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14.1 Introduction (s,ox,intro)s,ox,intro

Many of the algorithms described in this book were either derived originally using the optimization transfer principle,
or can be explained retrospectively using that principle. The concept of optimization transfer is very useful for deriving
algorithms that monotonically decrease the cost function. In particular, the optimization transfer approach facilitates
the design of algorithms that are tailored to specific types of cost functions of interest, in contrast to the “one size fits
all” approach of general-purpose optimization methods such as gradient descent. The optimization transfer approach
also accommodates easily constraints such as nonnegativity.

This chapter first describes optimization transfer methods in general. Then we describe the expectation maximiza-
tion (EM) method and its generalizations, which are special cases of the optimization transfer approach. Probably
the most commonly used optimization transfer methods are those based on quadratic majorizers, particularly separa-
ble quadratic surrogates, so this chapter emphasizes these methods. For convergence theory of optimization transfer
methods, see [1, 2].

14.1.1 History
The history of optimization transfer methods is somewhat diffuse. See [3] for a discussion paper with considerable
debate about this topic! The classic text by Ortega and Rheinbolt described briefly a “majorization principle” in the
limited context of 1D line searches [4, p. 253]. Huber [5, p. 184] referred to a “comparison function” in the context
of an algorithm for robust linear regression (see §14.3.1.2). The EM family of methods [6] uses a statistical form of
optimization transfer (see §14.9). In some areas of statistics, the approach has been called iterative majorization [7,
8]. In the context of imaging and inverse problems, the utility of optimization transfer was clearly demonstrated in the
relatively recent work of De Pierro [9–12], with extensions by Lange [13–16] and others [17–20]. (For a nice tutorial,
see [21], in which the term MM algorithm is advocated, meaning “majorize, minimize” or “minorize, maximize.”)
An entire book on this topic is [22]. Such methods have also been applied to computer vision problems such as
deformable models, e.g., [23]. Allain et al. [24] cite a 1937 paper by Weiszfeld [25, 26] as an early example of
majorization. Regardless of who was first, the principles are very useful and form the foundation for many algorithms.

14.1.2 Optimization transfer principle
Fig. 14.1.1 illustrates the basic idea of optimization transfer. When faced with a cost function Ψ : X ⊂ Rnp → R
that is difficult to minimize, at the nth iteration we replace Ψ with a surrogate function or majorizer φ(n)(x) that is
easier to minimize. (Usually φ(n) will depend on x(n), but we leave this dependence implicit.) Usually, minimizing
φ(n) will not yield the global minimizer x̂ of Ψ in one step, so we must repeat the process. We alternate between the
“S-step:” choosing a surrogate function φ(n), and the “M-step:” finding the minimizer of φ(n). This approach can be
summarized in general as follows1.

Optimization transfer or MM method

S-step (majorize): choose a surrogate φ(n) satisfying (14.1.2) below

M-step (minimize): x(n+1) , arg min
x∈X

φ(n)(x) . (14.1.1)
e,ox,alg

The minimization step2 is restricted to the valid parameter space (e.g., x � 0 for problems with nonnegative con-
straints). If we choose the surrogate functions and initializer x(0) appropriately, then the sequence {x(n)} is well
defined and should converge to a minimizer x̂ eventually (see §14.5) under suitable regularity conditions.

The family of proximal point methods e.g., [27] [28, p. 270] [29], could also be considered to be optimiza-
tion transfer methods, although the surrogate functions used in some proximal point literature are often less easily
optimized than the types of surrogates used in the optimization transfer literature.

Fig. 14.1.1 does not do full justice to the problem, because 1D functions are usually fairly easy to minimize. The
optimization transfer principle is particularly compelling for problems where the dimension of x is large, such as in
inverse problems like tomography. Fig. 14.1.2 shows an example of a cost function and a quadratic surrogate function
where np = 2.

1 In his colorful discussion of [3], Meng proposed calling this the SM method, essentially as an acronym for “surrogate substitution / minimiza-
tion.”

2 If the surrogate φ(n) has multiple minimizers, then the “argmin” in the minimization step (14.1.1) should be interpreted as giving any of those
minimizers, i.e., x(n+1) ∈ arg minx φ

(n)(x) .

https://creativecommons.org/licenses/by-nc-nd/4.0/
http://en.wikipedia.org/wiki/Gradient_descent
http://en.wikipedia.org/wiki/Expectation\T1\textendash maximization_algorithm
http://en.wikipedia.org/wiki/Expectation\T1\textendash maximization_algorithm
http://en.wikipedia.org/wiki/MM_algorithm
http://en.wikipedia.org/wiki/Proximal_gradient_method
http://en.wikipedia.org/wiki/Inverse_problem
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Figure 14.1.1: Illustration of a surrogate function φ(n)(x) for optimization transfer in 1D.
fig_ox_surr_1d_min

Figure 14.1.2: Illustration of a cost function Ψ and a quadratic surrogate function φ(n) for np = 2.
fig_ox_surr_2d_min
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14.1.3 Monotonicity
If we choose surrogate functions3 that satisfy the following condition

Ψ(x(n))−Ψ(x) ≥ φ(n)(x(n))−φ(n)(x), ∀x,x(n) ∈ X , (14.1.2)
e,ox,mono

then one can see immediately that the update (14.1.1) will monotonically decrease Ψ as in (11.1.9). Readers familiar
with EM methods (§14.9) will recognize that the above approach is a natural generalization.

The various algorithms described in the sections that follow are all based on different choices of the surrogate
function φ(n), and on different procedures for the minimization in (14.1.1).

To ensure monotonicity, it is not essential to find the exact minimizer in (14.1.1). It suffices to find a value
x(n+1) ∈ X such that φ(n)

(
x(n+1)

)
≤ φ(n)(x(n)), because that alone will ensure that Ψ

(
x(n+1)

)
≤ Ψ(x(n)) by

(14.1.2). However, such incomplete minimization in the M-step complicates convergence analysis [31].
Rather than working directly with the monotonicity condition (14.1.2), all the surrogate functions we present are

designed to satisfy the following surrogate conditions:

φ(n)(x(n)) = Ψ(x(n)) “matched Ψ value” (14.1.3)
φ(n)(x) ≥ Ψ(x), ∀x ∈ X “lies above”. (14.1.4)

e,ox,sur

Any surrogate function that satisfies these conditions will satisfy (14.1.2). The conditions (14.1.4) are sometimes
called majorization conditions. When Ψ and φ(n) are differentiable, one can show that the following “matched
tangent” condition holds for x(n) in the interior of X (see Problem 14.2) due to (14.1.4):

∇x φ(n)(x)
∣∣∣
x=x(n)

= ∇Ψ(x)
∣∣∣
x=x(n)

. (14.1.5)
e,ox,sur,tangent

Fig. 14.1.3 illustrates why consideration of the interior is needed.

Ψ(x)

x

φ(n)(x)

Figure 14.1.3: Illustration of a majorizing surrogate function φ(n)(x) on [0,∞) that does not satisfy (14.1.5).
fig_ox_surr_grad

All of the optimization transfer methods considered in this book have surrogate functions that satisfy (14.1.2).
However, it is interesting to consider that (14.1.2) is unnecessarily restrictive. Any sensible optimization transfer
method will always find x(n+1) that decreases φ(n), so the condition “∀x,x(n)” in (14.1.2) could be relaxed to

∀x ∈ {x : φ(n)(x) ≤ φ(n)(x(n))} .

Equivalently, one could simply define φ(n) to be equal to Ψ outside of this set. This generalization could lead to faster
converging algorithms because it enlarges the space of admissible surrogates.

The convergence results in Chapter 14 apply broadly to algorithms based on the optimization transfer principle,
thanks to the monotonicity property.

14.1.4 Optimization transfer versus augmentation
A close cousin of the optimization transfer approach is the method of augmentation [3, 32, 33], in which one finds a
function Φ for which

Ψ(x) = min
z∈Z

Φ(x, z),

3 The term surrogate function has also been used to describe mere approximations to the cost function [30]. Here we use the term only when
describing functions that satisfy (14.1.2) or (14.1.4)

https://creativecommons.org/licenses/by-nc-nd/4.0/
http://en.wikipedia.org/wiki/Interior_(topology)
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where Z need not be Rnp . When such a construction is available, a natural minimization approach is the following
“block relaxation” method

z(n) = arg min
z∈Z

Φ(x(n), z)

x(n+1) = arg min
x∈X

Φ(x, z(n)). (14.1.6)
e,ox,augmentation

If φ(n)(x) = φ(x;x(n)) is a surrogate for Ψ, then by (14.1.4): Ψ(x) = minx̄∈X φ(x; x̄), so Φ = φ provides
an augmentation method with Z = Rnp . Because Z need not be Rnp for a general augmentation method, the
above references have concluded that augmentation is more general than optimization transfer. However, if Φ is any
augmentation function, then we can define the following surrogate function

φ(n)(x) , Φ

(
x, arg min

z∈Z
Φ(x(n), z)

)
,

so the two approaches are equivalent.

14.1.5 Asymptotic convergence rate (s,ox,rate)s,ox,rate

Postponing the analysis of convergence until §14.5, we presume convergence here and consider the convergence rate.
For iterative algorithms based on the optimization transfer principle, we can discuss the convergence rate qualitatively
by considering Figs. 14.1.1 and 14.1.2. If the surrogate function φ(n) has low curvature, then it appears as a “broad”
graph in Figs. 14.1.1 and 14.1.2, so the algorithm can take large steps (

∥∥x(n+1) − x(n)
∥∥ can be large) so {x(n)} should

approach a minimizer quickly. Conversely, if the surrogate function has high curvature, then it appears as a “skinny”
graph, the steps are small, slowing convergence. In general we would like to find low-curvature surrogate functions,
with the caveat that we want to maintain the majorization condition φ(n) ≥ Ψ to ensure monotonicity [34]. And of
course we would also like the surrogate φ(n) to be easy to minimize for (14.1.1). Unfortunately, the criteria “low
curvature” and “easy to minimize” are often incompatible, so we must compromise. This trade-off will be a recurring
theme throughout this book .

To analyze the asymptotic convergence rate of a general optimization transfer method (14.1.1), we consider
the usual case where φ(n)(·) = φ(·,x(n)) for every iteration, i.e., the dependence on iteration is only through x(n),
as opposed to the more complicated case where the form of the surrogate function φ also changes with iteration n.
Assuming that φ(n) is twice differentiable, consider the following second-order Taylor expansion of φ(n) about x(n):

φ(n)(x) ≈ φ(n)(x(n)) +(x− x(n))′∇φ(n)(x(n)) +
1

2
(x− x(n))′∇2 φ(n)(x(n))(x− x(n)).

Thus
∇φ(n)(x) ≈ ∇φ(n)(x(n)) +∇2 φ(n)(x(n))(x− x(n)).

Equating this approximation to zero and solving yields the following approximation for the optimization transfer
update (14.1.1):

x(n+1) ≈ x(n) −
[
∇2 φ(n)(x(n))

]−1∇φ(n)(x(n)) . (14.1.7)
e,ox,step1

This approximation should be reasonably accurate near convergence when x(n) is changing relatively little. (Of course
we are ignoring any constraints on the parameter vector x in this analysis.)

To simplify further, we likewise differentiate a second-order Taylor expansion about x̂ of the cost function (cf.
(11.3.11)) yielding

∇Ψ(x(n)) ≈ ∇Ψ(x̂) +∇2 Ψ(x̂)(x(n) − x̂) = ∇2 Ψ(x̂)(x(n) − x̂);

combining with (14.1.5) yields

∇φ(n)(x(n)) = ∇Ψ(x(n)) ≈ ∇2Ψ(x̂)(x(n) − x̂).

Combining with (14.1.7) yields the following approximation:

x(n+1) − x̂ ≈
(
I −

[
∇2 φ(n)(x(n))

]−1∇2Ψ(x̂)
)

(x(n) − x̂). (14.1.8)
e,ox,rate

https://creativecommons.org/licenses/by-nc-nd/4.0/
http://en.wikipedia.org/wiki/Rate_of_convergence
http://en.wikipedia.org/wiki/Rate_of_convergence
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Assuming that ∇2 φ(n)(x) is continuous in both x and x(n), it will converge to some limit ∇2 φ(x̂) as x(n) → x̂. So
the asymptotic convergence rate of an optimization transfer algorithm (as defined by the root convergence factor in
§28.14) is governed by the spectral radius of

I −
[
∇2 φ(x̂)

]−1∇2Ψ(x̂) . (14.1.9)
e,ox,rate,matrix

From this expression, we see that if the curvature of the surrogate function greatly exceeds that of the original cost
function, i.e., if ∇2 φ � ∇2Ψ, then the resulting optimization transfer algorithm will converge very slowly. This
relationship is examined quantitatively in [34] (cf. §15.5.3).

The above arguments can be refined to show local convergence in norm of x(n) to x̂ under various regularity
conditions on Ψ and φ [35].

Using the Loewner partial order properties of positive semi-definite matrices (cf. §27.2.2), one can show that
if 0 ≺ ∇2Ψ � ∇2 φ, then 0 ≺

[
∇2 φ

]−1/2 (∇2Ψ
) [
∇2 φ

]−1/2 � I, so the eigenvalues of[
∇2 φ

]−1/2 (∇2Ψ
) [
∇2 φ

]−1/2
lie in the interval (0, 1] and thus by (27.1.1) so do the eigenvalues of

[
∇2 φ

]−1 (∇2Ψ
)
.

Thus the eigenvalues of (14.1.9) lie in the interval [0, 1) so its spectral radius is less than unity:

ρ
(
I −

[
∇2 φ(x̂)

]−1∇2Ψ(x̂)
)
< 1. (14.1.10)

e,ox,rate,rho<1

14.2 Surrogate minimization methods (s,ox,min)
s,ox,min

After one chooses a surrogate function φ(n), the next step is to minimize it per (14.1.1). For some choices of surrogates,
the M-step is trivial because there is an easily implemented expression for x(n+1). For other choices, there may not
be a closed-form expression for the minimizer x(n+1), so an iterative approach to the M-step would seem necessary,
and in principle any of the general-purpose minimization methods of Chapter 11 could be applied. However, because
φ(n) is only a surrogate for the actual cost function Ψ, it may be inefficient to try to minimize precisely the surrogate
for the M-step. It may be more reasonable to simply descend φ(n), perhaps using just one iteration of some iterative
minimization method, and then to find a new surrogate. The remainder of this section summarizes a few strategies.

14.2.1 Nested surrogates
If the initial surrogate φ(n) is too difficult to minimize directly, then in many cases one can find a second surrogate
φ(n)

2 that is a surrogate for φ(n), i.e., that satisfies the following conditions which are analogous to (14.1.4):

φ(n)

2 (x(n)) = φ(n)(x(n))

φ(n)

2 (x) ≥ φ(n)(x) .

These conditions ensure that if we minimize (or simply decrease) φ(n)

2 , then φ(n) will decrease, and hence the cost
function Ψ will also monotonically decrease. Several of the algorithms in this book for complicated cost functions use
such nested surrogate functions.

14.2.2 One Newton step for the surrogate
Rather than iteratively minimizing the surrogate function, a simple approach would be to apply one step of Newton’s
method to the surrogate, assuming that φ(n) is twice differentiable. This leads to the following update:

x(n+1) = x(n) −
[
∇2 φ(n)(x(n))

]−1∇Ψ(x(n)) . (14.2.1)
e,ox,min,newton

In general this approach is not guaranteed to be monotonic. Interestingly, despite the “incomplete” minimization, this
method has the same asymptotic convergence rate as analyzed in §14.1.5 [16, p. 146].

For nonseparable surrogate functions, the above method would be implemented in practice by the update x(n+1) =
x(n) − δ(n), where δ(n) is the solution (or an approximate solution) to the linear system of equations:[

∇2 φ(n)(x(n))
]
δ(n) = ∇Ψ(x(n)) .

For imaging problems, it is usually very expensive to solve this system of equations unless the surrogate is separable
(in which case its Hessian is diagonal).

https://creativecommons.org/licenses/by-nc-nd/4.0/
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If the majorizer φ(n) is quadratic and strictly convex, then (14.2.1) provides the exact minimizer of φ(n). In
particular, if the Hessian of φ(n) is LI , where L denotes the Lipschitz constant of∇Ψ, then (14.2.1) simplifies to

x(n+1) = x(n) − 1

L
∇Ψ(x(n)),

which is exactly the gradient descent (GD) method described in §11.3. Optimization transfer methods generalize GD
methods by allowing other majorizers.

14.2.3 Surrogate minimization by quasi-Newton
If the surrogate is separable, so its Hessian is diagonal, then the update (14.2.1) will converge slowly when the surrogate
Hessian poorly approximates the Hessian of Ψ. Convergence can be accelerated by applying a quasi-Newton update
to form an improved Hessian approximation using the Hessian of the surrogate as a starting point [16, p. 148] [36,
37]. This acceleration method could be useful in imaging problems where constraints such as nonnegativity are
unimportant.

14.2.4 Surrogate preconditioned steepest descents,ox,min,psd

The M-step (14.1.1) is a np-dimensional minimization problem. If this is impractical, then an alternative is to define a
search direction based on the gradient of the cost function (assuming it is differentiable), and then search for the mini-
mizer of the surrogate function φ(n) in that direction. More generally, we can apply a positive definite preconditioning
matrix to gradient to define the search direction:

d(n) = −P ∇Ψ(x(n)) . (14.2.2)
e,ox,min,psd,dirn

We then perform a 1D search in that direction as follows (cf. §11.5):

αn = arg min
α

φ(n)(x(n) + αd(n)), (14.2.3)
e,ox,min,psd,alfn

leading to the following update
x(n+1) = x(n) + αnd

(n).

Because φ(n) decreases, this process ensures that Ψ also decreases. This approach is reasonable in cases where 1D
minimization of the cost function would be expensive yet 1D minimization of the surrogate function can be performed
analytically, such as for quadratic surrogates. (See §14.5.4.)

14.2.5 Surrogate minimization by preconditioned “conjugate” gradientss,ox,min,pcg

As described in §11.8, the preconditioned gradient vector (14.2.2) is a somewhat inefficient choice of search direction.
Following §11.8, it is natural to try to modify the search directions to ensure that they are approximately conjugate.
However, there is a subtlety here because the line search (14.2.3) minimizes the surrogate rather than the original cost
function. To apply the Polak-Ribiere form of the PCG method, from (11.8.2), we would choose the following search
direction

d(n) = −P g(n) +γnd
(n−1),

where from (11.8.7)

γn ≈
〈P g(n), g(n)− g(n−1)〉
〈P g(n−1), g(n−1)〉

.

See §14.5 for an example.

14.2.6 Multiple search direction methods
As discussed in §11.8, CG methods with multiple search directions have been investigated [38–40]. Likewise, one can
use multiple search directions for the minimization step in an MM method [41]. LetD(n) ∈ Cnp×R denote a set of R
search direction vectors, then the multidimensional generalization of (14.2.3) is

x(n+1) = x(n) +D(n)αn, αn = arg min
α∈CR

φ(n)(x(n) +D(n)α) . (14.2.4)
e,ox,min,3mg

https://creativecommons.org/licenses/by-nc-nd/4.0/
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The choice D(n) =
[
−∇Ψ(x(n)),x(n) − x(n−1)

]
is particularly effective and reduces to CG when Ψ is quadratic

and φ(n) = Ψ [41]. That approach is called the MM memory gradient method. When φ(n) is quadratic, there is
a closed-form solution for αn and an efficient recursive implementation [41]. However the method does not easily
accommodate constraints like nonnegativity.

14.2.7 Acceleration methods
An alternative PCG approach is to first compute the minimizer x(n+1) of the surrogate, and then consider d(n) =
x(n+1)−x(n) as a search direction, and then perform a line-search for Ψ along that direction by minα Ψ(x(n) + αd(n))
[42]. This approach was found to be useful in some statistical applications, but has not been investigated for imaging
problems to my knowledge.

A variety of other acceleration methods for the EM algorithm have been proposed e.g., [37]. Virtually all such
methods could also be applied in the more general context of optimization transfer. However, most such methods do not
allow for parameter constraints, and many of the methods destroy the intrinsic monotonicity property of optimization
transfer, thus losing one of its primary practical benefits.

14.3 Surrogate design for general cost functions (s,ox,design)
s,ox,design

Although the optimization transfer method (14.1.1) has some desirable properties such as monotonicity, it can hardly
be described as an “algorithm” because the first step requires the algorithm designer to choose surrogate functions
that satisfy (14.1.2), and this choice is something of an art. This section summarizes some tools that may be helpful
in designing surrogates. In some applications we use more than one of these tools in a sequence, i.e., we find a first
surrogate φ1 for Ψ, and then find a surrogate φ2 for φ1, etc.

The methods described here are not exhaustive. See the discussion paper by Lange et al. [3] for further examples.

14.3.1 Surrogates for twice-differentiable cost functions (s,ox,design2)s,ox,design2

One consideration in the design of surrogate functions is how differentiable the cost function Ψ is. We consider first
the case where Ψ is continuously twice differentiable.

14.3.1.1 Convex surrogates

In some applications the cost function Ψ(x) is not convex, so often a natural first step is to find a surrogate function
that is convex, in hopes of simplifying the M-step. For a twice differentiable function Ψ(x), its 2nd-order Taylor
series expansion (28.8.4) about the current estimate x(n) is

Ψ(x) = Ψ(x(n)) +(x− x(n))′∇Ψ(x(n))

+ (x− x(n))′
[∫ 1

0

(1− α)∇2Ψ(αx+ (1− α)x(n)) dα

]
(x− x(n)).

To construct a convex surrogate, it is sufficient to first find a (matrix) function J : Rnp → Rnp×np that satisfies the
following conditions:

J(x) � ∇2Ψ(x), ∀x (14.3.1)
e,ox,surr,majorize

J(x) � 0, ∀x, (14.3.2)
e,ox,surr,J,geq,0

where the inequalities are interpreted in the matrix sense (see §27). For example, one choice would be

J(x) =

 ∇
2Ψ(x), ∇2Ψ(x) � 0

0, ∇2Ψ(x) ≺ 0
V (x) diag{max {λj(x), 0}}V ′(x) otherwise,

(14.3.3)
e,ox,J,max0

where V (x) denotes the matrix of (orthonormal) eigenvectors of ∇2Ψ(x), and λj(x) denotes the jth corresponding
eigenvalue. Having found such a J , define the following function:

φ(n)(x) , Ψ(x(n)) +(x− x(n))′∇Ψ(x(n))

https://creativecommons.org/licenses/by-nc-nd/4.0/
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+ (x− x(n))′
[∫ 1

0

(1− α)J(αx+ (1− α)x(n)) dα

]
(x− x(n)). (14.3.4)

e,ox,surr,convex

It follows from (14.3.1) that this function majorizes Ψ(x), i.e., it satisfies (14.1.4). Therefore φ(n) is indeed a surrogate
for Ψ(x). Furthermore, ∇2 φ(n)(x) = J(x) by construction (cf. (28.8.4)), so the condition (14.3.2) ensures that φ(n)

is convex (cf. §28.9). The utility of this convex surrogate function depends in part on how easily one can perform the
integral in (14.3.4). (It may not always be essential to perform that integral. For example, if one were to apply the
Newton-Raphson method to φ(n) for the M-step, then the integral is not needed. However, Newton-Raphson is not
guaranteed to be monotonic, so its use would seem to defeat the motivation for using optimization transfer in the first
place.) Fortunately, in many cases we can avoid the integral (14.3.4) by finding Hessians J that are independent of x,
as described next.

14.3.1.2 Huber’s algorithm for quadratic surrogates (s,ox,huber)s,ox,huber

In several of the applications considered later in this book , it is possible to find quadratic surrogate functions φ(n) that
satisfy the monotonicity condition (14.1.2), or equivalently (14.1.4). In particular, if the J in (14.3.4) is independent
of x (but possibly dependent on x(n)), then φ(n) is a quadratic surrogate, and (14.3.4) simplifies to the following
form:

φ(n)(x) = Ψ(x(n)) +(x− x(n))′∇Ψ(x(n)) +
1

2
(x− x(n))′Jn(x− x(n)), (14.3.5)

e,ox,quad

where Jn = Jn(x(n)) , ∇2 φ(n) is the Hessian of the surrogate φ(n). Quadratic forms are particularly appealing as
surrogate functions because there is a simple closed form solution for the M-step (14.1.1) in the absence of constraints.
In many optimization papers [43], a quadratic surrogate of the form (14.3.5) is called a linearization of the cost
function Ψ, even though (14.3.5) is quadratic, not linear.

Huber considered this type of algorithm [5] in the context of robust linear regression, and proposed the following
iteration that follows logically from substituting (14.3.5) into (14.1.1).

x(n+1) = x(n) − [∇2 φ(n)]−1∇Ψ(x(n)) . (14.3.6)
e,ox,huber

If the quadratic surrogate φ(n) in (14.3.5) satisfies the majorization condition (14.1.4), then Huber’s algorithm will
monotonically decrease Ψ.

It is interesting that Huber’s algorithm is monotone yet Newton’s method (11.4.3) is not, even though their general
forms are fairly similar. Replacing the Hessian of Ψ in (11.4.3) with the Hessian of φ(n) in (14.3.6) leads essentially to
a “step size” that is sufficiently small to ensure monotonicity. Furthermore, Newton’s method requires the cost func-
tion Ψ to be twice differentiable, whereas Huber’s algorithm (14.3.6) need not, as seen from the sufficient condition
(14.3.10) below.

Unfortunately, for imaging problems, if φ(n) is nonseparable then Huber’s algorithm is impractical due to the
size of the required matrix inverse. It also does not accommodate the nonnegativity constraint. However, by using a
separable quadratic surrogate φ(n), we overcome both of these limitations; see §14.5.7, §15.6.5, §18.7.2, and §19.5.

In some cases one can find a quadratic surrogate function φ(n) having a Hessian matrix J0 = ∇2 φ(n) that is
functionally independent of x(n). Böhning and Lindsay [44] and Huber [5, p. 190] analyzed such problems, noting
that an advantage of such a surrogate is that one can precompute J−1

0 (if storage permits) thereby avoiding new matrix
inversions each iteration. In particular, if one can find a “maximal curvature” matrix J0 satisfying (14.3.1) and (14.3.2),
then the quadratic form (14.3.5) with J0 is a valid surrogate, and the following lower bound algorithm of Böhning
and Lindsay will monotonically decrease Ψ and will converge to a stationary point of Ψ if Ψ is bounded below [44,
p. 652]:

x(n+1) = x(n) − J−1
0 ∇Ψ(x(n)) . (14.3.7)

e,ox,bohning

Wright et al. [45] proposed an approach in which J0 is simply constant times the identity matrix I , and the constant
is updated adaptively during the iterations. This is an intriguing approach that avoids having to find J0 analytically
and may converge faster than using a fixed step size.

https://creativecommons.org/licenses/by-nc-nd/4.0/
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14.3.1.3 Existence of quadratic surrogate

In 1D problems we can define J0 , maxx
∂2

∂x2 Ψ(x), and if this J0 is finite then the algorithm (14.3.7) is applicable.
Unfortunately, in higher dimensions we cannot define “maxx∇2Ψ(x)” because there is no ordering for matrices.
However, under a slightly stronger assumption about Ψ we can still show that a J0 exists.

t,ox,exist

Theorem 14.3.1 Assume that Ψ(x) is twice continuously differentiable, and that x lies in a bounded set, i.e., ‖x‖ ≤
c0 for some constant c0. (Such an upper bound can usually be found for imaging problems in practice.) Then J0 = c1I
satisfies (14.3.1) for ‖x‖ ≤ c0, where

c1 , max
x : ‖x‖≤c0

|||∇2Ψ(x) |||Frob,

where ||| · |||Frob denotes the Frobenius norm (27.5.6). (This maximum exists by the Weierstrass theorem [46, p. 40].)
Proof:
For any matrix J :

x′Jx =
∑
j,k

xjx
′
kJjk ≤

√∑
j,k

|Jjk|2
√∑

j,k

|xjxk|2 = |||J |||Frob ‖x‖2

by the Cauchy-Schwarz inequality (27.4.2). Thus, if ‖x‖ ≤ c0, then

x′∇2Ψ(x)x ≤ |||J |||Frob ‖x‖2 ≤ c1 ‖x‖2 ,

so c1I � ∇2Ψ(x) for ‖x‖ ≤ c0. 2

Although this theorem shows that in principle we can find a majorizing J0 of the form c1I , the convergence rate
of (14.3.7) for this choice may be quite slow.

