟ1∣∣∣2
but ∫ ∣∣∣ḟ3∣∣∣ =

∫ ∣∣∣ḟ2∣∣∣ =

∫ ∣∣∣ḟ1∣∣∣ = 1.

Given the observation model g = Af + ε, a typical TV approach would be the regularized approach:

arg min
f

‖Af − g‖22 + β ‖f‖TV

or the constrained approach:
arg min

f
‖f‖TV sub. to ‖Af − g‖22 ≤ ndσ

2.

These are somewhat challenging optimization problems. An alternative approach to TV minimization is to use aug-
mented cost function methods (see §12.7) such as [57]:

arg min
f,u

‖Af − g‖22 + µ ‖f − u‖22 + β ‖u‖TV ,

https://creativecommons.org/licenses/by-nc-nd/4.0/
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1

f1
f3

f2

x

Figure 2.4.1: Three functions having different derivatives but having the same TV norm.
fig,reg,tv

where the parameter µ must be chosen, or [58]:

arg min
f,v

‖Af − g‖22 + µ ‖Df − v‖22 + β ‖v‖1 .

In these alternatives, minimizing over u or v, for a given f , does not involve A, simplifying those updates. Such ideas
date at least back to [59].

More recently, graph cut methods [60] and augmented Lagrangian methods [61, 62] have been examined for
such minimization problems.

2.5 Regularization parameter selection (s,reg,hyper)
s,reg,hyper

One challenge in using regularized methods for image reconstruction is selecting the regularization parameter β,
also known as the hyperparameter in the Bayesian terminology [63]. There are many criteria that have been proposed
for selecting β, and several papers survey such methods [wiki] [64–71]. Chapter 22 describes methods for choosing
regularization parameters based on spatial resolution analysis. Here we focus on more traditional methods that
attempt to minimize the estimation error.

2.5.1 Oracle selection
Let x̂β denote the estimate x̂ as a function of the regularization parameter β. From an error point of view, we would
like to choose β so that x̂β is close to xtrue, e.g., by minimizing the squared estimation error:

βO , arg min
β

‖x̂β−xtrue‖2 . (2.5.1)
e,reg,hyper,se

Of course other norms could also be appropriate.
Because x̂β is a random vector (a function of the data y), using the above criterion would lead to a somewhat

different β value for every noise realization. An alternative is to use the mean squared error (MSE):

βMSE , arg min
β

MSEβ, MSEβ , E
[
‖x̂β−xtrue‖2

]
. (2.5.2)

e,reg,hyper,mse

This is also known as the risk criterion for selecting β [64]. Defining the estimator ensemble mean as

x̄β , E[x̂β], (2.5.3)
e,reg,hyper,xbr

we can write the MSE of any such estimator as follows:

MSEβ = E
[
‖x̂β−xtrue‖2

]
= E

[
‖(x̂β−x̄β) + (x̄β − x)‖2

]
(2.5.4)

= E
[
‖x̂β−x̄β‖2

]
+ ‖x̄β − xtrue‖2 (2.5.5)

= trace{Cov{x̂β}}+ ‖x̄β − xtrue‖2 . (2.5.6)
e,reg,hyper,mse,split

Thus the MSE depends on the sum of the variances and the sum of the squared biases of the estimates. If one decides
to choose β to minimize MSE, then one must somehow “balance” the variance and the bias contributions to MSE.

Neither of the above criteria (βO or βMSE) can be used directly for real data because they depend on the true but
unknown image xtrue. Hence they are sometimes called oracle or clairvoyant selection methods. But they can be
explored in simulations (where xtrue is known) to establish a baseline performance level. The other selection methods
described hereafter typically try to approximate βMSE without using xtrue.

https://creativecommons.org/licenses/by-nc-nd/4.0/
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x,reg,hyper,pwls

Example 2.5.1 To explore the characteristics of the MSE approach (2.5.2), consider the linear measurement model
y = ȳ(x) +ε with ȳ(x) = Ax and ε is zero mean with covariance W−1. For quadratic regularization R(x) =
1
2x
′Rx the PWLS estimator is 2

x̂β = arg min
x

‖y −Ax‖2W 1/2 + βR(x) = [F + βR]
−1
A′Wy,

where F = A′WA denotes the Fisher information matrix for this problem. (See §29.7.) In this case the mean is

x̄β = E[x̂β] = [F + βR]
−1 Fxtrue,

and the covariance is
Cov{x̂β} = [F + βR]

−1 F [F + βR]
−1
.

Thus the MSE of this estimator is

MSEβ = trace
{

[F + βR]
−1 F [F + βR]

−1
}

+
∥∥∥[F + βR]

−1 Fxtrue − xtrue

∥∥∥2 (2.5.7)

= trace
{

[F + βR]
−1 F [F + βR]

−1
}

+β2
∥∥∥[F + βR]

−1 Rxtrue

∥∥∥2 . (2.5.8)
e,reg,hyper,pwls,mse

In particular, if β = 0, then MSE0 = trace
{
F−1
}

as expected from §29.8.
Suppose F and R are both circulant3, with eigenvalues Fk and Rk respectively, and letXk denote the DFT of xtrue.

Then one can show (see Problem 2.6):

MSEβ =
∑
k

Fk + β2R2
k |Xk|2 /np

(Fk + βRk)2
. (2.5.9)

e,reg,hyper,oracle,MSE

In general there is no closed-form expression for βMSE, but one can find it numerically by minimizing MSEβ.
x,reg,hyper,pwls,I

Example 2.5.2 The simplest case is where R = I and the columns of σAW 1/2 are orthonormal, i.e., F = σ−2I .
Then (2.5.8) simplifies to

MSEβ =
npσ

−2 + β2 ‖x‖2

(σ−2 + β)2
. (2.5.10)

e,reg,hyper,pwls,I,mse

Minimizing over β per (2.5.2) yields βMSE =
np

‖x‖2
and MSEβMSE

=
npσ

2

1 + 1/ SNR
, where SNR ,

‖x‖2

npσ2
, and

the estimator is x̂βMSE = σ2

1+1/ SNRA
′Wy. This estimator is somewhat reminiscent of the James-Stein shrinkage

estimator [72], which, for the caseA = W = I and np ≥ 3, has the form: x̂ =
(

1− np−2
‖y‖2

)
y.

2.5.2 Residual sum of squares (s,reg,hyper,rss)s,reg,hyper,rss

The estimation error (2.5.1) and its expectation (2.5.2) are defined in the domain of x. Two other quantities of interest
are the predictive error

ȳ(x̂β)− ȳ(xtrue),

defined in the data domain, and its expected (weighted) squared norm, called the predictive risk [73, p 97] [wiki]:

PRβ , E
[
‖ȳ(x̂β)− ȳ(xtrue)‖2W 1/2

]
. (2.5.11)

e,reg,hyper,rss,pr

These quantities also depend on xtrue so cannot be used directly in practice for selecting β.
A quantity that is available in practice is the (weighted) residual sum of squares (RSS), defined in data space as:

RSS(x) , ‖y − ȳ(x)‖2W 1/2 . (2.5.12)
e,reg,hyper,rss,def

Several methods for regularization parameter selection are based on this quantity. (See [74] for an example showing
how some such methods can be unstable.)

If the noise y− ȳ(xtrue) has the gaussian distribution N
(
0,W−1), then RSS(xtrue) has a χ2 distribution with nd

degrees of freedom, so methods based on (2.5.12) are known as a χ2 choice for β [65].

2 For a positive definite matrix H , the weighted norm ‖·‖H1/2 is defined in terms of the weighted inner product 〈·, ·〉H as follows:

‖x‖2
H1/2 , 〈x, x〉H = x′Hx =

∥∥H1/2x
∥∥2 , where 〈u, v〉H , v′H u .

3 It suffices for F and R to have the same orthonormal eigenvectors, F = V diag{Fk}V ′ and R = V diag{Rk}V ′, with corresponding
eigenvalues {Fk} and {Rk}, in which case X =

√
npV ′xtrue in (2.5.9). This same generality applies hereafter to other “circulant” cases.

https://creativecommons.org/licenses/by-nc-nd/4.0/
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x,reg,hyper,rss,A

Example 2.5.3 To explore the characteristics of RSS and PRβ, consider the linear model y = Ax+ ε, where ε has
mean zero and covarianceW−1 (and is not necessarily gaussian). Let bβ , E[x̂β]−xtrue denote the estimator bias,
and define the zero-mean “estimator noise” random vector zβ , x̂β−E[x̂β] . One can show (Problem 2.7) that

RSS(x̂β) = (ε−Azβ)′W (ε−Azβ)− 2(ε−Azβ)′WAbβ + b′βFbβ. (2.5.13)
e,reg,hyper,rss,A

Because zβ and ε are zero mean, it follows that

E[RSS(x̂β)] = E[(ε−Azβ)′W (ε−Azβ)] +b′βFbβ.

The first term is due to variability and the second term is due to bias of the estimator x̂β.
Similarly, one can show that the predictive risk for this linear model is

PRβ = E
[
z′βFzβ

]
+b′βFbβ. (2.5.14)

e,reg,hyper,rss,A,pr

x,reg,hyper,rss,lin

Example 2.5.4 Specialize the previous example by considering linear estimators x̂β = Lβy, for which zβ = Lβε
and bβ =

(
LβA− Inp

)
xtrue. One can show (Problem 2.7) that

RSS(x̂β) =
∥∥∥(I −M(β))W 1/2y

∥∥∥2 , (2.5.15)
e,reg,hyper,rss,lin,r

E[RSS(x̂β)] = trace
{

(Ind
−M)

′
(Ind

−M)
}

+x′true
(
LβA− Inp

)′
F
(
LβA− Inp

)
xtrue, (2.5.16)

e,reg,hyper,rss,lin,e

where the nd × nd influence matrix or hat matrix of the linear estimator is denoted

M(β) ,W 1/2ALβW
−1/2. (2.5.17)

e,reg,hyper,rss,iMr

Similarly, one can show that the predictive risk for this linear estimator is

PRβ = trace
{
M′(β)M(β)

}
+b′βFbβ. (2.5.18)

e,reg,hyper,rss,lin,pr

x,reg,hyper,rss,back

Example 2.5.5 To further specialize, consider linear estimators of the formLβ = BβA
′W , for some np×np matrix

Bβ, for which LβA = BβF. Defining d , A′Wy, one can show (Problem 2.7) that

RSS(x̂β) = ‖y‖2W 1/2 − 2d′Bβd+ d′B′βFBβd (2.5.19)
e,reg,hyper,rss,back,r

E[RSS(x̂β)] = nd − np + trace
{

(Inp
− F1/2B′βF

1/2)(Inp
− F1/2BβF

1/2)
}

+ x′true (BβF− I)
′ F (BβF− I)xtrue. (2.5.20)

e,reg,hyper,rss,back,e

In particular, ifBβ = [F + βR]
−1 where F andR are both circulant, then (Problem 2.7)

RSS(x̂β) = ‖y‖2W 1/2 −
1

np

∑
k

|Dk|2 (Fk + 2βRk)

(Fk + βRk)
2 (2.5.21)

e,reg,hyper,rss,back,qpwls

where Dk denotes the np-point DFT of d.
As a special case of (2.5.20), if F is invertible andBβ = F−1, then E[RSS(x̂β)] = nd − np which is standard for

LS fitting of np model parameters to nd data points.

2.5.2.1 Discrepancy principles,reg,hyper,rss,dp

For the measurement model y = ȳ(x) +ε where the noise ε is zero mean with covariance W−1 (and not necessarily
gaussian), then the residual sum of squares (RSS) evaluated at the true image xtrue satisfies:

E[RSS(xtrue)] = nd.

This equality suggests the following discrepancy principle [1, 75] for selecting β:

βDP = arg min
β

∣∣∣RSS(x̂β)−nd
∣∣∣. (2.5.22)

e,reg,hyper,dp,min

Although this method is appealingly simple, it is known to produce β values that over smooth [64]. Typically
‖y − ȳ(x̂βMSE

)‖2W 1/2 < nd, so usually βDP > βMSE, causing over smoothing [64]. Furthermore, βDP requires
knowledge of the data (co)varianceW−1 which is not always available.

https://creativecommons.org/licenses/by-nc-nd/4.0/
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x,reg,hyper,dp,qpwls

Example 2.5.6 To explore this approach, consider the QPWLS estimator x̂β = [F + βR]
−1
A′Wy of Example 2.5.1.

This is the case of Example 2.5.5 where Bβ = [F + βR]
−1 and (2.5.20) applies directly. When F and R are both

circulant:

E[RSS(x̂β)] = nd − np +
∑
k

(
1− Fk

Fk + βRk

)2

+
|Xk|2

np
Fk

(
Fk

Fk + βRk
− 1

)2

= nd − np + β2
∑
k

R2
k

1 + Fk |Xk|2 /np
(Fk + βRk)

2

= nd − rank{F}+β2
∑

k : Fk 6=0

R2
k

1 + Fk |Xk|2 /np
(Fk + βRk)

2 , (2.5.23)
e,reg,hyper,rss,circ

where the effective model order (for β = 0) is rank{F} = np − |{k : Fk = 0}| .
As β→ 0 the summation approaches nd − rank{F} and as β→∞ it approaches

nd − |{k : Rk = 0}|+
∑

{k : Rk 6=0}

(
Fk |Xk|2 /np

)
. (2.5.24)

e,reg,hyper,rss,reg,inf

Usually these two extremes straddle nd so there will be an intermediate value of β that satisfies (2.5.22).
x,reg,hyper,rss,dp,i

Example 2.5.7 In the orthogonal case where F = σ−2I and R = I , one can show that (cf. [64, eqn. (2.6)]):

E[RSS(x̂β)] = nd − np + np (1 + SNR)

(
σ2β

1 + σ2β

)2

. (2.5.25)
e,reg,hyper,rss,dp,i

Equating to nd and solving yields

β∗DP =
σ−2√

1 + SNR− 1
. (2.5.26)

e,reg,hyper,dp,min,I

One can show that β∗DP > βMSE in this special case. Despite this drawback of the discrepancy principle, it continues
to resurface in the imaging literature, e.g., [76]. See also Problem 2.8.

For data with Poisson noise, related methods based on a discrepancy principle have been investigated [77–80].

2.5.2.2 Residual effective degrees of freedom (REDF) method

Using nd in (2.5.22) unwisely ignores the fact that typically RSS(x̂β) < RSS(xtrue) because x̂β will fit both the
signal and the noise in the data. An alternative that accounts for this fitting is the residual effective degrees of
freedom (REDF) method [64, 81]:

βREDF , arg min
β>0

∣∣∣RSS(x̂β)−REDF(β)
∣∣∣. (2.5.27)

e,reg,hyper,edf,min

There are various definitions of REDF [wiki]; for a linear model with a linear estimator, a natural choice based on
(2.5.16) is

REDF(β) , trace
{

(Ind
−M(β))

′
(Ind

−M(β))
}

= nd − 2 trace{M(β)}+ trace
{
M′(β)M(β)

}
. (2.5.28)

e,reg,hyper,edf

Another popular choice is

REDF(β) , nd − trace{M(β)} = trace{Ind
−M(β)} . (2.5.29)

e,reg,hyper,edf,simple

These definitions match when M is idempotent. (See [82] for complications in non-convex models.) For a well-
conditioned problem, REDF(0) = nd − np, which is the usual (residual) degrees of freedom in a regression problem
with nd measurements and np unknowns.

x,reg,hyper,redf,qpwls

Example 2.5.8 For the QPWLS estimator, the influence matrix is

M(β) = W 1/2A [F + βR]
−1
A′W 1/2. (2.5.30)

e,reg,hyper,influence

In particular, trace{M(β)} = trace
{

[F + βR]
−1 F

}
.

To analyze this approach, again it is simpler to consider the expected RSS:

β∗REDF , arg min
β>0

∣∣∣E[RSS(x̂β)]−REDF(β)
∣∣∣.

https://creativecommons.org/licenses/by-nc-nd/4.0/
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If F andR are both circulant, then with the definition (2.5.29):

REDF(β) = nd −
∑
k

Fk
Fk + βRk

= nd − rank{F}+
∑

k : Fk 6=0

βRk
Fk + βRk

. (2.5.31)
e,reg,hyper,rss,redf,circ

Using (2.5.23):

E[RSS(x̂β)]−REDF(β) =
∑

k : Fk 6=0

β2R2
k

1 + Fk |Xk|2 /np
(Fk + βRk)

2 −
∑

k : Fk 6=0

βRk (Fk + βRk)

(Fk + βRk)
2

=
∑
k

βRkFk
(
βRk |Xk|2 /np − 1

)
(Fk + βRk)

2 .

In the orthogonal case where F = σ−2I and R = I ,

E[RSS(x̂β)]−REDF(β) =
βσ−2

(σ−2 + β)
2

∑
k

(
β |Xk|2 /np − 1

)
=

βσ−2

(σ−2 + β)
2

(
β ‖x‖2 − np

)
.