14.3.1.4 Optimal curvature matrices (s,ox,qs,opt)s,ox,qs,opt

When designing a multidimensional quadratic surrogate of the form (14.3.5), one would like to choose its Hessian Jn
“as small as possible” in light of the convergence rate analysis in §14.1.5. A typical approach to designing Jn consists
of the following steps.

1. Select a family of matrices J0 having some desired structure. Typically one will choose matrices that are
relatively easy to invert e.g., diagonal or circulant matrices.

2. Identify a subset of that family that majorizes the cost function, i.e.,

J1 = {Jn ∈ J0 : φ(n)(x;Jn) ≥ Ψ(x),∀x} ,

where φ(n) was defined in (14.3.5).

3. Select a specific Hessian from J1 using a criterion related to convergence rate. For example, based on (14.1.5)
a desirable choice would be

Jn = arg min
J∈J1

ρ
(
I − J−1∇2Ψ(x(n))

)
.

A Hessian Jn chosen by such a method can be called optimal, meaning optimal over J0 with respect to the
selected criterion.

In 1D, optimal quadratic surrogates are known for a variety of potential functions; see e.g., §14.4.4.4. Un-
fortunately, in higher dimensions the above recipe can be quite challenging except perhaps when very simple
structures are assumed, such as J0 = {αI : α ≥ 0} .

14.3.2 Surrogates for once-differentiable cost functions (s,ox,design1)s,ox,design1

We now turn to surrogates for differentiable cost functions that need not be twice differentiable.

https://creativecommons.org/licenses/by-nc-nd/4.0/
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14.3.2.1 Surrogates for concave terms

A large class of cost functions can be written in the form

Ψ(x) = Ψ1(x) + Ψ2(x)

where Ψ2(x) is a concave function [3, 47]. As described in (28.9.9), a concave function satisfies the following
inequality:

Ψ2(x) ≤ Ψ2(x(n)) +(x− x(n))′∇Ψ2(x(n)) .

Thus, the following function will be a valid surrogate for such cost functions:

φ(n)(x) = Ψ1(x) + Ψ2(x(n)) +(x− x(n))′∇Ψ2(x(n)) .

If Ψ1 is convex, then so will be this surrogate.

14.3.2.2 Surrogates for nested concave terms

Some cost functions have the form
Ψ(x) =

∑
k

σk(vk(x)),

where vk : Rnp → R is a convex function and σk : R → R is a differentiable concave function, e.g., [48]. Again
using concavity (28.9.9), we have the inequality

σk(v) ≤ σk(u) + σ̇k(u)(v − u),

so the following function is a surrogate for Ψ:

φ(n)(x) =
∑
k

(σk(vk(x(n))) + σ̇k(vk(x(n))) [vk(x)− vk(x(n))]) ≡
∑
k

σ̇k(vk(x(n)))vk(x).

The surrogate φ(n) is convex because the vk functions are convex by assumption.

14.3.2.3 Gradient-based surrogates

When Ψ(x) is differentiable, its 1st-order Taylor series expansion (28.8.3) is given by

Ψ(x) = Ψ(x(n)) +(x− x(n))′
∫ 1

0

∇Ψ(αx+ (1− α)x(n)) dα .

This form suggests constructing a surrogate function as follows:

φ(n)(x) , Ψ(x(n)) +(x− x(n))′
∫ 1

0

∇φ(n)(αx+ (1− α)x(n)) dα .

This construction will satisfy the “matched value” surrogate condition in (14.1.4) and will also satisfy the majorization
condition in (14.1.4) if

d′ [∇φ(n)(x(n) + d)−∇Ψ(x(n) + d)] ≥ 0, ∀d ∈ Rnp . (14.3.8)
e,ox,graddiff

A simpler 1D version of this condition is described in Lemma 14.4.1. We use this condition to aid the design of
quadratic surrogates described next.

14.3.2.4 Quadratic surrogates

Consider again the quadratic surrogates described by (14.3.5), for which

∇φ(n)(x) = ∇Ψ(x(n)) +Jn [x− x(n)] ,

where Jn is a Hermitian positive-semidefinite matrix that may depend on x(n) but is independent of x. For choosing
Jn, we would like to find alternatives to the sufficient “maximum curvature”condition (14.3.1) while ensuring φ(n) is
a surrogate. Substituting into (14.3.8) and rearranging leads to the following sufficient condition:

d′Jnd ≥ d′ [∇Ψ(x(n) + d)−∇Ψ(x(n))] , ∀d ∈ Rnp . (14.3.9)
e,ox,design1,dJd

https://creativecommons.org/licenses/by-nc-nd/4.0/
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Alternatively, suppose that we can find Jn that satisfies

Jn �
1

‖d‖2
[∇Ψ(x(n) + d)−∇Ψ(x(n))]d′, ∀d 6= 0. (14.3.10)

e,ox,quadhess,outer

Multiplying on the left by d′ and on the right by d shows that (14.3.9) and hence (14.3.8) are satisfied.
Thus, a quadratic function of the form (14.3.5) with a Hessian that satisfies the conditions (14.3.9) or (14.3.10) is

a valid surrogate for Ψ.

14.3.2.5 Relationship between quadratic surrogates and the Lipschitz condition for gradient projection

The gradient projection method considered in Theorem 12.2.1 assumes that the cost function gradient satisfies a
Lipschitz condition of the form (28.8.5), i.e., ‖∇Ψ(x+ d)−∇Ψ(x)‖ ≤ L ‖d‖ . This is essentially a bound on the
curvature of Ψ. Indeed, any cost function that satisfies that condition has a quadratic surrogate of the form (14.3.5)
that satisfies the sufficient condition (14.3.8) for the choice Jn = LI (in which case the surrogate is separable).
To show this, simply apply the Cauchy-Schwarz inequality to the sufficient condition (14.3.9) and then apply the
Lipschitz condition. Several recent papers have assumed Lipschitz conditions and developed algorithms based on
what is essentially separable quadratic surrogates [43].

Further exploration of this interesting connection between the gradient projection algorithm and optimization trans-
fer using quadratic surrogates is an open problem.

14.3.3 Separable surrogates for convex cost functions (s,ox,design0)s,ox,design0

Although convex functions are easier to minimize than non-convex functions, the M-step (14.1.1) can still be chal-
lenging. One possible way to simplify the M-step is to form a separable surrogate function. (Often this technique is
applied to form a separable surrogate function for an initial nonseparable surrogate function.) The next two subsec-
tions each present a method for forming a separable surrogate function, using generalizations of tricks developed by
De Pierro [10, 11].

Interestingly, neither of the two methods described below require Ψ to be differentiable.

14.3.3.1 Separable surrogates for additive updates

To create a surrogate function that leads to an additive update, for the nth iteration, we write the cost function as
follows:

Ψ(x) = Ψ

 np∑
j=1

xjej

 = Ψ

 np∑
j=1

α(n)

j

[
xj − x(n)

j

α(n)

j

ej + x(n)

],
where ej denotes the jth unit vector in Rnp , and α(n)

j denotes any positive coefficients that sum (over j) to unity.
When Ψ is convex (e.g., when we apply this approach to a convex surrogate), we have the following majorization:

Ψ(x) ≤ φ(n)(x) ,
np∑
j=1

α(n)

j Ψ

(
xj − x(n)

j

α(n)

j

ej + x(n)

)
.

(This is a modification of a trick developed by De Pierro [11], cf. (14.5.9).) By this construction, this surrogate
function satisfies the key surrogate conditions (14.1.4). Because φ(n) is separable, the M-step simplifies into np 1D
minimization problems:

x(n+1) = arg min
x

φ(n)(x) ⇐⇒ x(n+1)

j = arg min
xj

Ψ

(
xj − x(n)

j

α(n)

j

ej + x(n)

)
.

There are a variety of 1D minimization algorithms available [49].
This approach is “additive” because it leads to an update of the following form

x(n+1)

j = x(n)

j + α(n)

j arg min
δj

Ψ(δjej + x(n)) . (14.3.11)
e,ox,sep,add

If Ψ is quadratic, then there is an explicit form for this minimization:

x(n+1)

j = x(n)

j −
α(n)

j

∂2

∂x2
j

Ψ(x(n))

∂

∂xj
Ψ(x(n)) .
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In matrix-vector form, the update is

x(n+1) = x(n) − diag

 α(n)

j

∂2

∂x2
j

Ψ(x(n))

∇Ψ(x(n)) . (14.3.12)
e,ox,design0,sep,quad

Because the α(n)

j values must sum to unity, the average α(n)

j value is 1/np. In imaging problems, np can be very large,
so the α(n)

j values can be quite small, leading to slow convergence of this algorithm.

14.3.3.2 Separable surrogates for multiplicative updates

Alternatively, for problems with nonnegativity constraints we can form multiplicative updates by using the following
approach to rewriting the cost function:

Ψ(x) = Ψ

 np∑
j=1

xjej

 = Ψ

 np∑
j=1

(
α(n)

j x(n)

j∑np

j′=1 α
(n)

j′ x
(n)

j′

)
xj

x(n)

j

 np∑
j′=1

α(n)

j′ x
(n)

j′

 ej


≤
np∑
j=1

(
α(n)

j x(n)

j∑np

j′=1 α
(n)

j′ x
(n)

j′

)
Ψ

 xj

x(n)

j

 np∑
j′=1

α(n)

j′ x
(n)

j′

 ej
 .

This formulation of a surrogate function leads to a multiplicative update:

x(n+1)

j =
x(n)

j∑np

j′=1 α
(n)

j′ x
(n)

j′
· arg min

δj≥0
Ψ(δjej) . (14.3.13)

e,ox,design0,sep,mult

Analyzing the convergence properties of this multiplicative iteration is an open problem.

14.3.4 Example: mixture model estimation (s,ox,mixture)s,ox,mixture

One application of optimization transfer is estimation of mixture distributions. For simplicity, we illustrate the case
of a scalar gaussian mixture where the only unknown parameters are the mean values of the gaussian components. In
this setting, the negative log-likelihood is

L- (x) =

nd∑
i=1

− log p(yi;x) =

nd∑
i=1

− log

 np∑
j=1

qj p(yi;xj)

,
where qj are the (assumed known) mixture probabilities and

p(yi;xj) =
1√

2πσ2
j

e−(yi−xj)2/(2σ2
j ) ,

where σ2
j are the (assumed known) component variances.

To design a surrogate function for this negative log-likelihood, we rewrite it as follows:

L- (x) =

nd∑
i=1

− log

 np∑
j=1

qj p(yi;xj)

 = −
nd∑
i=1

log

 np∑
j=1

z(n)

ij

p(yi;xj)

p
(
yi;x

(n)

j

) ∑
k

qk p
(
yi;x

(n)

k

),
where

z(n)

ij ,
qj p
(
yi;x

(n)

j

)∑
k qk p

(
yi;x

(n)

k

) .
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Using the convexity of the negative logarithm function yields:

L- (x) ≤ φ(n)(x) , −
nd∑
i=1

np∑
j=1

z(n)

ij log

(
p(yi;xj)

p
(
yi;x

(n)

j

) ∑
k

qk p
(
yi;x

(n)

k

))

≡ φ(n)(x) , −
np∑
j=1

nd∑
i=1

z(n)

ij log p(yi;xj)

≡
np∑
j=1

nd∑
i=1

z(n)

ij

(yi − xj)2

2σ2
j

.

Minimizing this surrogate function with respect to x is a trivial WLS problem. This example contains the essence of
the EM algorithm for mixture models [6, 50].
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14.4 Surrogate design for image reconstruction cost functions (s,ox,recon)
s,ox,recon

In principle the preceding tools are applicable to general cost functions. Now let us focus on surrogate design methods
that have been developed specifically for the types of cost functions that arise in image reconstruction problems. In
particular, most of the image reconstruction problems considered in this book involve cost functions of the following
form

Ψ(x) =

Ni∑
i=1

ψi([Bx]i) (14.4.1)
e,ox,recon,kost

where [Bx]i =
∑np

j=1 bijxj , for some application-dependent choices for the potential functions ψi and the Ni × np

matrixB. For fast convergence, we must seek algorithms tailored to this form.
Some of the relevant properties of this form of Ψ include the following.

• Ψ(x) is a sum of scalar functions ψi(·).
• The ψi functions often have bounded curvature, and often are convex.
• The arguments of the ψi functions involve inner products.
• Often the inner product coefficients are all nonnegative.

The cornucopia of algorithms that have been proposed in the image reconstruction literature exploit these properties
(implicitly or explicitly) in different ways.

In the context of robust linear regression, estimators formed by minimizing such cost functions are called M-
estimators [5].

The gradient of this type of cost function has the following form:

∂

∂xj
Ψ(x) =

Ni∑
i=1

bij ψ̇i([Bx]i), ∇Ψ(x) = B′ψ̇(Bx), (14.4.2)
e,ox,recon,grad

where ψ̇i(t) = d
dt ψi(t) and for t ∈ RNi we define

ψ̇(t) ,

 ψ̇1(t1)
...

ψ̇Ni
(tNi

)

 . (14.4.3)
e,ox,recon,dPot

For this type of additively separable cost function, designing surrogates is greatly simplified because we can
consider one term in the sum at a time. We first consider each function ψi(·) and find a corresponding surrogate
function hi(t; s) that satisfies the following two conditions:

hi(s; s) = ψi(s), ∀s
hi(t; s) ≥ ψi(t), ∀t, s. (14.4.4)

e,ox,hi,geq

If one can find such hi functions, then a natural surrogate for Ψ(x) is the following

φ(n)(x) =

Ni∑
i=1

hi([Bx]i; [Bx(n)]i). (14.4.5)
e,ox,surn,recon

It follows from (14.4.4) that this φ(n) satisfies the surrogate conditions (14.1.4), as well as the tangent condition
(14.1.5) if the hi functions are differentiable. So now the design problem becomes finding a suitable 1D surrogate
function hi for each ψi function.

14.4.1 Convex surrogates
When ψi is nonconvex, a natural first step is to find a surrogate function hi that is convex. Specializing (14.3.4) to the
1D case, a simple choice is

hi(t; s) = ψi(s) + ψ̇i(s)(t− s) + (t− s)2

∫ 1

0

(1− α) c̆i(αt+ (1− α) s; s) dα, (14.4.6)
e,ox,hi,convex

where c̆i, the curvature of hi(·; s), is chosen to satisfy

c̆i(t; s) ≥ ψ̈i(t), ∀t, s
c̆i(t; s) ≥ 0, ∀t, s,
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in analogy with (14.3.1) and (14.3.2), assuming that ψi is twice differentiable. Any function constructed via (14.4.6)
with curvatures that satisfy these conditions will satisfy (14.4.4) and hence is a valid surrogate function for ψi. And
thus φ(n) in (14.4.5) is a valid surrogate for Ψ. Because these hi functions have nonnegative curvatures, they are
convex, and thus it is readily verified that φ(n) is a convex surrogate function. The natural choice for the curvature, cf.
(14.3.3), is simply

c̆i(t; s) , max
{
ψ̈i(t), 0

}
,

although other choices may be used if it simplifies the integral in (14.4.6). This construction shows that convex
surrogates exist for any cost function of the form (14.4.1) with twice differentiable ψi functions.

14.4.2 Derivative-based surrogate
The following Lemma describes a sufficient condition that is useful for designing surrogates. It provides the 1D analog
of (14.3.8).

l,ox,deriv

Lemma 14.4.1 If ψ(t) and h(t) are differentiable and if the following three conditions are satisfied:

h(s) = ψ(s), for some s ∈ R

ḣ(t) ≥ ψ̇(t), ∀t > s

ḣ(t) ≤ ψ̇(t), ∀t < s, (14.4.7)
e,ox,sps,curv,suff

then h(·) is a valid surrogate for ψ, i.e., h(t) ≥ ψ(t),∀t.
Proof:
It follows from the assumptions that ḣ(t)(t− s) ≥ ψ̇(t)(t− s). Applying the 1st-order Taylor expansion (28.8.3):

h(t) = h(s) +

∫ 1

0

ḣ(αs+ (1− α)t) dα(t− s)

≥ ψ(s) +

∫ 1

0

ψ̇(αs+ (1− α) t) dα(t− s) = ψ(t) .

2

The conditions (14.4.7) allow one to focus on the slopes when designing surrogate functions.

14.4.3 Surrogates for multiplicative updatess,ox,recon,mult

Suppose each ψi is convex on (0,∞) and we want to minimize Ψ subject to the nonnegativity constraint x � 0. In
the context of emission tomography, De Pierro noted that if bij ≥ 0, ∀i, j, then

[Bx]i =

np∑
j=1

bijxj =

np∑
j=1

(
bijx

(n)

j

[Bx(n)]i

)(
xj

x(n)

j

[Bx(n)]i

)
.

Using the convexity of each ψi:

Ψ(x) =

Ni∑
i=1

ψi([Bx]i) ≤ φ(n)(x) ,
Ni∑
i=1

np∑
j=1

(
bijx

(n)

j

[Bx(n)]i

)
ψi

(
xj

x(n)

j

[Bx(n)]i

)
.

This leads to the parallelizable multiplicative update (cf. (17.4.4)):

x(n+1)

j = x(n)

j α(n)

j

α(n)

j = arg min
αj

Ni∑
i=1

(
bij

[Bx(n)]i

)
ψi(αj [Bx

(n)]i).

14.4.4 Parabola surrogates (s,ox,recon,parab)s,ox,recon,parab

If the curvature c̆i(t; s) in (14.4.6) is independent of t (but possibly dependent on s), then hi(·; s) is a parabola
surrogate for ψi and φ(n) is a quadratic surrogate for Ψ. For parabola surrogates, we use the following notation:

qi(t; s) = ψi(s) + ψ̇i(s)(t− s) +
1

2
c̆(ψi, s)(t− s)2. (14.4.8)

e,ox,recon,qi

There are a variety of methods for choosing the curvatures c̆i, depending on the nature of ψi.
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14.4.4.1 Optimal curvature

As described in §14.1.5, for fast convergence we would like the curvature of the surrogate function to be small. Yet for
monotonic algorithms we must maintain the surrogate conditions (14.1.4). We therefore define the optimal curvature
to be the smallest curvature that still ensures (14.4.4), as follows:

c̆opt(ψ, s) , min

{
c ≥ 0 : ψ(s) + ψ̇(s)(t− s) +

1

2
c(t− s)2 ≥ ψ(t), ∀t

}
. (14.4.9)

e,ox,recon,curv,opt

Generally speaking, this optimal curvature requires only that ψ between once differentiable. We use this choice
whenever we can find the minimizer analytically.

In [73], we showed that if
• ψ is strictly convex on [0,∞), and
• ψ̇ is strictly concave on [0,∞),

then the optimal curvature (for minimization subject to the nonnegative constraint x � 0 is as follows:

c̆opt(ψ, s) =


[
−2

ψ(0)−ψ(s) + ψ̇(s) s

s2

]
+

, s > 0[
− ψ̈(s)

]
+
, s = 0.

(14.4.10)
e,ox,recon,curv,opt,convex

These conditions apply to emission tomography, and similar conditions apply to (monoenergetic) transmission tomog-
raphy with the usual Poisson noise models [73]. (See Chapter 19.)

In [74] de Leeuw expresses the optimal curvature (14.4.9) as follows:

c̆opt(ψ, s) , sup
t6=s

ψ(t)−
[
ψ(s) + ψ̇(s)(t− s)

]
1
2 (t− s)2

, (14.4.11)
e,ox,recon,curv,deleeuw

calling it “sharp” majorization.

14.4.4.2 Maximum curvature

If ψ is twice differentiable, then a simple choice for c̆ is the maximum curvature

c̆max(ψ, s) = max
t
ψ̈(t) . (14.4.12)

e,ox,recon,curv,max

This choice is usually very easy to determine, but often leads to unnecessarily slow convergence.

14.4.4.3 Derivative-based curvatures (s,ox,recon,deriv)s,ox,recon,deriv

Finding an analytical expression for the optimal curvatures (14.4.9) is something of an art. When one cannot determine
the optimal curvatures, the following Lemma gives a curvature expression that is often easily evaluated [75], so it may
be helpful in choosing the curvature of a parabola surrogate function.

l,ox,curv

Lemma 14.4.2 If ψ(t) is differentiable, and c̆(ψ, s) satisfies

c̆(ψ, s) ≥ ψ̇(t)− ψ̇(s)

t− s
∀t 6= s, (14.4.13)

e,ox,recon,curv,ratio,geq

then the parabola (14.4.8) with this curvature is a surrogate for ψ.
Proof:
For t 6= s,

[q̇(t)− ψ̇(t)](t− s) =
[
ψ̇(s) + c̆(ψ, s)(t− s)− ψ̇(t)

]
(t− s)

= (t− s)2

[
c̆(ψ, s)− ψ̇(t)− ψ̇(s)

t− s

]
≥ 0.

The conditions of Lemma 14.4.1 are satisfied, so q(t) is a surrogate for ψ. 2
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In particular, if

c̆(ψ, s) = max
t 6=s

ψ̇(t)− ψ̇(s)

t− s
(14.4.14)

e,ox,recon,curv,ratio,max

is finite, then this maximum is a natural choice for the curvature.
For an example in holographic imaging, see [75]. In many cases we can consider intervals rather than the entire

real line, such as in the following examples.
x,ox,curv,emis

Example 14.4.3 Consider the emission tomography problem described in Chapter 8 in which ψ(t) = (t + r) −
y log(t+ r), where r > 0 and y ≥ 0. Here we also include the constraint that t, s ≥ 0. Then ψ̇(t) = 1 − y/(t + r)
and ψ̈(t) = y/(t+ r)2. So the maximum curvature is maxt≥0 ψ̈(t) = ψ̈(0) = y/r2. This can be undesirably large.

To apply (14.4.14), we need to compute

c̆(ψ, s) = max
t≥0

ψ̇(t)− ψ̇(s)

t− s
= max

t≥0

[1− y/(t+ r)]− [1− y/(s+ r)]

t− s
= max

t≥0

y

(t+ r)(s+ r)
=

y

r(s+ r)
.

When s > 0, this can be much smaller than the maximum curvature ψ̈(0) = y/r2, which could accelerate convergence.
However, as shown in , the optimal (smallest possible) curvature is (14.4.10).

x,ox,curv,trans

Example 14.4.4 Consider the monoenergetic transmission tomography problem described in Chapter 9 in which the
negative marginal log-likelihood is ψ(t) = b e−t − y log(b e−t) ≡ b e−t + yt, where b > 0 and y ≥ 0, and again
t, s ≥ 0. Then ψ̇(t) = y − b e−t , so we need to compute

c̆(ψ, s) = max
t≥0

ψ̇(t)− ψ̇(s)

t− s
= max

t≥0

y − b e−t − (y − b e−s)

t− s
= b e−s max

t≥0

1− es−t

t− s
.

Substituting x = s− t we have

c̆(ψ, s) = b e−s max
x≤s

ex − 1

x
= b e−s

es − 1

s
= b

1− e−s

s
.

The optimal curvature for this case is again (14.4.10), as shown in §19.5, but the preceding derivation certainly is
simpler.

14.4.4.4 Huber’s curvatures (s,ox,recon,huber)s,ox,recon,huber

Citing a 1975 report by Dutter, Huber [5, p. 184] described a parabola surrogate (which he called a comparison
function) for a broad class of potential functions ψi. Specifically, Huber considered ψi functions of the form

ψi(t) = ψ(t− ti)

for some ti ∈ R, where ψ is assumed to satisfy the conditions of Theorem 14.4.5 below. Fig. 14.4.1 shows an example
of such a potential function and its quadratic surrogate for the case ψ(t) =

√
t2 + 1.

Remarkably, for Huber’s class of potential functions there is a very simple expression for the optimal curvature
defined in (14.4.9), as shown in the following theorem [5, p. 185].

t,ox,parab

Theorem 14.4.5 Suppose ψ : R→ R satisfies the following conditions4.

ψ(t) is differentiable,

ψ(t) = ψ(−t), ∀t (symmetry),

ωψ(t) , ψ̇(t) /t is bounded and monotone nonincreasing for t > 0 .

Then the parabola function defined by (cf. (14.4.8)):

q(t; s) , ψ(s) + ψ̇(s)(t− s) +
1

2
ωψ(s)(t− s)2

4 Huber [5, p. 184] makes the stronger assumption that ψ is convex, and uses that additional assumption to show that his iteration (14.3.6) strictly
decreases the cost function each iteration until a minimizer is reached.
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Figure 14.4.1: Illustration of a nonquadratic potential function ψ(t) =
√
t2 + 1− 1 and a parabola surrogate function

q(t; s) for s = 1.5.
fig_parab1

=

[
ψ(s)−ωψ(s)

2
s2

]
+
ωψ(s)

2
t2, (14.4.15)

e,ox,recon,huber,q

is a surrogate function for ψ, i.e., it satisfies the conditions (14.4.4). Furthermore, the curvature ωψ is optimal in the
sense of being the smallest value that satisfies those conditions.
Proof:
Because (14.4.15) implies q(t; s) = q(t; |s|) = q(|t|; |s|), it suffices to consider t, s ≥ 0. Note that q̇(t; s) ,
∂
∂tq(t; s) = ωψ(s) t. Because ωψ is nonincreasing for t > 0, it satisfies the following.
• If t > s ≥ 0 then ωψ(s) ≥ ωψ(t) = ψ̇(t) /t, so ψ̇(t) ≤ t ωψ(s) = q̇(t; s).
• If s ≥ t > 0 then ωψ(s) ≤ ωψ(t) = ψ̇(t) /t, so ψ̇(t) ≥ t ωψ(s) = q̇(t; s).

Thus the conditions of Lemma 14.4.1 are met, so q is a surrogate for ψ.
Because q(t; s) touches ψ(t) at both t = s and t = −s, any smaller value of the curvature would cause q(−s; s)

to be less than ψ(−s), so ωψ is optimal. 2

A very wide variety of potential functions satisfy the conditions of this theorem. Table 2.1 in §2.7 summarizes
several of these choices. Lange [76, p. 442] lists several more and describes a general procedure for deriving new
choices. Table 2.1 also lists some choices with unbounded ωψ functions. Optimization with such ψ functions is more
complicated5.

The potential weighting functions ωψ(t) that determine the curvature of the surrogate parabola (14.4.15) sig-
nificantly affect image properties such as robustness to noise outliers and edge-preservation, as discussed in §1.10.3.
Fig. 2.7.1 illustrates several of the ωψ functions from Table 2.1.

The optimality of the curvature ωψ(·) in Theorem 14.4.5 holds when all values of t ∈ R are considered in (14.4.9).
In some situations, we know lower and upper bounds on t, in which case we can replace (14.4.9) by the weaker
condition:

c̆opt(ψ, s) , min

{
c ≥ 0 : ψ(s) + ψ̇(s)(t− s) +

1

2
c(t− s)2 ≥ ψ(t), ∀t ∈ [tmin, tmax]

}
. (14.4.16)

e,ox,recon,curv,opt,interval

A procedure for computing this c̆opt(ψ, s) under the conditions of Theorem 14.4.5 is given in [78], with application to
a coordinate descent algorithm. Adapting this approach to a simultaneous update algorithm is an open problem.

5 For methods based on coordinate descent, one reasonable minimization approach uses a half-interval search over a suitably bracketed search
range [77, p. 485].
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14.4.4.5 Half-quadratic curvatures (s,ox,recon,halfquad)s,ox,recon,halfquad

Huber’s approach to finding quadratic surrogate functions has been rediscovered in different disguises. Several papers
in the image restoration/reconstruction literature have described so-called half-quadratic methods for minimizing
nonquadratic cost functions [48, 79–84], particularly in the context of edge-preserving regularization. As early as
1994, Kunsch noted that half-quadratic methods are a special case of Huber’s algorithm [85], yet this relationship
seems not to be well known. A typical cost function considered in the half-quadratic literature has the form

Ψ(x) =

Ni∑
i=1

ψ([Bx]i − ti),

where ψ is some nonquadratic potential function designed to preserve edges. Because this cost function is difficult
to minimize directly, a sequence of quadratic surrogate functions, or augmented cost functions, are minimized. Two
such approaches have been proposed in the literature, one called the “multiplicative form” and the other called the
“additive form.” However, both of these forms are simply obfuscated versions of Huber’s quadratic surrogates. In the
half-quadratic literature, the potential functions ψ often are assumed to satisfy more restrictive conditions than those
in Theorem 14.4.5.

14.4.4.5.1 Multiplicative form For the multiplicative form of the half-quadratic approach, e.g., [48, 79, 83, 86], it
is assumed that the potential function has the following form:

ψ(t) =
1

2
σ(t2),

where σ(t) must satisfy several conditions including [48]:
• σ is twice continuously differentiable,
• σ is strictly concave,
• 0 < σ̇ ≤M <∞.

Using such conditions, and sometimes stronger assumptions [83], papers in the half-quadratic literature show that
there is some function ζ such that

ψ(t) = min
w

[
w

1

2
t2 + ζ(w)

]
, (14.4.17)

e,ox,recon,hq,min,w

and this property is used to derive an augmentation algorithm of the form (14.1.6).
We now show that any potential function ψ that satisfies the above conditions will also satisfy the conditions in

Theorem 14.4.5.
1. Clearly ψ(−t) = ψ(t) by construction.
2. ψ̇(t) = σ̇(t)t so ωψ(t) = ψ̇(t) /t = σ̇(t) which is bounded by assumption. Furthermore, because σ is twice
differentiable and concave, for t > 0 we have d

2

dt2
ωψ = σ̈ < 0, so ωψ is decreasing on [0,∞).

Thus the conditions of Theorem 14.4.5 are satisfied. However, Theorem 14.4.5 is more general because twice dif-
ferentiability is not assumed. Furthermore, constructing ωψ is more direct than considering the function ζ, simplifying
the analysis.

It follows from the conditions (14.4.4) that ψ(t) = mins q(t; s), so in light of (14.4.15), the minimizing “w” in
(14.4.17) above is simply ωψ .

14.4.4.5.2 Additive form For the additive form, one first finds a constant curvature c̆ that satisfies the condition

q(t; s) , ψ(s) + ψ̇(s)(t− s) +
c̆

2
(t− s)2 ≥ ψ(t), ∀t.

For example, if ψ is twice differentiable, then c̆max = maxt ψ̈(t) is the logical choice. Rearranging q(t; s), we have

ψ(t) = min
s
q(t; s) = min

s

ψ(s)− 1

2 c̆
ψ̇2(s) +

1

2

(
√
c̆t− c̆ s− ψ̇(s)√

c̆

)2
 .

This is equivalent to the form considered in [81, 82, 87, 88]. In other words, the “additive form” of the half-quadratic
method is nothing more than a surrogate parabola with a sufficiently large constant curvature. In the half-quadratic
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literature, results from convex analysis [89] (such as the Fenchel-Legendre transform [90]) are used to express the
arguments in brackets in the augmentation form

min
u

[
z(u) +

1

2
(
√
c̆t− u/

√
c̆)2

]
,

but in the final analysis it is equivalent to form above.
Nikolova and Ng compared the additive form and the multiplicative form of the half-quadratic methods [88],

and found that the multiplicative form converged faster. This is the expected conclusion because for this family of
potential functions, Huber’s curvatures ωψ are optimal (Theorem 14.4.5), whereas the constant upper bound c̆max will
be unnecessarily large, slowing convergence. However, using constant curvatures can simplify preconditioning [87].

As noted in [91], the half-quadratic method is equivalent to a simple gradient linearization iteration.

14.5 Quadratic surrogate algorithms (s,ox,recon,ps)
s,ox,recon,ps

Huber’s conditions in Theorem 14.4.5 are sufficient, but by no means necessary for finding parabolic surrogate func-
tions. For example, one can find parabolic surrogate functions even for the nonconvex log-likelihood that arises in
transmission tomography [73], see Chapter 19. All that we need is to find a parabola qi for each ψi such that (14.4.4)
is satisfied. Such a parabola will always have the form (14.4.8), where one must choose the curvatures c̆ to satisfy
(14.4.4). For convergence rate reasons, we want the curvatures c̆ to be as small as possible, (cf. §15.5.3).

Having found such parabola surrogates, we can form a quadratic surrogate for the cost function Ψ(x) as follows:

Ψ(x) =

Ni∑
i=1

ψi([Bx]i) ≤ φ(n)(x) ,
Ni∑
i=1

q(n)

i ([Bx]i), (14.5.1)
e,ox,recon,ps

where from (14.4.8)

q(n)

i (t) , qi(t; [Bx(n)]i) (14.5.2)

= ψi([Bx
(n)]i) + ψ̇i([Bx

(n)]i)(t− [Bx(n)]i) +
c̆(n)

i

2
(t− [Bx(n)]i)

2 (14.5.3)
e,ox,recon,qin

for some curvature choice c̆(n)

i ≥ c̆opt(ψi, [Bx
(n)]i). Thus the quadratic surrogate is

φ(n)(x) =

Ni∑
i=1

q(n)

i ([Bx]i)

=

Ni∑
i=1

(
ψi([Bx

(n)]i) + ψ̇i([Bx
(n)]i)([Bx]i − [Bx(n)]i) +

c̆(n)

i

2
([Bx]i − [Bx(n)]i)

2

)
.

Equivalently, after some simplifications akin to (1.10.13), a quadratic surrogate has the form

φ(n)(x) = Ψ(x(n)) +∇Ψ(x(n))(x− x(n)) +
1

2
(x− x(n))′B′ diag

{
c̆(n)

i

}
B(x− x(n)). (14.5.4)

e,ox,recon,sur,nonsep

This surrogate is a special case of the quadratic form (14.3.5) with Hessian Jn = B′ diag
{
c̆(n)

i

}
B.

Having chosen curvatures
{
c̆(n)

i

}
and thereby designed a quadratic surrogate, the next step is to minimize it (M-

step) per (14.1.1). In principle, any general purpose minimization method could be applied. The remainder of this
section describes some of the more important choices.

14.5.1 Huber’s algorithm
Minimizing the quadratic surrogate function (14.5.4) analytically yields the following iteration [5] (cf. (14.3.6)):

x(n+1) = x(n) −
[
B′ diag

{
c̆(n)

i

}
B
]−1∇Ψ(x(n)) .

This iteration is closely related to iteratively reweighted least squares methods [92].
AlthoughB is sparse in many imaging problems, the productB′B usually is not sparse, so a direct implementation

of the above iteration is impractical in most imaging problems. This impracticality stems from the fact that φ(n) is a
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nonseparable surrogate. In practice, rather than computing a matrix inverse, one would implement the above iteration
using the update x(n+1) = x(n) − δ(n), where δ(n) is the solution to the linear system of equations[

B′ diag
{
c̆(n)

i

}
B
]
δ(n) = ∇Ψ(x(n)) .

Because this is a large system, typically an iterative method (such as the conjugate gradient method of §15.6.2) would
be used, and implemented in a way that avoids computing B′B explicitly (see (15.5.3)). However, because φ(n) is
only a surrogate for the actual cost function Ψ, it may be inefficient to try to precisely minimize the surrogate for the
M-step. It may be more reasonable to simply descend φ(n), using even as few as one iterations, and then to find a new
surrogate.

14.5.2 Coordinate descent of quadratic surrogatess,ox,recon,qscd

The coordinate descent method described in §11.10.5 is a particularly efficient approach to minimizing quadratic
surrogates when the matrix B is precomputed and stored by columns. For each iteration, we first find the quadratic
surrogate, i.e., we determine the curvatures in (14.5.3). Then we apply M ≥ 1 cycles of coordinate descent to descend
the surrogate. Then we find new curvatures based on the updated estimate and iterate.

Equating the partial derivative of (14.5.1) to zero using (14.5.3) suggests the following update:

xnew
j = xold

j −
∑Ni

i=1 b
∗
ij q̇

(n)

i

(
[Bxold]i

)∑Ni

i=1 |bij |
2
c̆(n)

i

,

where
q̇(n)

i (t) = ψ̇i([Bx
(n)]i) + c̆(n)

i (t− [Bx(n)]i) . (14.5.5)
e,ox,recon,ps,dqin

However, naive implementations of this update can be very inefficient. To implement this algorithm efficiently, one
must maintain q̇(n)

i ([Bx]i) as a state vector, by noting that

q̇(n)

i ([Bxnew]i) = q̇(n)

i

(
[Bxold]i

)
+ c̆(n)

i

np∑
j=1

bij(x
new
j − xold

j ).

This is shown in (14.5.6) in the algorithm below. It ensures that q̇i is always the derivative of q(n)

i evaluated atB times
the most recently updated x.

Furthermore, by evaluating (14.5.5) at t = [Bx(n+1)]i and rearranging, we see that as long as c̆(n)

i 6= 0:

[Bx(n+1)]i = [Bx(n)]i +
q̇(n)

i

(
[Bx(n+1)]i

)
− ψ̇i([Bx(n)]i)

c̆(n)

i

,

so we can determine [Bx(n+1)]i from the updated state vector q̇(n)

i

(
[Bx(n+1)]i

)
without performing explicit ma-

trix multiplication. Combining these tricks leads to the efficient quadratic surrogate coordinate descent (QSCD)
algorithm shown in Fig. 14.5.1.

Specific cases of this algorithm are given in and . These algorithms include the nonnegativity constraint as shown
in the algorithm above. More generally one can use box constraints (28.9.1). Like all optimization transfer methods,
the QSCD algorithm monotonically decreases the cost function Ψ.

Mat The QSCD approach is poorly suited to interpreted languages like MATLAB’s m-files, due to its triply-nested loops.
However, givenB,

{
d(n)

j

}
,
{
c̆(n)

i

}
, and {qi}, the inner two loops are independent of the specific cost function.

14.5.3 Coordinate descent via quadratic surrogatess,ox,recon,cdqs

In the preceding QSCD algorithm, we first find a quadratic surrogate, and then apply coordinate descent to that
surrogate. An alternative approach would be to apply the coordinate descent method directly to the original cost
function, but to use 1D parabola surrogates as each xj is updated in (11.10.4). Such an coordinate-descent via
quadratic surrogates (CDQS) approach was described in [93, p. 39]. Because the curvatures are updated for each j,
CDQS may converge somewhat faster per iteration than QSCD. However, the computation per iteration for CDQS is
much higher than for QSCD, so generally QSCD is the preferable approach.
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Quadratic surrogate coordinate descent (QSCD)
Initialization: ˜̀

i = [Bx(0)]i, i = 1, . . . , Ni

Choose a lower bound c̆min > 0
for n = 0, 1, . . . , {

q̇i = ψ̇(n)

i = ψ̇i

(
˜̀
i

)
, i = 1, . . . , Ni % initialize/save derivatives

c̆(n)

i = max
{
c̆i

(
ψi, ˜̀

i

)
, c̆min

}
, i = 1, . . . , Ni % curvatures

d(n)

j =

Ni∑
i=1

|bij |2 c̆(n)

i , j = 1, . . . , np % stepsize denominators

form = 1, . . . ,M { % optional subiterations
for j = 1, . . . , np {

x(n+1)

j =

[
x(n)

j −
1

d(n)

j

Ni∑
i=1

b∗ij q̇i

]
+

q̇i := q̇i + c̆(n)

i bij(x
(n+1)

j − x(n)

j ), ∀i : bij 6= 0 (14.5.6)
e,ox,recon,ps,state,q

}
}

˜̀
i := ˜̀

i +
q̇i− ψ̇(n)

i

c̆(n)

i

, i = 1, . . . , Ni

}

Figure 14.5.1: QSCD algorithm.
f,ox,recon,ps,cd

14.5.4 Preconditioned steepest descent of surrogatess,ox,recon,ps,psd

As described in §14.2.4, if constraints such as nonnegativity are unimportant, then a reasonable approach might be to
use a preconditioned gradient as a search direction d(n), and then minimize the surrogate function along that direction.
When φ(n) is quadratic, we can find analytically that the minimizer over α in (14.2.3) is

αn =
−∇Ψ(x(n))d(n)

[Bd(n)]′ diag
{
c̆(n)

i

}
Bd(n)

.

Using (14.4.2) and (14.4.3), this leads to the algorithm shown in Fig. 14.5.2.
The dominant computation required is one “forward projection” Bd(n) and one “back projection” B′ψ̇ each

iteration. So this algorithm is very practical.

14.5.5 Surrogate semi-conjugate gradients
As discussed in §14.2.5, alternatively we can modify the preceding algorithm by choosing search directions using
conjugate gradient principles, namely:

d(n) =

{
−P g(n), n = 0
−P g(n) +γnd

(n−1), n > 0,

where γn is chosen according to (11.8.7), (11.8.12), or (11.8.6).
This approach was applied to image denoising in [84].

14.5.6 Monotonic line searches (s,ox,line)s,ox,line

For general cost functions Ψ(x) there are several well-known, general-purpose methods for performing line searches
such as (11.5.1) and (11.8.15). See [49]. For cost functions having the partially separable form (14.4.1), we can
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PSD of surrogates
Initialize:

l(0) = Bx(0)

For n = 0, 1, 2, . . .

g(n) = ∇Ψ(x(n)) = B′ψ̇(l(n))

d(n) = −P g(n)

v(n) = Bd(n)

αn =
−〈g(n), d(n)〉∑Ni

i=1 c̆
2
i

(
v(n)

i

) ≥ 0

x(n+1) = x(n) + αnd
(n)

l(n+1) = l(n) + αn v
(n) (14.5.7)

e,ox,recon,ps,psd,ln

Figure 14.5.2: QS-PSD algorithm
f,ox,recon,ps,psd

use parabola surrogates to derive a line-search method that monotonically decreases the cost function, at least in the
absence of constraints, as described in [69].

Let d(n) denote the desired search direction and define the 1D cost function

f(α) = Ψ(x(n) + αd(n)) =

Ni∑
i=1

ψi
(
`(n)

i + αp(n)

i

)
,

where `(n)

i = [Bx(n)]i, p
(n)

i = [Bd(n)]i. (An efficient implementation will update `(n)

i recursively as in (14.5.7).) We
would like to find the minimizer of f(α). We will do this approximately by starting with an initial guess α0 = 0 and
then performing a few iterations yielding a sequence {αk}.

Assume that each potential function ψi has a parabola surrogate of the form (14.4.8) for some curvature function
c̆i(·) = c̆(ψi, ·). Then similar to (14.5.1) we can define a surrogate function for f as follows:

f(α) ≤ g(n)

k (α) ,
Ni∑
i=1

qi
(
`(n)

i + αp(n)

i ; `(n)

i + αkp
(n)

i

)
=

Ni∑
i=1

ψi
(
`(n)

i + αkp
(n)

i

)
+ ψ̇i

(
`(n)

i + αkp
(n)

i

)
(α− αk)p(n)

i +
1

2
c̆i
(
`(n)

i + αkp
(n)

i

) [
(α− αk)p(n)

i

]2
.

To update α we minimize the surrogate g(n)

k yielding

αk+1 = αk −
∑Ni

i=1 ψ̇i
(
`(n)

i + αkp
(n)

i

)
p(n)

i∑Ni

i=1 c̆i
(
`(n)

i + αkp
(n)

i

) ∣∣p(n)

i

∣∣2 . (14.5.8)
e,ox,line,update

This algorithm monotonically decreases f(α) each iteration. It may require a bit more work per iteration than con-
ventional line searches, but it may converge faster (or more robustly) due to its monotonicity. Most of the work is
computing `(n)

i and p(n)

i and these are required by all descent methods.
MIRT See pl_pcg_qs_ls.m.

14.5.7 Separable quadratic surrogates (s,ox,sps)s,ox,sps

The quadratic surrogate function (14.5.4) is nonseparable, so for imaging-sized problems, it would have to be min-
imized iteratively, resulting in iterations within iterations. This is particularly unappealing when constraints such as
nonnegativity are required. (Without such constraints, the PCG algorithm would be a natural method to minimize a
quadratic φ(n) iteratively.)
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To further simplify the M-step, we form a separable quadratic surrogate by using the following trick due to
De Pierro [11]:

[Bx]i =

np∑
j=1

bijxj =

np∑
j=1

πij

(
bij
πij

(xj − x(n)

j ) + [Bx(n)]i

)
, (14.5.9)

e,ox,dp,add

provided
∑np

j=1 πij = 1 and πij is zero only if bij is zero. If the πij values are nonnegative, then we can apply the
convexity inequality §28.9 to the parabola qi to write

q(n)

i ([Bx]i) = q(n)

i

 np∑
j=1

πij

(
bij
πij

(xj − x(n)

j ) + [Bx(n)]i

)
≤

np∑
j=1

πij q
(n)

i

(
bij
πij

(xj − x(n)

j ) + [Bx(n)]i

)
,

where q(n)

i was defined in (14.5.3). Combining these yields the following separable quadratic surrogate for Ψ(x):

φ(n)(x) ≤ φ(n)

SQS(x) ,
Ni∑
i=1
πij 6=0

np∑
j=1

πij q
(n)

i

(
bij
πij

(xj − x(n)

j ) + [Bx(n)]i

)
=

np∑
j=1

φ(n)

j (xj)

where

φ(n)

j (xj) =

Ni∑
i=1
πij 6=0

πij q
(n)

i

(
bij
πij

(xj − x(n)

j ) + [Bx(n)]i

)
.

The derivatives of φ(n)

j are

d

dxj
φ(n)

j (xj) =

Ni∑
i=1
πij 6=0

b∗ij q̇
(n)

i

(
bij
πij

(xj − x(n)

j ) + [Bx(n)]i

)

d(n)

j ,
d2

dx2
j

φ(n)

j (·) =

Ni∑
i=1
πij 6=0

|bij |2

πij
q̈(n)

i =

Ni∑
i=1
πij 6=0

|bij |2

πij
c̆(n)

i , (14.5.10)
e,ox,sps,denjn

so the following “matched derivative” condition holds:

d

dxj
φ(n)

j (xj)

∣∣∣∣
xj=x

(n)
j

=

Ni∑
i=1

b∗ij q̇
(n)

i ([Bx(n)]i) =

Ni∑
i=1

b∗ij ψ̇i([Bx
(n)]i) =

∂

∂xj
Ψ(x(n)) .

Combining, the separable quadratic surrogate satisfies the conditions (14.1.4) and has the form

φ(n)

SQS(x) = Ψ(x(n)) +∇Ψ(x(n))(x− x(n)) +
1

2
(x− x(n))′ diag

{
d(n)

j

}
(x− x(n)). (14.5.11)

e,ox,sps,sur

Because this quadratic surrogate is separable, it has a diagonal Hessian, so it is trivial to perform the M-step (14.1.1),
yielding the following general separable quadratic surrogate algorithm.
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Separable quadratic surrogate algorithm
Initialization: choose πij factors such that

∑np

j=1 πij = 1 and πij ≥ 0 and πij = 0 only if bij = 0, e.g.,
πij = |bij |/bi, bi =

∑np

j=1 |bij |.
For each iteration:

Compute [Bx(n)]i, ∀i
Choose curvatures c̆(n)

i = c̆(ψi, [Bx
(n)]i) so (14.4.8) satisfies (14.4.4)

d(n)

j =

Ni∑
i=1
πij 6=0

|bij |2

πij
c̆(n)

i , j = 1, . . . , np (14.5.12)
e,ox,denjn

x(n+1)

j =

[
x(n)

j −
1

d(n)

j

∂

∂xj
Ψ(x(n))

]
+

, j = 1, . . . , np. (14.5.13)
e,ox,sps

In matrix-vector form, the update is:

x(n+1) =

[
x(n) − diag

{
1

d(n)

j

}
∇Ψ(x(n))

]
+

,

which is a kind of diagonally-preconditioned projected gradient descent. This algorithm is entirely parallelizable
because one can update all pixels simultaneously. Provided one has chosen properly the curvatures

{
c̆(n)

i

}
in (14.4.8),

this algorithm will monotonically decrease the cost function Ψ(x(n)).
This algorithm is a prototype for several of the algorithms discussed in this book . It is basically a form of

diagonally-scaled gradient descent, but the diagonal scaling is constructed using the form of (14.4.1) to guarantee
that the cost function monotonicity decreases. Because φ(n)

SQS(·) is separable, box constraints are also easily enforced.
The price we pay for the intrinsic monotonicity is the “stepsize calculation” (14.5.12). However, in some problems,

we can choose c̆(n)

i values that are independent of iteration, such as the precomputed maximum curvature (14.4.12).
Because these c̆i values are independent of x(n), we can precompute the dj values prior to iterating. However, using
the maximum curvature may reduce the convergence rate, so one must examine the trade-off between number of
iterations and work per iteration in any given problem.

Comparing (14.5.11) with the nonseparable surrogate (14.5.4), we find that

B′ diag
{
c̆(n)

i

}
B � diag

{
d(n)

j

}
. (14.5.14)

e,ox,sps,BCB<=D

(For an alternate proof based on the Geršgorin disk theorem and diagonal dominance, see Corollary 27.2.7 and Theo-
rem 27.2.8.) An interesting special case is

diag{(1′ v)v} � v v′,

for any real vector v with nonnegative elements.

14.5.7.1 Comparison to general additive update

The additive update (14.3.12) for separable surrogates was derived for general quadratic cost functions. In contrast,
the update (14.5.13) is applicable only to the family of cost functions given in (14.4.1). How do these iterative method
compare? Specifically, suppose that Ψ(x) = 1

2 (y −Bx)′ diag{wi}(y −Bx). Then the update (14.3.12) has a step
size of

α(n)

j

∂2

∂x2
j

Ψ(x(n))
=

α(n)

j∑Ni

i=1 |bij |
2
wi
,

whereas the update (14.5.13) has a step size of

1
Ni∑
i=1
πij 6=0

|bij |2

πij
wi

.
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If we were to choose πij = α(n)

j , then the two algorithms would be identical. However, as discussed in §15.6.5.2, that
choice for πij would be suboptimal. The earlier method (14.3.12) was generally applicable to convex cost functions,
whereas the method (14.5.13) is tailored to the types of cost functions that arise in image reconstruction problems.
Here we see that a derivation matched to the form of the cost function of interest provides greater flexibility in the
algorithm design, potentially leading to faster convergence.

14.5.7.2 Example: denoising SQS (s,ox,ex2)s,ox,ex2

x,ox,ex2

Example 14.5.1 Consider the measurement model

y = x+ ε,

where ε is zero-mean uncorrelated noise vector. The signal denoising problem is to estimate x from y. Numerous
algorithms exist for this problem; we consider estimating x by minimizing a regularized least-squares cost function of
the following form:

Ψ(x) =

nd∑
i=1

1

2
(yi − xi)2 +

np−1∑
k=1

ψk(xk+1 − xk)

=
1

2
‖y − x‖2 +

∑
k

ψk([Cx]k),

where, for the 1D problem considered in this example, C is the np − 1 × np first finite-difference matrix6 defined in
(1.8.4), so that [Cx]k = xk+1 − xk, k = 1, . . . , np − 1. Each ψk is in the large family of (usually nonquadratic)
potential functions considered in §14.4.4.4, with surrogate curvatures denoted ωk(t) = ψ̇k(t)/t. In particular, if ψk
is a (corner-rounded) version of the absolute value function, such as the hyperbola potential or the Fair potential, then
this problem provides a method for (anisotropic) TV denoising. Thus a suitable quadratic surrogate function is

φ(n)(x) =
1

2
‖y − x‖2 +

∑
k

qk([Cx]k; [Cx(n)]k), (14.5.15)
e,ox,ex2,surr

where qk was defined by (14.4.15). To find the minimizer of φ(n)(·) using Huber’s algorithm (14.3.6), note that

∂

∂xj
φ(n)(x) = xj − yj +

∑
k

ckj ωk([Cx(n)]k)[Cx]k,

so
∇φ(n)(x)|x=x(n) = x(n) − y +C ′Ω(x(n))Cx(n)

= x(n) − y +C ′ψ̇(Cx(n)) = ∇Ψ(x(n)),

where nk = np − 1, ψ̇ was defined in (14.4.3), Ω(x) , diag{ωk([Cx]k)}, and

∇2 φ(n)(x) = I +C ′Ω(x(n))C.

So Huber’s algorithm is simply:

x(n+1) = x(n) + [I +C ′Ω(x(n))C]
−1

[y − x(n) −C ′Ω(x(n))Cx(n)] .

This algorithm requires inversion of the banded Hessian matrix I + C ′Ω(x(n))C each iteration, and efficient algo-
rithms for this problem exist, based on the Cholesky decomposition, e.g., [94, 95]. Because each ωk is bounded above
by ωk(0), to reduce computation, one could apply Böhning and Lindsay’s algorithm (14.3.7) as follows:

x(n+1) = x(n) + [I +C ′Ω0C]
−1

[y − x(n) −C ′Ω(x(n))Cx(n)] ,

where Ω0 , diag{ωk(0)} . Alternatively, one could apply a coordinate descent method to minimize the quadratic
surrogate (14.5.15).