Equating to zero (ignoring the trivial solution β = 0) yields [64, eqn. (2.9)]: β∗REDF = np/ ‖x‖2 = βMSE. See [64,
65] and Problem 2.9 for more approaches and related analyses.

x,reg,hyper,rss,redf

Example 2.5.9 Fig. 2.5.1 shows an example of nd = 100 noisy samples of one cycle of a sinusoid denoised by fitting
polynomials of various degrees (np = 1+ degree) and by using a quadratic roughness penalty x̂β = [I + βC ′C]

−1
y

with periodic boundary conditions. As polynomial degree increases, naturally RSS decreases. Similarly, as regular-
ization parameter β decreases, RSS decreases. The βREDF based on (2.5.27) and the corresponding value for the
polynomial fit are marked with stars. The RMSE plot shows that in this case the REDF criterion picked nearly the
option β for the regularized method, but a slightly higher degree polynomial than would have been best here.
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Figure 2.5.1: Using REDF for selecting polynomial order and regularization parameter for a simple denoising prob-
lem.

fig_reg_redf

2.5.2.3 Unbiased predictive risk estimator (UPRE)

Yet another variation is the unbiased predictive risk estimator (UPRE) [73, p. 98] that minimizes

UPREβ , RSS(x̂β) +2 trace{M(β)}−nd. (2.5.32)
e,reg,hyper,upre

For the linear measurement model and linear estimator considered in Example 2.5.4, one can verify that UPREβ is an
unbiased estimate of the predictive risk, i.e., E[UPREβ] = PRβ, by comparing (2.5.16) and (2.5.18).

https://creativecommons.org/licenses/by-nc-nd/4.0/
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2.5.3 Cross validation method (s,reg,hyper,cv)s,reg,hyper,cv

In cross validation methods, we set aside part of the data, perform model fitting on the rest, and then see how well
the fitted model predicts the data that we set aside. The idea is that if β is too small or too large, then the predictions
of the data values that were set aside will be worse than if β is chosen appropriately. The simplest form is called
leave-one-out cross validation, and is our focus here [83, 84].

Let x̂(−i)
β denote the estimate that is formed using all the data except yi. For the model in Example 2.5.1:

x̂
(−i)
β = arg min

x

∑
k 6=i

wk |yk − [Ax]k|2 + βx′Rx (2.5.33)

=
[
A′W(−i)A+ βR

]−1
A′W(−i)y, (2.5.34)

e,reg,hyper,cv,xhri

where W(−i) = W − wieie′i = W (I − eie′i) is like W but with a 0 in its ith diagonal element. To choose β, we

compare the “left out” data value yi with its predicted value ȳi
(
x̂
(−i)
β

)
as follows:

βCV = arg min
β

ΦCV(β), ΦCV(β) ,
nd∑
i=1

wi

∣∣∣yi − ȳi(x̂(−i)
β

)∣∣∣2 . (2.5.35)
e,reg,hyper,cv

Apparently this would be a computationally intensive procedure because it appears to require that one perform nd
separate estimations for each value of β. However, one can show (see Problem 2.14) for linear problems that4

ȳi

(
x̂
(−i)
β

)
= a′i x̂

(−i)
β =

1

1−Mii(β)
(a′i x̂β−Mii(β) yi) , (2.5.36)

e,reg,hyper,cv,ybi

where Mii(β) is the ith diagonal element of the influence matrix in (2.5.30). Thus, the summation in (2.5.35)
simplifies to the following form [10, p. 51] [85]:

ΦCV(β) =

nd∑
i=1

wi
|yi − ȳi(x̂β)|2

(1−Mii(β))
2 . (2.5.37)

e,reg,hyper,cv,simple

Although this expression appears simpler than (2.5.35), it remains impractical because the influence matrix M(β) is
too large for imaging problems. See Problem 2.10.

Cross validation methods have been reported to have undesirable variability, though variance reduction methods
have been proposed [86].

A variation on CV is called estimation stability with cross validation (ESCV) [87]. This method examines the
“estimation stability” of the estimates obtained by each leave-one-out estimator:

ΦES(β) =

∑nd

i=1

∥∥∥x̂(−i)
β − x̂β

∥∥∥2∥∥∥∑nd

i=1 x̂
(−i)
β

∥∥∥2 .

Instead of simply minimizing ΦES over β, which could lead to over-smoothing, the procedure is to choose βES as a
local minimizer of ΦES that is smaller than βCV. This choice can compensate for the tendency of βCV to be too large.

2.5.3.1 Generalized cross validation (GCV) (s,reg,hyper,gcv)s,reg,hyper,gcv

The ordinary cross validation method is not invariant to orthonormal transformations (rotations) of the data, i.e.,
y 7→ Qy and A 7→ QA, for some orthonormal matrix Q, even if W = I . This lack of invariance motivated the
development of the generalized cross validation (GCV) method [85, 88]:

βGCV , arg min
β

ΦGCV(β), ΦGCV(β) ,
nd∑
i=1

wi
|yi − ȳi(x̂β)|2(

1− M̄(β)
)2 , (2.5.38)

e,reg,hyper,gcv

where M̄(β) , 1
nd

∑nd

i=1 Mii(β) = 1
nd

trace{M(β)} is the average value of the diagonal elements of the influence
matrix. It is useful to write ΦGCV using the definition of REDF in (2.5.29) as follows:

ΦGCV(β) = n2d
RSS(x̂β)

REDF2(β)
. (2.5.39)

e,reg,hyper,gcv,redf

4 One can show that Mii(β) < 1 for β > 0 for (2.5.34), so the ratio is well defined. (See Problem 2.14.) More generally, 0 < Mii(β) < 1 for
useful estimators.
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Both RSS and REDF decrease as β→ 0.
GCV has various optimality properties [89] [10, p. 55] for linear problems. See §2.5.3.3 for nonlinear extensions.

Unfortunately, GCV is prohibitively expensive computationally to evaluate exactly for imaging problems. However,
see §2.5.3.2 for approximations to ΦGCV based on stochastic methods that are feasible for imaging problems. GCV
has been used to optimize not only the regularization parameter β, but also other parameters of the regularizer [90]
and of the blur [91].

x,reg,hyper,gcv,circ

Example 2.5.10 Continuing Example 2.5.1, if A and R are both circulant, with eigenvalues Bk and Rk respectively,
and ifW = σ−2I , then the diagonal elements of the influence matrix simplify to the same value:

Mii(β) =
1

np

∑
k

|Bk|2 /σ2

|Bk|2 /σ2 + βRk
.

In this special case, ΦCV = ΦGCV. See [66, eqn. (19)] for further details.
Slightly more generally, if F and R are both circulant, with eigenvalues Fk and Rk respectively, then using (26.1.7):

M̄(β) =
1

nd
trace{M(β)} =

1

nd
trace

{
F [F + βR]

−1
}

=
1

nd

∑
k

Fk
Fk + βRk

. (2.5.40)
e,reg,hyper,gcv,m,circ

Note that M̄(β) → rank{F} /nd as β → 0. One could use (2.5.40) to evaluate ΦGCV in large (linear) problems that
are locally shift invariant. Interestingly, because the ratio inside the above summation is the frequency response of the
estimator, the value of M̄(β) in this case is proportional to the central value of the PSF (1.9.2).

Combining (2.5.40) and (2.5.21), the GCV criterion in the circulant case is

ΦGCV(β) =

‖y‖2W 1/2 −
1

np

∑
k

|Dk|2 (Fk + 2βRk)

(Fk + βRk)
2(

1− 1
nd

∑
k

Fk
Fk + βRk

)2 (2.5.41)
e,reg,hyper,gcv,phi,circ

where Dk is the np-point DFT of d = A′Wy. One can minimize this over β numerically. See Problem 2.11.
x,res,hyper,cv,orth

Example 2.5.11 Continuing Example 2.5.2, if F = σ−2I and R = I then M̄(β) = 1
nd

trace{M(β)} =
np

nd

1
1+σ2β

so
using (2.5.25)

E[ΦGCV(β)] =
nd − np + np (1 + SNR)

(
σ2β

1+σ2β

)2
(

1− np

nd

1
1+σ2β

)2 = nd
(1− f)(1 + γ)2 + f(1 + SNR)γ2

(1 + γ − f)
2

where γ , σ2β and f = np/nd. One can show the minimizer is β∗GCV = σ−2/ SNR = np/ ‖x‖2 = βMSE, so at least
for this highly idealized case, minimizing the (expectation) of ΦGCV provides the MSE-optimal value of β, unlike the
discrepancy principle choice in (2.5.26).

2.5.3.2 Monte Carlo methods for matrix trace (s,reg,hyper,trace)s,reg,hyper,trace

Several of the preceding expressions depend on the trace of a (large) square matrix, namely the influence matrix in
(2.5.32), (2.5.29) and (2.5.38). For circulant problems one can compute such traces easily in the frequency domain,
e.g., (2.5.40). For non-circulant imaging problems, exact trace computation can be prohibitively expensive. However,
the following stochastic (Monte Carlo) approach to estimating the trace of a matrix M is simple and effective [92–
97].

Let w be an IID random vector in Rnd with E[w] = 0 and Cov{w} = Ind
. Then by (29.5.1):

E[w′Mw] = E[trace{w′Mw}] = trace{M E[ww′]} = trace{M} . (2.5.42)
e,reg,hyper,trace

Thus t̂ , w′Mw is an unbiased estimate of t = trace{M}. To reduce the variance of t̂, one could average several
realizations. However, in imaging problems usually nd is large enough that t̂ has small variance. Using an IID
Bernoulli ±1 distribution for w is preferable [92, 98, 99].

2.5.3.3 GCV for nonlinear estimators (s,reg,hyper,ngcv)s,reg,hyper,ngcv

Various methods have been proposed for extending GCV for nonlinear estimators [93, 99–103]. Here explore one
heuristic method based on (2.5.42).

https://creativecommons.org/licenses/by-nc-nd/4.0/
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Consider a linear estimator x̂β(y) = Lβy, linear model ȳ(x) = Ax, and white noise Cov{y} = σ2I , with
corresponding influence matrix M(β) = ALβ. If E[w] = 0 and Cov{w} = I , then using (2.5.42), an unbiased
estimate of the trace of M(β) is w′M(β)w. We exploit linearity to rewrite this unbiased trace estimate as follows:

w′M(β)w = w′ALβw = w′ ȳ(x̂β(w)) = w′
ȳ(x̂β(y + εw))− ȳ(x̂β(y))

ε
, M̂β(w, ε) . (2.5.43)

e,reg,hyper,gcv,tr,w

For linear estimators, E
[
M̂β(w, ε)

]
= E[w′M(β)w] = trace{M(β)} for any ε 6= 0.

For nonlinear estimators, we can form a heuristic version of GCV by replacing (2.5.38) with

βNGCV , arg min
β

ΦNGCV(β), ΦNGCV(β) ,
RSS(x̂β)(

1− 1
nd

M̂β(w, ε)
)2 . (2.5.44)

e,reg,hyper,ngcv

This approach requires applying the estimator twice for each candidate β: once for data y and once for the perturbed
data y + εw. Choosing ε such that ‖εw‖ � ‖y‖ seems desirable so that the estimator behaves approximately
linearly. (However, if ε is too small, there can be numerical precision issues in evaluating (2.5.43) numerically.) An
even simpler approach is to use M̂β , w′Ax̂β(w), which is unbiased in the linear case and may work acceptably
even for some nonlinear problems [103].

An alternative way of deriving M̂β(w, ε) in (2.5.43) is as follows. When both ȳ(x) = Ax and x̂β(y) = Lβy
are linear, then the influence matrix represents the differential change in the predicted measurements ȳ as a function
of the measured values y:

M(β) = ALβ = ∇y ȳ(x̂β(y)) .

To generalize the notion of influence matrix to for nonlinear models and/or estimators, we can define the influence
matrix as this gradient:

M(β) , ∇y ȳ(x̂β(y)) . (2.5.45)
e,reg,hyper,ngcv,M

Defining µβ(y) , ȳ(x̂β(y)) as a mapping from Rnd into Rnd , then

trace{M(β)} = trace{∇y µβ(y)} =

nd∑
i=1

∂

∂yi
[µβ(y)]i,

where the last sum is called the divergence of µβ(y) [97].
Using a first-order Taylor expansion for a small ε:

µβ(y + εw) ≈ µβ(y) +∇µβ(y)(εw)

so

w′
µβ(y + εw)−µβ(y)

ε
≈ w′∇µβ(y)w ≈ trace{M(β)} .

In summary, a reasonable approximation for the trace of the influence matrix for use in (2.5.44) is

trace{M(β)} ≈ w′ ȳ(x̂β(y + εw))− ȳ(x̂β(y))

ε
.

This approximation should become unbiased as ε→ 0 for nonlinear estimators that are continuously differentiable.
MIRT See ir_deblur_gcv1.m.

2.5.4 Maximum likelihood and Bayesian methods (s,reg,hyper,ml)s,reg,hyper,ml

A regularization method with penalty function βRδ(x) can be interpreted as a Bayesian method with prior distribution
p(x;β, δ) = cβ,δ e−βRδ(x) , where cβ,δ is a constant known as the partition function in the Markov random field
literature that ensures the density function integrates to unity. Given a noiseless training image x, in principle one
could estimate the parameters β and δ by maximum likelihood:

β̂, δ̂ = arg max
β,δ

log p(x;β, δ),

e.g., [104]. Alternatively, if one supposes a prior for the regularization parameters, then one can estimate them from a
training image by a Bayesian MAP approach:

β̂, δ̂ = arg max
β,δ

log p(β, δ |x) .

Many such Bayesian methods have been investigated [67, 68, 105, 106]. In practice, these methods are difficult to
realize because of the complexity of the partition function. Approximations that disregard the dependence of the rows
of Cx have been investigated, e.g., [107].
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2.5.5 L-curve method (s,reg,hyper,lcurve)s,reg,hyper,lcurve

Regularized methods involve minimizing a cost function consisting of a data fit term and a regularization term:

x̂β = arg min
x

L- (x) +βR(x) .

The values of L- (x̂β) and R(x̂β) change as one varies β. If one graphs (L- (x̂β),R(x̂β)) as β is varied, the curve
has an “L” shape [108]. It has been argued that reasonable values for β lie somewhere near the “corner” in this L-
curve [109–113]. However, there also have been critiques of this method [114]. It requires substantial computation in
general to trace out the L-curve, because one must find x̂β for several values of β. The location of the “corner” of the
L-curve does not have a canonical definition. And the properties of x̂β in terms of spatial resolution, noise, or MSE
are unknown when β is chosen using the L-curve method. So we do not consider this approach further here.

2.5.6 SURE methods (s,reg,hyper,sure)s,reg,hyper,sure

The MSE in (2.5.2) depends on the true parameter xtrue so it cannot be used in practice for choosing β. However, one
can estimate the MSE (also known as the risk) as a function of β and then minimize the estimate. The best known
such method is Stein’s unbiased risk estimate (SURE) [74, 97, 115–124].

2.5.6.1 Weighted MSE

In this section we consider a weighted mean-squared error (WMSE) that generalizes (2.5.6) as follows:

WMSEβ , E[(x̂β−x̄β)′J1(x̂β−x̄β)] + (x̄β − xtrue)
′
J2 (x̄β − xtrue) , (2.5.46)

e,reg,hyper,sure,wmse

where the estimator mean x̄β was defined in (2.5.3). The first term quantifies the variability (noise) of the estimator
x̂β, and the second term quantifies the systematic error (bias) of the estimator. If J1 = J2 = I then this WMSE
simplifies to the standard definition of MSE in (2.5.2).

Expanding (2.5.46) and simplifying yields

WMSEβ = E
[
x̂′β J1 x̂β

]
+x̄′β(J2 − J1)x̄β − 2 real

{
x̄′βJ2xtrue

}
+ c2, (2.5.47)

e,reg,hyper,sure,wmse,all4

where c2 = x′trueJ2xtrue is a constant independent of β that can be ignored. The middle two terms are the primary
challenge for choosing β.

2.5.6.2 Linear model and estimator

Consider the case of a linear estimator x̂β = Lβy for which x̄β , E[x̂β] = LβAxtrue, assuming E[y] = Axtrue.
In this case the middle two terms of WMSEβ in (2.5.47) become

x′trueA
′M1Axtrue − 2 real

{
x′trueA

′L′βJ2xtrue

}
, (2.5.48)

e,reg,hyper,sure,wmse,23

whereM1 , L′β (J2 − J1)Lβ. To proceed, we assume y ∼ N
(
Axtrue,W

−1) and use (29.5.1) for a general nd×nd
matrixM :

E[y′My] = ȳ′M ȳ+ trace{Cov{y}M} = x′trueA
′MA′xtrue + trace

{
W−1M

}
.

Thus y′M1y − trace
{
W−1M1

}
= x̂′β(J2 − J1) x̂β− trace

{
W−1M1

}
is an unbiased estimate of the first term in

(2.5.48).
The second term in (2.5.48) is more challenging. We describe two approaches for estimating it next.

2.5.6.2.1 Case where an unbiased estimator exists One approach is to assume there exists an unbiased estimator
x̂0 of xtrue, with some covariance K0. Then using (29.5.1) again, x̂′0M2 x̂0− trace{K0M2} is an unbiased esti-
mator of x′trueM2xtrue whereM2 , A′L′βJ2 is a np × np matrix. Collecting terms leads to the following unbiased
estimate of the WMSE:

ΦURE,1(β) = x̂′β J2 x̂β− trace
{
W−1M1

}
−2 (x̂′0M2 x̂0− trace{K0M2}) + c2. (2.5.49)

e,reg,hyper,sure,ure1

To further simplify, suppose W = σ−2I , Lβ = [F + βR]
−1
A′W =

[
A′A+ σ2βR

]−1
A′, J1 = I , and

J2 = αI , for which M1 = (α − 1)A
[
A′A+ σ2βR

]−2
A′ and M2 = αA′A

[
A′A+ σ2βR

]−1
. Furthermore,

x̂0 = [A′A]
−1
A′y andK0 = σ2 [A′A]

−1
. Then

ΦURE,1(β) = αy′A
[
A′A+ σ2βR

]−2
A′y − σ2(α− 1) trace

{[
A′A+ σ2βR

]−2
A′A

}
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− 2αy′A
[
A′A+ σ2βR

]−1
[A′A]

−1
A′y + 2σ2α trace

{[
A′A+ σ2βR

]−1}
+ c2. (2.5.50)

e,reg,hyper,sure,ure1,qpwls

AssumingA and R are both circulant, with corresponding eigenvalues Bk and Rk, then

ΦURE,1(β) =
1

N

∑
k

 |Bk Y [k]|2(
|Bk|2 + σ2βRk

)2 + (α− 1)
|Bk|2

(
|Y [k]|2 −Nσ2

)
(
|Bk|2 + σ2βRk

)2 − 2α
|Y [k]|2 −Nσ2

|Bk|2 + σ2βRk

+ c2,

(2.5.51)
e,reg,hyper,sure,ure1,circ

where Y [k] denotes the DFT of y. The case α = 1 simplifies to the usual MSE, for which (2.5.51) reduces to [66,
eqn. (21)-(22)].

x,fig_reg_hyper_sure1

Example 2.5.12 See Fig. 2.5.2 for an illustration of choosing β by minimizing ΦURE,1(β) in (2.5.51), using a
quadratic roughness penalty with periodic boundary conditions.