6 In this case, the matrixB in (14.4.1) isB =

[
Ind

C

]
.
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To form an algorithm that is easily implemented in MATLAB, we apply De Pierro’s trick (14.5.9) [11]:

xj+1 − xj =
1

2

(
2
[
xj+1 − x(n)

j+1

]
+
[
x(n)

j+1 − x
(n)

j

])
+

1

2

(
−2
[
xj − x(n)

j

]
+
[
x(n)

j+1 − x
(n)

j

])
,

so for any convex function q (see §28.9):

q(xj+1 − xj) ≤
1

2
q
(
2
[
xj+1 − x(n)

j+1

]
+
[
x(n)

j+1 − x
(n)

j

])
+

1

2
q
(
−2
[
xj − x(n)

j

]
+
[
x(n)

j+1 − x
(n)

j

])
.

Thus, considering (14.5.15) and the preceding inequality, a separable quadratic surrogate for this problem is

φ(n)

2 (x) =
1

2
‖y − x‖2 +

∑
k

[
1

2
qk
(
2
[
xj+1 − x(n)

j+1

]
+
[
x(n)

j+1 − x
(n)

j

])
+

1

2
qk
(
−2
[
xj − x(n)

j

]
+
[
x(n)

j+1 − x
(n)

j

])]
,

where
∇φ(n)

2 (x)
∣∣
x=x(n) = x(n) − y +C ′Ω(x(n))Cx(n) = ∇Ψ(x(n))

and
∇2 φ(n)

2 (x) = I + diag
{
d(n)

j

}
where

d(n)

j =

 2ω1([Cx(n)]1), j = 1
2ωj−1([Cx(n)]j−1) +2ωj([Cx

(n)]j), j = 2, . . . , np − 1
2ωnp−1

(
[Cx(n)]np−1

)
, j = np.

Thus, Huber’s algorithm for this alternative surrogate is:

x(n+1) = x(n) +
[
I + diag

{
d(n)

j

}]−1
[y − x(n) −C ′Ω(x(n))Cx(n)] ,

which is trivial to implement because the required inverse only involves a diagonal matrix. To simplify even further,
let ωmax = maxk ωk(0) . Then a version of Böhning and Lindsay’s algorithm for this problem is simply:

x(n+1) = x(n) +
1

1 + 4ωmax
[y − x(n) −C ′Ω(x(n))Cx(n)] .

14.5.7.3 Example: iterative thresholding (s,ox,it)s,ox,it

x,ox,it

Example 14.5.2 Consider the regularized least-squares cost function of the following form:

Ψ1(x) =
1

2
‖y −Ax‖2W 1/2 + β ‖U ′x‖1 , (14.5.16)

e,ox,it,Kx

where hereU is a unitary matrix such as an orthonormal wavelet basis. This type of cost function arises in compressed
sensing formulations where U ′x is assumed to be sparse. In this example we use separable quadratic surrogates to
derive an iterative soft thresholding (IST) algorithm [96, 97].

When U is unitary, this problem is equivalent to finding x̂ = Uẑ, where

ẑ = arg min
z

Ψ(z), Ψ(z) = Ψ(Uz) =
1

2
‖y −AUz‖2W 1/2 + β ‖z‖1 .

Rewrite the data-fitting term as follows:

L- (z) ,
1

2
‖y −AUz‖2W 1/2

= L- (z(n)) +(z − z(n))′∇ L- (z(n)) +
1

2
(z − z(n))′U ′A′WAU(z − z(n)).
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Let c̆ be a constant such thatA′WA � c̆ I. See for example Theorem 14.3.1 or let c̆ = maxj dj defined in (14.5.10).
Then a suitable quadratic surrogate function for the data-fit term is

φ(n)

1 (x) = L- (z(n)) +(z − z(n))′∇ L- (z(n)) +
c̆

2
(z − z(n))′(z − z(n))

≡ c̆

2

∥∥∥∥z − z(n) +
1

c̆
∇ L- (z(n))

∥∥∥∥2

,

because U ′U = I. Thus a surrogate for the overall cost function is

φ(n)(z) ,
c̆

2

∥∥∥∥z − z(n) +
1

c̆
∇ L- (z(n))

∥∥∥∥2

+ β ‖z‖1 . (14.5.17)
e,ox,it,surr

Following Problem 1.12, define the soft-thresholding function

soft{t;α} = arg min
s

1

2
|t− s|2 + α |s| = t (1− α/ |t|) I{|t|>α}.

Because φ(n)(·) in (14.5.17) is separable, its minimizer is expressed easily in terms of the soft-thresholding function:

z(n+1) = arg min
z

φ(n)(z) = soft

{
z(n) − 1

c̆
∇ L- (z(n));

β

c̆

}
(14.5.18)

e,ox,it,znn,cgrad

= soft

{
z(n) +

1

c̆
U ′A′W (y −AUz(n));

β

c̆

}
. (14.5.19)

e,ox,it,znn

We can rewrite this algorithm in terms of x(n) as follows:

x(n+1) = U soft

{
U ′
(
x(n) +

1

c̆
A′W (y −Ax(n))

)
;
β

c̆

}
. (14.5.20)

e,ox,it,xnn

This method is appealingly simple, but has the practical drawback of slow convergence because the curvature c̆ can
be large.

MIRT See mri_cs_ist_example.m.

See Problem 14.10 for generalizations to non-quadratic data-fit terms. Generalizing this example to use ordered
subsets is an interesting open problem. Although we focused on ‖·‖1 in this example, the principles generalize to any
sparsity prior, including ‖·‖1, by using the other thresholding functions considered in Problem 1.12.

In this derivation we used the scaled identity c̆ I to upper bound the Hessian. For certain types of transforms U ,
such as wavelet transforms, one can use specific diagonal upper bounds that may provide faster convergence [98].

14.5.8 Grouped coordinate algorithms (s,ox,group)s,ox,group

All of the algorithms described above either update all pixels simultaneously, or update pixels one-by-one sequentially
(i.e., in the coordinate descent approach). In some cases it can be beneficial to update a group of parameters simultane-
ously, holding all other parameters at their most recent values. Such a method is called grouped coordinate-descent
(GCD) or block coordinate-descent. This type of approach is applicable to both the cost function Ψ as well as to the
surrogate functions in the optimization transfer framework.

We first establish some notation. An index set S is a nonempty subset of the set {1, . . . , np}. The set S̃ denotes
the complement of S intersected with {1, . . . , np}. Let |S| denote the cardinality of S. We use xS to denote the
|S|-dimensional vector consisting of the |S| elements of x indexed by the members of S. We similarly define xS̃ as
the np− |S| dimensional vector consisting of the remaining elements of x. For example, if np = 5 and S = {1, 3, 4},
then S̃ = {2, 5}, xS = (x1, x3, x4), and xS̃ = (x2, x5). Occasionally we use S as a superscript of a function or
matrix, to serve as a reminder that the function or matrix depends on the choice of S.

One more notational convention will be used hereafter. Functions like Ψ(x) expect a np-dimensional vector
argument, but it is often convenient to split the argument x into two vectors: xS and xS̃ , as defined above. Therefore,
we define expressions such as the following to be equivalent: Ψ(xS ,xS̃) = Ψ(x) .
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14.5.8.1 Direct minimization

In a direct grouped coordinate-descent (GCD) method, one sequences through different index sets Sn and updates
only the elements xSn of x while holding the other parameters xS̃n fixed [49]. At the nth iteration one would like to

assign x(n+1)

Sn to the argument that minimizes Ψ
(
xSn ,x

(n)

S̃n

)
over xSn , as summarized in the following algorithm.

“Direct” GCD “Algorithm”

Choose Sn
x(n+1)

S̃n
= x(n)

S̃n

x(n+1)

Sn = arg min
xSn

Ψ
(
xSn ,x

(n)

S̃n

)
. (14.5.21)

e,ox,gcd,direct

As always, the minimization will be subject to any applicable constraints. This type of approach has been applied in a
variety of fields [99–102]. This approach is globally convergent under remarkably broad conditions [103].

In many imaging problems, the minimization (14.5.21) is difficult, even if Sn only consists of a few pixels. One
could apply any of the previously described iterative methods, such as the Newton-Raphson algorithm, to perform the
minimization (14.5.21), which would require subiterations within the iterations. A more elegant and general approach
is to combine the grouped coordinate concept with the optimization transfer approach.

14.5.8.2 Surrogate minimization

Combining the GCD approach with a surrogate function leads to “indirect” GCD algorithms. For a fully simultaneous
iteration where all pixels are updated simultaneously, the surrogate function condition (14.1.2) guarantees monotonic
decreases in Ψ. However, by working with smaller groups of parameters at a time, one can relax (14.1.2) considerably.
Essentially, the condition (14.1.2) only needs to hold on the restriction of Ψ to the parameters being updated. In
mathematical terms, when updating the group xS , we choose a surrogate function φS that satisfies the following
condition:

Ψ(x(n))−Ψ
(
xS ,x

(n)

S̃

)
≥ φS(x(n)

S ;x(n))− φS(xS ;x(n)), ∀xS ,x(n), (14.5.22)
e,ox,gcd,mono

or the following equivalent pair of conditions:

φS(x(n)

S ;x(n)) = Ψ(x(n)), ∀x(n)

φS(xS ;x(n)) ≥ Ψ
(
xS ,x

(n)

S̃

)
, ∀xS ,x(n).

Incorporating such surrogate functions into the grouped coordinate descent algorithm (14.5.21) leads to the following
very general family of methods.

“Indirect” GCD “Algorithm”

Choose Sn
Choose φSn(xSn ;x(n)) satisfying (14.5.22)

x(n+1)

S̃n
= x(n)

S̃n

x(n+1)

Sn = arg min
xSn

φSn(xSn ,x
(n)

S̃n
). (14.5.23)

e,ox,gcd

Many of the algorithms discussed in this book belong to this class of methods. Specific examples of such methods in
the imaging literature include [104–106].

14.5.9 Examples (s,ox,ex)s,ox,ex

This section gives some examples of the use of optimization transfer with quadratic surrogate for minimizing non-
quadratic cost functions.
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14.5.9.1 Simple 1D minimization (s,ox,ex1)s,ox,ex1

x,ox,surrogate

Example 14.5.3 Consider the problem of minimizing the cost function

Ψ(x) = ψ(x) +2ψ(x− 1),

where the strictly convex potential function ψ is the following hyperbola:

ψ(x) =
√
x2 + 1.

(This potential function arises in edge-preserving image recovery; see [76] and Table 2.1.) By Theorem 14.4.5 the
following quadratic function is a suitable surrogate function for ψ:

q(x;x(n)) = ψ(x(n)) + ψ̇(x(n))(x− x(n)) +
1

2
ωψ(x(n))(x− x(n))2,

thus a suitable surrogate function for Ψ is

φ(n)(x) , q(x;x(n)) + 2q(x− 1;x(n) − 1).

Applying Huber’s algorithm (14.3.6) using ωψ from Table 2.1 yields the following simple iteration:

x(n+1) = x(n) − ψ̇(x(n)) +2 ψ̇(x(n) − 1)

ωψ(x(n)) +2ωψ(x(n) − 1)
= x(n) −

x(n)√
(x(n))2+1

+ 2 x(n)−1√
(x(n)−1)2+1

1√
(x(n))2+1

+ 2 1√
(x(n)−1)2+1

.

Fig. 14.5.3 shows the cost function Ψ, the surrogate function φ(n), and illustrates that a few iterations of this algorithm
leads rapidly to the minimizer of Ψ.

0

3

-1 0 1

Ψ
(x

)

x

φ
(n)

(x)
Ψ(x)

{x
(n)

} (Huber)

Figure 14.5.3: Finding the minimizer of a 1D function Ψ(x) using optimization transfer (Huber’s iteration) with a
quadratic surrogate function φ(n)(x).

fig_ox_recon_ex1a

Because the curvature of ψ is bounded by unity, Böhning and Lindsay’s lower-bound algorithm (14.3.7) has the
following even simpler form:

x(n+1) = x(n) − ψ̇(x(n)) +2 ψ̇(x(n) − 1)

ωψ(0) +2ωψ(0)
= x(n) − 1

3

[
x(n)√

(x(n))2 + 1
+ 2

x(n) − 1√
(x(n) − 1)2 + 1

]
.

For comparison, the Newton-Raphson algorithm (11.4.3) for this problem is given by

x(n+1) = x(n) −
x(n)√

(x(n))2+1
+ 2 x(n)−1√

(x(n)−1)2+1

[(x(n))2 + 1]
−3/2

+ 2 [(x(n) − 1)2 + 1]
−3/2

.
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Fig. 14.5.4 compares {x(n)} for the three algorithms given above: Huber’s, Böhning and Lindsay’s, and Newton
Raphson. Divergence of NR is caused by the small curvature of the hyperbola ψ for large arguments, leading to a
poor quadratic approximation and inappropriately large steps. Huber’s method converges faster than Böhning and
Lindsay’s, because the latter uses unnecessarily large curvatures for the surrogate functions.

-1

2

0 2 4 6

x
(n

)

iteration n

Huber
Bohning-Lindsay

Newton

Figure 14.5.4: Iterates x(n) for 1D example for three algorithms.
fig_ox_recon_ex1b

14.5.9.2 l1 regression (s,ox,l1)s,ox,l1

x,ox,l1,reg

Example 14.5.4 Consider the `1 regression problem of minimizing the following cost function

Ψ̌(x) =

nd∑
i=1

|[Ax]i − bi| =
nd∑
i=1

ψ̌i([Ax]i), ψ̌i(t) = |t− bi| ,

for x ∈ Rnp and A ∈ Rnd×np . This notorious cost function is convex but need not be strictly convex, so it may not
have a unique minimizer. It is also not everywhere differentiable. We can remedy these problems by replacing the
absolute value function with a strictly convex potential function that is a close approximation, such as the following
hyperbola:

ψ(t) =
√
t2 + ε ≈ |t|, (14.5.24)

e,ox,l1,hyper

for some small ε > 0. This approximation is called corner rounding. So we replace Ψ̌ with

Ψ(x) =

nd∑
i=1

ψi([Ax]i), ψi(t) = ψ(t− bi) .

We now have a convex minimization problem; if np is small, then Huber’s algorithm (14.3.6) is a reasonable choice.
By Theorem 14.4.5, a parabola of the form (14.4.15) is a suitable surrogate function for ψ, when ωψ(s) = 1√

s2+ε
.

Thus, following (14.4.5), a suitable surrogate function for Ψ is

φ(n)(x) ,
nd∑
i=1

q([Ax]i − bi ; [Ax(n)]i − bi).

The gradient of this surrogate at x(n) is

∇φ(n)(x)|x=x(n) = A′D(ωψ([Ax(n)]i − bi)) ([Ax(n)]i − bi) = ∇Ψ(x(n)) .

The Hessian of this surrogate is

∇2∇φ(n)(x) = A′D(ωψ([Ax(n)]i − bi))A.
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Thus, Huber’s algorithm (14.3.6) is the following simple iteration:

x(n+1) = x(n) − [A′D(ωψ([Ax(n)]i − bi))A]
−1
A′D(ωψ([Ax(n)]i − bi)) ([Ax(n)]i − bi). (14.5.25)

e,ox,l1,huber

Again, because the curvature of ψ is bounded above by 1/
√
ε, one could also apply Böhning and Lindsay’s lower-

bound algorithm (14.3.7). However, if ε is small, then the large value of the upper bound, 1/
√
ε, may cause very slow

convergence.
As ε→ 0, the weighting function ωψ(s) approaches 1/ |s|, which was used in [107] with a heuristic modification

when the argument becomes “very small.” It is unclear whether that approach would converge, whereas Huber’s
algorithm (14.5.25) is at least guaranteed to decrease Ψ every iteration.

Some authors [108] have used Huber’s algorithm for total variation (TV) regularization without corner rounding,
in which case ωψ(t) = sgn(t)

t = 1
|t| , arguing that the singularity issue at t = 0 “is not in fact an issue” if the image is

initialized properly.

An alternative to corner rounding is to use Young’s inequality [wiki]: |st| ≤ 1
2 |s|

2
+ 1

2 |t|
2

=⇒ |t| ≤ 1
2 φ(t; s) ,

|s| + 1
2|s| |t|

2 if s 6= 0 as discussed in [109]. However, the |s| term in the denominator diverges as s → 0, leading to
numerical problems [109]. This approach should be avoided; instead use an explicit approximation like (14.5.24), or
an alternative algorithm designed for nonsmooth regularizers.
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14.6 Acceleration via momentum, e.g., FISTA (s,ox,fista)
s,ox,fista

One way to accelerate optimization transfer algorithms is to modify the update to include a momentum term, as
described below.

Optimization transfer with momentum (e.g., FISTA)
Initialize: x(0), z(1) = x(0), and choose momentum factors {βn}
for n = 1, 2, . . .

x(n) = arg min
x∈X

φ(x; z(n))

z(n+1) = x(n) + βn(x(n) − x(n−1)). (14.6.1)
e,ox,momentum

The update (14.6.1) is called a momentum term. If we choose βn = 0 then the method simplifies to a conventional
optimization transfer algorithm.

One example of such an approach is the fast iterative soft thresholding algorithm (FISTA) [43], for which

βn =
tn − 1

tn+1
, t1 = 1, tn+1 =

1 +
√

1 + 4t2n
2

, (14.6.2)
e,ox,momentum,fista,bet_n

where one can verify that the momentum factor {βn} increases monotonically towards 1 as iteration n increases.
x,os,fista,quad

Example 14.6.1 For a quadratic surrogate of the form (14.3.5), when X = Rnp , the first step simplifies to

x(n) = z(n) − J−1
n ∇Ψ(z(n)),

leading to the recursion

x(n+1) =
(
(1 + βn)x(n) − βnx(n−1)

)
− J−1

n+1∇Ψ
(
(1 + βn)x(n) − βnx(n−1)

)
.

In particular, for a quadratic cost function where∇Ψ(x) = Hx− b, and where P = J−1
n , we have the recursion[

x(n+1)

x(n)

]
=

[
(1 + βn)S −βnS

I 0

] [
x(n)

x(n−1)

]
−
[
Pb
0

]
, (14.6.3)

e,ox,momentum,quad

where S , I − PH. One can verify that the fixed point of this iteration is x̂ = H−1b if P and H are nonsingular.
If the sequence {βn} approaches a limit β, then the asymptotic convergence rate is governed by the eigenvalues of the
matrix [

(1 + β)S −βS
I 0

] [
u
v

]
= λ

[
u
v

]
so noting that u = λv and simplifying yields

(λ(1 + β)− β)S v = λ2 v .

If σ is an eigenvalue of S with corresponding eigenvector v, i.e., S v = σ v, then

λ2 − (1 + β)σλ+ βσ = 0 =⇒ λ =
(1 + β)σ ±

√
(1 + β)2σ2 − 4βσ

2
.

If σ ∈ [0, 1), which occurs when P−1 � H , as discussed in (14.1.10), then it appears that the spectral radius that

describes the root convergence factor of (14.6.1) is given by ρ =
(1+β)σ+

√
|(1+β)2σ2−4βσ|

2 and it appears that in the
scalar case, as a function of β, convergence is fastest when 0 = (1+β)2σ2−4βσ, i.e., β = 2/σ−1−

√
(2/σ − 1)2 − 1,

for which ρ = (1+β)σ
2 = 1 −

√
1− σ ≤ σ. So (14.6.1) can converge faster than ordinary optimization transfer if we

choose β appropriately.
Fig. 14.6.1 shows λ for various σ and β values.
Fig. 14.6.2 shows the root convergence factor of (14.6.1) when β is chosen optimally as a function of σ for a 1D

problem.
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Figure 14.6.1: Plots of λ for various σ and β.
fig_ox_fista_rate1
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Figure 14.6.2: Plot of the root convergence factor ρ of the optimization transfer method accelerated via momentum
versus σ, the root convergence factor for the optimization transfer algorithm for a 1D quadratic problem.

fig_ox_fista_rate1b
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14.7 Alternating-minimization procedure (s,ox,amp)
s,ox,amp

Csiszár and Tusnády [144] described an intriguing framework for developing iterative algorithms, called the alter-
nating minimization procedure. Let P and Q denote two convex sets, and let D(p ‖ q) denote some measure of
“distance” between p ∈ P and q ∈ Q, i.e., D : P × Q → R. Then given an initial q(0) ∈ Q, define the following
iteration, which alternates between updating p and q:

Step 1: p(n+1) = arg min
p∈P

D(p ‖ q(n)) (14.7.1)
e,ox,amp,p

Step 2: q(n+1) = arg min
q∈Q

D
(
p(n+1) ‖ q

)
. (14.7.2)

e,ox,amp

Conditions that ensure convergence of the sequences to the minimizer of D(p ‖ q) over P ×Q are discussed in [144].
To make such an algorithm useful for statistical image reconstruction, one must choose appropriate spaces P and

Q and an appropriate function D such that the minimizer of D corresponds to the minimizer of the cost function Ψ of
interest. Examples of this approach are given in §15.6.4, §18.13, and [145, 146].

In the context of image reconstruction problems, typical cost functions have the “partially separable” form
(14.4.1). When minimizing such cost functions over a parameter space X ⊂ Rnp , reasonable choices for P and
Q are as follows:

P ,

p = {pij} ∈ RNi×np :
np∑
j=1

pij = ti, i = 1, . . . , Ni


Q ,

{
q = q(x) ∈ RNi×np : qij = bijxj , i = 1, . . . , Ni, for some x ∈ X

}
,

where ti , arg mint ψi(t) . Natural choices for D have the form

D(p ‖ q) =

Ni∑
i=1

np∑
j=1

ψij(pij , qij), (14.7.3)
e,ox,amp,D,recon

for some functions ψij(·) chosen by the algorithm designer subject to the requirement that the minimizer of D should
correspond to the minimizer of the cost function Ψ:

arg min
x

Ψ(x) = arg min
x:q(x)∈Q

min
p∈P

D(p ‖ q(x)) . (14.7.4)
e,ox,amp,necc

For the above choices of P , Q, and D, the alternating minimization procedure reduces to the following steps.
Given a previous guess x(n), define q(n)

ij = bijx
(n)

j . Then for Step 1 of the procedure, we find

p(n+1) = arg min
p∈P

D(p ‖ q(n))

where

D(p ‖ q(n)) =

Ni∑
i=1

np∑
j=1

ψij
(
pij , q

(n)

ij

)
.

Because P has a product form and D is additively separable, Step 1 separates into the following Ni minimization
problems: {

p(n+1)

ij

}np

j=1
= arg min
{{pij}np

j=1 :
∑np

j=1 pij=ti}

np∑
j=1

ψij
(
pij , q

(n)

ij

)
, i = 1, . . . , Ni. (14.7.5)

e,ox,ampl,s1

One can solve each of these minimization problems using the method of Lagrange multipliers.
For Step 2, we find

x(n+1) = arg min
x

D
(
p(n+1) ‖ q(x)

)
= arg min

x

Ni∑
i=1

np∑
j=1

ψij

(
p(n+1)

ij , qij(x
)

). (14.7.6)
e,ox,ampl,s2
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Due to the form of Q and the additive separable form of D, Step 2 simplifies to

x(n+1)

j = arg min
xj

Ni∑
i=1

ψij

(
p(n+1)

ij , bijxj

)
, j = 1, . . . , np.

Clearly the utility of the alternating minimization procedure hinges on whether one can find choices for ψij for which
the minimizer of D corresponds to the minimizer of Ψ, and for which Steps 1 and 2 are easily solved. We will see
that such choices are readily available for the weighted least-squares cost function (§15.6.4) and for the emission
tomography log-likelihood, (§18.13). Finding a suitable choice for the transmission tomography log-likelihood is an
open problem.

14.7.1 Relationship to optimization transfer
It has perhaps not been widely appreciated that, at least in the context of image reconstruction, alternating minimization
methods are simply a special case of optimization transfer. This section describes the relationship.

We can write the two steps of an alternating minimization method as follows.

Step 1: Find p(?)(x(n)), where p(?)(x) , arg min
p∈P

D(p ‖ q(x))

Step 2: x(n+1) = arg min
x : q(x)∈Q

D(p(?)(x(n)) ‖ q(x)) (14.7.7)
e,ox,amp,new

Clearly, by this construction, the following equalities are satisfied

D(p(?)(x) ‖ q(x)) ≤ D(p ‖ q(x)), ∀x ∈X, ∀p ∈ P
D
(
p(?)(x(n)) ‖ q(x(n+1))

)
≤ D(p(?)(x(n)) ‖ q), ∀q ∈ Q,

so in particular

D
(
p(?)(x(n+1)) ‖ q(x(n+1))

)
≤ D

(
p(?)(x(n)) ‖ q(x(n+1))

)
≤ D(p(?)(x(n)) ‖ q(x(n))) .

In all examples of alternating minimization methods for image reconstruction that I have seen, the functionD is chosen
such that

Ψ(x) = D(p(?)(x) ‖ q(x)) = min
p∈P

D(p ‖ q(x)), (14.7.8)
e,ox,amp,suff

which is sufficient to ensure (14.7.4). Combining the two previous equations, we see immediately that Ψ
(
x(n+1)

)
≤

Ψ(x(n)), i.e., alternating minimization methods of the above form are monotonic descent methods.
In terms of an optimization transfer viewpoint, the equivalent surrogate function is

φ(n)(x) = D(p(?)(x(n)) ‖ q(x))

for which
φ(n)(x(n)) = D(p(?)(x(n)) ‖ q(x(n))) = Ψ(x(n))

φ(n)(x) = D(p(?)(x(n)) ‖ q(x)) ≥ D(p(?)(x) ‖ q(x)) = Ψ(x) .

This surrogate function satisfies the required conditions (14.1.4) when (14.7.8) holds.
Some authors apparently find the “geometric” perspective offered by Csiszár and Tusnády’s paper [144] to be in-

sightful. Although the optimization transfer approach may lack this geometric structure, only basic algebra is required
to derive an algorithm using optimization transfer.

14.7.2 Incremental methodss,ox,amp,inc

Neal and Hinton [147] developed an incremental extension of EM algorithm, and the incremental concept is also
applicable to alternating minimization when D has the form (14.7.3). Instead of updating every element of p in
(14.7.1), it may be easier to update only a subset of the pij terms, and hold the remaining pij terms to their previous
values. Then one updates q using (14.7.2) using all of the current pij estimates, some of which were more recently
updated than others.

With such an incremental update of p, the algorithm will monotonically decrease D, but no longer will the algo-
rithm monotonically decrease the original cost function. However, convergence can still be established under certain
assumptions [148–151]. See §14.11 for a general formulation in terms of optimization transfer.
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14.8 Difference of convex functions procedure (s,ox,dc)
s,ox,dc

Suppose we have a cost function of the form

Ψ(x) = f(x)− g(x)

where both f and g are convex (and closed and proper). Then by (28.9.15)

g(x) = inf
z

(g?(z)− 〈z, x〉) ,

minimizing Ψ(x) is equivalent to
min
x,z

f(x)− 〈z, x〉+g?(z).

This approach is called the difference of convex functions (DC) method [152–156], also known as the concave-
convex procedure (CCCP) [157].