MIRT See fig_reg_hyper_sure1.m.

2.5.6.2.2 Case where certain matrices commute (e.g., for denoising) Unbiased estimators x̂0 do not exist when
A has a non-trivial null space. An alternative approach is to make the following restrictive assumption:

J2Lβ = A′M3,

for some nd × nd matrix M3, so that A′L′βJ2 = A′M3A. (This holds for certain circulant problems, even
when A is singular, and for denoising problems where A = I , but perhaps not much more generally.) Then
−2
(
y′M3y − trace

{
W−1M3

})
is an unbiased estimate of the second term in (2.5.48).

Collecting terms leads to the following unbiased estimate of the WMSE:

ΦURE,2(β) = x̂′β J2 x̂β− trace
{
W−1M1

}
−2
(
y′M3y − trace

{
W−1M3

})
+ c2. (2.5.52)

e,reg,hyper,sure,ure2

Further simplifying, suppose W = σ−2I , Lβ = [F + βR]
−1
A′W =

[
A′A+ σ2βR

]−1
A′, J1 = I , and

J2 = αI , for which M1 = (α− 1)A
[
A′A+ σ2βR

]−2
A′.

Assuming M3 and A′ commute (e.g., they are both circulant, or when A = I) then we also have M3 =

α
[
A′A+ σ2βR

]−1
. This leads an expression similar (but not identical!) to (2.5.50):

ΦURE,2(β) = αy′A
[
A′A+ σ2βR

]−2
A′y − σ2(α− 1) trace

{[
A′A+ σ2βR

]−2
A′A

}
− 2αy′

[
A′A+ σ2βR

]−1
y + 2σ2α trace

{[
A′A+ σ2βR

]−1}
+ c2.

Interestingly, assuming A and R are both circulant leads to an expression for ΦURE,2(β) that is identical to (2.5.51).
In other words, for circulant problems, ΦURE,1 in (2.5.51) is valid even when no unbiased estimator x̂0 exists.

For the denoising case whereA = I , and for the usual case where α = 1, this simplifies to

ΦURE,2(β) = y′
[
I + σ2βR

]−2
y − 2y′

[
I + σ2βR

]−1
y + 2σ2 trace

{[
I + σ2βR

]−1}
+ c2,

which one can show is equivalent to [97, eqn. (6)].
Generalizing this WMSE approach to non-circulant problems, even for a linear model and linear estimators, is an

open problem.
x,reg,hyper,sure,mc

Example 2.5.13 This example applies the Monte Carlo trace estimate of §2.5.3.2 to a denoising problem with y =
x+ε where ε ∼ N

(
0, σ2I

)
and a linear estimator x̂β = Lβy.One can verify that ΦSURE(β) , x̂′β x̂β−2(y′Lβy−

σ2 trace{Lβ}) + c2 is an unbiased estimate of MSE(β) = E
[
‖x̂β−xtrue‖2

]
. Furthermore the following is also an

unbiased estimator when w has an IID Bernoulli ±1 distribution:

ΦSURE(β) , x̂′β x̂β−2(y′ x̂β−σ2w′Lβw) + c2.

2.5.6.3 Nonlinear estimators

The MSE of an estimator x̂β can be expanded:

MSEβ = E
[
‖x̂β−xtrue‖2

]
= E

[
‖x̂β‖2

]
−2E

[
x̂′β xtrue

]
+ ‖xtrue‖2 . (2.5.53)

reg,hyper,sure,mse

The middle term is the challenging one because it depends both on the estimator x̂β and the unknown parameter xtrue.
To proceed we need the following property of the gaussian distribution [115] [125] [118, p. 396]. This result

generalizes to exponential families [119, eqn. (15)]. See also see (29.4.2). Generalizing the methods below to a
WMSE of the form (2.5.46) is an open problem.

https://creativecommons.org/licenses/by-nc-nd/4.0/
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Figure 2.5.2: Example of using unbiased risk estimator (2.5.51) to choose regularization parameter β for an image
restoration problem.

fig_reg_hyper_sure1

l,prob,gauss,sure1

Lemma 2.5.14 If z ∼ N(µ,K) ∈ Rnp and each hj(z) is a differentiable function of z for which E[|hj(z)|] is
bounded for j = 1, . . . , np, then

E[h′(z)µ] = E[h′(z)z]− trace{E[K∇h(z)]} . (2.5.54)
e,prob,gauss,sure1

Proof:
Differentiating (29.4.1):

∇z p(z) = − p(z)K−1(z − µ) =⇒K∇z p(z) = p(z)µ− p(z) z.

Multiplying by h′ and taking the expectation:

E[h′(z)µ] = E[h′(z)z] +

∫
h′(z)K∇ p(z) dz .

Letting v(z) = Kh(z):∫
h′(z)K∇ p(z) dz =

∫
v′(z)∇ p(z) dz =

∑
j

∫
vj(z)

∂

∂zj
p(z) dz

= −
∑
j

∫ (
∂

∂zj
vj(z)

)
p(z) dz = − trace{E[∇v(z)]} = − trace{E[K∇h(z)]},

using integration by parts and the assumptions on h. 2

The utility of (2.5.54) is that the right-hand side terms do not depend on µ, unlike the left-hand side.
Now suppose that x̂0 is an unbiased estimator for xtrue with covariance K, and suppose that x̂β = Lβ x̂0 is a

linear function of x̂0. Then applying (2.5.54) with µ 7→ xtrue and z 7→ x̂0 yields:

E
[
x̂′β xtrue

]
= E

[
x̂′β x̂0

]
− trace

{
KL′β

}
.

Therefore the following criterion is a unbiased estimate of the MSE:

ΦSURE(β) , ‖x̂β‖2 − 2 x̂′β x̂0 +2 trace
{
KL′β

}
+ ‖xtrue‖2

= ‖x̂β− x̂0‖2 + 2 trace
{
KL′β

}
+
(
‖xtrue‖2 − ‖x̂0‖2

)
, (2.5.55)

e,reg,hyper,kost,sure

i.e., we select β as follows

βSURE , arg min
β

ΦSURE(β), where E[ΦSURE(β)] = MSEβ.

https://creativecommons.org/licenses/by-nc-nd/4.0/
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(The final term is a constant independent of β so it does not affect parameter selection.)
For example, when x̂0 = F−1A′Wy and W = [Cov{y}]−1 so Cov{x̂0} = F−1 and Lβ = [F + βR]

−1 F we
have (cf. [118, eqn. (5.51)]):

ΦSURE(β) ≡
∥∥∥[F + βR]

−1
βRF−1A′Wy

∥∥∥2 + 2 trace
{

[F + βR]
−1
}

+c0, (2.5.56)
e,reg,hyper,kost,sure,pwls

where c0 , ‖xtrue‖2 − ‖x̂0‖2 is independent of β.
The criterion ΦSURE in (2.5.56) requires that F be non-singular, which limits its applicability in image recon-

struction problems. See [103, 119] consideration of cases where F is singular, using a modified MSE of the form
E
[
‖PA(x̂β−xtrue)‖2

]
, where PA denotes the orthogonal projection onto the range space of A. The approach in

[103, 119] requires computing the pseudo-inverse solution which is impractical except for special cases like circulant
problems. A general practical solution for the singular case remains an open problem.

Monte Carlo methods are another approach to computing unbiased estimates of MSEβ [97, 121, 123].

2.5.7 Other regularization parameter selection methods (s,reg,hyper,other)s,reg,hyper,other

A variety of other selection methods have been proposed, including predictive sum of squares (PRESS) [126, 127].
Despite many publications on this topic, it seems that none of the methods are used widely in medical imaging practice.
All of the methods described in this section attempt to approximate the “optimal” value βO in (2.5.1). In practice,
squared error may be a suboptimal metric for imaging, which may limit the practical impact of such methods.

A drawback of most methods for selecting β is that one must compute x̂β for many values of β. One can reduce
computation by pruning poor choices of β while iterating [128]. Frommer and Maass [129] describe a more efficient
method for applying CG to the case of Tikhonov–Phillips Regularization (where R = I) for multiple β values. Another
option is to find a scheme that chooses β adaptively during an iterative algorithm using a feedback mechanism [77,
103].

To avoid computing x̂β for many values of β, another alternative is to use β = 0 and initialize some iterative
algorithm with a uniform image x(0) and then stop the iterations before x(n) becomes “too noisy.” A drawback of this
approach is that the final image depends on the choice of iterative algorithm, not just on the cost function Ψ. Numerous
publications have explored stopping rules for such methods [96, 130–136].

This section considered methods for choosing a single regularization parameter β. There are also data-driven
methods for selecting space-variant regularization parameters adaptively, e.g., [137].

2.6 Limiting behavior (s,reg,limit)
s,reg,limit

This section analyzes the properties of a QPWLS estimator as the regularization parameter increases. (See Problem 2.3
for extensions to penalize-likelihood estimation with nonquadratic regularization, and Problem 2.3 for extensions to
temporal regularization for dynamic scans.)

As seen in Example 2.5.1, for quadratic regularization the PWLS estimator has the form

x̂β = [F + βR]
−1
A′Wy,

where F = A′WA is a (Hermitian) symmetric positive-semidefinite matrix, as is R = C ′C. We further assume that
F and R have disjoint null spaces, so that F + βR is positive definite for any β > 0.

Because R is symmetric positive-semidefinite, it has an orthonormal eigen-decomposition of the form

R = UΣU ′ =
[
U1 U0

] [ Σ1 0
0 0

] [
U1 U0

]′
,

where U is unitary and Σ1 is positive definite. The columns of the matrix U0 span the null space of R. For a typical
penalty function based on 1st-order differences, the null space of R is uniform images, i.e.,

U0 =
1
√
np

1, (2.6.1)
e,reg,limit,null1

where 1 denotes the vector of ones of length np.
Because R and F have disjoint null spaces, one can verify that

B , U ′0FU0

is positive definite. To proceed we express F in terms of the basis U as follows:

U ′FU =

[
N M ′

M B

]
.

https://creativecommons.org/licenses/by-nc-nd/4.0/
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Note that even though Σ is diagonal,B andN are not diagonal in general. The PWLS estimator involves the term

[F + βR]
−1

= U

[[
N M ′

M B

]
+ β

[
Σ1 0
0 0

]]−1
U ′ = U

[
N + βΣ1 M ′

M B

]−1
U ′

= U

[ [
N + βΣ1 −M ′B−1M

]−1 − [N + βΣ1]
−1
M ′∆−1

−∆−1M [N + βΣ1]
−1

B−1

]
U ′,

using (26.1.11), where the Schur complement is ∆ , B −M [N + βΣ1]
−1
M ′. Because Σ1 is positive definite,

[N + βΣ1]
−1 → 0 and ∆→ B as β→∞. Thus,

lim
β→∞

x̂β = U

[
0 0
0 B−1

]
U ′A′Wy = U0 [U ′0FU0]

−1
U ′0A

′Wy. (2.6.2)
e,reg,limit,xh

In particular, in the usual case (2.6.1),

lim
β→∞

x̂β = 1(1′A′WA1)−11′A′Wy.

As expected, this limit is the same estimator that is found by assuming the image is uniform, i.e., x = 1α and then
estimating the coefficient by WLS:

x̂ = 1α̂, α̂ = arg min
α

‖y −A1α‖2W 1/2 .

2.7 Potential functions (s,reg,pot)s,reg,pot

The analysis in §1.10.3 showed that the potential weighting function ωψ determines the properties of the restored image
x̂. Table 2.1 and Table 2.2 summarize many of the options and Fig. 2.7.1 shows many of the weighting functions ωψ .

Name ψ(z) ωψ(z) Comments

quadratic
(gaussian pdf)

|z|2

2
1

simplest
not edge preserving

Huber
{
|z|2 /2, |z| ≤ δ
δ |z| − δ2/2, |z| > δ

{
1, |z| ≤ δ
δ/ |z| , |z| > δ

not strictly convex
not twice different.

hyperbola
[138–140] δ2

[√
1 + |z/δ|2 − 1

]
1/

√
1 + |z/δ|2 approximate methods

for total variation

log cosh
[141, 142] δ2 log cosh(|z/δ|) tanh(|z/δ|)

|z/δ|
Lange1
[143]

|z|2 /2
1 + |z/δ|

1 + |z/δ| /2
(1 + |z/δ|)2

Lange3 [143]
Fair [144–146] δ2 [|z/δ| − log(1 + |z/δ|)] 1

1 + |z/δ|
Li
[147] δ2

[∣∣ z
δ

∣∣ arctan(∣∣ z
δ

∣∣)− 1
2
log(1 +

∣∣ z
δ

∣∣2)] arctan(z/δ)

z/δ

≈ hyperbola
requires arctan

Absolute value (TV)
(Laplacian pdf) |z| 1

|z|
not differentiable
ωψ unbounded

Generalized
gaussian [148, 149] |z|p , 1 < p ≤ 2 p |z|p−2

ωψ unbounded
for p < 2, not
twice differentiable

Absolute entropy
[150] δ2 (1 + |z/δ|) log(1 + |z/δ|) 1 + log(1 + |z/δ|)

|z/δ|
ωψ unbounded

Table 2.1: Table of (symmetric) convex potential functions. The parameter δ is positive throughout. All of the cases
with bounded surrogate curvatures are normalized to ωψ(0) = 1.

tab,potent
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Name ψ(z) ωψ(z) Comments

arctan
[151]

δ2

2
arctan

(
|z/δ|2

) 1

1 + |z/δ|4
not convex

Beaton/Tukey
biweight [152]

δ2

6

[
1−max

(
1−

∣∣∣z
δ

∣∣∣2 , 0)3
]

zmax

(
1−

∣∣∣z
δ

∣∣∣2 , 0)2

not convex

Cauchy (t pdf)
[145, 153–155]

δ2

2
log
(

1 + |z/δ|2
) 1

1 + |z/δ|2
not convex
aka Lorentzian [156]

mixture-of-exp’s
[157, 158] log(1 + |z/δ|) 1

|z/δ| (1 + |z/δ|)
not differentiable at 0
ωψ unbounded

Geman & McClure
[159]

δ2

2

|z/δ|2

1 + |z/δ|2
1/
(

1 + |z/δ|2
)2

not convex

Geman & Reynolds
[160]

|z|
1 + |z|

1

|z|
1

(1 + |z|)2
not convex
not differentiable at 0
ωψ unbounded

Potts [wiki]
[161] I{|z|>δ} undefined

not convex
not differentiable at ±δ

CEL0
[162] 1− (|z/δ| − 1)

2 I{|z|≤δ} undefined
not convex
not differentiable at ±δ

Welsh
[163] δ2

(
1− e−|z/δ|

2/2
)

e−|t/δ|
2/2 not convex

Table 2.2: Table of (symmetric) non-convex potential functions. The parameter δ is positive throughout. All of the
cases with bounded surrogate curvatures are normalized to ωψ(0) = 1.

tab,potent,non-convex

Most of the choices in Table 2.1 and Table 2.2 have a selectable “shape” parameter, δ, that controls the edge-
preserving characteristics5; see §1.10.2 and §1.10.3. Potential functions with more shape parameters have also been
proposed, e.g., [164].

A variety of desiderata for ωψ have been proposed, e.g., [147, 160], including the following properties: continuity,
symmetry, and positivity. It is logical to require that ωψ be nonincreasing for z > 0, and for edge preservation:
limz→∞ z ωψ(z) ∈ (0,∞). Some authors argue that ψ should be convex, i.e., ψ̈(z) = d

dz (z ωψ(z)) ≥ 0, whereas
others have argued that ψ should be concave on (0,∞), and should have a finite asymptote: limz→∞ ψ(z) <∞, e.g.,
[160].

From a computational perspective, one might add to this list that we would like to be able to evaluate ωψ quickly,
avoiding transcendental function evaluations if possible. The importance of such considerations depends on comput-
ing resources; often the computation demands of the log-likelihood term far outweigh those of the roughness penalty.

Several “generalized families” of potential functions have been proposed in the literature. Some of these are
summarized and generalized next. To my knowledge, there is no theory that establishes optimality any of these
families; the “best” choice is application dependent.

2.7.1 Generalized Gaussian
The generalized gaussian family, defined by [148]

ψ(z) = |z|p , 1 < p ≤ 2, (2.7.1)
e,reg,pot,gg

includes the quadratic function as a special case, and has a desirable scale invariance property [149]. Unfortunately
this function is not twice differentiable at zero for p < 2, which complicates some optimization methods.

2.7.2 Generalized Huber
A further generalization of the generalized gaussian is to have a transition point δ where the potential switches (with
continuous derivative) from |z|p to a different power |z|q . An example is:

ψ(z) =

{
1
2 |z|

p
, |z| ≤ δ

1
2
p
q δ
p−q |z|q + 1

2

(
1− p

q

)
δp, |z| > δ,

ωψ(z) =

{
p
2 |z|

p−2
, |z| ≤ δ

p
2δ
p−q |z|q−2 , |z| > δ,

(2.7.2)
e,reg,pot,genhub

5 It is claimed in [150] that the “absolute entropy” function does “not require the selection of structural parameters.” That paper uses δ = e−1,
which surely is a selection...
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Figure 2.7.1: Bounded potential weighting functions ωψ(z) from Table 2.1 and Table 2.2.
fig_reg_wpot1

where typically 1 ≤ q � p ≤ 2. (Stevenson et al. proposed a similar potential [165].) Unfortunately, for p < 2 both
the original generalized gaussian and the above generalization have unbounded curvature at the origin, precluding
the use of algorithms like (1.11.4). Chartrand considers the case p = 2 and q < 1 as a (non-convex) sparsity prior
[166].

Taking p = 2 and q = 1 above, the expression simplifies to the Huber potential (1.10.9):

ψ(z) =

{
1
2 |z|

2
, |z| ≤ δ

δ |z| − 1
2δ

2, |z| > δ,
ωψ(z) =

{
1, |z| ≤ δ
1/ |z/δ| , |z| > δ.

(2.7.3)
e,reg,pot,huber

This choice originated in robust statistics and has certain min-max optimality properties in that context [167].
One can write the Huber potential in a dual formulation [168]:

ψ(z) = arg min
γ∈[−1,1]

δ2
(
γ |z/δ| − 1

2
γ2
)

= arg min
γ∈[−1,1]

δ2
(

1

2
|z/δ|2 − 1

2
(γ − |z/δ|)2

)
.

Writing the Generalized Huber potential (2.7.2) in a dual formulation is left as an exercise.

2.7.3 Generalized Gaussian “q-generalized” (s,reg,pot,qgg)s,reg,pot,qgg

Instead of “switching” abruptly from |z|p to |z|q as in (2.7.2), an alternative is to transition gradually between the two,
e.g., by using the following family of potential functions:

ψ(z) =
1
2 |z|

p(
1 + |z/δ|(p−q)r

)1/r , ωψ(z) = |z|p−2
p
2 + q

2 |z/δ|
(p−q)r(

1 + |z/δ|(p−q)r
)1+1/r

, (2.7.4)
e,reg,pot,qgg

where r > 0 and usually 1 ≤ q � p ≤ 2. De Man et al. explored the case p = 2 and (p − q)r = 2 [169–171],
generalizing the Geman & McClure potential [159, 172]. Thibault et al. studied the case r = 1 and found the choice
p = 2 and q ≈ 1.2 to be particularly desirable for X-ray CT [173]. The sub-family where r = 1 and q = 0 generalize
the Geman & Reynolds potential functions [159, 160]. Special cases are tabulated below, where ∗ denotes arbitrary
values.

https://creativecommons.org/licenses/by-nc-nd/4.0/
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p q r name
2 2 ∗ quadratic
* p ∗ generalized gaussian
2 1 1 Lange1 [143]
2 0 1 Geman & McClure [159, 172]

3/2 0 1 in [174], according to [160]
1 0 1 Geman & Reynolds [160]
* 0 1 Generalized Geman & Reynolds

Letting m = 1/r, n = (p− q)r, and x = |z/δ|n, the curvature of this potential function is:

ψ̈(z) = |z|p−2 ax
2 + bx+ c

(1 + x)
m+2 ,

where a = (p −mn)(p − 1 −mn)/2 = q(q − 1)/2, b = [2p(p − 1) + mn(1 − 2p) −mn2]/2, c = p(p − 1)/2.
To ensure convexity (by nonnegativity of ψ̈) it is necessary to have a ≥ 0, so hereafter we assume that mn ≤ p − 1.
Because mn = p − q, equivalently 1 ≤ q. We also need c ≥ 0 or equivalently 1 ≤ p. To explore convexity further,
recall that polynomials of the form ax2 + bx + c with a ≥ 0 and c ≥ 0 are nonnegative for x ≥ 0 if b ≥ 0 or if
b2 ≤ 4ac. Here, one can verify that

2b = 2(r + 1)(p− 1)(q − 1) + (p− 1) [(2− p)r + (1− r)] + (q − 1) [(2− q)r + (1− r)] .

Thus b ≥ 0, and hence ψ is convex, if 0 < r ≤ 1 and 1 ≤ p, q ≤ 2, because these conditions ensure that all the
parenthesized terms are nonnegative. These conditions generalize slightly those derived in [173]. The most useful
case is probably where r = 1 and 1 ≤ q ≤ p ≤ 2.
Futhermore, one can verify that

b2 − 4ac =
1

4
mn2

[
m
(
n2 + (4p− 2)n+ 1

)
− 4p(p− 1)

]
,

so for convexity of ψ it suffices to have

m ≤ 4p(p− 1)

n2 + (4p− 2)n+ 1
.

In particular, in the typical case where p = 2, it suffices to have m ≤ 8
n2+6n+1 . Specifically, when n = 2 it suffices to

have m ≤ 8/17, consistent with [169].

2.7.4 Generalized Fair potential: 1st order (s,reg,pot,gf1)s,reg,pot,gf1

A drawback of (2.7.4) is that evaluating ωψ requires computing powers (unless p and (2 − q)r and 1 + 1/r are
integers). A family of potential functions that avoids power operations for ωψ is the following generalized Fair
potential functions:

ψ(z) =
δ2

2b3

(
ab2 |z/δ|2 + 2b(b− a) |z/δ|+ 2(a− b) log(1 + b |z/δ|)

)
, ωψ(z) =

1 + a |z/δ|
1 + b |z/δ|

, (2.7.5)
e,reg,pot,gf1

where b ≥ a ≥ 0. Special cases are tabulated below.

a b name
any a quadratic
0 1 Lange3 [143] / Fair [144–146]

One can show that

ψ̈(z) =
1 + 2a |z/δ|+ ab |z/δ|2

(1 + b |z/δ|)2

so this potential function is strictly convex when b ≥ a ≥ 0. Although the potential function itself in (2.7.5) is
somewhat complicated looking, often what matters most for implementation is ωψ , which is very simple here.

By choosing a and b, one can make the weighting function ωψ in (2.7.5) approximate another potential weighting
function ω̃ψ that has a “cusp” at 0, such as the Lange1 potential shown in Fig. 2.7.1. Suppose we match such that
ωψ(skδ) = wk , ω̃ψ(skδ) where 0 < s1 < s2. Solving for a and b yields[

a
b

]
=

1

(w1 − w2)s1s2

[
w2s2(1− w1)− w1s1(1− w2)
s2(1− w1)− s1(1− w2)

]
. (2.7.6)

e,reg,pot,gf1,coef

MIRT See the ’gf1’ and ’gf1-fit’ options of potential_fun.m.
Fig. 2.7.2 compares ωψ(z) for the q-generalized gaussian potential with r = 1, p = 2 and q = 1.2 and a generalized

Fair potential with parameters chosen using (2.7.6) so that the ωψ values are matched at |z/δ| ∈ {1, 10}. Qualitatively
they match very closely.
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Figure 2.7.2: Comparison of ωψ(z) for the q-generalized gaussian potential with q = 1.2 and r = 1 and a generalized
Fair potential with selected parameters.

fig_reg_wpot_fair

2.7.5 Generalized Fair potential: 2nd order (s,reg,pot,gf2)s,reg,pot,gf2

The weighting function for (2.7.5) has only two degrees of freedom: δ and the ratio b/a. Furthermore, ωψ does not
decrease all the way to zero as |z/δ| → ∞, unless a = 0. To overcome these limitations, consider the following
family:

ψ(z) =
δ2

b2 + ac2
[(b+ ac) |z/δ| − log(1 + b |z/δ|)−a log(1 + c |z/δ|)] , (2.7.7)

e,reg,pot,gf2

where a ≥ 0, b, c > 0. Using the Taylor expansion log(1 + x) ≈ x − x2/2, one can verify that ψ(z) ≈ |z|2 /2 for
|z/δ| � 1. One can also verify that

ψ̇(z) = z
1 + bc b+ac

b2+ac2 |z/δ|
1 + (b+ c) |z/δ|+ bc |z/δ|2

, ψ̈(z) =
1 + 2bc b+ac

b2+ac2 |z/δ|+ (1 + a) (bc)2

b2+ac2 |z/δ|
2(

1 + (b+ c) |z/δ|+ bc |z/δ|2
)2 ,

so ψ is strictly convex. By design, the weighting function for (2.7.10) has the following rational form:

ωψ(z) =
1 + bc b+ac

b2+ac2 |z/δ|
1 + (b+ c) |z/δ|+ bc |z/δ|2

. (2.7.8)
e,reg,pot,gf2,wpot

One can verify that
d

dz
ωψ
(
0+
)

= −1

δ

b3 + ac3

b2 + ac2
, (2.7.9)

e,reg,pot,gf2,wpot0

which is also negative. When a = 0 and b = 1, this potential function degenerates to the Lange3 [143] or Fair [144–
146] choice. Determining whether this potential function could match others better than (2.7.5) is an open problem.

2.7.6 Convex arctan potential (s,reg,pot,p12)s,reg,pot,p12

A limitation of (2.7.5) is that d
dt ωψ(0+) = (a − b)/δ < 0 in the usual case where a < b. The 2nd-order case (2.7.9)

is similar. So those weighting functions always have a cusp at zero. Some of the weighting functions illustrated in
Fig. 2.7.1 have zero slope at t = 0, such as the hyperbola. But the hyperbola weighting function requires a square root
operation. For a family of potential functions that can approximate weighting functions having zero slope at t = 0
while also having a simple weighting function, consider the following:

ψ(z) = δ2
1 + α

2

[
|z/δ| − 1 + α√

α
arctan

(
|z/δ|+ 1√

α

)]
, (2.7.10)

e,reg,pot,p12

where α > 0. One can verify that

ψ̇(z) = z
1 + 1

2 |z/δ|
1 + 2

1+α |z/δ|+
1

1+α |z/δ|
2 , ψ̈(z) =

1 + |z/δ|(
1 + 2

1+αz + 1
1+α |z|

2
)2 ,

so ψ is strictly convex. By design, the weighting function for the potential (2.7.10) has the following rational form:

ωψ(z) =
1 + 1

2 |z/δ|
1 + 2

1+α |z/δ|+
1

1+α |z/δ|
2 . (2.7.11)

e,reg,pot,p12,wpot

One can verify that
d

dz
ωψ
(
0+
)

=
1

δ

(
1

2
− 2

α+ 1

)
=

1

δ

1

2

α− 3

α+ 1
,
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so for ωψ to be decreasing for z ≥ 0 we want α ≤ 3. Choosing α = 3 provides a flat weighting function at z = 0.
Fig. 2.7.3 compares weighting functions ωψ(z) for the hyperbola potential and for the convex arctan potential. The

two agree very closely (within about 7%) but the convex arctan potential avoids the square root function.

0 1 2

|z|

0

1

ω
ψ
(z
)

Hyperbola
Convex arctan

0 1 9

|z|

0

1

ω
ψ
(z
)

Hyperbola
Convex arctan

Figure 2.7.3: The weighting functions ωψ(z) for the hyperbola potential with δ = 1/
√

3 and for the convex arctan
potential of (2.7.10) with δ = 1/(1 +

√
5) and α = 3. These δ values ensure that ωψ(1) = 1/2.

fig_reg_wpot_hyper

For even more flexibility, one might try to design a family of potential functions with the following general rational
form for the weighting function:

ωψ(z) =
1 + a |z/δ|

1 + b |z/δ|+ c |z/δ|2
, (2.7.12)

e,reg,pot,p12,wpot-gen

where a, b, c ≥ 0. Because d
dz ωψ(z) = 1

δ
a−b−2c|z/δ|−ac|z/δ|2

(1+b|z/δ|+c|z/δ|2)2 , for t > 0, usually we will want to choose a ≤ b so
that ωψ is a decreasing function. Special cases are tabulated below.

a b c name
any a 0 quadratic
1/2 2 1 Lange1 [143]
0 1 0 Lange3 [143] / Fair [144–146]
0 0 1 Cauchy (t pdf) [145, 153–155]

One can show that

ψ̈(z) =
1 + 2a |z/δ|+ (ab− c) |z/δ|2(

1 + b |z/δ|+ c |z/δ|2
)2

so this potential function is strictly convex if and only if c ≤ ab. Unfortunately, it is difficult to determine the potential
function ψ that leads to the weighting function (2.7.12) in general. Algorithms that require a line search need to have
ψ available. However, algorithms that that use only ωψ and ψ̇(z) = z ωψ(z) could use the general form (2.7.12).

2.7.7 Hypergeometric (generalized hyperbola) (s,reg,pot,hyper2)s,reg,pot,hyper2

Many of the potential functions in Table 2.1 are special cases of the following very general form:

ψ(z) = δ2
∫ |z/δ|
0

s
c+ asp

(1 + bsq)r
ds,

where a, b, c ≥ 0. To avoid degeneracy, we require a > 0 and/or c > 0. For rational values of p, q, r, this integral
relates to the hypergeometric function of Gauss [175, p. 555]. This family is designed to satisfy

ωψ(z) =
c+ a |z/δ|p

(1 + b |z/δ|q)r
, (2.7.13)

e,reg,pot,hyper2,wpot

and to ensure that ωψ is bounded for large values of |z| we require that 0 ≤ p ≤ qr. For this family, one can show that

ψ̇(z) = z
c+ a |z/δ|p

(1 + b |z/δ|q)r
, ψ̈(z) =

c+ a(p+ 1) |z/δ|p + bc(1− qr) |z/δ|q + ab(p+ 1− qr) |z/δ|p+q

(1 + b |z/δ|q)r+1 .
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Thus, this potential function is strictly convex if: c > 0 and qr ≤ 1, or if: c = 0 and qr ≤ 1 + p. Otherwise typically
it is not. Special cases are tabulated below.

p q r a b c name
0 * 0 * * 1 quadratic
0 2 1/2 0 1 1 hyperbola
0 2 1 0 1 1 Cauchy
0 2 2 0 1 1 Geman & McClure [159, 172]
1 1 2 1/2 1 1 Lange1
0 1 1 0 1 1 Lange3 / Fair
0 4 1 0 1 1 arctan
1 1 1 * * 1 generalized Fair (2.7.5)
* 0 0 1 0 1 generalized gaussian

There is an explicit expression for this potential when q = 2, b = 1, and a = p = 0:

ψ(z) = c


δ2

2 log
(

1 + |z/δ|2
)
, r = 1

δ2

2(1−r)

[(
1 + |z/δ|2

)1−r
− 1

]
, r ≥ 0, r 6= 1.

There is also an explicit, but lengthy, expression when q = p = 1 and c = 0.
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2.7.8 Tabulated potential functions (s,reg,pot,tab)s,reg,pot,tab

Several of the potential functions described above and in Table 2.1 have weighting functions that involve somewhat
expensive operations such as powers (2.7.4) (2.7.13), exponentials, or trigonometric functions. One way to avoid such
operations is to use a look-up table. This section describes methods for representing ψ using tabulated values.

One natural approach is to sample the values of ψ̇, i.e., to tabulate dk = ψ̇(tk) for k = 0, . . . ,K, where t0 = 0 and
d0 = 0. The design question then becomes how to interpolate ψ̇ between these sample values. The following sections
describe a few options.

For each method, we will need to use the following table indexing function:

k′ , k′(t) = max {k ∈ {0, 1, . . . ,K} : tk ≤ |z|} . (2.7.14)
e,reg,pot,tab,k’

Naturally, table look-up is simplest when the sample points are spaced equally: tk = k∆, for k = 0, . . . ,K, because
in this case the indexing function simplifies to a floor function:

k′ , k′(t) = min(b|z| /∆c ,K). (2.7.15)
e,reg,pot,tab,k’,equal

2.7.8.1 Zeroth-order interpolation of ψ̇ sampless,reg,pot,tab,0

The simplest approach is to use (mostly) sample and hold interpolation of the ψ̇ samples:

ψ̇(z) = sgn(z)

(
d1
t1
|z| I{|z|<t1} +

K∑
k=1

dkI{tk≤|z|<tk+1}

)
. (2.7.16)

e,reg,pot,tab,dpot,0

We set tK+1 =∞ so that ψ(z) is a line with slope dK for t > tK .
The corresponding potential function is piecewise linear (except for being quadratic near 0):

ψ(z) =

∫ |z|
0

ψ̇(τ) dτ =

∫ |z|
0

(
d1
t1
τI{τ<t1} +

K∑
k=1

dkI{tk≤τ<tk+1}

)
dτ

=
1

2

d1
t1

(min(|z| , t1))
2

+

k′−1∑
k=1

dk (tk+1 − tk)

+ dk′ (|z| − tk′) I{k′>0}

=

{
1
2
d1
t1
|z|2 , |z| < t1

sk′ + dk′ (|z| − tk′) , otherwise,
(2.7.17)

e,reg,pot,tab,pot,0

where k′ was defined in (2.7.14) and sk′ , 1
2d1t1 +

∑k′−1
k=1 dk (tk+1 − tk) for k′ = 1, . . . ,K. A drawback of this

model is that ψ is not differentiable at ±tk for k > 1 where dk+1 6= dk. The potential function ψ is convex provided
the samples are all nondecreasing: dk−1 ≤ dk.

The corresponding weighting function is

ωψ(z) =
ψ̇(z)

z
=
d1
t1

I{|z|<t1} +

K∑
k=1

dk
|z|

I{tk≤|z|<tk+1}. (2.7.18)
e,reg,pot,tab,wpot,0

We chose to use a linear segment for |z| < t1 in (2.7.16) so that ωψ would be finite over that range. Note that
ωψ
(
t−k
)

= dk−1/tk whereas ωψ
(
t+k
)

= dk/tk so ωψ is discontinuous at every tk in general for k > 1, which seems
undesirable.