14.9 Expectation-maximization (EM) methods (s,ox,em)
s,ox,em

The expectation-maximization (EM) family of algorithms provides methods for computing the maximum-likelihood
(ML) estimate θ̂ of an unknown parameter vector θtrue residing in subset Θ of Rnp , from a measured realization
y ∈ Rnd of an observable random vector Y having the probability mass function7 p(y;θtrue), where θtrue is the true
value of the unknown parameter. Computationally, for ML estimation we must find the maximizer of a log-likelihood
merit function8:

θ̂ , arg max
θ∈Θ

L(θ), (14.9.1)
e,ox,em,problem

where the log-likelihood is given by
L(θ) , log p(y;θ) . (14.9.2)

e,ox,em,L

For a wide variety of important statistical estimation problems, direct maximization of L(θ) is intractable, so one must
resort to iterative methods.

As noted by Lange et al. [3], “Many specific EM algorithms can even be derived more easily by invoking opti-
mization transfer rather than missing data.” Indeed, this conclusion applies to all of the EM algorithms considered in
this book . In short, my view is that the EM approach is an obsolete method for deriving optimization algorithms for
image reconstruction algorithms9. Our presentation is thus primarily for historical completeness.

As illustrated in Example 14.9.3 below, in many estimation problems one can imagine a hypothetical experiment
that would yield a more extensive measurement vector that, if observed, would greatly simplify the parameter estima-
tion problem. This measurement vector is called the “complete data” in EM terminology, and is the basic ingredient in
deriving a specific EM algorithm10. The EM method is a special case of the optimization transfer approach described
in §14.1, in which we replace the maximization of L(θ) with the maximization of another functional Q(θ;θ(n)) that
is related to the condition log-likelihood of the complete-data given the observed data. Of course if we choose the
complete-data vector unwisely, then the problem of maximizing Q(·;θ(n)) may end up being as difficult as the orig-
inal maximization problem, requiring inconvenient numerical methods like line searches. But with a wise choice
for the complete-data vector, often one can maximize Q(·;θ(n)) analytically, a tremendous simplification. Even if
one cannot maximize Q analytically, one can often choose complete-data vectors such that it is easier to evaluate
Q(·;θ(n))−Q(θ(n);θ(n)) than L(·)− L(θ(n)), so line searches for maximizing Q(·;θ(n)) would be cheaper than line
searches for maximizing L(·). The statistical formulation of the functionals Q inherently ensures that increases in Q
yield increases in L(θ).

To construct the surrogate functions Q, we must identify an admissible complete-data vector defined in the follow-
ing sense.

7 For simplicity, we restrict our description to discrete-valued random variables. The method is easily extended to general distributions [160].
8 For consistency with the majority of the EM literature, we use θ to denote the unknown parameter vector and L(θ) to denote the merit function

to be maximized, rather than considering minimization of a cost function Ψ(x) as described in previous sections.
9 However, it must be said that distinguished statisticians have been unable to prove that optimization transfer provides a strictly broader family

of methods than EM. (See the discussion by Meng in [3].)
10 The discussants of the seminal EM paper [6] complained about the term “algorithm” because the EM approach in fact yields a whole family

of algorithms depending on the designer’s choice of a complete data vector.
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d,complete-data

Definition 14.9.1 A random vector Z with probability mass function p(z;θ) is an admissible complete-data vector
for p(y;θ) if the joint distribution of Z and Y satisfies

p(y, z;θ) = p(y | z) p(z;θ), (14.9.3)
e,ox,em,admit

i.e., the conditional distribution p(y | z) must be independent of θ.

The definition used for the classical EM algorithm [6] is contained as a special case of Definition 14.9.1 by requiring
Y to be a deterministic function of Z [160]. In non-imaging statistical problems, often Z = (Y ,Ymissing) where
Ymissing denotes unobserved or “missing” data; in imaging problems this decomposition is rarely natural.

14.9.1 Algorithm
An essential ingredient of any EM algorithm is the following conditional expectation11 of the log-likelihood of Z:

Q(θ;θ(n)) , E[log p(Z;θ) |Y = y;θ(n)] (14.9.4)
e,ox,em,Q

=
∑
z

[log p(z;θ)] p(z |Y = y;θ(n)) . (14.9.5)
e,ox,em,estep

Let θ(0) ∈ Θ be an initial parameter estimate. A generic EM algorithm produces a sequence of estimates {θ(n)}∞n=0

via the following recursion.

EM “Algorithm”
for n = 0, 1, . . . {

1. Choose an admissible complete-data vector Z

2. E-step: “Compute” Q(θ;θ(n)) using (14.9.4)

3. M-step:
θ(n+1) = arg max

θ∈Θ
Q(θ;θ(n)) (14.9.6)

e,ox,em,mstep

}.

If one chooses the complete-data vectors appropriately, then typically one can combine the E-step and M-step via an
analytical maximization into a recursion of the form θ(n+1) =M(θ(n)). The examples in later sections illustrate this
important aspect of the EM method.

Note that if one chooses Z = Y , then one sees from (14.9.4) that Q(θ;θ(n)) = L(θ), and the maximization
problem (14.9.6) reverts to the original problem (14.9.1).

Rather than requiring a strict maximization in (14.9.6), one could settle simply for local maxima [160], or for mere
increases inQ, in analogy with generalized EM (GEM) algorithms [6], as described in §14.9.5. These generalizations
provide the opportunity to further refine the trade-off between convergence rate and computation per-iteration.

14.9.2 Monotonicity (s,ox,em,mono)s,ox,em,mono

Many standard optimization methods require line searches with evaluation of L
(
θ(n+1)

)
− L(θ(n)) to ensure mono-

tonicity. An appealing property of the EM method is that it provides intrinsically monotonic iterative algorithms, as
established in following theorem.

t,ox,em,mono

Theorem 14.9.2 Let {θ(n)} denote the sequence of estimates generated by an EM algorithm (14.9.6) with surrogate
function Q satisfying (14.9.4) Then 1) L(θ(n)) is monotonically nondecreasing, i.e., L

(
θ(n+1)

)
≥ L(θ(n)), 2) if θ̂

maximizes L(·), then θ̂ is a fixed point of the EM algorithm, and 3)

L
(
θ(n+1)

)
− L(θ(n)) ≥ Q(θ(n+1);θ(n))−Q(θ(n);θ(n)).

11 The summation
∑

z is over the range of values of Z, and 0 log 0 is interpreted as zero.
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Proof (see e.g., [16, p. 118] or [6]):
Applying Bayes’ rule to (14.9.4) using (14.9.3) we see that

Q(θ;θ(n)) =
∑
z

p(z |Y = y;θ(n)) log p(z;θ)

=
∑
z

p(z |Y = y;θ(n)) log
p(z |Y = y;θ) p(y;θ)

p(y | z)

= L(θ) +H(θ;θ(n))−W (θ(n)), (14.9.7)
e,ox,em,qhl

where L is defined in (14.9.2),

H(θ;θ(n)) , E[log p(Z |Y = y;θ) |Y = y;θ(n)], (14.9.8)
e,ox,em,hs

and
W (θ(n)) ,

∑
z

p(z |Y = y;θ(n)) log p(y | z) .

Because W is independent of θ, it does not affect the maximization (14.9.6). Using Jensen’s inequality (28.9.8):

H(θ;θ(n))−H(θ(n);θ(n)) =
∑
z

p(z |Y = y;θ(n)) log

(
p(z |Y = y;θ)

p(z |Y = y;θ(n))

)

≤ log

(∑
z

p(z |Y = y;θ(n))
p(z |Y = y;θ)

p(z |Y = y;θ(n))

)
= 0,

so
H(θ;θ(n)) ≤ H(θ(n);θ(n)), ∀θ, ∀θ(n). (14.9.9)

e,ox,em,H,jensen

From (14.9.7) it follows that

L(θ)− L(θ(n)) = [Q(θ;θ(n))−H(θ;θ(n))]− [Q(θ(n);θ(n))−H(θ(n);θ(n))]

= [Q(θ;θ(n))−Q(θ(n);θ(n))] + [H(θ(n);θ(n))−H(θ;θ(n))]

≥ Q(θ;θ(n))−Q(θ(n);θ(n)),

by (14.9.9). Thus, if we find any value θ(n+1) satisfying Q(θ(n+1);θ(n)) ≥ Q(θ(n);θ(n)), then we are assured that
L
(
θ(n+1)

)
≥ L(θ(n)). The results then follow from the definition of the EM algorithm. 2

This proof can be generalized for mixed discrete/continuous random variables. See [16, p. 119] for a rigorous
treatment.

It follows from (14.9.7) and (14.9.9) that

∇10Q(θ(n);θ(n)) , ∇θQ(θ;θ(n))|θ=θ(n) = ∇ L(θ(n)) . (14.9.10)
e,ox,em,dQ=dL

Thus, the EM surrogate function Q satisfies the important condition (14.1.5) of a surrogate function for optimization
transfer.

14.9.3 Asymptotic convergence rate (s,ox,em,rate)s,ox,em,rate

Because EM algorithms are special cases of optimization transfer methods, analysis of the asymptotic convergence
rate of EM algorithms follows directly from §14.1.5 (which was in fact inspired by similar analysis in [6]).

For a statistical interpretation of (14.1.9), we can apply (14.9.7) to note that

I −
[
−∇20Q

]−1 [−∇2 L
]

= I −
[
−∇2L−∇20H

]−1 [−∇2 L
]
,

The Hessian matrix −∇2 L is called the observed Fisher information matrix of the incomplete-data, whereas the
matrix −∇2H quantifies how much more informative is the hypothesized complete data relative to the measured
incomplete data. From the above expression, in light of the convergence rate analysis in §14.1.5, we see that if
one chooses an overly informative complete data, then the resulting EM algorithm will converge very slowly. This
relationship is examined quantitatively in [34, 161] (cf. §15.5.3).
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14.9.4 Example application with missing data (s,ox,em,ex)s,ox,em,ex

x,ox,em

Example 14.9.3 This example illustrates an EM approach in the context of a traditional missing-data problem. Sup-
pose we attempt to collect three independent and identically distributed samples of a random vector Z ∈ R2 having

a normal distribution with unknown mean θ = [θ1 θ2]
′ but known12 covariance K =

[
1 ρ
ρ 1

]′
with ρ = 1/2. Due

to instrumentation failure13, suppose that rather than recording [Z1 Z2 Z3] =

[
Z11 Z21 Z31

Z12 Z22 Z32

]
we only record

(observe):

[Y1 Y2 Y3] =

[
y11 y21

y12 y32

]
=

[
60 0
30 0

]
.

From the observed values (Y1,Y2,Y3) we wish to determine the ML estimate of θ. The naive estimate of θ would just
take the average of the available measurements in each row:

θ̂naive =

[
Y11+Y21

2
Y12+Y32

2

]
=

[
60+0

2
30+0

2

]
=

[
30
15

]
. (14.9.11)

e,ox,em,naive

Another option would be to discard all the vectors with missing elements, which in this case would leave just Y1, with
corresponding estimate θ̂discard = (60, 30). However, these are not the same as the ML estimate for this problem.
Fig. 14.9.1 displays contours of the log-likelihood:

L(θ) ≡ log

3∏
i=1

1√
|det{S′iKSi}|

exp

(
−1

2
(yi − Siθ)′[S′iKSi]

−1(yi − Siθ)

)
,

where

S1 ,

[
1 0
0 1

]
, S2 ,

[
1 0

]
, S3 ,

[
0 1

]
, y1 =

[
60
30

]
, y2 = 0, y3 = 0.

From Fig. 14.9.1 it is clear that the ML estimate is θ̂ =
[

28 8
]′
. However, for larger problems we must apply

numerical procedures to find θ̂, and EM algorithms can be convenient choices.
For this problem the natural complete-data vector is Z =

[
Z11 Z21 Z31 Z12 Z22 Z32

]′
, where Zi

variables are independent. In this example, the corresponding conditional pdf mentioned in (14.9.3) is

p(y | z) = δ(y11 − z11) δ(y21 − z21) δ(y12 − z12) δ(y32 − z32),

where δ(·) denotes the Dirac unit impulse. To derive the corresponding EM algorithm, we first compute the complete-
data log-likelihood, and then the Q function (14.9.4). The log pdf of Z is given by

log p(Z;θ) = log
3∏
i=1

p(Zi;θ)

≡ −
3∑
i=1

1

2
(Zi − θ)′K−1(Zi − θ)

≡ −3

2
θ′K−1θ + θ′K−1

3∑
i=1

Zi.

Thus the Q function is:

Q(θ;θ(n)) = E[log p(Z;θ) |Y = y;θ(n)] ≡ θ′K−1
3∑
i=1

E[Zi |Yi = yi;θ
(n)]−3

2
θ′K−1θ.

To find the maximizer over θ we zero the gradient of Q:

0 = ∇θQ(θ;θ(n)) = K−1
3∑
i=1

E[Zi |Yi = yi;θ
(n)]−3K−1θ.

12 The assumption of known covariance may be artificial, but greatly simplifies this didactic example.
13 We assume that the cause of this failure is statistically independent from the measurement noise.
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Solving for θ yields the iteration:

θ(n+1) =
1

3

3∑
i=1

E[Zi |Yi = yi;θ
(n)] . (14.9.12)

e,ox,em,ex,1

This iteration has the following natural interpretation: using the most recent parameter estimate θ(n), we compute the
conditional expectation of the complete-data vectors Zi, and then we compute the average of those estimates of Zi
(which would have been the ML estimator for θ if we had observed all of the Zi values.)

To finalize the iteration, we must evaluate the conditional expectations in (14.9.12). Because Zi is a normal
random vector and Yi = SiZi, the conditional expectation of Zi given Yi has the following form [162, p. 302] [163,
p. 325]:

E[Zi |Yi;θ(n)] = E[Zi;θ
(n)] +KZi,Yi

K−1
Yi

(Yi − E[Yi;θ
(n)]),

whereKZi,Yi
= Cov{Zi,Yi} = Cov{Zi,SiZi} = Cov{Zi}S′i. Thus in this example:

E[Zi |Yi;θ(n)] = θ(n) +KS′i[SiKS
′
i]
−1(Yi − Siθ(n)).

Combining the preceding expressions yields the following final form for the EM algorithm for this example:

θ(n+1) = θ(n) +K
1

3

3∑
i=1

S′i[SiKS
′
i]
−1(yi − Siθ(n))

= θ(n) +
1

3

[([
60
30

]
− θ(n)

)
+

([
1

1/2

]
(0− θ(n)

1 )

)
+

([
1/2
1

]
(0− θ(n)

2 )

)]
. (14.9.13)

e,ox,em,ex

Fig. 14.9.1 illustrates the iterates produced by this EM algorithm when initialized with the naive estimator (14.9.11).
In this simple example, the EM algorithm approaches the ML estimate fairly rapidly. Unfortunately the convergence
is much slower in the tomographic applications discussed in subsequent chapters.

8

15

28 30

x
2

x1

ML Estimate
Naive Estimate
EM Iterates 0-5

SAGE Iterates 0-2
θ

(0)

Figure 14.9.1: Contours of the log-likelihood L(θ) in Example 14.9.3, along with a trajectory of EM iterates {θ(n)}
(see (14.9.13)) and the SAGE iterates (see (14.12.7)) converging from the initial naive estimate θ(0) from (14.9.11)
towards the ML estimate θ̂.

fig_em1

14.9.5 Generalized EM (GEM) methods (s,ox,em,gem)s,ox,em,gem

The final lines of proof of monotonicity in Theorem 14.9.2 show that it is unnecessary to perform an exact maximiza-
tion in the M-step (14.9.6) of an EM algorithm. As long as we find a value θ(n+1) that increases the surrogate function
Q, we are assured of a monotone increase in the log-likelihood L. Such algorithms were termed generalized EM
(GEM) methods in [6], and have been applied in image reconstruction e.g., [164].
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14.9.6 Relationship to optimization transfer methods
The EM approach is a special case of an optimization transfer method. Let Ψ(x) = − L(x) denote the cost function
that is minimized for ML estimation. Define the following surrogate function

φ(n)(x) = Ψ(x) +D(p(z|y;θ(n)) ‖ p(z|y;θ)), (14.9.14)
e,ox,em,surr

where D(p ‖ q) is the Kullback-Leibler divergence for probability distributions, defined by

D(p ‖ q) =
∑
z

p(z) log
p(z)

q(z)
.

Because D(p ‖ q) ≥ D(p ‖ p) = 0, (see §17.4.3), it follows that (14.9.14) satisfies the surrogate conditions (14.1.4).
By arguments similar to those in Theorem 14.9.2, the above surrogate φ(n) is related to the EM surrogateQ(θ;θ(n))

as follows:
φ(n)(x) = −Q(θ;θ(n))−W (θ(n)) +H(θ(n);θ(n)), (14.9.15)

e,ox,em,sur,vs,Q

i.e., they are the same except for a sign and an additive constant that is independent of θ.

14.9.7 Generalizations (s,ox,em,more)s,ox,em,more

EM algorithms have been applied to a tremendous variety of applications, e.g., [50, 99, 165–173]. Several papers
have analyzed convergence more carefully, correcting an error in the proof of the original paper by Dempster et al.
[144, 174, 175]. Many extensions of the basic EM algorithm have been proposed in the literature, e.g., [161, 176–
180], including consideration of problems with constraints [177, 181, 182]. For example, the cascade EM algorithm
[183] is a generalization based on a hierarchy of nested complete-data spaces. Recursive EM algorithms for time-
varying applications have also been proposed [184, 185], as have versions with asynchronous updates [186] for image
segmentation with Markov random fields (MRF) s.

Some papers focus on computing the (approximate) covariance matrix of θ̂ [187–191].
Because the EM algorithm converges so slowly, even at sublinear rates [192] in some cases, a particularly large

segment of the literature has been devoted to methods for accelerating the EM algorithm [14, 36, 42, 193–196] Often
the goal of such methods is to provide EM-like monotone increases in L(θ) in the initial iterations far from the
maximizer, but faster Newton-like convergence rates as the solution is approached. Because EM methods are special
cases of optimization transfer methods many acceleration methods for OT also apply to EM, including momentum-
type approaches [140].

One acceleration method that was originally motivated by imaging problems is the family of space-alternating
generalized EM (SAGE) algorithms described in §14.12.

14.9.8 Incremental EM algorithms (s,ox,em,inc)s,ox,em,inc

An interesting generalization is the incremental EM algorithm proposed by Neal and Hinton [147]. The method has
been shown to converge [148], albeit non-monotonically in L(·) [150]. It has been applied to PET (see §17.7.2) [151,
197]. A closely related method has been applied to mixture models [198, 199].

The incremental EM approach is based on defining

F̄ (p̃,θ) , − L(θ) +D(p̃ ‖ p(z|y;θ))

for any probability distribution p̃, and using (14.9.14) to write the EM algorithm as follows:

E-step: p̃(n) = arg minp̃ F̄ (p̃,θ(n))
M-step: θ(n+1) = arg minθ F̄

(
p̃(n),θ

) .
(The minimization in the E-step is restricted to valid probability distributions.)

In many applications including imaging problems, the conditional distribution of the complete data z often factors
as follows:

p(z|y;θ(n)) =

M∏
m=1

pm(zm|ym;θ(n)),
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where z = (z1, . . . ,zM ) is some decomposition of the complete data. Rather than updating the (estimated) distri-
bution of the entire vector z each iteration, one could update just the (conditional) distribution of zm for the E-step,
thereby possibly reducing computation. Let

p̃ =
∏
m

p̃m

and, assuming that
p(y;θ) =

∏
m

p(ym;θ)

define
F̄ (p̃,θ) =

∑
m

F̄m(p̃m,θ)

where
F̄m(p̃m,θ) = − log p(ym;θ) +D(p̃m ‖ pm(zm|ym;θ)) . (14.9.16)

e,ox,em,inc,Finc_m

This suggests the following iterative algorithm.

Incremental EM method
for m = 1, . . . ,M

p̃
(n+m/M)

l =

 arg min
p̃l

F̄l

(
p̃l,θ

(n+(m−1)/M)

)
, l = m

p̃
(n+(m−1)/M)

l , l 6= m

θ(n+m/M) = arg min
θ

F̄
(
p̃(n+m/M),θ

)
, (14.9.17)

e,ox,em,inc

where θ(n+1) = θ(n+M/M).
This algorithm monotonically decreases the function F̄ (p̃,θ) each iteration, but is not guaranteed to monotonically

increase the likelihood. §17.7.2 describes its application to emission tomography.
Notice that the entire parameter vector θ is updated simultaneously during the M-step of each iteration of the

incremental EM approach. In contrast, the SAGE algorithm of §14.12 only updates a portion of θ at a time.

14.10 Incremental gradient or ordered subset methods (s,ox,os)
s,ox,os

Essentially all of the cost functions of interest in image reconstruction are sums of functions:

Ψ(x) =

M∑
m=1

Ψm(x), (14.10.1)
e,ox,Kx,part,sep

a form that is sometimes called partially separable, e.g., [200] or additive-separable [201]. Most algorithms involve
the gradient of Ψ, which is also partially separable:

∇Ψ(x) =

M∑
m=1

∇Ψm(x) .

Experience in both tomographic image reconstruction and other optimization problems has shown that in the early
iterations of many algorithms, one can replace ∇Ψ(x(n)) with ∇Ψm(x(n)) yet still compute an x(n+1) that is “im-
proved” over x(n) but with less computation. In the optimization literature, such approaches are called incremental
gradient methods [147, 202–208], and these methods date back to the 1960s in that field e.g., [201]. In tomography,
these methods are called ordered subsets methods, because only a subset of the projection views are used each “subit-
eration,” and the ordering of the views can be important [209–218]. The term block iterative has also been used [219,
220]. These methods are also related closely to stochastic gradient descent methods [wiki] [221–244].

In mathematical terms, suppose we have an iterative algorithm of the form

x(n+1) = x(n) −D0(x(n))∇Ψ(x(n)),

for some matrix D0(·), that is typically diagonal. We can consider instead an algorithm with subiterations such as the
following14.

14 In some cases it is desirable to change the matrix D0 to a somewhat different matrix D(·).

https://creativecommons.org/licenses/by-nc-nd/4.0/
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x(0)

−∇Ψ1

(
x(0)

)−∇Ψ2

(
x(0)

) −∇Ψ
(
x(0)

)
x(n)

−∇Ψ1(x(n))

−∇Ψ2(x(n))
−∇Ψ(x(n))

arg max
x

Ψ1(x)

arg max
x

Ψ2(x)
x̂

Figure 14.10.1: Geometrical view of ordered subsets principle.
fig,os,geom

Incremental gradient or ordered-subset method
for m = 1, . . . ,M

x(n+m/M) = x(n+(m−1)/M) −MD(x(n+(m−1)/M))∇Ψm

(
x(n+(m−1)/M)

)
, (14.10.2)

e,ox,os

where x(n+1) = x(n+M/M). A complete iteration involves cycling through all the subsets indexed by m so that all
data is used. Several examples of such algorithms are given throughout the book. They are important in part due to
their commercial availability for both PET and SPECT systems.

Convergence results for relaxed ordered-subsets algorithms are given in §14.6. Without relaxation however, such
algorithms usually do not converge (except when M = 1) [245]. Nevertheless, in the early iterations, using ordered
subsets usually accelerates “convergence” by a factor of roughly M , due in part to “inflating” the step size by “M”
in (14.10.2).

Fig. 14.10.1 illustrates geometrically why the OS principle can work. For x(n) far from the minimizer x̂, if
we choose the subsets to be “balanced” in some appropriate sense, then the gradient vectors ∇Ψm(x(n)) for m =
1, . . . ,M all point roughly in the same direction as the overall gradient∇Ψ(x(n)), i.e.,

∇Ψ(x(n)) ≈M ∇Ψm(x(n)), m = 1, . . . ,M. (14.10.3)
,ox,os,grad,approx

Because ∇Ψ(x(n)) need not point exactly towards x̂ anyway, it seems reasonable to use M ∇Ψm(x(n)) in place of
∇Ψ(x(n)) for the update because less computation is needed to evaluate∇Ψm. Unfortunately, as the sequence {x(n)}
approach the minimizer x̂, the subset gradient vectors point in increasingly different directions, so an unrelaxed OS
algorithm will oscillate and possibly reach a limit cycle. Indeed, in the absence of constraints, in the limit the subset
gradient vectors must satisfy

0 = ∇Ψ(x̂) =

M∑
m=1

∇Ψm(x̂),

so the vectors are necessarily pointing in opposite directions!
Fig. 14.10.1 also illustrates the desirability of choosing the subsets that satisfy the following subset gradient

balance condition:
∇Ψ1(x) ≈ ∇Ψ2(x) ≈ · · · ≈ ∇ΨM (x)

for x far from x̂.
Fig. 14.10.2 and Fig. 14.10.3 show subset choices that do and do not satisfy the subset gradient balance condition.

The cost function is a weighted least-squares form ‖y −Ax‖2 , where the rows of A correspond to a discretization
of the 2D Radon transform for tomography. For Fig. 14.10.2, we decomposed the cost function Ψ into even (m = 1)
and odd (m = 2) projection views. For a uniform initial image x(0) (that is far from the minimizer x̂), Fig. 14.10.2
shows that the exact gradient∇Ψ

(
x(0)

)
is closely matched by the subset gradients 2∇Ψ1

(
x(0)

)
and 2∇Ψ2

(
x(0)

)
.

In contrast, in Fig. 14.10.3 we chose the first subset to correspond to the views with angles in [0◦, 90◦) and the
second subset to corresponded to [90◦, 180◦). In this case, even for the same initial image x(0) that is far from x̂, the
subset gradients poorly match the exact cost function gradient. So this choice of subsets does not satisfy the subset
gradient balance condition.

https://creativecommons.org/licenses/by-nc-nd/4.0/
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Figure 14.10.2: Here the initial image x(0) is far from the solution so the incremental gradients, i.e., the gradients
computed from just the even or odd angles, agree well with the full gradient.

fig_os_gradient
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=

2
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Figure 14.10.3: Here the first subset was angles 0-90◦, and the second subset was angles 90-180◦, roughly speaking.
Now the incremental gradients do not agree as well with the full gradient. (Of course the sum of the two incremental
gradients would still equal the full gradient.) This imbalance is expected to slow “convergence.”

fig_os_imbalance
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Instead of using a “gradient descent” type of iteration like (14.10.2), one could use the the gradient approximation
(14.10.3) within a more sophisticated optimization method such as the precondition conjugate gradients (PCG)
method [246].

For regularized cost functions, it is reasonable to try to initialize the iterations with as good of a starting point x(0)

as possible, meaning x(0) ≈ x̂. In these cases, it is less clear whether OS approaches are effective.
When more than two subsets are used, the ordering of the subsets may affect the initial convergence rate. To make

the fastest initial progress, it seem desirable to choose subsets whose corresponding gradient vectors are “as orthogonal
as possible.” In tomography, “balance” usually means using equally-spaced subsets of the projection angles, where
these subsets are used in an ordering that skips around between angles that are spaced far apart.