For optimization transfer algorithms based on quadratic surrogates, we need a curvature function c̆ that is no
smaller than ωψ . Usually we simply use ωψ itself, but to save the effort of computing the ratio in (2.7.17) we could
use the following precomputed ratios:

c̆(z) =
d1
t1

I{|z|<t1} +

K∑
k=1

dk
tk

I{tk≤|z|<tk+1} =
dk′

tk′
. (2.7.19)

e,reg,pot,tab,curv,0

x,reg,pot,tab0,huber

Example 2.7.1 If we choose K = 1, t0 = 0, t1 = δ, t2 =∞, d0 = 0, d1 = δ, then (2.7.16) corresponds to the Huber
function (2.7.3).

For sparsity-based regularizers, it is important to be able to solve the shrinkage problem (see Problem 1.12) also
known as the Moreau proximity operator (see §27.9.3.6) [62]:

ẑ(c) = arg min
z

1

2
|z − c|2 + βψ(z) . (2.7.20)

e,reg,pot,tab,shrink,kost,0
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Figure 2.7.4: Shrinkage function (2.7.22) for tabulated potential function using sample-and-hold interpolation of
derivative.

fig,reg,pot,tab,0

We can solve this problem exactly for the tabulated model (2.7.16). Zeroing the derivative requires solving

c = z + β ψ̇(z) (2.7.21)
e,reg,pot,tab,fzero,0

for z = ẑ(c), at points where ψ̇ is differentiable. If |z| ≤ t1 then c = z + βd1t1 t so ẑ = t1
b1
z where bk , tk + βdk

provided |ẑ| ≤ t1 or equivalently |z| ≤ b1. If tk < |z| < tk+1 then c = z + β sgn(z) dk so the shrinkage rule is
ẑ = sgn(c) (|c| − βdk) . Focusing on c > 0, this solution holds when tk < c − βdk < tk+1 or equivalently when
bk < c < ck where ck , tk+1 + βdk > bk. In particular, ẑ(b+k ) = bk − βdk = tk and ẑ(c−k ) = ck − βdk = tk+1.
Summarizing yields the following piecewise linear shrinkage function, illustrated in Fig. 2.7.4:

ẑ =


t1
b1
c, |c| ≤ b1

sgn(c) (|c| − βdk) , bk ≤ |c| ≤ ck
tk+1, ck ≤ |c| ≤ bk+1.

(2.7.22)
e,reg,pot,tab,shrink,th,0

In the usual case when the tk and dk values are monotone nondecreasing (e.g., when ψ is convex) then there is a
unique solution. Unfortunately the breakpoints are unequally spaced in general, so (2.7.22) appears to require many
comparison operations to implement. Nevertheless, at least there is an exact solution that is fairly simple so when
we minimize a regularized cost function using the tabulated potential (2.7.16), one should be able to reach identical
minimizers using algorithms that do and do not use a shrinkage operation (2.7.20).

Because (2.7.22) is piecewise linear, we can implement it exactly using linear interpolation. However, this may
require numerous comparison operations because the breakpoints in (2.7.22) are unequally spaced. An alternative may
be to use the minimum breakpoint spacing

∆c = min(b1, {ck − bk} , {bk+1 − ck}) = min(b1, {tk+1 − tk} , {β(dk+1 − dk)})

to tabulate the relationship between c and a nearby k to reduce the number of comparisons. Implementing this version
efficiently is an open problem.

MIRT See potential_fun.m.
x,reg,pot,tab,0

Example 2.7.2 Fig. 2.7.5 compares the QGG potential function (2.7.4) with p = 2 and q = 1.2 and δ = 10 to a
tabulated approximation (2.7.16) with K = 50 and ∆ = 0.5. For large |z|, the approximation rises linearly whereas
QGG rises as |z|q so an accurate match requires that K∆ be sufficiently large. The large discontinuities in the
weighting function are somewhat disconcerting, although the corresponding derivative ψ̇(z) = z ωψ(z) is piecewise
constant as dictated by (2.7.16).

Fig. 2.7.6 compares the shrinkage function (2.7.20) for QGG (found numerically) and the tabulated approximation
(2.7.22); these agree very well.

2.7.8.2 Linear interpolation of ψ̇ samples

Another option is to use linear interpolation for ψ̇, which seems reasonable because ψ̇ is piecewise linear for the
quadratic and Huber potentials, leading to the following mathematical model:

ψ̇(z) = sgn(z)

K∑
k=0

(
dk +

|z| − tk
tk+1 − tk

(dk+1 − dk)

)
I{tk≤|z|<tk+1}

= sgn(z)

K∑
k=0

(dk + (|z| − tk) ck) I{tk≤|z|<tk+1}, (2.7.23)
e,reg,pot,tab,dpot,1

where ck , dk+1−dk
tk+1−tk for k = 0, . . . ,K − 1. Usually we set tK+1 = ∞ and set cK = 0 so that ψ(z) is a line with

slope dK for z > tK . For this design, ψ̇ is continuous with ψ̇
(
t−k
)

= ψ̇
(
t+k
)

= dk for k = 0, . . . ,K. For this model,
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Figure 2.7.5: QGG potential function for p = 2 and q = 1.2 and tabulated approximation using sample-and-hold
interpolation of ψ̇ per (2.7.16).

fig_reg_pot_table0_qgg2
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Figure 2.7.6: Shrinkage function ẑ(c) for QGG potential function with p = 2 and q = 1.2 and for its tabulated
approximation (2.7.22) using sample-and-hold interpolation of ψ̇ per (2.7.16).
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Figure 2.7.7: Shrinkage function (2.7.27) for tabulated potential function using linear interpolation of derivative.
fig,reg,pot,tab,1

ψ has piecewise constant second derivative:

ψ̈(z) =

K∑
k=0

ckI{tk≤|z|<tk+1},

so if the slopes ck of ψ̇ are nonnegative, then ψ is convex, and if each ck is positive except possibly for cK then ψ is
strictly convex over (−tK , tK). This property is similar to the Huber function.

The weighting function for this model has a piecewise reciprocal form:

ωψ(z) =
ψ̇(z)

z
=

{
d1/t1, |z| < t1
dk+(|z|−tk)ck

|z| , tk ≤ |z| < tk+1, 1 ≤ k ≤ K. (2.7.24)
e,reg,pot,tab,wpot,1

Unlike (2.7.18), here ωψ
(
t−k
)

= ωψ
(
t+k
)

= dk/tk so here ωψ is continuous. Again, to save computing the ratio in
(2.7.24), we can use curvatures based on the upper bound for each interval:

c̆(z) = max
tk′≤|z|<tk′+1

ωψ(z) = ωψ(tk′) =
dk′

tk′
. (2.7.25)

e,reg,pot,tab,curv,1

The potential function has the form

ψ(z) =

∫ |z|
0

ψ̇(τ) dτ =

K∑
k=0

∫ |z|
0

(dk + (τ − tk)ck) I{tk≤τ<tk+1} dτ

= sk′ + (dk′ − tk′ck′) (|z| − tk′) +
ck
2

(
t2 − t2k′

)
, (2.7.26)

e,reg,pot,tab,pot,1

where for compute efficiency we tabulate the following sum for k′ = 0, 1, . . . ,K:

sk′ ,
k′−1∑
k=0

(dk − tkck) (tk+1 − tk) +
ck
2

(
t2k+1 − t2k

)
.

This table is needed only if we plan to evaluate ψ(z), whereas many algorithms do not need it.
x,reg,pot,tab1,huber

Example 2.7.3 If we choose K = 1, t0 = 0, t1 = δ, t2 = ∞, d0 = 0, d1 = δ, c0 = 1, c1 = 0, then (2.7.23)
corresponds to the Huber function (2.7.3). On the other hand, if we set c1 = 1 then we get the ordinary parabola
ψ(z) = |z|2 /2. So the choice of cK affects the properties of ψ(z) for large |z|.

We can again solve the shrinkage problem (2.7.20) exactly for the tabulated model (2.7.23). If tk ≤ z < tk+1

then using (2.7.21):
c = z + β (dk + (z − tk)ck)

so the shrinkage rule is again a piecewise linear function illustrated in Fig. 2.7.7:

ẑ(c) = sgn(c)
|c| − βdk + βtkck

1 + βck
= sgn(c)

(
|c| − bk
1 + βck

+ tk

)
, (2.7.27)

e,reg,pot,tab,shrink,th,1

where bk = tk + βdk. This solution is correct when tk ≤ |ẑ| < tk+1 or equivalently when bk ≤ |c| < bk+1. In
the usual case when the tk and dk values are monotone nondecreasing (e.g., when ψ is convex) then the intervals are
non-overlapping and there is a unique solution.

x,reg,pot,tab

Example 2.7.4 Fig. 2.7.8 compares the QGG potential function (2.7.4) with p = 2 and q = 1.2 and δ = 10 to the
tabulated approximation (2.7.23) with K = 50 and ∆ = 0.5. For large |z|, the approximation rises linearly whereas
QGG rises as |z|q so an accurate match requires that K∆ be sufficiently large.

The shrinkage function ẑ(c) looks similar to that shown in Fig. 2.7.6 when viewed over a large range of c values.
Fig. 2.7.9 shows the error between the true shrinkage function for QGG2 versus the approximation from the tabulated
versions (2.7.22) and (2.7.27). The linear interpolation method yields much lower errors for the same K and ∆.
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Figure 2.7.8: QGG potential function for p = 2 and q = 1.2 and tabulated approximation.
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Figure 2.7.9: Shrinkage function t̂(z) errors for tabulated versions versus truth for QGG2 with q = 1.2 and δ = 10.
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2.7.8.3 Alternative tabulation methods

It might be tempting to define the weighting function to be piecewise constant, but that seemingly simpler approach
leads to a convex potential function only in the degenerate case where ωψ is a constant.

To elaborate on this, because ψ̇(z) = z ωψ(z) it follows that ψ̈(z) = z ω̇ψ(z) +ωψ(z) so if we want ψ̈(z) ≥ 0 as
a sufficient condition for convexity, then we need

ω̇ψ(z) ≥ −ωψ(z)

z
.

In other words, we need ωψ(z) not to decrease too rapidly. In particular this condition prohibits a step decrease in ωψ .
Another option would be to tabulate ψ(tk) using linear interpolation, but this approach cannot provide strictly

convex potential functions.
Yet another approach would be to define ωψ piecewise using the simple ratios of the generalized Fair potential

weighting functions (2.7.5). This approach might require fewer sample points for approximating some ψ cases.

2.7.9 Summary
Clearly there are numerous possibilities for ψ. A variety of other non-convex potentials have also been studied, e.g.,
[176–180]. The best choice can depend greatly on the image properties in a given application.

2.8 Multiple-channel regularization (s,reg,multi)
s,reg,multi

Most of the regularization methods described here are for a single “grayscale” image. There are a variety of imaging
problems that involve multiple “channels” of images, such as dual-energy X-ray CT imaging, color photographs,
polarimetric imaging [181, 182], PET/CT scanning, hyperspectral imaging, and dual-isotope SPECT imaging [183,
184].

In most of these applications, it is plausible that many of the edges between object regions will appear in more than
one channel. Apply conventional edge-preserving regularizers to each channel independently would ignore the edge
correspondences between channels. Some regularization methods have been proposed to account for such correlations,
e.g., Farsiu et al. [39] used regularization that encourages similar edge orientation in different color channels using
cross products related to the angle of edge orientation. Weisenseel et al. [185] used a PDE-based approach to estimate a
common boundary (edge) field for multiple images. This section summarizes some of the options for multiple-channel
regularization.

2.8.1 Conventional channel-separable regularization
If x1, . . . ,xM denote candidate vectors for the M image channels, conventional regularization would be

R(x) =

M∑
m=1

R0(xm),

where R0(xm) denotes a “conventional” regularizer for a single image, e.g., (2.3.1). This approach ignores any
correlation between images, so it provides a baseline for comparing alternate methods.

2.8.2 Convex multiple-channel regularization
One alternative is modify the arguments of the potential functions in (2.3.1) so that if an edge is present in one channel,
the regularization is relaxed for the other channels. The following approach provides a convex regularizer and has been
investigated in [182, 184]:

R(x) =

K∑
k=1

ψ


√√√√ M∑
m=1

∣∣∣∣ [Cxm]k
δmk

∣∣∣∣2
, (2.8.1)

e,reg,multi,convex

where ψ is a convex edge-preserving potential function, such as the hyperbola (2.4.5). Although this modified regu-
larizer is not quite of the form (2.3.1), one can develop efficient optimization methods for it, e.g., Problem 12.6.

A drawback of (2.8.1) is that it can be challenging to control the spatial resolution properties of the different
channels, particularly when the statistics of the corresponding data terms differ or when different values of the param-
eters δmk are needed for each channel. (See Chapter 22.)
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2.8.3 Rank-based multiple-channel regularization
Consider patches around a single spatial location extracted from M images in a multiple-channel setting. If the edges
in those patches have similar locations, then the corresponding Jacobian matrix is likely to have low rank, i.e., rank
less thanM . Specifically, letC1, . . . ,CL denote the finite difference matrices in L different directions, e.g., as defined
in §2.14.3. Then the total nuclear variation (TNV) defined in [186, 187] is given by the following semi-norm:

RTNV(x) =

np∑
j=1

∥∥∥∥∥∥∥
 [C1x1]j . . . [CLx1]j

...
...

...
[C1xM ]j . . . [CLxM ]j


∥∥∥∥∥∥∥
∗

, (2.8.2)
e,reg,multi,tnv

where ‖·‖∗ denotes the nuclear norm (sum of singular values) of a matrix. Results for dual-energy X-ray CT with
this regularizer are encouraging [187].

For other vector TV (VTV) definitions, see [188–193].

2.8.4 Line-site based multiple-channel regularization
If we let l denote a common set of boundaries, e.g., line sites (cf. §1.12.1) an alternative is

R(x, l) = U(l) +

M∑
m=1

R0(xm, l),

where R0(xm, l) was defined in (1.12.2) and U(l) in (1.12.4), for example. This approach is a discretized version
of the PDE approach in [185]. A drawback of this approach is that usually R(x, l) is not convex as function of both
arguments.

For example, consider the regularizer

R(x, l) =

K∑
k=1

[(
M∑
m=1

1

2
|[Cxm]k|

2

)
lk + u(lk)

]
(2.8.3)

e,reg,multi,line

where for l ∈ (0, 1]:

u(l) =
(1− l)2

2l
. (2.8.4)

e,reg,multi,line,ul

One can show that for this choice, minimizing over lk for a given estimate {x(n)
m } yields

lk =

(
1 +

M∑
m=1

|[Cx(n)

m ]k|
2

)−1/2
.

For insight into the choice (2.8.4) and generalizations thereof, see Problem 2.19.

2.8.5 Sparsity-based multiple-channel regularization
In the language of compressed sensing, another option is to look for regularization that encourages “common sparsity”
between the xm images, e.g., [194–203]. Consider the case of two images (M = 2). The traditional “ideal” sparsity
regularizer would be ‖x1‖0 + ‖x2‖0 , which fails to capture joint sparsity. Instead, we might want to use

R(x) =

np∑
j=1

h(x1j , x2j),

where f satisfies the following axioms (all of which generalize readily to M > 2):

h(0, 0) = 0

h(a, b) = h(b, a) (symmetry)
h(a, b) ≥ 0

h(a, 0) > 0 if a 6= 0

h(a, 0) < h(a, b) if b 6= 0 (monotonicity)
h(a, b) < h(a, 0) + h(0, b) if a, b 6= 0 (commonality) .

A particularly popular example that satisfies these conditions is the convex function

h(a, b) =
√
a2 + b2

which is akin to (2.8.1). This choice is called the mixed `1,2 norm of the matrix [x1 x2] [202].
Another approach is to write [196, 204, 205]: x1 = zc + z1, x2 = zc + z2 and penalize ‖zc‖0 + ‖z1‖0 + ‖z2‖0 .
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2.9 Regularization of complex-valued images (s,reg,complex)
s,reg,complex

When regularizing complex images, there are several options depending on the application. All of the potential
functions in §2.7 are defined for complex-valued arguments, so the general regularizer form (2.3.1) is applicable. For
the usual case of finite differences, a typical term in the regularizer has the form ψ(|xj − xk|), i.e., is a function of
the complex difference between neighboring pixel values. The main subtlety here is computing ∇Ψ properly; see
Appendix 28.

In some applications it is beneficial to regularize the real and imaginary parts separately [206–209], e.g.,

R(x) = β1 R1(real{x}) +β2 R1(imag{x}) . (2.9.1)
e,reg,complex,r,i

In other applications, it is beneficial to regularize the magnitude and phase separately [210–214], e.g.,

R(x) = β1 R1(|x|) +β2 R1(∠x) .

Often it is reasonable to assume the magnitude and the real and imaginary parts are all piecewise smooth, for which
edge-preserving regularization is appropriate. In some applications the phase is smooth, and in other cases it is sparse
or piecewise smooth. In any case, when regularizing the phase of a complex image using finite differences, it may
be more appropriate to penalize the differences between values raised to a complex exponential to avoid phase wrap
issues [212, 214] e.g., for first-order finite differences:∣∣eı∠xj − eı∠xk

∣∣ .
As noted in [212]:

|a− b| =
∣∣|a| eı∠a − |b| eı∠b∣∣ = ||a| − |b||2 + 2 |a| |b| (1− cos(∠a− ∠b)) .

This type of weighted 1− cos term for the phase is helpful in areas where the magnitude approaches zero, and hence
the phase is not well defined [215].

2.10 Regularization with side information (s,reg,side)
s,reg,side

In some imaging applications, there one has available a prior image x̄ that is expected to be related in some way to the
image x being reconstructed. There are many methods for reconstructing an image x̂ using both the measurements y
and the side information present in the prior image x̄.

A simple option is to initialize the iterative algorithm for finding x̂ with the prior image x̄ [216, 217]. This may
be reasonable when the data is highly under-sampled. In such problems, the solution typically is under-determined
without regularization, and initializing with x̄ can steer x̂ towards a solution near x̄.

Another option is to use a regularizer that encourages the estimate to agree with the prior image, such as [216,
218]:

x̂ = arg min
x

L- (x) +β ‖x− x̄‖2 .

In multimodality systems like PET/CT scanners, the grayscale values of the PET and CT images are entirely
different, but some of the edges between regions should be in similar locations. Therefore, another widely studied
option is to extract the region boundaries from x̄, and then use a modified regularizer akin to (1.10.17) that relaxes
the regularization between neighboring voxels that lies in two different regions. Early work in this area used line
site models (cf. §1.12.1) [219–230]. Modified regularizers have also been investigated widely [231–241]. Some
such approaches allow for mixtures [242–244]. In some cases the region boundaries are estimated jointly with the
reconstruction [185, 245, 246].

Another option is to use image segmentation to identify regions in the prior image x̄, and then assume the
corresponding regions in x̂ are homogeneous [247–250].

One way to avoid the need for finding edges or segmenting regions in the prior image x̄ is to use a regularizer
based on a information theoretic principles such as cross entropy [251, 252], mutual information [253, 254] and
joint entropy [255, 256].

Many post-processing methods have been proposed [257]. Sufficiently accurate boundary information can improve
image detection tasks [258].

Multi-modality systems are of increasing interest in many imaging areas, so reconstruction methods for such
problems will remain an active research area.

2.11 Regularization using specific voxel values (s,reg,values)
s,reg,values

The primary focus of this chapter is on regularizers that involve differences between neighboring voxels. There have
also been methods proposed that penalize the pixel values themselves, such as

R(x) =

np∑
j=1

ψ(xj − µj),
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for some prior image µx. As discussed in §1.7.3.3, often the prior image µx does not add useful information to the
reconstructed image.

However, in some applications we know (or expect) that the pixel values xj will tend to cluster around a small
number of mean values. For example, in X-ray CT imaging, we expect most voxel values to be near the typical values
of air, lung, water (soft tissue), or bone. In other words, we expect a histogram of the image to have several distinct
peaks. A typical statistical model for such a histogram is a gaussian mixture model:

p(x) =

K∑
k=1

pk
1√

2πσk
e−(x−µk)

2/(2σ2
k) ,

where pk ≥ 0 and
∑K
k=1 pk = 1. One could use the negative logarithm of this prior distribution as a regularizer

[259–261]:

R(x) = −
np∑
j=1

log p(xj) = −
np∑
j=1

log

(
K∑
k=1

pk
1√

2πσk
e−(xj−µk)

2/(2σ2
k)

)
.

The summation within the logarithm is slightly inconvenient for optimization. An alternative is to use a piecewise
quadratic regularizer of the following form [262, 263]:

R(x) =

np∑
j=1

ψ(xj), ψ(x) =

K∑
k=1

(x− µk)2

2σ2
k

I{ak<x≤bk}

where a1 = −∞, b1 = (µ1+µ2)/2, ak = (µk−1+µk)/2, bk = (µk+µk+1)/2, aK = (µK−1+µK)/2, bK =∞, for
k = 2, . . . ,K − 1. This regularizer corresponds to an approximation of the negative logarithm of a gaussian mixture.
The approximation is most accurate when the mixture components are well separated. (See also Problem 2.18.) Both
options for R(x) are highly nonconvex functions so local minimizers are a significant challenge for optimization.

0 300 1000 1500

0

6

p
(x
)

×10
-3

0 300 1000 1500

0

35

−
lo
g
p
(x
)

0 300 1000 1500

x

0

35

ψ
(x
)

Figure 2.11.1: Top: density of gaussian mixture model. Model: its negative logarithm − log p(x). Bottom: piecewise
quadratic regularizer that approximates the negative logarithm.

fig_reg_gauss_mix

Fig. 2.11.1 illustrates the functions described above.

2.12 Regularization using non-local means (s,reg,nlm)
s,reg,nlm

Buades [264] proposed an effective method for image denoising using non-local means. For the denoising model
y = x+ ε, a nonlocal means estimator has the form

x̂j = x̂j(y) = [NLM(y)]j =

∑
k∈Nj wk,j(y)yk∑
k∈Nj wk,j(y)

,

where Nj is a neighborhood of the jth pixel and wk,j(y) are data-adaptive weights. (If the weights are independent
of y then this simplifies to ordinary linear filtering.) The weights used in the nonlocal means method have the form

wk,j(y) = e−‖Rky−Rjy‖
2/c f(‖~nj − ~nk‖),
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where ~nj denotes the spatial coordinates of the jth pixel, Rk is a linear operator that extracts a local patch of values
around the jth pixel, and typically f(·) is a decreasing function.

Let NLM(y) denote the non-local means image denoising function. This function can be used as a regularizer for
inverse problems as follows [265, 266]

R(x) = ‖x−NLM(x)‖ , (2.12.1)
e,reg,nlm

for some norm. See [265] for a steepest descent minimization method. This topic is evolving rapidly [266–271].

2.13 Summary (s,reg,summ)
s,reg,summ

This chapter and Chapter 1 have described numerous possible methods for regularization. More methods continue to
be developed; see Chapter 10 for regularizers based on dictionary learning. No single method is universally optimal,
and the results depend on the properties of the object and the imaging system. Empirical investigation is required to
evaluate various options; the Michigan Image Reconstruction Toolbox can facilitate such explorations.

2.14 Appendix: Implementing finite differences: Cx (s,reg,irt,Cx)
s,reg,irt,Cx

This section describes methods for implementing the matrix-vector multiplication operation d = Cx and the transpose
operation z = C ′d corresponding to finite differences. These operations are useful for some implementations of
regularization, as described in §1.8.1 and §1.10. See §2.3 for alternative implementations that often have advantages.

2.14.1 Implementing 1D finite differences (s,reg,irt,c1)s,reg,irt,c1

We begin with the case of 1D signals, primarily for illustration. For 1D signals x of length N , we focus here on the
following N ×N 1st-order finite differencing matrix:

C ,



0 0 0 0 . . . 0
−1 1 0 0 . . . 0

0 −1 1 0 . . . 0

. .
. . .

.

0 . . . 0 −1 1 0
0 . . . 0 0 −1 1


, =⇒ d = Cx =


0

x2 − x1
...

xN − xN−1

 . (2.14.1)
e,reg,C,N,N

For periodic boundary conditions, one replaces the first row with [1 0 . . . 0 −1]. Otherwise the first row of C is
superfluous, but harmless because we always use potential functions for which ψ(0) = 0. Using a square matrix here
can simplify implementation, particularly in higher dimensions.

MIRT The function Cdiff1 generates C objects that can perform d = Cx using several different methods, as described
below.

2.14.1.1 loops,reg,irt,Cx,1d,loop

In most compiled languages, the natural way to implement d = Cx is to use a loop as follows.

for n=2:N
d(n) = x(n) - x(n-1);

end
d(1) = x(1) - x(N); % for periodic boundary conditions
d(1) = 0; % otherwise

MIRT Cdiff1 with ’mex’ option uses such a loop, compiled in ANSI C, which is quite fast.
MIRT Cdiff1 with ’for1’ option uses such a loop, but is quite slow because MATLAB is an interpreted language.

2.14.1.2 matrixs,reg,irt,Cx,1d,matrix

One can create C directly as a matrix as follows:

C = diag([0 ones(1,N-1)]) + diag(-ones(N-1,1), -1);

However, this approach fails to exploit the sparsity of C and computing d = Cx would use O(N2) operations. Its
only practical use is didactic.
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2.14.1.3 sparses,reg,irt,Cx,1d,sparse

The 1D matrixC given in (2.14.1) is a sparse matrix, because most of its elements are zeros. For 1st-order differences,
each row ofC has at most two nonzero elements (out of N ). A natural way to storeC is as a sparse matrix, meaning
a data structure that stores only the nonzero values and the locations of those values in a list. A concise description of
C is the following enumeration of its 2(N − 1) nonzero entries ckj .

row k 2 3 . . . N 2 3 . . . N
column j 2 3 . . . N 1 2 . . . N − 1
element ckj 1 1 . . . 1 −1 −1 . . . −1

One can generate such a matrix using MATLAB’s sparse command as follows.

k = [2:N 2:N];
j = [2:N 1:(N-1)];
c = [ones(1,N-1), -ones(1,N-1)];
C = sparse(k, j, c, N, N);

Alternatively one can use:

C = sparse(2:N, 2:N, ones(1,N-1), N, N) ...

- sparse(2:N, 1:(N-1), ones(1,N-1), N, N);

or, for the most delightfully concise of all:

C = diff(speye(N));

For periodic boundary conditions in 1D, one can use the following concise command

C = speye(N) - circshift(speye(N), 1);

The sparse matrix form can be convenient for modest size experiments, but is inefficient computationally for
large problems, particularly in higher dimensions, because a general sparse matrix data structure does not exploit the
regularity of the pattern of nonzero elements in C and the fact that those nonzero elements are all ±1. Computing
finite differences directly (with a compiled loop) is faster than using sparse matrix-vector multiplication.

MIRT Cdiff1 with ’spmat’ option generates this sparse matrix for non-periodic boundary conditions.

2.14.1.4 array indexings,reg,irt,Cx,1d,array indexing

Another option in MATLAB is to use array index operations to compute 1D first-order finite differences:

d = [0; x(2:end)-x(1:end-1)];

this indexing approach is portable but slow for large arrays.
If C is implemented as a matrix, then one can conveniently multiply C by several vectors stored in an array with

a single multiplication operation, e.g., C * [x1 x2]; which appears similar to the mathematical expression
C[x1 x2]. The simple indexing command above works only for a single vector as written. To enable it to work with
multiple column vectors stored in an array, we rewrite it as follows:

d = [zeros(1,size(x,2)); x(2:end,:)-x(1:end-1,:)];

MIRT Cdiff1 with ’ind’ option implements this approach.

2.14.1.5 circular shift (circshift)s,reg,irt,Cx,1d,circular shift (circshift)

MATLAB’s circshift command offers another fast approach:

d = x - circshift(x, 1);

clearly this version uses periodic boundary conditions. This concise code also works when x is an array. This usually
is the fastest non-mex approach.

MIRT Cdiff1 with ’circshift’ option implements this approach.

2.14.1.6 convolutions,reg,irt,Cx,1d,convolution

Another approach is to use MATLAB’s convn command:

d = convn(x, [0 1 -1]’, ’same’); d(1,:) = 0;

For periodic boundary conditions, replace the last part with d(1,:) = x(1,:) - x(end,:);
MIRT Cdiff1 with ’convn’ option implements this approach.
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2.14.1.7 filters,reg,irt,Cx,1d,filter

Another approach is to use MATLAB’s imfilter command, which allows periodic boundary conditions easily:

d = imfilter(x, [0 1 -1]’, ’circular’, ’conv’, ’same’);

MIRT Cdiff1 with ’imfilter’ option implements this approach; however, it requires the Image Processing Toolbox.

2.14.1.8 diffs,reg,irt,Cx,1d,diff

A final option is to compute finite differences using MATLAB’s diff command:

d = [zeros(1,size(x,2)); diff(x, 1)];

MIRT Cdiff1 with ’diff’ option implements this approach.
MIRT There are many feasible approaches, and which one is fastest depends on computer hardware, image size, etc. The

Cdiff1_tune command tries all of them and finds the fastest for a given image size.

2.14.2 Implementing C ′d in 1Ds,reg,irt,Cx’,1d

We also need the transpose (adjoint) operation:

C ′ =



0 −1 0 0 . . . 0
0 1 −1 0 . . . 0

. .
. . .

.

0 . . . 0 1 −1 0
0 . . . 0 0 1 −1
0 . . . 0 0 0 1

 =⇒ z = C ′d =


−d2

d2 − d3
...

dN−1 − dN
dN

 . (2.14.2)
e,reg,C’,N,N

The loop version is simple and if C is a matrix (full or sparse) then C ′ is built in to MATLAB.
For the circshift approach (with its periodic boundary conditions), the adjoint is

z = d - circshift(d, -1);

For the convn approach we must reverse the impulse response and handle the end conditions carefully:

tmp = d; tmp(1,:) = 0; z = convn(tmp, [-1 1 0]’, ’same’);

For the imfilter approach with periodic boundary conditions, we simply reverse the impulse response:

z = imfilter(d, [-1 1 0]’, ’circular’, ’conv’, ’same’);

The index approach is based on (2.14.2):

z = zeros(1,size(d,2)); z = [z; d(2:end,:)] - [d(2:end,:); z];

Finally, the diff approach also requires care with boundary conditions:

tmp = d; tmp([1 end+1],:) = 0; z = -diff(tmp,1);

2.14.3 Implementing 2D finite differences (s,reg,irt,c2)s,reg,irt,c2

As described in §1.10, regularizing 2D imaging problems with finite differences requires computing d = Cx where
in 2D (and higher), typically C is a “stack” of multiple finite differencing matrices. For the typical case of horizontal

and vertical first-order finite differences described in (1.10.8),C =

[
C1

C2

]
. We focus in this section on this concrete

case for illustration, but the ideas generalize to additional directions (e.g., diagonals). Computing d = Cx in 2D
involves (at least) two separate matrix multiplications: d1 = C1x and d2 = C2x, corresponding to horizontal and
vertical finite differences respectively. (See §2.3 for generalizations.)

MIRT The function Cdiff1 generates such Cl objects that, when multiplied by x, compute finite differences by any of
several methods, described below.

MIRT The function Cdiffs represents C by stacking up objects generated by Cdiff1. (See (2.3.10).)
Mathematically, we want to compute

dl[m,n] = f [m,n]− f [m−ml, n− nl], l = 1, 2

where (m1, n1) = (1, 0) and (m2, n2) = (0, 1).

https://creativecommons.org/licenses/by-nc-nd/4.0/


c© J. Fessler. [license] April 7, 2017 2.47

2.14.3.1 loops,reg,irt,c2,loop

If vector x corresponds to a 2D image f [m,n] of size M ×N , then dl = Clx corresponds to the following loop.

for m=(1+ml):M
for n=(1+nl):N

d(m,n) = f(m,n) - f(m-ml, n-nl)
end

end

Because 2D arrays are usually stored simply as one long vector, an alternative loop form is the following. This code
assumes that m varies fastest.

offset = ml + nl * M;
for j=(1+offset):(M*N)

d(j) = f(j) - f(j - offset);
end

MIRT Cdiff1 with ’for1’ option uses this simpler single loop form; the ’mex’ option provides the same loop in
compiled ANSI C which is usually the fastest option. This loop computes some extra finite differences that are usually
unwanted and must be set to zero (by multiplying by 0) separately. Rweights provides a vector of with zeros in the
appropriate locations.

2.14.3.2 array indexings,reg,irt,c2,array indexing

Using array indexing somewhat “hides” the loop.

d1 = [zeros(1,size(x,2)); f(2:end,:) - f(1:end-1,:)];

d2 = [zeros(size(x,1),1), f(:,2:end) - f(:,1:end-1)];

2.14.3.3 sparses,reg,irt,c2,sparse

BecauseCl is sparse, one can store it even for quite large problem sizes. As shown in Problem 1.14,C1 = IN ⊗DM

and C2 = DN ⊗ IM , which can be formed using the following simple commands for periodic boundary conditions:

C1 = kron(speye(N), speye(M) - circshift(speye(M), [1 0]));

C2 = kron(speye(N) - circshift(speye(N), [1 0]), speye(M));

For non-periodic boundary conditions, combine §2.14.1.3 with kron. For example, the following commands are
particularly concise:

C1 = kron(speye(N), diff(speye(M)));

C2 = kron(diff(speye(N)), speye(M));

2.14.3.4 convns,reg,irt,c2,convn

One can use convolution with convn

d1 = convn([0 1 -1]’, f);

d2 = convn([0 1 -1], f);

Replacing convn with imfilter enables periodic boundary conditions.

2.14.3.5 circshifts,reg,irt,c2,circshift

Finally, for periodic boundary conditions, a particulary simple option is to use circshift:

d1 = f - circshift(f, [1 0]);

d2 = f - circshift(f, [0 1]);
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2.14.4 Adjoint (transpose) in 2D
Implementing the adjoint (transpose) operation z = C ′d = C ′1d1 +C ′2d2 in 2D is similiary straightforward by any
of the above methods. One must use addition.

MIRT The function Cdiffs in the Michigan Image Reconstruction Toolbox generates matrix-like objects that perform the
operations Cx and C ′d using the convenient syntax C * x and C’ * d. Although this syntax is suggestive of
matrix-vector multiplication, and indeed the operation that occurs is linear, the internal calculations are performed by
one of several methods depending on which options are selected. One of the options is to use a sparse matrix, but this
choice is available primarily for testing and completeness; it is not the most efficient in compute time or memory. The
fastest choice is the ’mex’ option that invokes a call to a compiled C subroutine called penalty_mex. This MEX
file computes the required finite differences directly. Because compiled MEX files are not portable, Cdiff1 reverts to
using the circshift option when the MEX file is unavailable.