One approach uses an access order that is equivalent to the FFT bit reversal ordering [247]. For example, if we
have 48 projection angles numbered 0 through 47, then for M = 8 we could use the following subsets

S1 = {0, 8, 16, 24, 32, 40} , S5 = {1, . . .} ,
S2 = {4, 12, . . . , 44} , S6 = {5, . . .} ,
S3 = {2, 10, . . .} , S7 = {3, . . .} ,
S4 = {6, . . .} , S8 = {7, 15, . . . , 47} .

x,ox,os,sps

Example 14.10.1 Consider the general separable quadratic surrogates (SQS) algorithm given by (14.5.13). Let
{Sm} be a partition of the set {1, . . . , Ni}. Then the natural ordered-subsets (OS-SQS) version is

x
(n+m/M)

j =

[
x

(n+(m−1)/M)

j − M

d(n)

j

∑
i∈Sm

bij ψ̇i

(
[Bx(n+(m−1)/M)]i

)]
+

, j = 1, . . . , np, (14.10.4)
e,ox,os,sps

where d(n)

j was defined in (14.5.10). Because OS algorithms are not guaranteed to monotonically decrease the cost
function, it is particularly reasonable to use the precomputed maximum curvatures (14.4.12), or the following “New-
ton curvatures”

c̆i = ψ̈i

(
arg min

t
ψi(t)

)
. (14.10.5)

e,ox,recon,curv,newton

This saves computation because we can precompute the dj values prior to iterating.
If the subsets have different sizes |Sm|, then we would replace the multiplier M in (14.10.4) with Ni/ |Sm|.

Incremental gradient methods without locks (to reduce synchronization overhead in parallel systems) have also
been proposed [233]. One can form convergent OS methods by increasing the number of subsets as iterations proceed
[224, 248, 249]. See also [237].

14.11 Incremental optimization transfer (IOT) (s,ox,inc)
s,ox,inc

This section generalizes the incremental EM approach of §14.9.8 by allowing broad family of surrogate functions
within the optimization transfer framework, rather than being limited to EM-type surrogates.

As in §14.10, assume that the cost function Ψ has the partially separable form (14.10.1). Assume furthermore that,
for each sub-cost function Ψm(x), we can find a surrogate function φm that satisfies the usual majorization conditions:

φm(x;x) = Ψm(x), ∀x
φm(x; x̄) ≥ Ψm(x), ∀x, x̄. (14.11.1)

e,ox,inc,major

Inspired by (14.9.16), define the following “divergence” functions:

Dm(x ‖ x̄) , φm(x; x̄)−Ψm(x), m = 1, . . . ,M. (14.11.2)
e,ox,inc,Dam

By construction, Dm(x ‖ x̄) ≥ 0 and Dm(x ‖x) = 0, and in particular:

arg min
x̄

D(x ‖ x̄) = x.

Now define the following augmented cost function:

F̄ (x; x̄1, . . . , x̄M ) = Ψ(x) +

M∑
m=1

Dm(x ‖ x̄m) =

M∑
m=1

φm(x; x̄m) . (14.11.3)
e,ox,inc,F
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Because of the properties of Dm(· ‖ ·), the estimator x̂ can be expressed as follows:

x̂ = arg min
x

Ψ(x) = arg min
x

min
x̄1,...,x̄M

F̄ (x; x̄1, . . . , x̄M ) . (14.11.4)
e,ox,inc,xh,F

So the problem of minimizing Ψ is equivalent to minimizing F̄ . Given an initial set of estimates x̄(0)
m for m =

1, . . . ,M , we minimize F̄ by applying a cyclic coordinate descent approach in which we alternate between updating
x and one of the x̄m vectors, as follows.

Generic incremental optimization transfer (IOT) method
Initialize x̄(0)

1 , . . . , x̄(0)

M

for n = 0, 1, . . .
form = 1, . . . ,M

xnew := arg min
x

F̄
(
x; x̄(n+1)

1 , . . . , x̄(n+1)

m−1 , x̄
(n)

m , x̄(n)

m+1, . . . , x̄
(n)

M

)
(14.11.5)

e,ox,inc,xnew

x̄(n+1)

m = arg min
x̄m

F̄
(
xnew; x̄(n+1)

1 , . . . , x̄(n+1)

m−1 , x̄m, x̄
(n)

m+1, . . . , x̄
(n)

M

)
= xnew. (14.11.6)

e,ox,inc,xbm,new

The implementation details depend on the structure of the surrogates, but regardless the method will require storing at
least M vectors of length np. This is the primary drawback of incremental methods when M and np are large.

The operation (14.11.6) is trivial; all of the “work” occurs in (14.11.5). This is an “incremental” form of opti-
mization transfer because each subiteration updates only one of the x̄m vectors in (14.11.6), and thus only one of the
surrogates φm. If one were to update all of the x̄m vectors in (14.11.6), then the algorithm would revert to an ordinary
optimization transfer method, and, in many applications, the update (14.11.5) would require aboutM times more work
when all of the x̄m values have been updated than when only one of the x̄m values have changed.

Each update will decrease F̄ monotonically. And by (14.11.4), if the iterates converge to a minimizer of F̄ , then
that estimate also minimizes Ψ. However, Ψ need not decrease monotonically with this algorithm.

An alternative way to write the update is as follows:

x(n+1+(m−1)/M) = arg min
x

F̄
(
x;x(n+1+0/M), . . . ,x(n+1+(m−2)/M), x(n+(m−1)/M), . . . ,x(n+(M−1)/M)

)
.

14.11.1 Quadratic surrogates
The IOT approach is particularly simple if the surrogates φm are quadratic, i.e., if

φm(x; x̄) = Ψm(x̄) + (x− x̄)
′∇Ψm(x̄) +

1

2
(x− x̄)′ C̆m(x̄)(x− x̄),

where each C̆m is a np × np Hermitian positive-semidefinite matrix that one must choose to ensure (14.11.1). Fur-
thermore, for simplicity consider the case of unconstrained estimation. Given x̄1, . . . , x̄M , the minimizer over x in
(14.11.5) above satisfies

0 =

M∑
m=1

[
∇Ψm(x̄m) + C̆m(x̄m)(xnew − x̄m)

]
.

In other words, [
M∑
m=1

C̆m(x̄m)

]
xnew =

M∑
m=1

[
C̆m(x̄m) x̄m −∇Ψm(x̄m)

]
.

This relationship leads to the following general form for (unconstrained) incremental quadratic surrogate algo-
rithms.

https://creativecommons.org/licenses/by-nc-nd/4.0/
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Incremental quadratic surrogate algorithm (unconstrained) - efficient form
Initialize {x̄m :m = 1, . . . ,M}
Cm := C̆m(x̄m), m = 1, . . . ,M
vm := Cmx̄m −∇Ψm(x̄m), m = 1, . . . ,M

Ĉ :=
∑M
m=1Cm

v̂ :=
∑M
m=1 vm

for n = 1, 2, . . .
form = 1, . . . ,M

x̂:=Ĉ−1 v̂ (14.11.8)
e,ox,inc,xnew,quad,eff

Ĉ := Ĉ −Cm
v̂ := v̂−vm

Cm := C̆m(x̂) (14.11.9)
vm := Cm x̂−∇Ψm(x̂) (14.11.10)

Ĉ := Ĉ +Cm

v̂ := v̂+vm .

end
end

Figure 14.11.1: Efficient “state vector” implementation of a generic incremental optimization transfer (IOT) algorithm
based on quadratic surrogate functions with curvatures C̆m.

fig,ox,inc,qs,eff

Incremental quadratic surrogate algorithm (unconstrained)
Initialize {x̄m :m = 1, . . . ,M}
for n = 1, 2, . . .

form = 1, . . . ,M

x̄m :=

[
M∑
l=1

C̆l(x̄l)

]−1 M∑
l=1

[
C̆l(x̄l) x̄l −∇Ψl(x̄l)

]
. (14.11.7)

e,ox,inc,xnew,quad

end
end

If each C̆m is diagonal, this form requires storing 3M + 2 vectors of length np.
One can avoid performing the summations at every subiteration by maintaining those sums as a state vector and

state matrix that are updated incrementally, as shown in Fig. 14.11.1. If each C̆m is diagonal, then this implementation
requires storing 2M + 3 vectors of length np. If the curvature matrices C̆m are precomputed (i.e., are independent of
x̄m), then further efficiencies are realized by not updating Ĉ. If Ĉ is diagonal, then the main “work” in this algorithm
is in (14.11.9) and (14.11.10).

If the cost function Ψ is strictly convex, then at least in the case of quadratic surrogates the augmented function
F̄ will be convex with respect to x, so the minimizer in (14.11.5) exists. The above algorithm will decrease F̄
monotonically, and one can establish general conditions that ensure convergence of all of the x̄m vectors to x̂ [250].
Furthermore, if each C̆m is diagonal, then one can readily include box constraints.

To streamline the implementation, it may be helpful in some cases to find a single matrix D, often diagonal, that
dominates each C̆m, i.e., for which D � C̆m(x̄) for all m and all x̄. When such a matrix D is found and used in
place of each C̆m, the inner update simplifies to:

x̄m :=
1

M

M∑
l=1

[
x̄l −D−1∇Ψl(x̄l)

]

https://creativecommons.org/licenses/by-nc-nd/4.0/
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=
1

M

M∑
l=1

x̄l −
1

M
D−1

M∑
l=1

∇Ψl(x̄l) . (14.11.11)
e,ox,inc,alg,D

If D is diagonal, then an efficient “state vector” implementation of this method requires storing M + 3 vectors of
length np.

MIRT See pl_iot.m.

14.11.2 Incremental aggregated gradient (IAG) methods
In cases where the algorithm (14.11.11) converges, the x̄m vectors will approach a common limit as the iterations
proceed, so it might seem natural to replace the first “x̄l” term in (14.11.11) with the most recent estimate of x̂, i.e.,
x̄m−1. (The “m− 1” must be taken modulo M .) We can write such a modified update as follows:

x̄m := x̄m−1 −D−1 1

M

M∑
l=1

∇Ψl(x̄l) . (14.11.12)
e,ox,inc,blatt

Furthermore, the simplest choice for D is D = 1
αI for some sufficiently small α. In this case the update (14.11.12)

simplifies precisely to the incremental aggregated gradient (IAG) algorithm described by Blatt et al. [251]. If D is
diagonal, this method also requires storing M + 3 vectors of length np.

Modifying (14.11.11) to become (14.11.12) seems to lose all assurances of monotonicity and would seem to
risk compromising convergence. Interestingly, Blatt et al. nevertheless have shown convergence of (14.11.12) under
reasonable assumptions on Ψ [251]. It is likely that IAG and IOT have identical asymptotic convergence rates. It is an
open problem to compare the convergence rates of these two methods in the early iterations. Another open problem
is to see if one can derive (14.11.12) by some other majorization approach.

Another interesting open problem is to generalize (14.11.12) to the case of nonquadratic penalized likelihood, as
described in the next section, where the likelihood surrogates are updated less frequently than the penalty surrogates.

14.11.3 Nested quadratic surrogates for penalized-likelihood problems (s,ox,inc,pl)s,ox,inc,pl

For most penalized-likelihood image reconstruction problems, the cost function has the form

Ψ(x) =

M∑
m=1

L- m(x) +R(x),

where L- m(x) denotes the negative log-likelihood associated with the mth data block, and R(x) is a roughness penalty
function. Usually it is much more expensive to evaluate gradients of L- m than of R(x). In such cases the general
algorithm implementation (14.11.7) can be suboptimal. It can be more efficient to find individual quadratic surrogates
for the log-likelihood terms and for the roughness penalty, and to update the penalty surrogates more frequently. For
the log-likelihood terms, we first find quadratic surrogates of the form

φm(x; x̄) = L- m(x̄) + (x− x̄)
′
gm(x̄) +

1

2
(x− x̄)′ C̆m(x̄)(x− x̄), (14.11.13)

e,os,inc,qs,sur_m

where the gradient vector is:
gm(x) , ∇ L- m(x),

and where each C̆m is a np × np Hermitian positive-semidefinite matrix that majorizes L- m as follows:

φm(x;x) = L- m(x), ∀x
φm(x; x̄) ≥ L- m(x), ∀x, x̄. (14.11.14)

e,ox,inc,major,L

Typically the form of each partial negative log-likelihood function is

L- m(x) =
∑
i∈Sm

hi([Ax]i),

where often we have quadratic surrogates available for each hi function:

hi(t) ≤ qi(t; s) , hi(s) + ḣi(s)(t− s) +
1

2
c̆i(s)(t− s)2.

https://creativecommons.org/licenses/by-nc-nd/4.0/
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In these cases, [∇ L- m(x)]j =
∑
i∈Sm aij ḣi([Ax]i) and the natural (nonseparable) option for C̆m in (14.11.13) is

C̆m(x) = A′m diag{c̆i([Ax]i)}Am = A′ diag
{
c̆i([Ax]i) I{i∈Sm}

}
A,

whereAm denotes the |Sm| × np matrix consisting of the rows ofA for which i ∈ Sm. Another (separable) option is
to choose

C̆m(x) = diag{dmj(x)} where dmj(x) ,
∑
i∈Sm

|aij | |a|i c̆i([Ax]i),

where |a|i ,
∑np

j=1 |aij | .
Instead of minimizing Ψ(x) directly, we apply alternating minimization to the following augmented cost function:

F̄ (x; x̄1, . . . , x̄M ) ,
M∑
m=1

φm(x; x̄m) +R(x)

≡
M∑
m=1

(
x′ gm(x̄m) +

1

2
(x− x̄m)′ C̆m(x̄m)(x− x̄m)

)
+ R(x),

and at each subiteration we need to minimize this over x, per (14.11.5).
If R(x) is quadratic, then so is F̄ and minimizing over x is relatively easy. However, if R(x) is non-quadratic,

then minimizing F̄ remains challenging. In fact, minimizing F̄ with respect to x is essentially a penalized weighted
least-squares (PWLS) problem. We suggest to apply optimization transfer yet again so as to minimize F̄ (·) over x
using subiterations. Suppose that we have a (possibly separable) quadratic surrogate for the penalty function of the
form

R(x; x̃) = R(x̄) +(x− x̃)′∇R(x̃) +
1

2
(x− x̃)′K(x̃)(x− x̃),

for some curvature matrixK. Then we define a surrogate function for F̄ (·) as follows:

Φ(x; x̃; x̄1, . . . , x̄M ) , F̄ (x; x̄1, . . . , x̄M )−R(x) +R(x; x̃) .

In particular, note that
arg min

x
F̄ (x; . . .) = arg min

x
min
x̃

Φ(x; x̃; . . .).

Iteratively descending Φ(·) with respect to its first two arguments will monotonically descend F̄ (·) with respect to x.
The gradient of Φ is

∇xΦ(x; x̃; x̄1, . . . , x̄M ) =

M∑
m=1

gm(x̄m) +

M∑
m=1

C̆m(x̄m)(x− x̄m) +∇R(x̃) +K(x̃)(x− x̃)

=
[
Ĉ +K(x̃)

]
x−

M∑
m=1

[
C̆m(x̄m) x̄m − gm(x̄m)

]
+∇R(x̃)−K(x̃)x̃,

where Ĉ ,
∑M
m=1 C̆m(x̄m) . Equating to zero and solving yields the following inner iteration:

xnew :=
[
Ĉ +K(xold)

]−1
[
M∑
l=1

(
C̆l(x̄l) x̄l − gl(x̄l)

)
−∇R

(
xold

)
+K(xold)xold

]
.

Precomputing summations when possible leads to the efficient implementation shown in Fig. 14.11.2. If each C̆m is
diagonal, then the storage requirements are 2M + 3 vectors of size equal to that of x.

In the algorithm description above, we update the penalty term R(x) every time a data block is updated, in fact,
even more often. An alternative is to treat the penalty term as one of the “blocks” in (14.10.1), e.g., [245, 252]. Such
a strategy would not have “subset gradient balance” but might still be effective in some situations.
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Penalized-likelihood incremental optimization transfer (PLIOT)
Initialize {x̄m :m = 1, . . . ,M}, e.g., by an aggressive non-convergent OS method
Intialize states:

Cm := C̆m(x̄m), m = 1, . . . ,M
vm := Cmx̄m −∇ L- m(x̄m), m = 1, . . . ,M

Ĉ :=
∑M
m=1Cm

v̂ :=
∑M
m=1 vm

Initialize x̂, e.g., x̂ = x̄M
for n = 1, 2, . . .

form = 1, . . . ,M
for one or more subiterations

x̂:=
[
Ĉ +K(x̂)

]−1 [
v̂−∇R(x̂) +K(x̂) x̂

]
. (14.11.15)

e,ox,inc,xnew,pliot

end

Ĉ := Ĉ −Cm
v̂ := v̂−vm

Cm := C̆m(x̂) (14.11.16)
vm := Cm x̂−∇ L- m(x̂) (14.11.17)

Ĉ := Ĉ +Cm

v̂ := v̂+vm

end
end

Figure 14.11.2: PLIOT algorithm for quadratic surrogates.
fig,ox,inc,pliot
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Penalized-likelihood incremental optimization transfer (PLIOT)-v2
Initialize {x̄m :m = 1, . . . ,M}, e.g., by an aggressive non-convergent OS method
Intialize states:

Cm := C̆m(x̄m), m = 1, . . . ,M
vm := Cmx̄m −∇ L- m(x̄m), m = 1, . . . ,M

Ĉ :=
∑M
m=1Cm

v̂ :=
∑M
m=1 vm

Initialize x̂ as follows:
for one or more subiterations

x̂:=
[
Ĉ +K(x̂)

]−1 [
v̂−∇R(x̂) +K(x̂) x̂

]
. (14.11.18)

e,ox,inc,xnew,pliot,2

end
for n = 1, 2, . . .

form = 1, . . . ,M

Ĉ := Ĉ −Cm
v̂ := v̂−vm

Cm := C̆m(x̂) (14.11.19)
vm := Cm x̂−∇ L- m(x̂) (14.11.20)

Ĉ := Ĉ +Cm

v̂ := v̂+vm

Update x̂ using subiterations of (14.11.18)
end

end

Figure 14.11.3: PLIOT-v2 algorithm for quadratic surrogates.
fig,ox,inc,pliot,2
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θS̃

6

�
�
�
��3

θS - ZSn - C - Y

Figure 14.12.1: Representing the observed data Y as the output of a possibly noisy “channel” C whose input is the
hidden-data ZSn .

fig,sage,channel

14.12 Space-alternating generalized EM (SAGE) methods (s,ox,sage)
s,ox,sage

In imaging applications, EM algorithms typically converge very slowly. Significant acceleration of convergence is
possible by appropriately applying the grouped coordinate ascent concept described in §14.5.8. The resulting family
of algorithms is called space alternating generalized EM (SAGE) algorithms [17, 18]. This section describes the
SAGE approach, primarily for historical completeness. The optimization transfer approach with quadratic surrogates
seems to offer comparable convergence rates with more flexible yet simpler derivations, so it seems preferable to SAGE
algorithms for the imaging problems considered in this book . However, SAGE has appeared as a natural approach in
other applications, e.g., [253, 254].

14.12.1 Problem
As in §14.9, our goal is to compute the ML estimate θ̂ of a parameter vector θ given a realization y of a random vector
Y with distribution p(y;θtrue).

The basic idea behind the SAGE method combines ideas from the EM method and the grouped coordinate ascent
approach. By introducing a “hidden-data” space for θS based on the statistical structure of the likelihood, we replace
the maximization of L

(
θS ,θS̃n

)
over Θ with the maximization of another functional QSn(θS ;θ(n)). If the hidden-

data space is chosen wisely, then one can maximize the function QSn(·;θ(n)) analytically, obviating the need for
line searches. Just as for an EM algorithm, the functionals QSn are constructed to ensure that increases in QSn

yield increases in L. Furthermore, we have found empirically for tomography that by using a hidden-data space whose
Fisher information is small, the analytical maximum ofQSn(·;θ(n)) increases L

(
·,θS̃n

)
nearly as much as maximizing

L
(
·,θS̃n

)
itself. This was formalized in an Appendix of [17], where we proved that less informative hidden-data spaces

lead to faster asymptotic convergence rates. In summary, the SAGE method uses the underlying statistical structure of
the problem to replace cumbersome or expensive numerical maximizations with analytical or simpler maximizations.

14.12.2 Hidden-data space
To generate the functions QSn for each index set Sn of interest, we must identify an admissible hidden-data space
defined in the following sense:

d,hidden-data

Definition 14.12.1 A random vector ZSn with distribution p(z;θ) is an admissible hidden-data space with respect to
θSn for p(y;θ) if the joint distribution of ZSn and Y satisfies

p(y, z;θ) = p
(
y|z;θS̃n

)
p(z;θ), (14.12.1)

e,admit

i.e., the conditional distribution p
(
y|z;θS̃n

)
must be functionally independent of θSn . In other words, ZSn must be a

complete-data space (in the sense of (14.9.3)) for θSn given that θS̃n is known.

A few remarks may clarify this definition’s relationship to related methods.
• The complete-data space (14.9.3) for the classical EM algorithm [6] is contained as a special case of Defini-

tion 14.12.1 by choosing S = {1, . . . , np} and requiring Y to be a deterministic function of ZSn [160].
• Under the decomposition (14.12.1), one can think of Y as the output of a noisy channel that may depend on θS̃ but

not on θS , as illustrated in Fig. 14.12.1.
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for n = 0, 1, . . . {
1. Choose an index set Sn

2. Choose an admissible hidden-data space ZSn for θSn .

3. E-step: Compute QSn(θSn ;θ(n)) using (14.12.2)

4. M-step:

θ(n+1)

Sn = arg max
θSn

QSn(θSn ;θ(n)), (14.12.3)
e,sage

θ(n+1)

S̃n
= θ(n)

S̃n
. (14.12.4)

e,copy

5. Optionala: Repeat steps 3 and 4.
}

a Including the optional subiterations of the E- and M-steps yields a “greedier” algorithm. In the few examples we have tried in image
reconstruction, the additional greediness was not beneficial. (This is consistent with the benefits of under-relaxation for coordinate-ascent
analyzed in [255].) In other applications however, such subiterations may improve the convergence rate, and may be computationally advan-
tageous over line-search methods that require analogous subiterations applied directly to L(θ).

Table 14.1: SAGE “Algorithm”
t,sage

• We use the term “hidden” rather than “complete” to describe ZSn , because in general ZSn will not be complete
for θ in the original sense of Dempster et al. [6]. Even the aggregate of ZSn over all of Sn will not in general be
an admissible complete-data space for θ.
• The most significant generalization over the EM complete-data that is embodied by (14.12.1) is that the conditional

distribution of Y on ZSn is allowed to depend on all of the other parameters θS̃ (see Fig. 14.12.1). In the superim-
posed signal application described in [17], it was precisely this dependency that led to improved convergence rates.
It also allows significantly more flexibility in the design of the distribution of ZSn .
• In principle one could further generalize the SAGE method by combining it with other generalizations such as the

cascade EM algorithm [183].

14.12.3 Algorithm
An essential ingredient of any SAGE algorithm is the following conditional expectation of the log-likelihood of ZSn :

QSn(θSn ;θ(n)) = QSn(θSn ;θ(n)

Sn ,θ
(n)

S̃n
)

, E
[
log p

(
ZSn ;θSn ,θ

(n)

S̃n

)
|Y = y;θ(n)

]
(14.12.2)

=
∑
z

[
log p

(
z;θSn ,θ

(n)

S̃n

)]
p(z|Y = y;θ(n)) .

Let θ0 ∈ Θ be an initial parameter estimate. A generic SAGE algorithm produces a sequence of estimates
{θ(n)}∞n=0 via the recursion shown in Table 14.1.

The maximization in (14.12.3) is over the set

ΘSn(θ(n)) ,
{
θSn : (θSn ,θ

(n)

S̃n
) ∈ Θ

}
. (14.12.5)

e,Theta

If one chooses the index sets and hidden data spaces appropriately, then typically one can combine the E-step and M-
step via an analytical maximization into a recursion of the form θ(n+1)

Sn = TSn(θ(n)). The examples in later sections
illustrate this important aspect of the SAGE method.

If one chooses ZSn = Y , then for that Sn we see from (14.12.2) that QSn(θS ;θ(n)) = L
(
θS ,θS̃n

)
. Thus,

grouped coordinate-ascent (§14.5.8) is a special case of the SAGE method, and one can apply GCA to index sets Sn
for which L

(
θS ,θS̃n

)
is easily maximized.

Rather than requiring a strict maximization in (14.12.3), one could settle simply for local maxima [160], or for
mere increases in QSn , in analogy with GEM algorithms [6]. These generalizations provide the opportunity to further
refine the trade-off between convergence rate and computation per-iteration.
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14.12.4 Choosing index sets
To implement a SAGE algorithm, one must choose a sequence of index sets Sn, n = 0, 1, . . .. This choice is as much
art as science, and will depend on the structure and relative complexities of the E- and M-steps for the problem. To
illustrate the trade-offs, we focus on imaging problems, for which there are at least four natural choices for the index
sets: 1) the entire image, 2) individual elements of θ (typically pixels), i.e.,

Sn = {1 + (nmodnp)} , (14.12.6)
e,ox,sage,scalar

(this was used in the ICM-EM algorithm of [256]), 3) grouping by rows or by columns, and 4) “red-black” type
orderings. These four choices lead to different trade-offs between convergence rate and ability to parallelize. A “red-
black” grouping was used in a modified EM algorithm in [257] to address the M-step coupling introduced by the
smoothness penalties. However, those authors subsequently concluded [258] that the simultaneous-update algorithm
by De Pierro [11] (see §18.5.3) is preferable. Those methods use the same complete-data space as in the conventional
EM algorithm for image reconstruction [259], so the convergence rate is still slow. Because the E-step for image
reconstruction naturally decomposes into np separate calculations (one for each element of θ), it is natural to update
individual elements of θ as in (14.12.6). By using less informative hidden-data spaces, we showed in [260, 261] that
the SAGE algorithm converges faster than the GEM algorithm of Hebert and Leahy [262], which in turn is faster than
the method of De Pierro [11]. Thus, for image reconstruction it appears that (14.12.6) is particularly well-suited to 2D
reconstruction on serial computers.

Other domain partitions have been considered [263, 264].
For image restoration problems with spatially-invariant systems, one can compute the E-step of the usual EM

algorithm for such problems (see (18.14.4) and (15.6.12) for example) using fast Fourier transforms (FFTs). A SAGE
algorithm with single-element index sets (14.12.6) would require direct convolutions. Depending on the width and
spectrum of the point-spread function, the improved convergence rate of SAGE using (14.12.6) may be offset by the
use of direct convolution. A compromise would be to group the pixels alternately by rows and by columns. This would
allow the use of 1D FFTs for the E-step, yet could still retain some of the improved convergence rate. Nevertheless,
the SAGE method may be most beneficial in applications with spatially-variant system responses.

Regardless of how one chooses the index sets, we have constructed QSn to ensure that increases in QSn lead to
monotone increases in L, by arguments very similar to those of Theorem 14.9.2.

14.12.5 Convergence rate
The asymptotic convergence rate of SAGE algorithms is analyzed in [17] following the methods in [35].

14.12.6 SAGE example with missing data (s,ox,sage,ex)s,ox,sage,ex

x,ox,sage

Example 14.12.2 Here we continue Example 14.9.3 and develop a SAGE algorithm for that problem.
Let Sij denote the jth column of Si. When updating θj , consider the following hidden data

Zji ∼ N(Sijθj ,Ki), i = 1, . . . , 3

whereKi = S′iKSi, so the observed data is related to the hidden data as follows:

Yi = Zji +
∑
k 6=j

Sij [ik] θk, j = 1, . . . , 2.