2.15 Problems (s,reg,prob)s,reg,prob

p,reg,l0,poisson

Problem 2.1 Often it is assumed that the constrained minimization problem

x̂k , arg min
x≥0

L- (x) sub. to R(x) ≤ k (2.15.1)
e,reg,l0,poisson,con

is equivalent, for some choice of regularization parameter β, to the following regularized problem:

x̂β , arg min
x≥0

L- (x) +βR(x) . (2.15.2)
e,reg,l0,poisson,reg

Consider the Poisson denoising problem where y ∼ Poisson{x+ r}, where r is a known nonnegative vector, with
counting measure regularizer R(x) = ‖x‖0 . Find analytical solutions to x̂k and x̂β above and determine if they are
equal for some choices of β and k [272, 273].

p,reg,deriv1

Problem 2.2 Find a matrix C such that when f(t) =
∑np

j=1 xj tri(t− j), we get equivalent values for the following
continuous-space and discrete-space roughness penalty functions:∫ ∣∣∣ḟ ∣∣∣2 dt = ‖Cx‖2 .

p,reg,limit,pl

Problem 2.3 §2.6 examined the properties of the QPWLS estimator x̂β as β→∞ for the case of a WLS data fit term
and quadratic regularization. Find sufficient conditions that generalize the conclusions of that section to the case of
penalized-likelihood estimators of the form

x̂β = arg min
x

nd∑
i=1

hi([Ax]i) +β

K∑
k=1

ψk([Cx]k) .

p,reg,limit,time

Problem 2.4 Extend §2.6 to the case of dynamic image reconstruction with temporal regularization:

x̂ = arg min
x

M∑
m=1

(
‖ym −Amxm‖2W 1/2

m
+ β ‖Csxm‖2

)
+ ζ ‖Ctx‖2 = [F + βRs + ζRt]

−1
A′Wy

where y = (y1, . . . ,yM ), F = A′WA,A = diag{Am},W = diag{Wm}, Rs = IM ⊗C ′sCs, and

Ct = C0 ⊗ IN

where xm ∈ RN andC0 denotes the M −1×M 1st-order differencing matrix defined in (1.8.4) or one of its variants
[274].

p,reg,var,tps

Problem 2.5 Use 2D FT properties to prove that the thin-plate regularizer (2.4.2) is rotation invariant.
p,reg,hyper,pwls1

Problem 2.6 Derive the MSE expressions (2.5.9) and (2.5.10) using (2.5.8). Then find βMSE.
p,reg,hyper,rss

Problem 2.7 Prove the RSS equalities (2.5.13), (2.5.15), (2.5.16), (2.5.19), (2.5.20), and (2.5.21).
p,reg,hyper,rss,dp,i

Problem 2.8 Modify Example 2.5.7 using (2.5.21) to determine βDP in the orthogonal case where F = σ−2I and
R = I .

p,reg,hyper,edf

Problem 2.9 Analyze βREDF under the usual circulant approximation for the case where one uses (2.5.28) to define
REDF.

https://creativecommons.org/licenses/by-nc-nd/4.0/
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p,reg,hyper,cv,i

Problem 2.10 Use (2.5.37) to determine βCV in the orthogonal white-noise case where F = σ−2I = W and R = I .
p,reg,hyper,gcv,i

Problem 2.11 Use (2.5.41) to determine βGCV in the orthogonal white-noise case where F = σ−2I = W and R = I .
p,reg,hyper,wc

Problem 2.12 Use (2.5.9) to describe how to determine the value of β that minimizes the worst case MSE over all
signals with ‖x‖ ≤ 1. This is a min-max regularization parameter selection method.

p,reg,hyper,mat1

Problem 2.13 Choose an image xtrue and a shift-invariant blur b[m,n] with circulant end conditions and create a
noisy, blurry image y = Ax+ ε. Apply the image restoration method of Example 2.5.1 with quadratic regularization
based on 1st-order finite differences for a range of values of β. Plot MSEβ and locate βMSE. Plot at least one of
|RSS(x̂β)−nd| or |RSS(x̂β)−REDF(β)| or ΦCV(β) or ΦGCV(β) and indicate the corresponding “optimized” β
values to compare to βMSE. Examine the restored images x̂β at βMSE and the optimized value of β select by the
criterion you chose. Hint: no iterations are needed; do this using FFT operations.

p,reg,hyper,cv,ybi

Problem 2.14 Prove the equality (2.5.36) used for simplifying cross validation. Also show that Mii(β) < 1 for β > 0,
so the ratio in (2.5.36) is well defined.

p,reg,garrotte

Problem 2.15 Consider a modified soft thresholding function of the form

x̂(y) = arg min
x

1

2
|y − x|2 + βψ(x) = y

[
1− λ

|y|
λ+ α

|y|+ α

]
+

,

for λ > 0 and α > −λ. For the special case α = 0, this is known as the nonnegative garrotte [275–277]. Determine
the corresponding (nonconvex) potential function ψ when β = 1 and α = 0.

p,reg,hyperbola,fast

Problem 2.16 The hyperbola potential (2.4.5) has a weighting function that involves a reciprocal square root. Sup-
pose instead we use the fast approximation to the inverse square root developed in the graphics community [wiki].
Determine the corresponding potential function ψ and compare its derivative ψ̇ to that of the usual hyperbola. (Solve?)

p,reg,shrink,gf

Problem 2.17 Extend Problem 1.12 to the case of the generalized Fair potential in §2.7.4.
p,reg,gauss,mix

Problem 2.18 Refine the breakpoints of the piecewise quadratic regularizer of §2.11 so that it better matches the
negative logarithm of a gaussian mixture.

p,reg,multi,line

Problem 2.19 This problem generalizes (2.8.3) and outlines the derivation of (2.8.4). (It also relates to certain half
quadratic methods in the literature.) Let ψ be any differentiable, symmetric potential function for which (see Theo-
rem 12.4.5) the potential weighting function ωψ(z) = ψ̇(z) /z is finite at z = 0 and monotone decreasing for |z| > 0.
Let g(l) , ω−1ψ (l) denote the inverse of ωψ and, motivated by (12.4.15), define the function

u(l) = ψ(g(l))−1

2
lg2(l). (2.15.3)

e,reg,multi,line,ul,gen

Show that minimizing (2.8.3) over lk yields lk = ωψ

(√∑M
m=1

∣∣[Cx(n)
m

]
k

∣∣2) . Determine which potential function ψ

corresponds to (2.8.4).

p,reg,tv,trap

Problem 2.20 Consider a trapezoid defined by f(x) =


h, |x| < a

h
(

1− |x|−ab−a

)
, a ≤ |x| < b

0, otherwise,

for 0 ≤ a ≤ b and h > 0.

Solve the optimization problem arg mina,b,h TV(f) subject to
∫
f(x) dx = 1 and f(x0) = 0 for a given x0 > 0.

2.16 Bibliography
phillips:62:atf

[1] D. L. Phillips. “A technique for the numerical solution of certain integral equations of the first kind.” In: J.
Assoc. Comput. Mach. 9.1 (Jan. 1962), 84–97. DOI: 10.1145/321105.321114 (cit. on pp. 2.2, 2.3,
2.18).

tikhonov:63:soi

[2] A. N. Tikhonov. “Solution of incorrectly formulated problems and the regularization method.” In: Soviet
Math. Dokl. 4 (1963). English translation of Dkl. Akad. Nauk. SSSR, 141:501-4, 1963., 1035–8 (cit. on
p. 2.2).

miller:70:lsm

[3] K. Miller. “Least-squares methods for ill-posed problems with a prescribed bound.” In: SIAM J. Math. Anal.
1.1 (Feb. 1970), 52–70. DOI: 10.1137/0501006 (cit. on p. 2.2).

engl:93:rmf

[4] H. W. Engl. “Regularization methods for the stable solution of inverse problems.” In: Surveys on
Mathematics for Industry 3 (1993), 71–143 (cit. on p. 2.2).

https://creativecommons.org/licenses/by-nc-nd/4.0/
http://en.wikipedia.org/wiki/Fast_inverse_square_root
http://dx.doi.org/10.1145/321105.321114
http://dx.doi.org/10.1137/0501006


c© J. Fessler. [license] April 7, 2017 2.50

hanke:93:rmf

[5] M. Hanke and P. C. Hansen. “Regularization methods for large-scale problems.” In: Surveys on Mathematics
for Industry 3.4 (1993), 253–315 (cit. on p. 2.2).

engl:96

[6] H. W. Engl, M. Hanke, and A. Neubauer. Regularization of inverse problems. Dordrecht: Kluwer, 1996
(cit. on p. 2.2).

hansen:98

[7] P. C. Hansen. Rank-deficient and discrete ill-posed problems : numerical aspects of linear inversion.
Philadelphia: Soc. Indust. Appl. Math., 1998 (cit. on p. 2.2).

groetsch:93

[8] C. W. Groetsch. Inverse problems in the mathematical sciences. Wiesbaden, Germany: Vieweg, 1993 (cit. on
p. 2.2).

hansen:94:rta

[9] P. C. Hansen. “Regularization tools: a Matlab package for analysis and solution of discrete ill-posed
problems.” In: Numer. Algorithms 6.1 (Mar. 1994), 1–35. DOI: 10.1007/BF02149761 (cit. on p. 2.2).

wahba:90

[10] G. Wahba. Spline models for observational data. CBMS-NSF. Philadelphia: Soc. Indust. Appl. Math., 1990
(cit. on pp. 2.3, 2.5, 2.21, 2.22).

green:94

[11] P. J. Green and B. W. Silverman. Nonparametric regression and generalized linear models: a roughness
penalty approach. London: Chapman and Hall, 1994 (cit. on pp. 2.3, 2.4).

gelfand:63

[12] I. M. Gelfand and S. V. Fomin. Calculus of variations. Translation by R A Silverman. NJ: Prentice-Hall,
1963 (cit. on p. 2.3).

reinsch:67:sbs

[13] C. H. Reinsch. “Smoothing by spline functions.” In: Numerische Mathematik 10.3 (Oct. 1967), 177–83. DOI:
10.1007/BF02162161 (cit. on pp. 2.3, 2.5).

deboor:78:apg

[14] C. de Boor. A practical guide to splines. New York: Springer Verlag, 1978 (cit. on pp. 2.3, 2.4).
kybic:00:uou

[15] J. Kybic et al. “Unwarping of unidirectionally distorted EPI images.” In: IEEE Trans. Med. Imag. 19.2 (Feb.
2000), 80–93. DOI: 10.1109/42.836368 (cit. on p. 2.4).

mammen:97:lar

[16] E. Mammen and S. van de Geer. “Locally adaptive regression splines.” In: Ann. Stat. 25.1 (1997), 387–413.
URL: http://www.jstor.org/stable/2242726 (cit. on p. 2.4).

szeliski:90:fsi

[17] R. Szeliski. “Fast surface interpolation using hierarchical basis functions.” In: IEEE Trans. Patt. Anal. Mach.
Int. 12.6 (June 1990), 513–28 (cit. on p. 2.5).

kim:09:etf

[18] S. Kim et al. “`1 trend filtering.” In: SIAM Review 51.2 (June 2009), 339–60. DOI: 10.1137/070690274
(cit. on p. 2.5).

dehoog:87:aem

[19] F. R. de Hoog and M. F. Hutchinson. “An efficient method for calculating smoothing splines using orthogonal
transformations.” In: Numerische Mathematik 50.3 (May 1987), 311–9. DOI: 10.1007/BF01390708
(cit. on p. 2.5).

akaike:74:anl

[20] H. Akaike. “A new look at the statistical model identification.” In: IEEE Trans. Auto. Control 19.6 (Dec.
1974), 716–23. DOI: 10.1109/TAC.1974.1100705 (cit. on p. 2.6).

rissanen:78:mbs

[21] J. Rissanen. “Modeling by shortest data description.” In: Automatica 14.5 (Sept. 1978), 465–71. DOI:
10.1016/0005-1098(78)90005-5 (cit. on p. 2.6).

schwarz:78:etd

[22] G. Schwarz. “Estimating the dimension of a model.” In: Ann. Stat. 6.2 (1978), 461–4. DOI:
10.1214/aos/1176344136 (cit. on p. 2.6).

rissanen:87:sc

[23] J. Rissanen. “Stochastic complexity.” In: J. Royal Stat. Soc. Ser. B 49.3 (1987), 223–39. URL:
http://www.jstor.org/stable/2985991 (cit. on p. 2.6).

hansen:01:msa

[24] M. H. Hansen and B. Yu. “Model selection and the principle of minimum description length.” In: J. Am. Stat.
Assoc. 96.454 (June 2001), 746–75. URL: http://proquest.umi.com/pqdlink?did=74293072&
sid=1&Fmt=2&clientId=17822&RQT=309&VName=PQD (cit. on p. 2.6).

stoica:04:mos

[25] P. Stoica and Y. Selen. “Model-order selection.” In: IEEE Sig. Proc. Mag. 21.4 (July 2004), 36–47. DOI:
10.1109/MSP.2004.1311138 (cit. on p. 2.6).

kritchman:08:dtn

[26] S. Kritchman and B. Nadler. “Determining the number of components in a factor model from limited noisy
data.” In: Chemometrics and Intelligent Laboratory Systems 94.1 (Nov. 2008), 19–32. DOI:
10.1016/j.chemolab.2008.06.002 (cit. on p. 2.6).

fessler:03:aat

[27] J. A. Fessler. “Analytical approach to regularization design for isotropic spatial resolution.” In: Proc. IEEE
Nuc. Sci. Symp. Med. Im. Conf. Vol. 3. 2003, 2022–6. DOI: 10.1109/NSSMIC.2003.1352277 (cit. on
pp. 2.10, 2.11).

shi:09:qrd

[28] H. R. Shi and J. A. Fessler. “Quadratic regularization design for 2D CT.” In: IEEE Trans. Med. Imag. 28.5
(May 2009), 645–56. DOI: 10.1109/TMI.2008.2007366 (cit. on pp. 2.10, 2.11).

stayman:04:cfn

[29] J. W. Stayman and J. A. Fessler. “Compensation for nonuniform resolution using penalized-likelihood
reconstruction in space-variant imaging systems.” In: IEEE Trans. Med. Imag. 23.3 (Mar. 2004), 269–84.
DOI: 10.1109/TMI.2003.823063 (cit. on pp. 2.10, 2.11).

https://creativecommons.org/licenses/by-nc-nd/4.0/
http://dx.doi.org/10.1007/BF02149761
http://dx.doi.org/10.1007/BF02162161
http://dx.doi.org/10.1109/42.836368
http://www.jstor.org/stable/2242726
http://dx.doi.org/10.1137/070690274
http://dx.doi.org/10.1007/BF01390708
http://dx.doi.org/10.1109/TAC.1974.1100705
http://dx.doi.org/10.1016/0005-1098(78)90005-5
http://dx.doi.org/10.1214/aos/1176344136
http://www.jstor.org/stable/2985991
http://proquest.umi.com/pqdlink?did=74293072&sid=1&Fmt=2&clientId=17822&RQT=309&VName=PQD
http://proquest.umi.com/pqdlink?did=74293072&sid=1&Fmt=2&clientId=17822&RQT=309&VName=PQD
http://dx.doi.org/10.1109/MSP.2004.1311138
http://dx.doi.org/10.1016/j.chemolab.2008.06.002
http://dx.doi.org/10.1109/NSSMIC.2003.1352277
http://dx.doi.org/10.1109/TMI.2008.2007366
http://dx.doi.org/10.1109/TMI.2003.823063


c© J. Fessler. [license] April 7, 2017 2.51

wang:13:ssw

[30] X. Wang, P. Du, and J. Shen. “Smoothing splines with varying smoothing parameter.” In: Biometrika 100.4
(2013), 955–70. DOI: 10.1093/biomet/ast031 (cit. on p. 2.11).

fessler:96:srp

[31] J. A. Fessler and W. L. Rogers. “Spatial resolution properties of penalized-likelihood image reconstruction
methods: Space-invariant tomographs.” In: IEEE Trans. Im. Proc. 5.9 (Sept. 1996), 1346–58. DOI:
10.1109/83.535846 (cit. on p. 2.11).

fessler:95:a30

[32] J. A. Fessler. ASPIRE 3.0 user’s guide: A sparse iterative reconstruction library. Tech. rep. 293. Available
from web.eecs.umich.edu/∼fessler. Univ. of Michigan, Ann Arbor, MI, 48109-2122: Comm. and
Sign. Proc. Lab., Dept. of EECS, July 1995. URL: http:
//web.eecs.umich.edu/˜fessler/papers/lists/files/tr/95,293,aspire3.pdf
(cit. on p. 2.13).

geiger:91:pad

[33] D. Geiger and F. Girosi. “Parallel and deterministic algorithms from MRF’s: Surface reconstruction.” In:
IEEE Trans. Patt. Anal. Mach. Int. 13.5 (May 1991), 401–12. DOI: 10.1109/34.134040 (cit. on p. 2.13).

lee:95:bir

[34] S-J. Lee, A. Rangarajan, and G. Gindi. “Bayesian image reconstruction in SPECT using higher order
mechanical models as priors.” In: IEEE Trans. Med. Imag. 14.4 (Dec. 1995), 669–80. DOI:
10.1109/42.476108 (cit. on p. 2.13).

lee:97:ttp

[35] S. J. Lee, I. T. Hsiao, and G. R. Gindi. “The thin plate as a regularizer in Bayesian SPECT reconstruction.” In:
IEEE Trans. Nuc. Sci. 44.3 (June 1997), 1381–7. DOI: 10.1109/23.597017 (cit. on p. 2.13).

grimson:82:act

[36] W. E. L. Grimson. “A computational theory of visual surface interpolation.” In: Phil. Trans. Roy. Soc. London
Ser. B 298.1092 (Sept. 1982), 395–427. URL: http://www.jstor.org/stable/2395803 (cit. on
p. 2.14).