The log pdf of Zj is given by

log f(Zj ; θj) = log

3∏
i=1

f(Zji ; θj)

≡ −
3∑
i=1

1

2
(Zji − Sijθj)

′K−1
i (Zji − Sijθj)

≡ θ′j
3∑
i=1

S′ijK
−1
i Z

j
i −

1

2
θ′j

[
3∑
i=1

S′ijK
−1
i Sij

]
θj .
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Thus the Qj function is:

Qj(θj ;θ
(n)) = E

[
log f(Zj ; θj)|Y = y;θ(n)

]
≡ θ′j

3∑
i=1

S′ijK
−1
i E

[
Zji |Yi = yi;θ

(n)

]
−1

2
θ′j

[
3∑
i=1

S′ijK
−1
i Sij

]
θj .

Using properties of normal random vectors, one can show:

E
[
Zji |Yi = yi;θ

(n)

]
= Sijθ

(n)

j + (yi − Siθ(n)).

Substituting into the Qj function, minimizing and simplifying yields the following update for (14.12.3):

θ(n+1)

j = θ(n)

j +

∑3
i=1 S

′
ijK

−1
i (yi − Siθ(n))∑3

i=1 S
′
ijK

−1
i Sij

. (14.12.7)
e,ox,sage,ex

Fig. 14.9.1 compares the SAGE iterates to those of the EM algorithm derived in Example 14.9.3. The SAGE
algorithm appears to converge faster.
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14.13 Nonlinear least squares: Gauss-Newton and Levenberg-Marquardt
(s,ox,nls)s,ox,nls

An important family of cost functions arise in nonlinear least-squares problems:

Ψ(x) =
1

2
‖y − f(x)‖2 ,

where f : Rnp → Rnd is a nonlinear vector-valued function. The classical Gauss-Newton algorithm or Levenberg-
Marquardt algorithm [284, 285] are often used for this type of minimization problem, but they do not readily accom-
modate constraints such as nonnegativity on the parameters. Nor are they intrinsically monotonic. An optimization
transfer approach could be useful in some applications.

The cost function gradient is
∇Ψ(x) = (f(x)− y)∇f(x)

and the Hessian is

∇2Ψ(x) =

nd∑
i=1

(fi(x)− yi)Hi +∇f(x)∇f(x),

whereHi , ∇2fi(x).
The Gauss-Newton method ignores theHi terms in the Hessian of Ψ, making the approximation:

Ψ(x) ≈ Ψ(x(n)) +∇Ψ(x(n))(x− x(n)) +
1

2
(x− x(n))′∇f(x)∇f(x)(x− x(n)).

This leads to the update:
x(n+1) = x(n) − [∇f(x)∇f(x)]

−1∇Ψ(x(n)) . (14.13.1)
e,ox,nls,gn

This update is valid if [∇f(x)∇f(x)] is invertible. If not, then the Levenberg-Marquardt alternative is:

x(n+1) = x(n) − [∇f(x)∇f(x) + λ(n)I]
−1∇Ψ(x(n)), (14.13.2)

e,ox,nls,lm

where the λ(n) parameters are chosen to ensure descent.
If we can find matrices Ui and U such that

(fi(x)− yi)Hi � Ui, ∇f(x)∇f(x) � U

for all x, then we can use a quadratic surrogate of the form (14.3.5) with

J0 =
∑
i

Ui +U .

Developing general methods for finding such upper bounds is an open problem.
The Gauss-Newton approximation can be derived by linearizing the nonlinear function f(x), leading to the ap-

proximate cost function:

Ψ̃(x) ,
1

2
‖y − f(x(n))−∇f(x(n))(x− x(n))‖2

≡ Ψ(x(n)) +∇Ψ(x(n)) (x− x(n)) +
1

2
(x− x(n))

′
(∇f(x(n))∇f(x(n))) (x− x(n)) .

It seems plausible that a reasonable quadratic surrogate can be developed using this approximation as a starting point.

14.14 Summary (s,ox,summ)
s,ox,summ

In summary, this chapter has presented general tools for developing optimization transfer or majorize-minimize
(MM) algorithms, particularly for image reconstruction problems. A few examples illustrated the ideas; many more
appear elsewhere in the book. Other examples exist as well, e.g., for multidimensional scaling [286, p. 120] [287].
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14.15 Problems (s,ox,prob)s,ox,prob

p,ox,mono

Problem 14.1 From the perspective of algorithm development, is condition (14.1.4) more general, less general, or
equivalent to condition (14.1.2)?

p,ox,tangent

Problem 14.2 Prove the matched tangent condition (14.1.5), under appropriate conditions on the parameter set X .
p,ox,min,psd

Problem 14.3 Analyze the asymptotic convergence rate of the surrogate minimization method described in §14.2.4.
As a simpler alternative, consider the case where α is a constant. (Solve?)

p,ox,line1

Problem 14.4 Analyze the asymptotic convergence rate of a version of the steepest descent algorithm that uses just
one subiteration of the line-search method described in §14.5.6. (Solve?)

p,ox,sps,gen

Problem 14.5 Generalize the derivation of the SQS in §14.5.7 to the case of cost functions of the form

Ψ(x) =

nd∑
i=1

hi(fi(x)), fi(x) =

np∑
j=1

fij(xj),

where the hi functions are convex but the functions fij(·) need not be linear. (You should derive a surrogate that is
separable but not necessarily quadratic. You need not try to minimize that surrogate.)

p,ox,rot,inv

Problem 14.6 As described in §2.4.2, generalize the algorithm derived in Example 14.5.1 to a 2D problem with a
rotationally invariant (isotropic) regularizer of the form (2.4.4). If the potential function is the absolute value, with
corner rounding, then this problem is a version of (isotropic) TV denoising. Hint: use (14.4.15). (Using optimization
transfer, this generalization is much simpler than in the half-quadratic approach [82].)

p,ox,asymm

Problem 14.7 The symmetry condition in Huber’s curvature theorem Theorem 14.4.5 seems unnecessarily restrictive.
This problem explores relaxing that condition.

1. Consider the “asymmetric parabola” function

ψ(t) =

{
αt2/2, t ≥ 0
βt2/2, t ≤ 0,

where α, β ≥ 0. Show that the parabola q(t; s) in (14.4.8) is a valid surrogate for ψ if it has curvature
c̆ = max {α, β} .

2. Prove or disprove: the curvature c̆ above is optimal.

3. Now consider the following more general conditions (same as Huber’s except for symmetry).
• ψ is differentiable
• For t > 0, ψ̇(t) /t is bounded and nonincreasing as t→∞.
• For t < 0, ψ̇(t) /t is bounded and nonincreasing as t→ −∞.

Prove or disprove. Under the above conditions, the following curvature ensures that q(t; s) in (14.4.15) is a
valid surrogate for ψ:

c̆ψ(t) = max

{
ψ̇(t)

t
,
ψ̇(−t)
−t

}
.

If this choice does not work, then find an appropriate (preferably optimal) choice.

(Solve?)
p,ox,sqs,complex

Problem 14.8 Generalize the SQS derivation to the case where y, x, andB are all complex. (Need typed.)
p,ox,sqs,np=2

Problem 14.9 For the case np = 2, consider a convex cost function Ψ(x) with matrix upper bound on its curvature:[
a b
b c

]
� ∇2Ψ(x) . Find the optimal separable quadratic surrogate having curvatureC = αI2 that minimizes the

root convergence factor ρ
(
I −C−1

[
a b
b c

])
. (Solve?)
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p,ox,it,gen

Problem 14.10 Generalize the iterative soft-thresholding algorithm of Example 14.5.2 to the case of non-quadratic
data-fit terms

Ψ(x) =

nd∑
i=1

hi([Ax]i) +β ‖U ′x‖1 .

Make appropriate reasonable assumptions about the hi functions.
p,ox,it,res

Problem 14.11 Apply the IST algorithm of Example 14.5.2 to a 2D image restoration problem with shift-invariant
blur. Hint. One can modify mri_cs_ist_example.m to use Gblur instead of Gdft.

p,ox,sep,mult

Problem 14.12 Analyze the convergence properties of the separable multiplicative update (14.3.13). (Solve?)
p,ox,em,sur,vs,Q

Problem 14.13 Prove the equality (14.9.15) relating majorizers to EM surrogates.
p,ox,inc,wls

Problem 14.14 Develop an incremental algorithm for the WLS cost function by studying §14.7.2, §15.6.4, and §17.7.2.
(Need typed.)

p,ox,recon,mult

Problem 14.15 Generalize the algorithm described in §14.4.3 to the case where each ψi is convex on (−ri,∞), where
ri ≥ 0. Hint. Consider §17.5.2. (Need typed.)

p,ox,hq,mag

Problem 14.16 For the case of complex x with highly oscillatory phase, a regularizer of the form
∑
k ψk([C |x|]k)

where |x| denotes the vector whose elements are the magnitude of the elements of x was proposed in [288, 289], and
a half-quadratic method was presented for minimization. Develop an optimization transfer approach and compare the
surrogate functions. (Solve?)

p,ox,kinetic

Problem 14.17 Develop an optimization transfer method for performing nonlinear least-squares estimation of ki-
netic model parameters. Specifically, consider the cost function

arg min
a,α

nd∑
i=1

∣∣∣∣∣∣yi −
∑
j

aj e−tiαj

∣∣∣∣∣∣
2

.

Compare to classical NLS estimation methods in terms of convergence speed and reliability. (Solve?)
p,ox,pca

Problem 14.18 In the problem known as “sparse nonnegative matrix factorization” or “nonnegative sparse coding,”
one wishes to minimize a cost function of the following form [290, 291]

arg min
A,B

1

2
‖X −AB‖2 + β

∑
i,j

ψ(bij),

with nonnegativity constraints on the elements ofA andB. This is a generalization of principle components analysis
(PCA) [292] that requires nonnegativity and sparseness. Develop an optimization transfer solution to this problem
and compare to the algorithm in [291]. (Solve?)

p,ox,gg

Problem 14.19 Show that if 0 < p ≤ 1 and s 6= 0 then

|t|p ≤ |t| p |s|p−1
+ (1− p) |s|p .

This majorizer is useful for wavelet-based image restoration methods with heavy-tailed priors on the wavelet coeffi-
cients [293, 294] that encourage sparse wavelet representations. (See Problem 1.12.) (Need
typed.)

p,ox,zoom

Problem 14.20 Use optimization transfer to develop an algorithm for edge-preserving image expansion or zooming.
This will be a generalization of Problem 1.23 [295, 296].

p,ox,ist,tv

Problem 14.21 The standard iterative soft thresholding (IST) algorithm described in §14.5.7.3 is not applicable to
a standard total variation type of regularizer ‖Cx‖1 because the usual choices for C like DN in (1.8.4) are not

invertible. However if we add one more row to DN as follows: C =

[
1 0 . . . 0
DN

]
then this matrix is invertible

and its inverse is lower-triangular. Develop a IST algorithm for 1D problems with this regularizer. Does the principle
generalize to 2D?

p,ox,qn

Problem 14.22 Compare a general-purpose optimization method such as a limited-memory quasi-Newton (QN)
method to one of the special purpose optimization transfer methods described in this chapter for an image recon-
struction algorithm. Open-source QN software is available online for example at
https://software.sandia.gov/trac/poblano (Solve?)

https://creativecommons.org/licenses/by-nc-nd/4.0/


c© J. Fessler. [license] February 15, 2019 14.62

14.16 Bibliography
jacobson:07:aet

[1] M. W. Jacobson and J. A. Fessler. “An expanded theoretical treatment of iteration-dependent
majorize-minimize algorithms.” In: IEEE Trans. Im. Proc. 16.10 (Oct. 2007), 2411–22. DOI:
10.1109/TIP.2007.904387 (cit. on p. 14.4).

robini:15:ghq

[2] M. C. Robini and Y. Zhu. “Generic half-quadratic optimization for image reconstruction.” In: SIAM J.
Imaging Sci. 8.3 (2015), 1752–97. DOI: 10.1137/140987845 (cit. on p. 14.4).

lange:00:otu

[3] K. Lange, D. R. Hunter, and I. Yang. “Optimization transfer using surrogate objective functions.” In: J.
Computational and Graphical Stat. 9.1 (Mar. 2000), 1–20. URL:
http://www.jstor.org/stable/1390605 (cit. on pp. 14.4, 14.6, 14.10, 14.13, 14.40).

ortega:70

[4] J. M. Ortega and W. C. Rheinboldt. Iterative solution of nonlinear equations in several variables. New York:
Academic, 1970. DOI: 10.1137/1.9780898719468 (cit. on p. 14.4).

huber:81

[5] P. J. Huber. Robust statistics. New York: Wiley, 1981 (cit. on pp. 14.4, 14.11, 14.17, 14.20, 14.23).
dempster:77:mlf

[6] A. P. Dempster, N. M. Laird, and D. B. Rubin. “Maximum likelihood from incomplete data via the EM
algorithm.” In: J. Royal Stat. Soc. Ser. B 39.1 (1977), 1–38. URL:
http://www.jstor.org/stable/2984875 (cit. on pp. 14.4, 14.16, 14.40, 14.41, 14.42, 14.44,
14.56, 14.57).

heiser:95:ccb

[7] W. J. Heiser. “Convergent computing by iterative majorization: theory and applications in multidimensional
data analysis.” In: Recent Advances in Descriptive Multivariate Analysis. Ed. by W J Krzasnowski. Oxford:
Clarendon, 1995, pp. 157–89 (cit. on p. 14.4).

kiers:02:sua

[8] H. A. L. Kiers. “Setting up alternating least squares and iterative majorization algorithms for solving various
matrix optimization problems.” In: Comp. Stat. Data Anal. 41.1 (Nov. 2002), 157–70. DOI:
10.1016/S0167-9473(02)00142-1 (cit. on p. 14.4).

depierro:87:otc

[9] A. R. De Pierro. “On the convergence of the iterative image space reconstruction algorithm for volume ECT.”
In: IEEE Trans. Med. Imag. 6.2 (June 1987), 174–5. DOI: 10.1109/TMI.1987.4307819 (cit. on
p. 14.4).

depierro:93:otr

[10] A. R. De Pierro. “On the relation between the ISRA and the EM algorithm for positron emission
tomography.” In: IEEE Trans. Med. Imag. 12.2 (June 1993), 328–33. DOI: 10.1109/42.232263 (cit. on
pp. 14.4, 14.14).

depierro:95:ame

[11] A. R. De Pierro. “A modified expectation maximization algorithm for penalized likelihood estimation in
emission tomography.” In: IEEE Trans. Med. Imag. 14.1 (Mar. 1995), 132–7. DOI: 10.1109/42.370409
(cit. on pp. 14.4, 14.14, 14.27, 14.30, 14.58).

depierro:95:otc

[12] A. R. De Pierro. “On the convergence of an EM-type algorithm for penalized likelihood estimation in
emission tomography.” In: IEEE Trans. Med. Imag. 14.4 (Dec. 1995), 762–5. DOI: 10.1109/42.476119
(cit. on p. 14.4).

lange:94:aab

[13] K. Lange. “An adaptive barrier method for convex programming.” In: Methods and Appl. of Analysis 1.4
(1994), 392–402. URL:
http://www.intlpress.com/MAA/p/1994/1_4/MAA-1-4-392-402.pdf (cit. on p. 14.4).

lange:95:aga

[14] K. Lange. “A gradient algorithm locally equivalent to the EM Algorithm.” In: J. Royal Stat. Soc. Ser. B 57.2
(1995), 425–37. URL: http://www.jstor.org/stable/2345971 (cit. on pp. 14.4, 14.45).

lange:95:gca

[15] K. Lange and J. A. Fessler. “Globally convergent algorithms for maximum a posteriori transmission
tomography.” In: IEEE Trans. Im. Proc. 4.10 (Oct. 1995), 1430–8. DOI: 10.1109/83.465107 (cit. on
p. 14.4).

lange:99

[16] K. Lange. Numerical analysis for statisticians. New York: Springer-Verlag, 1999 (cit. on pp. 14.4, 14.8, 14.9,
14.42).

fessler:94:sag

[17] J. A. Fessler and A. O. Hero. “Space-alternating generalized expectation-maximization algorithm.” In: IEEE
Trans. Sig. Proc. 42.10 (Oct. 1994), 2664–77. DOI: 10.1109/78.324732 (cit. on pp. 14.4, 14.56, 14.57,
14.58).

fessler:95:pml

[18] J. A. Fessler and A. O. Hero. “Penalized maximum-likelihood image reconstruction using space-alternating
generalized EM algorithms.” In: IEEE Trans. Im. Proc. 4.10 (Oct. 1995), 1417–29. DOI:
10.1109/83.465106 (cit. on pp. 14.4, 14.56).

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1109/TIP.2007.904387
https://doi.org/10.1137/140987845
http://www.jstor.org/stable/1390605
https://doi.org/10.1137/1.9780898719468
http://www.jstor.org/stable/2984875
https://doi.org/10.1016/S0167-9473(02)00142-1
https://doi.org/10.1109/TMI.1987.4307819
https://doi.org/10.1109/42.232263
https://doi.org/10.1109/42.370409
https://doi.org/10.1109/42.476119
http://www.intlpress.com/MAA/p/1994/1_4/MAA-1-4-392-402.pdf
http://www.jstor.org/stable/2345971
https://doi.org/10.1109/83.465107
https://doi.org/10.1109/78.324732
https://doi.org/10.1109/83.465106


c© J. Fessler. [license] February 15, 2019 14.63

becker:97:eaw

[19] M. P. Becker, I. Yang, and K. Lange. “EM algorithms without missing data.” In: Stat. Meth. Med. Res. 6.1
(Jan. 1997), 38–54. DOI: 10.1177/096228029700600104 (cit. on p. 14.4).

hunter:99:phd

[20] D. R. Hunter. “Optimization transfer algorithms in statistics.” PhD thesis. Ann Arbor, MI: Univ. of Michigan,
Ann Arbor, MI, 48109-2122, Apr. 1999. URL: https://hdl.handle.net/2027.42/131907
(cit. on p. 14.4).

hunter:04:ato

[21] D. R. Hunter and K. Lange. “A tutorial on MM algorithms.” In: American Statistician 58.1 (Feb. 2004), 30–7.
DOI: 10.1198/0003130042836 (cit. on p. 14.4).

lange:16

[22] K. Lange. MM optimization algorithms. Soc. Indust. Appl. Math., 2016. DOI:
10.1137/1.9781611974409 (cit. on p. 14.4).

cohen:96:ava

[23] L. D. Cohen. “Auxiliary variables and two-step iterative algorithms in computer vision problems.” In: J.
Math. Im. Vision 6.1 (Jan. 1996), 59–83. DOI: 10.1007/BF00127375(abstract) (cit. on p. 14.4).

allain:06:oga

[24] M. Allain, J. Idier, and Y. Goussard. “On global and local convergence of half-quadratic algorithms.” In:
IEEE Trans. Im. Proc. 15.5 (May 2006), 1130–42. DOI: 10.1109/TIP.2005.864173 (cit. on p. 14.4).

weiszfeld:1937:slp

[25] E. Weiszfeld. “Sur le point pour lequel la somme des distances de n points donnés est minimum.” In: Tôhoku
Mathematical Journal 43 (1937), 355–86 (cit. on p. 14.4).

voss:80:lco

[26] H. Voss and U. Eckhardt. “Linear convergence of generalized Weiszfeld’s method.” In: Computing 25.3
(Sept. 1980), 243–51. DOI: 10.1007/BF02242002 (cit. on p. 14.4).

censor:92:pma

[27] Y. Censor and S. A. Zenios. “Proximal minimization algorithm with D-functions.” In: J. Optim. Theory Appl.
73.3 (June 1992), 451–64. DOI: 10.1007/BF00940051 (cit. on p. 14.4).

bertsekas:99

[28] D. P. Bertsekas. Nonlinear programming. 2nd ed. Belmont: Athena Scientific, 1999. URL:
http://www.athenasc.com/nonlinbook.html (cit. on p. 14.4).

parikh:13:pa

[29] N. Parikh and S. Boyd. “Proximal algorithms.” In: Found. Trends in Optimization 1.3 (2013), 123–231. DOI:
10.1561/2400000003 (cit. on p. 14.4).

booker:99:arf

[30] A. J. Booker et al. “A rigorous framework for optimization of expensive functions by surrogates.” In:
Structural Optimization 17.1 (Feb. 1999), 1–13. DOI: 10.1007/BF01197708 (cit. on p. 14.6).

robini:16:ihq

[31] M. Robini et al. “Inexact half-quadratic optimization for image reconstruction.” In: Proc. IEEE Intl. Conf. on
Image Processing. 2016, 3513–7. DOI: 10.1109/ICIP.2016.7533013 (cit. on p. 14.6).

deleeuw:94:bra

[32] J. de Leeuw. “Block relaxation algorithms in statistics.” In: Information Systems and Data Analysis. Ed. by
M M Richter H H Bock W Lenski. Berlin: Springer-Verlag, 1994, pp. 308–25 (cit. on p. 14.6).

deleeuw:03:bra

[33] J. de Leeuw and G. Michailidis. Block relaxation algorithms in statistics. Preprint by email from the author.
see deleeuw:94:bra. Supposedly at http://www.stat.uc la.edu/ deleeuw/block.pdf, according to discussion by
these authors of lange:00:otu. 2003 (cit. on p. 14.6).

fessler:93:ocd

[34] J. A. Fessler, N. H. Clinthorne, and W. L. Rogers. “On complete data spaces for PET reconstruction
algorithms.” In: IEEE Trans. Nuc. Sci. 40.4 (Aug. 1993), 1055–61. DOI: 10.1109/23.256712 (cit. on
pp. 14.7, 14.8, 14.42).

hero:95:cin

[35] A. O. Hero and J. A. Fessler. “Convergence in norm for alternating expectation-maximization (EM) type
algorithms.” In: Statistica Sinica 5.1 (Jan. 1995), 41–54. URL:
http://www3.stat.sinica.edu.tw/statistica/oldpdf/A5n13.pdf (cit. on pp. 14.8,
14.58).

lange:95:aqn

[36] K. Lange. “A Quasi-Newton acceleration of the EM Algorithm.” In: Statistica Sinica 5.1 (Jan. 1995), 1–18.
URL: http://www3.stat.sinica.edu.tw/statistica/j5n1/j5n11/j5n11.htm (cit. on
pp. 14.9, 14.45).

jamshidian:97:aot

[37] M. Jamshidian and R. I. Jennrich. “Acceleration of the EM algorithm by using quasi-Newton methods.” In: J.
Royal Stat. Soc. Ser. B 59.3 (1997), 569–87. DOI: 10.1111/1467-9868.00083 (cit. on pp. 14.9, 14.10).

gu:04:msd-1

[38] T. Gu et al. “Multiple search direction conjugate gradient method I: methods and their propositions.” In: Int.
J. of Computer Mathematics 81.9 (Sept. 2004), 1133–43. DOI: 10.1080/00207160410001712305
(cit. on p. 14.9).

gu:04:msd-2

[39] T. Gu et al. “Multiple search direction conjugate gradient method II: theory and numerical experiments.” In:
Int. J. of Computer Mathematics 81.10 (Oct. 2004), 1289–307. DOI:
10.1080/00207160412331289065 (cit. on p. 14.9).

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1177/096228029700600104
https://hdl.handle.net/2027.42/131907
https://doi.org/10.1198/0003130042836
https://doi.org/10.1137/1.9781611974409
https://doi.org/10.1007/BF00127375 (abstract)
https://doi.org/10.1109/TIP.2005.864173
https://doi.org/10.1007/BF02242002
https://doi.org/10.1007/BF00940051
http://www.athenasc.com/nonlinbook.html
https://doi.org/10.1561/2400000003
https://doi.org/10.1007/BF01197708
https://doi.org/10.1109/ICIP.2016.7533013
https://doi.org/10.1109/23.256712
http://www3.stat.sinica.edu.tw/statistica/oldpdf/A5n13.pdf
http://www3.stat.sinica.edu.tw/statistica/j5n1/j5n11/j5n11.htm
https://doi.org/10.1111/1467-9868.00083
https://doi.org/10.1080/00207160410001712305
https://doi.org/10.1080/00207160412331289065


c© J. Fessler. [license] February 15, 2019 14.64

bridson:06:amp

[40] R. Bridson and C. Greif. “A multi-preconditioned conjugate gradient algorithm.” In: SIAM J. Matrix. Anal.
Appl. 27.4 (2006), 1056–68. DOI: 10.1137/040620047 (cit. on p. 14.9).

florescu:14:amm

[41] A. Florescu et al. “A majorize-minimize memory gradient method for complex-valued inverse problems.” In:
Signal Processing 103 (Oct. 2014), 285–95. DOI: 10.1016/j.sigpro.2013.09.026 (cit. on pp. 14.9,
14.10).

jamshidian:93:cga

[42] M. Jamshidian and R. I. Jennrich. “Conjugate gradient acceleration of the EM algorithm.” In: J. Am. Stat.
Assoc. 88.421 (Mar. 1993), 221–8. URL: http://www.jstor.org/stable/2290716 (cit. on
pp. 14.10, 14.45).

beck:09:afi

[43] A. Beck and M. Teboulle. “A fast iterative shrinkage-thresholding algorithm for linear inverse problems.” In:
SIAM J. Imaging Sci. 2.1 (2009), 183–202. DOI: 10.1137/080716542 (cit. on pp. 14.11, 14.14, 14.36).

bohning:88:moq

[44] D. Böhning and B. G. Lindsay. “Monotonicity of quadratic approximation algorithms.” In: Ann. Inst. Stat.
Math. 40.4 (Dec. 1988), 641–63. DOI: 10.1007/BF00049423 (cit. on p. 14.11).

wright:07:srb

[45] S. J. Wright, R. D. Nowak, and Mário A T Figueiredo. “Sparse reconstruction by separable approximation.”
In: Proc. IEEE Conf. Acoust. Speech Sig. Proc. 2007, 3373–6. DOI: 10.1109/ICASSP.2008.4518374
(cit. on p. 14.11).

luenberger:69

[46] D. G. Luenberger. Optimization by vector space methods. New York: Wiley, 1969. URL:
http://books.google.com/books?id=lZU0CAH4RccC (cit. on p. 14.12).

konno:97:ool

[47] H. Konno, P. T. Thach, and H. Tuy. Optimization on low rank nonconvex structures. Dordecth: Kluwer, 1997
(cit. on p. 14.13).

delaney:98:gce

[48] A. H. Delaney and Y. Bresler. “Globally convergent edge-preserving regularized reconstruction: an
application to limited-angle tomography.” In: IEEE Trans. Im. Proc. 7.2 (Feb. 1998), 204–21. DOI:
10.1109/83.660997 (cit. on pp. 14.13, 14.22).

press:88

[49] W. H. Press et al. Numerical recipes in C. New York: Cambridge Univ. Press, 1988 (cit. on pp. 14.14, 14.25,
14.32).

redner:84:mdm

[50] R. Redner and H. Walker. “Mixture densities, maximum likelihood, and the EM algorithm.” In: SIAM Review
26.2 (Apr. 1984), 195–239. DOI: 10.1137/1026034 (cit. on pp. 14.16, 14.45).

li:13:ssr

[51] X. Li and V. Voroninski. “Sparse signal recovery from quadratic measurements via convex programming.” In:
SIAM J. Math. Anal. 45.5 (2013), 3019–33. DOI: 10.1137/120893707.

gerchberg:72:apa

[52] R. W. Gerchberg and W. O. Saxton. “A practical algorithm for the determination of phase from image and
diffraction plane pictures.” In: Optik 35.2 (Apr. 1972), 237–46.

fienup:78:roa

[53] J. R. Fienup. “Reconstruction of an object from the modulus of its Fourier transform.” In: Optics Letters 3.1
(July 1978), 27–9. DOI: 10.1364/OL.3.000027.

fienup:82:pra

[54] J. R. Fienup. “Phase retrieval algorithms: a comparison.” In: Appl. Optics 21.15 (Aug. 1982), 2758–69. DOI:
10.1364/AO.21.002758.

yang:94:gsa

[55] G. Yang et al. “Gerchberg-Saxton and Yang-Gu algorithms for phase retrieval in an nonunitary transform
system: a comparison.” In: Appl. Optics-IP 33.2 (Jan. 1994), 209–18. DOI: 10.1364/AO.33.000209.

osullivan:08:ama

[56] J. A. O’Sullivan and C. Preza. “Alternating minimization algorithm for quantitative differential-interference
contrast (DIC) microscopy.” In: Proc. SPIE 6814 Computational Imaging VI. 2008, 68140Y. DOI:
10.1117/12.785471.

moravec:07:cpr

[57] M. L. Moravec, J. K. Romberg, and R. G. Baraniuk. “Compressive phase retrieval.” In: Proc. SPIE 6701
Wavelets XII. 2007, p. 670120. DOI: 10.1117/12.736360.

chan:08:tiw

[58] W. L. Chan et al. “Terahertz imaging with compressed sensing and phase retrieval.” In: Optics Letters 33.9
(May 2008), 974–6. DOI: 10.1364/OL.33.000974.

candes:13:pea

[59] E. J. Candes, T. Strohmer, and V. Voroninski. “PhaseLift: exact and stable signal recovery from magnitude
measurements via convex programming.” In: Comm. Pure Appl. Math. 66.8 (Aug. 2013), 1241–74. DOI:
10.1002/cpa.21432.

candes:13:prv

[60] E. J. Candes et al. “Phase retrieval via matrix completion.” In: SIAM J. Imaging Sci. 6.1 (2013), 199–225.
DOI: 10.1137/110848074.