duchon:77:smr

[37] J. Duchon. “Splines minimizing rotation-invariant semi-norms in Sobolev spaces.” In: Constructive Theory of
Functions of Several Variables. Ed. by W Schempp and K Zeller. Berlin: Springer, 1977, pp. 85–100 (cit. on
p. 2.14).

bookstein:89:pwt

[38] F. L. Bookstein. “Principal warps: thin-plate splines and the decomposition of deformations.” In: IEEE Trans.
Patt. Anal. Mach. Int. 11.6 (June 1989), 567–87. DOI: 10.1109/34.24792 (cit. on p. 2.14).

farsiu:06:mda

[39] S. Farsiu, M. Elad, and P. Milanfar. “Multiframe demosaicing and super-resolution of color images.” In: IEEE
Trans. Im. Proc. 15.1 (Jan. 2006), 141–59. DOI: 10.1109/TIP.2005.860336 (cit. on pp. 2.14, 2.40).

aubert:97:avm

[40] G. Aubert and L. Vese. “A variational method in image recovery.” In: SIAM J. Numer. Anal. 34.5 (Oct. 1997),
1948–97. DOI: 10.1137/S003614299529230X (cit. on p. 2.14).

sochen:98:agf

[41] N. Sochen, R. Kimmel, and R. Malladi. “A general framework for low level vision.” In: IEEE Trans. Im.
Proc. 7.3 (Mar. 1998), 310–8. DOI: 10.1109/83.661181 (cit. on p. 2.14).

rudin:92:ntv

[42] L. I. Rudin, S. Osher, and E. Fatemi. “Nonlinear total variation based noise removal algorithm.” In: Physica
D 60.1-4 (Nov. 1992), 259–68. DOI: 10.1016/0167-2789(92)90242-F (cit. on p. 2.14).

alliney:94:aaf

[43] S. Alliney and S. A. Ruzinsky. “An algorithm for the minimization of mixed l1 and l2 norms with application
to Bayesian estimation.” In: IEEE Trans. Sig. Proc. 42.3 (Mar. 1994), 618–27. DOI: 10.1109/78.277854
(cit. on p. 2.14).

dobson:96:aor

[44] D. Dobson and O. Scherzer. “Analysis of regularized total variation penalty methods for denoising.” In:
Inverse Prob. 12.5 (Oct. 1996), 601–17. DOI: 10.1088/0266-5611/12/5/005 (cit. on p. 2.14).

li:96:aca

[45] Y. Li and F. Santosa. “A computational algorithm for minimizing total variation in image restoration.” In:
IEEE Trans. Im. Proc. 5.6 (June 1996), 987–95. DOI: 10.1109/83.503914 (cit. on p. 2.14).

vogel:96:imf

[46] C. R. Vogel and M. E. Oman. “Iterative methods for total variation denoising.” In: SIAM J. Sci. Comp. 17.1
(Jan. 1996), 227–38. DOI: 10.1137/0917016 (cit. on p. 2.14).

dobson:97:coa

[47] D. C. Dobson and C. R. Vogel. “Convergence of an iterative method for total variation denoising.” In: SIAM
J. Numer. Anal. 34.5 (Oct. 1997), 1779–91. DOI: 10.1137/S003614299528701X (cit. on p. 2.14).

chan:99:anp

[48] T. F. Chan, G. H. Golub, and P. Mulet. “A nonlinear primal-dual method for total variation-based image
restoration.” In: SIAM J. Sci. Comp. 20.6 (1999), 1964–77. DOI: 10.1137/S1064827596299767 (cit. on
p. 2.14).

candes:02:nmt

[49] E. J. Candès and F. Guo. “New multiscale transforms, minimum total variation synthesis: applications to
edge-preserving image reconstruction.” In: sp 82.11 (Nov. 2002), 1519–43. DOI:
10.1016/S0165-1684(02)00300-6 (cit. on p. 2.14).

strong:03:epa

[50] D. Strong and T. Chan. “Edge-preserving and scale-dependent properties of total variation regularization.” In:
Inverse Prob. 19.6 (Dec. 2003), S165–87. DOI: 10.1088/0266-5611/19/6/059 (cit. on p. 2.14).

hintermuller:06:aip

[51] M. Hintermüller and G. Stadler. “An infeasible primal-dual algorithm for total bounded variation–based
inf-convolution-type image restoration.” In: SIAM J. Sci. Comp. 28.1 (2006), 1–23. DOI:
10.1137/040613263 (cit. on p. 2.14).

https://creativecommons.org/licenses/by-nc-nd/4.0/
http://dx.doi.org/10.1093/biomet/ast031
http://dx.doi.org/10.1109/83.535846
http://web.eecs.umich.edu/~fessler/papers/lists/files/tr/95,293,aspire3.pdf
http://web.eecs.umich.edu/~fessler/papers/lists/files/tr/95,293,aspire3.pdf
http://dx.doi.org/10.1109/34.134040
http://dx.doi.org/10.1109/42.476108
http://dx.doi.org/10.1109/23.597017
http://www.jstor.org/stable/2395803
http://dx.doi.org/10.1109/34.24792
http://dx.doi.org/10.1109/TIP.2005.860336
http://dx.doi.org/10.1137/S003614299529230X
http://dx.doi.org/10.1109/83.661181
http://dx.doi.org/10.1016/0167-2789(92)90242-F
http://dx.doi.org/10.1109/78.277854
http://dx.doi.org/10.1088/0266-5611/12/5/005
http://dx.doi.org/10.1109/83.503914
http://dx.doi.org/10.1137/0917016
http://dx.doi.org/10.1137/S003614299528701X
http://dx.doi.org/10.1137/S1064827596299767
http://dx.doi.org/10.1016/S0165-1684(02)00300-6
http://dx.doi.org/10.1088/0266-5611/19/6/059
http://dx.doi.org/10.1137/040613263


c© J. Fessler. [license] April 7, 2017 2.52

michailovich:11:ais

[52] O. V. Michailovich. “An iterative shrinkage approach to total-variation image restoration.” In: IEEE Trans.
Im. Proc. 20.5 (May 2011), 1281–99. DOI: 10.1109/TIP.2010.2090532 (cit. on p. 2.15).

hu:12:hdt

[53] Y. Hu and M. Jacob. “Higher degree total variation (HDTV) regularization for image recovery.” In: IEEE
Trans. Im. Proc. 21.5 (May 2012), 2559–71. DOI: 10.1109/TIP.2012.2183143 (cit. on p. 2.15).

bredies:10:tgv

[54] K. Bredies, K. Kunisch, and T. Pock. “Total generalized variation.” In: SIAM J. Imaging Sci. 3 (2010),
492–526. DOI: 10.1137/090769521 (cit. on p. 2.15).

knoll:11:sot

[55] F. Knoll et al. “Second order total generalized variation (TGV) for MRI.” In: Mag. Res. Med. 65.2 (2011),
480–91. DOI: 10.1002/mrm.22595 (cit. on p. 2.15).

lefkimmiatis:12:hbn

[56] S. Lefkimmiatis, A. Bourquard, and M. Unser. “Hessian-based norm regularization for image restoration
with biomedical applications.” In: IEEE Trans. Im. Proc. 21.3 (Mar. 2012), 983–5. DOI:
10.1109/TIP.2011.2168232 (cit. on p. 2.15).

huang:08:aft

[57] Y. Huang, M. K. Ng, and Y-W. Wen. “A fast total variation minimization method for image restoration.” In:
SIAM Multiscale Modeling and Simulation 7.2 (2008), 774–95. DOI: 10.1137/070703533 (cit. on
p. 2.15).

wang:08:ana

[58] Y. Wang et al. “A new alternating minimization algorithm for total variation image reconstruction.” In: SIAM
J. Imaging Sci. 1.3 (2008), 248–72. DOI: 10.1137/080724265 (cit. on p. 2.16).

courant:1943:vmf

[59] R. Courant. “Variational methods for the solution of problems of equilibrium and vibrations.” In: Bull. Amer.
Math. Soc. 49 (1943), 1–23. DOI: 10.1090/S0002-9904-1943-07818-4 (cit. on p. 2.16).

darbon:06:irw

[60] J. Darbon and M. Sigelle. “Image restoration with discrete constrained total variation part I: Fast and exact
optimization.” In: J. Math. Im. Vision 26.3 (Dec. 2006), 261–76. DOI: 10.1007/s10851-006-8803-0
(cit. on p. 2.16).

tai:09:alm

[61] X-C. Tai and C. Wu. “Augmented Lagrangian method, dual methods and split Bregman iteration for ROF
model.” In: LNCS 5567. Proc. of the Second International Conference on Scale Space and Variational
Methods in Computer Vision. Section: Image Enhancement and Reconstruction. 2009, 502–13. DOI:
10.1007/978-3-642-02256-2_42 (cit. on p. 2.16).

figueiredo:10:rop
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[111] T. Regińska. “A regularization parameter in discrete ill-posed problems.” In: SIAM J. Sci. Comp. 17.3 (May
1996), 740–9. DOI: 10.1137/S1064827593252672 (cit. on p. 2.24).

kaufman:96:prb

[112] L. Kaufman and A. Neuman. “PET regularization by envelope guided conjugate gradients.” In: IEEE Trans.
Med. Imag. 15.3 (June 1996), 385–6. DOI: 10.1109/42.500147 (cit. on p. 2.24).

belge:02:edo

[113] M. Belge, M. E. Kilmer, and E. L. Miller. “Efficient determination of multiple regularization parameters in a
generalized L-curve framework.” In: Inverse Prob. 18.4 (Aug. 2002), 1161–83. DOI:
10.1088/0266-5611/18/4/314 (cit. on p. 2.24).

vogel:96:nco

[114] C. R. Vogel. “Non-convergence of the L-curve regularization parameter selection method.” In: Inverse Prob.
12.4 (Aug. 1996), 535–47. DOI: 10.1088/0266-5611/12/4/013 (cit. on p. 2.24).

stein:81:eot

[115] C. Stein. “Estimation of the mean of a multivariate normal distribution.” In: Ann. Stat. 9.6 (Nov. 1981),
1135–51. DOI: 10.1214/aos/1176345632. URL: http://www.jstor.org/stable/2240405
(cit. on pp. 2.24, 2.25).

rice:86:cos

[116] J. A. Rice. “Choice of smoothing parameter in deconvolution problems.” In: Contemporary Mathematics 59
(1986), 137–51. DOI: 10.1090/conm/059/10 (cit. on p. 2.24).

solo:96:asf

[117] V. Solo. “A sure-fired way to choose smoothing parameters in ill-conditioned inverse problems.” In: Proc.
IEEE Intl. Conf. on Image Processing. Vol. 3. 1996, 89–92. DOI: 10.1109/ICIP.1996.560376 (cit. on
p. 2.24).

https://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.jstor.org/stable/1390722
http://dx.doi.org/10.1002/ima.1850060412
http://dx.doi.org/10.1109/TIP.2008.2001404
http://dx.doi.org/'10.1016/0370-2693(94)90440-5'
http://dx.doi.org/10.1109/TIP.2012.2195015
http://dx.doi.org/10.1016/0021-9991(85)90121-4
http://dx.doi.org/10.1023/A:1011599530422
http://dx.doi.org/10.1016/j.jspi.2004.03.001
http://dx.doi.org/10.1016/j.acha.2010.11.005
http://dx.doi.org/10.1109/83.701163
http://dx.doi.org/10.1109/42.640741
http://dx.doi.org/10.1023/A:1008317210576
http://dx.doi.org/10.1002/mrm.21665
http://dx.doi.org/10.1088/0266-5611/26/10/105004
http://dx.doi.org/10.1137/1034115
http://dx.doi.org/10.1137/0914086
http://dx.doi.org/10.1137/S1064827593252672
http://dx.doi.org/10.1109/42.500147
http://dx.doi.org/10.1088/0266-5611/18/4/314
http://dx.doi.org/10.1088/0266-5611/12/4/013
http://dx.doi.org/10.1214/aos/1176345632
http://www.jstor.org/stable/2240405
http://dx.doi.org/10.1090/conm/059/10
http://dx.doi.org/10.1109/ICIP.1996.560376


c© J. Fessler. [license] April 7, 2017 2.55

eldar:08:rbe

[118] Y. C. Eldar. “Rethinking biased estimation: Improving maximum likelihood and the Cramer-Rao bound.” In:
Found. & Trends in Sig. Pro. 1.4 (2008), 305–449. DOI: 10.1561/2000000008 (cit. on pp. 2.24, 2.25,
2.27).

eldar:09:gsf

[119] Y. C. Eldar. “Generalized SURE for exponential families: applications to regularization.” In: IEEE Trans. Sig.
Proc. 57.2 (Feb. 2009), 471–81. DOI: 10.1109/TSP.2008.2008212 (cit. on pp. 2.24, 2.25, 2.27).

pesquet:09:asa

[120] J-C. Pesquet, A. Benazza-Benyahia, and C. Chaux. “A SURE approach for digital signal/image
deconvolution problems.” In: IEEE Trans. Sig. Proc. 57.12 (Dec. 2009), 4616–32. DOI:
10.1109/TSP.2009.2026077 (cit. on p. 2.24).

ramani:13:ncm

[121] S. Ramani et al. “Non-Cartesian MRI reconstruction with automatic regularization via Monte-Carlo SURE.”
In: IEEE Trans. Med. Imag. 32.8 (Aug. 2013), 1411–22. DOI: 10.1109/TMI.2013.2257829 (cit. on
pp. 2.24, 2.27).

deledalle:14:sug

[122] C-A. Deledalle et al. “Stein unbiased grAdient estimator of the risk (SUGAR) for multiple parameter
selection.” In: SIAM J. Imaging Sci. 7.4 (2014), 2448–87. DOI: 10.1137/140968045 (cit. on p. 2.24).

weller:14:mcs

[123] D. S. Weller et al. “Monte Carlo SURE-based parameter selection for parallel magnetic resonance imaging
reconstruction.” In: Mag. Res. Med. 71.5 (May 2014), 1760–70. DOI: 10.1002/mrm.24840 (cit. on
pp. 2.24, 2.27).

lucka:17:ref

[124] F. Lucka et al. Risk estimators for choosing regularization parameters in ill-posed problems - properties and
limitations. arxiv 1701.04970. 2017. URL: http://arxiv.org/abs/1701.04970 (cit. on p. 2.24).

blu:07:tsl

[125] T. Blu and F. Luisier. “The SURE-LET approach to image denoising.” In: IEEE Trans. Im. Proc. 16.11 (Nov.
2007), 2778–86. DOI: 10.1109/TIP.2007.906002 (cit. on p. 2.25).

nowak:97:ose

[126] R. D. Nowak. “Optimal signal estimation using cross-validation.” In: IEEE Signal Proc. Letters 4.1 (Jan.
1997), 23–5. DOI: 10.1109/97.551692 (cit. on p. 2.27).

nowak:99:wdf

[127] R. D. Nowak and R. G. Baraniuk. “Wavelet-domain filtering for photon imaging systems.” In: IEEE Trans.
Im. Proc. 8.5 (May 1999), 666–78. DOI: 10.1109/83.760334 (cit. on p. 2.27).

liang:15:rpt

[128] H. Liang and D. S. Weller. “Regularization parameter trimming for iterative image reconstruction.” In: Proc.,
IEEE Asilomar Conf. on Signals, Systems, and Comp. 2015, 755–9. DOI:
10.1109/ACSSC.2015.7421235 (cit. on p. 2.27).

frommer:99:fcb

[129] A. Frommer and P. Maass. “Fast CG-based methods for Tikhonov-Phillips regularization.” In: SIAM J. Sci.
Comp. 20.5 (1999), 1831–50. DOI: 10.1137/S1064827596313310 (cit. on p. 2.27).

veklerov:87:srf

[130] E. Veklerov and J. Llacer. “Stopping rule for the MLE algorithm based on statistical hypothesis testing.” In:
IEEE Trans. Med. Imag. 6.4 (Dec. 1987), 313–9. DOI: 10.1109/TMI.1987.4307849 (cit. on p. 2.27).

llacer:89:fia

[131] J. Llacer and E. Veklerov. “Feasible images and practical stopping rules for iterative algorithms in emission
tomography.” In: IEEE Trans. Med. Imag. 8.2 (June 1989). Corrections, 9(1), Mar 1990, 186–93. DOI:
10.1109/42.24867 (cit. on p. 2.27).

johnson:94:ano

[132] V. E. Johnson. “A note on stopping rules in EM-ML reconstructions of ECT images.” In: IEEE Trans. Med.
Imag. 13.3 (Sept. 1994), 569–71. DOI: 10.1109/42.310891 (cit. on p. 2.27).

perry:94:aps

[133] K. M. Perry and S. J. Reeves. “A practical stopping rule for iterative signal restoration.” In: IEEE Trans. Sig.
Proc. 42.7 (July 1994), 1829–32. DOI: 10.1109/78.298292 (cit. on p. 2.27).

selivanov:01:cvs

[134] V. V. Selivanov et al. “Cross-validation stopping rule for ML-EM reconstruction of dynamic PET series:
effect on image quality and quantitative accuracy.” In: IEEE Trans. Nuc. Sci. 48.3 (June 2001), 883–9. DOI:
10.1109/NSSMIC.1999.842828 (cit. on p. 2.27).

bauer:05:alt

[135] F. Bauer and T. Hohage. “A Lepskij-type stopping rule for regularized Newton methods.” In: Inverse Prob.
21.6 (Dec. 2005), 1975–92. DOI: 10.1088/0266-5611/21/6/011 (cit. on p. 2.27).

blanchard:12:dpf
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