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1137/040620047
https://doi.org/10.1016/j.sigpro.2013.09.026
http://www.jstor.org/stable/2290716
https://doi.org/10.1137/080716542
https://doi.org/10.1007/BF00049423
https://doi.org/10.1109/ICASSP.2008.4518374
http://books.google.com/books?id=lZU0CAH4RccC
https://doi.org/10.1109/83.660997
https://doi.org/10.1137/1026034
https://doi.org/10.1137/120893707
https://doi.org/10.1364/OL.3.000027
https://doi.org/10.1364/AO.21.002758
https://doi.org/10.1364/AO.33.000209
https://doi.org/10.1117/12.785471
https://doi.org/10.1117/12.736360
https://doi.org/10.1364/OL.33.000974
https://doi.org/10.1002/cpa.21432
https://doi.org/10.1137/110848074


c© J. Fessler. [license] February 15, 2019 14.65

chouzenoux:13:abc

[61] E. Chouzenoux, J. C. Pesquet, and A. Repetti. A block coordinate variable metric forward-backward
algorithm. 2013. URL:
http://www.optimization-online.org/DB_HTML/2013/12/4178.html.

qin:14:csp

[62] S. Qin, X. Hu, and Q. Qin. “Compressed sensing phase retrieval with phase diversity.” In: Optics
Communications 310.1 (Jan. 2014), 193–8. DOI: 10.1016/j.optcom.2013.08.001.

shechtman:14:gep

[63] Y. Shechtman, A. Beck, and Y. C. Eldar. “GESPAR: efficient phase retrieval of sparse signals.” In: IEEE
Trans. Sig. Proc. 62.4 (Feb. 2014), 928–38. DOI: 10.1109/TSP.2013.2297687.

waldspurger:15:prm

[64] I. Waldspurger, A. d’Aspremont, and Stephane Mallat. “Phase recovery, MaxCut and complex semidefinite
programming.” In: Mathematical Programming 149.1 (Feb. 2015), 47–81. DOI:
10.1007/s10107-013-0738-9.

setsompop:08:mls

[65] K. Setsompop et al. “Magnitude least squares optimization for parallel radio frequency excitation design
demonstrated at 7 Tesla with eight channels.” In: Mag. Res. Med. 59.4 (Apr. 2008), 908–15. DOI:
10.1002/mrm.21513.

kassakian:05:mls

[66] P. Kassakian. “Magnitude least-squares fitting via semidefinite programming with applications to
beamforming and multidimensional filter design.” In: Proc. IEEE Conf. Acoust. Speech Sig. Proc. Vol. 3.
2005, 53–6. DOI: 10.1109/ICASSP.2005.1415644.

kassakian:06:caa

[67] P. W. Kassakian. “Convex approximation and optimization with applications in magnitude filter design and
radiation pattern synthesis.” UCB/EECS-2006-64. PhD thesis. EECS Department, UC Berkeley, May 2006.
URL: http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-64.html.

hayes:80:srf

[68] M. Hayes, J. Lim, and A. Oppenheim. “Signal reconstruction from phase or magnitude.” In: IEEE Trans.
Acoust. Sp. Sig. Proc. 28.6 (Dec. 1980), 672–80. DOI: 10.1109/TASSP.1980.1163463.

fessler:99:cgp

[69] J. A. Fessler and S. D. Booth. “Conjugate-gradient preconditioning methods for shift-variant PET image
reconstruction.” In: IEEE Trans. Im. Proc. 8.5 (May 1999), 688–99. DOI: 10.1109/83.760336 (cit. on
p. 14.26).

chouzenoux:11:amm

[70] E. Chouzenoux, J. Idier, and Said Moussaoui. “A majorize-minimize strategy for subspace optimization
applied to image restoration.” In: IEEE Trans. Im. Proc. 20.6 (June 2011), 1517–28. DOI:
10.1109/TIP.2010.2103083.

candes:14:prv

[71] E. Candes, X. Li, and M. Soltanolkotabi. Phase retrieval via Wirtinger flow: Theory and algorithms. 2014.
URL: http://arxiv.org/abs/1407.1065.

netrapalli:13:pru

[72] P. Netrapalli, P. Jain, and S. Sanghavi. Phase retrieval using alternating minimization. 2013. URL:
http://arxiv.org/abs/1306.0160.

erdogan:99:maf

[73] H. Erdogan and J. A. Fessler. “Monotonic algorithms for transmission tomography.” In: IEEE Trans. Med.
Imag. 18.9 (Sept. 1999), 801–14. DOI: 10.1109/42.802758 (cit. on pp. 14.19, 14.23).

deleeuw:09:sqm

[74] J. de Leeuw and K. Lange. “Sharp quadratic majorization in one dimension.” In: Comp. Stat. Data Anal. 53.7
(May 2009), 2471–84. DOI: 10.1016/j.csda.2009.01.002 (cit. on p. 14.19).

sotthivirat:04:pli

[75] S. Sotthivirat and J. A. Fessler. “Penalized-likelihood image reconstruction for digital holography.” In: J. Opt.
Soc. Am. A 21.5 (May 2004), 737–50. DOI: 10.1364/JOSAA.21.000737 (cit. on pp. 14.19, 14.20).

lange:90:coe

[76] K. Lange. “Convergence of EM image reconstruction algorithms with Gibbs smoothing.” In: IEEE Trans.
Med. Imag. 9.4 (Dec. 1990). Corrections, T-MI, 10:2(288), June 1991., 439–46. DOI: 10.1109/42.61759
(cit. on pp. 14.21, 14.33).

bouman:96:aua

[77] C. A. Bouman and K. Sauer. “A unified approach to statistical tomography using coordinate descent
optimization.” In: IEEE Trans. Im. Proc. 5.3 (Mar. 1996), 480–92. DOI: 10.1109/83.491321 (cit. on
p. 14.21).

yu:11:fmb

[78] Z. Yu et al. “Fast model-based X-ray CT reconstruction using spatially non-homogeneous ICD optimization.”
In: IEEE Trans. Im. Proc. 20.1 (Jan. 2011), 161–75. DOI: 10.1109/TIP.2010.2058811 (cit. on
p. 14.21).

geman:92:cra

[79] D. Geman and G. Reynolds. “Constrained restoration and the recovery of discontinuities.” In: IEEE Trans.
Patt. Anal. Mach. Int. 14.3 (Mar. 1992), 367–83. DOI: 10.1109/34.120331 (cit. on p. 14.22).

delaney:95:afi

[80] A. H. Delaney and Y. Bresler. “A fast iterative tomographic reconstruction algorithm.” In: Proc. IEEE Conf.
Acoust. Speech Sig. Proc. Vol. 4. 1995, 2295–8. DOI: 10.1109/ICASSP.1995.479950 (cit. on
p. 14.22).

https://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.optimization-online.org/DB_HTML/2013/12/4178.html
https://doi.org/10.1016/j.optcom.2013.08.001
https://doi.org/10.1109/TSP.2013.2297687
https://doi.org/10.1007/s10107-013-0738-9
https://doi.org/10.1002/mrm.21513
https://doi.org/10.1109/ICASSP.2005.1415644
http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-64.html
https://doi.org/10.1109/TASSP.1980.1163463
https://doi.org/10.1109/83.760336
https://doi.org/10.1109/TIP.2010.2103083
http://arxiv.org/abs/1407.1065
http://arxiv.org/abs/1306.0160
https://doi.org/10.1109/42.802758
https://doi.org/10.1016/j.csda.2009.01.002
https://doi.org/10.1364/JOSAA.21.000737
https://doi.org/10.1109/42.61759
https://doi.org/10.1109/83.491321
https://doi.org/10.1109/TIP.2010.2058811
https://doi.org/10.1109/34.120331
https://doi.org/10.1109/ICASSP.1995.479950


c© J. Fessler. [license] February 15, 2019 14.66

geman:95:nir

[81] D. Geman and C. Yang. “Nonlinear image recovery with half-quadratic regularization.” In: IEEE Trans. Im.
Proc. 4.7 (July 1995), 932–46. DOI: 10.1109/83.392335 (cit. on p. 14.22).

aubert:97:avm

[82] G. Aubert and L. Vese. “A variational method in image recovery.” In: SIAM J. Numer. Anal. 34.5 (Oct. 1997),
1948–97. DOI: 10.1137/S003614299529230X (cit. on pp. 14.22, 14.61).

charbonnier:97:dep

[83] P. Charbonnier et al. “Deterministic edge-preserving regularization in computed imaging.” In: IEEE Trans.
Im. Proc. 6.2 (Feb. 1997), 298–311. DOI: 10.1109/83.551699 (cit. on p. 14.22).

rivera:03:ehq

[84] M. Rivera and J. L. Marroquin. “Efficient half-quadratic regularization with granularity control.” In: Im. and
Vision Computing 21.4 (Apr. 2003), 345–57. DOI: 10.1016/S0262-8856(03)00005-2 (cit. on
pp. 14.22, 14.25).

kunsch:94:rpf

[85] H. Kunsch. “Robust priors for smoothing and image restoration.” In: Ann. Inst. Stat. Math. 46.1 (Mar. 1994),
1–19. DOI: 10.1007/BF00773588 (cit. on p. 14.22).

black:96:otu

[86] M. J. Black and A. Rangarajan. “On the unification of line processes, outlier rejection, and robust statistics
with applications in early vision.” In: Intl. J. Comp. Vision 19.1 (July 1996), 57–91. DOI:
10.1007/BF00131148 (cit. on p. 14.22).

nikolova:01:fir

[87] M. Nikolova and M. Ng. “Fast image reconstruction algorithms combining half-quadratic regularization and
preconditioning.” In: Proc. IEEE Intl. Conf. on Image Processing. Vol. 1. 2001, 277–80. DOI:
10.1109/ICIP.2001.959007 (cit. on pp. 14.22, 14.23).

nikolova:05:aoh

[88] M. Nikolova and M. K. Ng. “Analysis of half-quadratic minimization methods for signal and image
recovery.” In: SIAM J. Sci. Comp. 27.3 (2005), 937–66. DOI: 10.1137/030600862 (cit. on pp. 14.22,
14.23).

idier:01:chq

[89] J. Idier. “Convex half-quadratic criteria and interacting auxiliary variables for image restoration.” In: IEEE
Trans. Im. Proc. 10.7 (July 2001), 1001–9. DOI: 10.1109/83.931094 (cit. on p. 14.23).

rockafellar:70

[90] R. T. Rockafellar. Convex analysis. Princeton: Princeton University Press, 1970 (cit. on p. 14.23).
nikolova:07:teo

[91] M. Nikolova and R. H. Chan. “The equivalence of half-quadratic minimization and the gradient linearization
iteration.” In: IEEE Trans. Im. Proc. 16.6 (June 2007), 1623–7. DOI: 10.1109/TIP.2007.896622
(cit. on p. 14.23).

green:84:irl

[92] P. J. Green. “Iteratively reweighted least squares for maximum likelihood estimation, and some robust and
resistant alternatives.” In: J. Royal Stat. Soc. Ser. B 46.2 (1984), 149–92. URL:
http://www.jstor.org/stable/2345503 (cit. on p. 14.23).

fessler:00:sir

[93] J. A. Fessler. “Statistical image reconstruction methods for transmission tomography.” In: Handbook of
Medical Imaging, Volume 2. Medical Image Processing and Analysis. Ed. by M. Sonka and
J. Michael Fitzpatrick. Bellingham: SPIE, 2000, pp. 1–70. DOI: 10.1117/3.831079.ch1 (cit. on
p. 14.24).

golub:89

[94] G. H. Golub and C. F. Van Loan. Matrix computations. 2nd ed. Johns Hopkins Univ. Press, 1989 (cit. on
p. 14.29).

chen:08:a8c

[95] Y. Chen et al. “Algorithm 887: CHOLMOD, supernodal sparse Cholesky factorization and update/downdate.”
In: ACM Trans. Math. Software 35.3 (Oct. 2008), 22:1–22:14. DOI: 10.1145/1391989.1391995
(cit. on p. 14.29).

figueiredo:03:aea

[96] M. A. T. Figueiredo and R. D. Nowak. “An EM algorithm for wavelet-based image restoration.” In: IEEE
Trans. Im. Proc. 12.8 (Aug. 2003), 906–16. DOI: 10.1109/TIP.2003.814255 (cit. on p. 14.30).

daubechies:04:ait

[97] I. Daubechies, M. Defrise, and C. De Mol. “An iterative thresholding algorithm for linear inverse problems
with a sparsity constraint.” In: Comm. Pure Appl. Math. 57.11 (Nov. 2004), 1413–57. DOI:
10.1002/cpa.20042 (cit. on p. 14.30).

vonesch:09:afm

[98] C. Vonesch and M. Unser. “A fast multilevel algorithm for wavelet-regularized image restoration.” In: IEEE
Trans. Im. Proc. 18.3 (Mar. 2009), 509–23. DOI: 10.1109/TIP.2008.2008073 (cit. on p. 14.31).

ziskind:88:mll

[99] I. Ziskind and M. Wax. “Maximum likelihood localization of multiple sources by alternating projection.” In:
IEEE Trans. Acoust. Sp. Sig. Proc. 36.10 (Oct. 1988), 1553–60 (cit. on pp. 14.32, 14.45).

hathaway:91:gcm

[100] R. J. Hathaway and J. C. Bezdek. “Grouped coordinate minimization using Newton’s method for inexact
minimization in one vector coordinate.” In: J. Optim. Theory Appl. 71.3 (Dec. 1991), 503–16. DOI:
10.1007/BF00941400 (cit. on p. 14.32).

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1109/83.392335
https://doi.org/10.1137/S003614299529230X
https://doi.org/10.1109/83.551699
https://doi.org/10.1016/S0262-8856(03)00005-2
https://doi.org/10.1007/BF00773588
https://doi.org/10.1007/BF00131148
https://doi.org/10.1109/ICIP.2001.959007
https://doi.org/10.1137/030600862
https://doi.org/10.1109/83.931094
https://doi.org/10.1109/TIP.2007.896622
http://www.jstor.org/stable/2345503
https://doi.org/10.1117/3.831079.ch1
https://doi.org/10.1145/1391989.1391995
https://doi.org/10.1109/TIP.2003.814255
https://doi.org/10.1002/cpa.20042
https://doi.org/10.1109/TIP.2008.2008073
https://doi.org/10.1007/BF00941400


c© J. Fessler. [license] February 15, 2019 14.67

jensen:91:gca

[101] S. T. Jensen, S. Johansen, and S. L. Lauritzen. “Globally convergent algorithms for maximizing a likelihood
function.” In: Biometrika 78.4 (Dec. 1991), 867–77. DOI: 10.1093/biomet/78.4.867 (cit. on
p. 14.32).

clinthorne:94:acd

[102] N. H. Clinthorne. “A constrained dual-energy reconstruction method for material-selective transmission
tomography.” In: Nucl. Instr. Meth. Phys. Res. A. 353.1 (Dec. 1994), 347–8. DOI:
10.1016/0168-9002(94)91673-X (cit. on p. 14.32).

grippo:99:gcb

[103] L. Grippo and M. Sciandrone. “Globally convergent block-coordinate techniques for unconstrained
optimization.” In: Optim. Meth. Software 10.4 (Apr. 1999), 587–637. DOI:
10.1080/10556789908805730 (cit. on p. 14.32).

sauer:95:pco

[104] K. D. Sauer, S. Borman, and C. A. Bouman. “Parallel computation of sequential pixel updates in statistical
tomographic reconstruction.” In: Proc. IEEE Intl. Conf. on Image Processing. Vol. 3. 1995, 93–6. DOI:
10.1109/ICIP.1995.537422 (cit. on p. 14.32).

fessler:97:gca

[105] J. A. Fessler et al. “Grouped-coordinate ascent algorithms for penalized-likelihood transmission image
reconstruction.” In: IEEE Trans. Med. Imag. 16.2 (Apr. 1997), 166–75. DOI: 10.1109/42.563662
(cit. on p. 14.32).

fessler:97:gcd

[106] J. A. Fessler. “Grouped coordinate descent algorithms for robust edge-preserving image restoration.” In:
Proc. SPIE 3170 Im. Recon. and Restor. II. 1997, 184–94. DOI: 10.1117/12.279713 (cit. on p. 14.32).

schlossmacher:73:ait

[107] E. J. Schlossmacher. “An iterative technique for absolute deviations curve fitting.” In: J. Am. Stat. Assoc.
68.344 (Dec. 1973), 857–9. URL: http://www.jstor.org/stable/2284512 (cit. on p. 14.35).

oliveira:09:atv

[108] J. P. Oliveira, J. M. Bioucas-Dias, and M. A. T. Figueiredo. “Adaptive total variation image deblurring: A
majorization-minimization approach.” In: Signal Processing 89.9 (Sept. 2009), 1683–93. DOI:
10.1016/j.sigpro.2009.03.018 (cit. on p. 14.35).

chen:14:tis

[109] P-Y. Chen and I. W. Selesnick. “Translation-invariant shrinkage/thresholding of group sparse signals.” In:
Signal Processing 94 (Jan. 2014), 476–89. DOI: 10.1016/j.sigpro.2013.06.011 (cit. on p. 14.35).

lu:11:mcn

[110] Z. Lu and T. K. Pong. “Minimizing condition number via convex programming.” In: SIAM J. Matrix. Anal.
Appl. 32.4 (2011), 1193–211. DOI: 10.1137/100795097.

fletcher:85:sdm

[111] R. Fletcher. “Semi-definite matrix constraints in optimization.” In: SIAM J. Cont. Opt. 23.4 (July 1985),
493–. DOI: 10.1137/0323032.

boyd:04

[112] S. Boyd and L. Vandenberghe. Convex optimization. UK: Cambridge, 2004. URL:
http://web.stanford.edu/~boyd/cvxbook.html.

drori:17:tei

[113] Y. Drori. “The exact information-based complexity of smooth convex minimization.” In: J. Complexity 39
(Apr. 2017), 1–16. DOI: 10.1016/j.jco.2016.11.001.

kim:16:ofo

[114] D. Kim and J. A. Fessler. “Optimized first-order methods for smooth convex minimization.” In:
Mathematical Programming 159.1 (Sept. 2016), 81–107. DOI: 10.1007/s10107-015-0949-3.

mcgaffin:15:ado-arxiv

[115] M. G. McGaffin and J. A. Fessler. Algorithmic design of majorizers for large-scale inverse problems. 2015.
URL: http://arxiv.org/abs/1508.02958.

vandenberghe:98:dmw

[116] L. Vandenberghe, S. Boyd, and S-P. Wu. “Determinant maximization with linear matrix inequality
constraints.” In: SIAM J. Matrix. Anal. Appl. 19.2 (1998), 499–533. DOI:
10.1137/S0895479896303430.

bonettini:16:vmi

[117] S. Bonettini et al. “Variable metric inexact line-search-based methods for nonsmooth optimization.” In: SIAM
J. Optim. 26.2 (2016), 891–921. DOI: 10.1137/15M1019325.

taylor:17:ewc-composite

[118] A. B. Taylor, J. M. Hendrickx, and Francois Glineur. “Exact worst-case performance of first-order methods
for composite convex optimization.” In: SIAM J. Optim. 27.3 (Jan. 2017), 1283–313. DOI:
10.1137/16m108104x.

osborne:60:opc

[119] E. Osborne. “On pre-conditioning of matrices.” In: J. Assoc. Comput. Mach. 7.4 (Oct. 1960), 338–45. DOI:
10.1145/321043.321048.

bauer:63:osm

[120] F. L. Bauer. “Optimally scaled matrices.” In: Numerische Mathematik 5.1 (Dec. 1963), 73–87. DOI:
10.1007/BF01385880.

gray:06:tac

[121] R. M. Gray. Toeplitz and circulant matrices: a review. 2006. URL:
http://www-ee.stanford.edu/~gray/toeplitz.html.

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1093/biomet/78.4.867
https://doi.org/10.1016/0168-9002(94)91673-X
https://doi.org/10.1080/10556789908805730
https://doi.org/10.1109/ICIP.1995.537422
https://doi.org/10.1109/42.563662
https://doi.org/10.1117/12.279713
http://www.jstor.org/stable/2284512
https://doi.org/10.1016/j.sigpro.2009.03.018
https://doi.org/10.1016/j.sigpro.2013.06.011
https://doi.org/10.1137/100795097
https://doi.org/10.1137/0323032
http://web.stanford.edu/~boyd/cvxbook.html
https://doi.org/10.1016/j.jco.2016.11.001
https://doi.org/10.1007/s10107-015-0949-3
http://arxiv.org/abs/1508.02958
https://doi.org/10.1137/S0895479896303430
https://doi.org/10.1137/15M1019325
https://doi.org/10.1137/16m108104x
https://doi.org/10.1145/321043.321048
https://doi.org/10.1007/BF01385880
http://www-ee.stanford.edu/~gray/toeplitz.html


c© J. Fessler. [license] February 15, 2019 14.68

chan:07

[122] R. H-F. Chan and X-Q. Jin. An introduction to iterative Toeplitz solvers. Philadelphia: Soc. Indust. Appl.
Math., 2007. URL: http://www.ec-securehost.com/SIAM/FA05.html.

strang:86:apf

[123] G. Strang. “A proposal for Toeplitz matrix calculations.” In: Stud. Appl. Math. 74 (1986), 171–6.
chan:89:teb

[124] R. Chan and G. Strang. “Toeplitz equations by conjugate gradients with circulant preconditioner.” In: SIAM J.
Sci. Stat. Comp. 10.1 (1989), 104–19. DOI: 10.1137/0910009.

chan:94:cpf

[125] T. F. Chan and J. A. Olkin. “Circulant preconditioners for Toeplitz-block matrices.” In: Numer. Algorithms
6.1 (Mar. 1994), 89–101. DOI: 10.1007/BF02149764.

chan:96:cgm

[126] R. H. Chan and M. K. Ng. “Conjugate gradient methods for Toeplitz systems.” In: SIAM Review 38.3 (Sept.
1996), 427–82. DOI: 10.1137/S0036144594276474.

potts:01:pfi

[127] D. Potts and G. Steidl. “Preconditioners for ill-conditioned Toeplitz matrices constructed from positive
kernels.” In: SIAM J. Sci. Comp. 22.5 (2001), 1741–61. DOI: 10.1137/S1064827599351428.

yagle:02:nfp

[128] A. E. Yagle. “New fast preconditioners for Toeplitz-like linear systems.” In: Proc. IEEE Conf. Acoust. Speech
Sig. Proc. Vol. 2. 2002, 1365–8. DOI: 10.1109/ICASSP.2002.1006005.

chan:88:aoc

[129] T. F. Chan. “An optimal circulant preconditioner for Toeplitz systems.” In: SIAM J. Sci. Stat. Comp. 9.4 (July
1988), 766–71. DOI: 10.1137/0909051.

reeves:02:fro

[130] S. J. Reeves. “Fast restoration of PMMW imagery without boundary artifacts.” In: Proc. SPIE 4719 Infrared
and passive millimeter-wave imaging systems: Design, analysis, modeling, and testing. 2002, 289–95. DOI:
10.1117/12.477469.

pan:05:fra

[131] R. Pan and S. J. Reeves. “Fast restoration and superresolution with edge-preserving regularization.” In: Proc.
SPIE 5077 Passive Millimeter-Wave Imaging Tech. VI and Radar Sensor Tech. VII. 2005, 93–9. DOI:
10.1117/12.487300.

pan:05:fhm

[132] R. Pan and S. J. Reeves. “Fast Huber-Markov edge-preserving image restoration.” In: Proc. SPIE 5674
Computational Imaging III. 2005, 138–46. DOI: 10.1117/12.587823.

pan:06:ehm

[133] R. Pan and S. J. Reeves. “Efficient Huber-Markov edge-preserving image restoration.” In: IEEE Trans. Im.
Proc. 15.12 (Dec. 2006), 3728–35. DOI: 10.1109/TIP.2006.881971.

goldfarb:12:fms

[134] D. Goldfarb and S. Ma. “Fast multiple-splitting algorithms for convex optimization.” In: SIAM J. Optim. 22.2
(2012), 533–56. DOI: 10.1137/090780705.

johnstone:17:lag

[135] P. R. Johnstone and P. Moulin. “Local and global convergence of a general inertial proximal splitting scheme
for minimizing composite functions.” In: Computational Optimization and Applications 67.2 (June 2017),
259–92. DOI: 10.1007/s10589-017-9896-7.

elad:07:cas

[136] M. Elad, B. Matalon, and M. Zibulevsky. “Coordinate and subspace optimization methods for linear least
squares with non-quadratic regularization.” In: Applied and Computational Harmonic Analysis 23.3 (Nov.
2007), 346–67. DOI: 10.1016/j.acha.2007.02.002.

gutknecht:86:ksi

[137] M. H. Gutknecht, W. Niethammer, and R. S. Varga. “K-step iterative methods for solving nonlinear systems
of equations.” In: nummath 48.6 (June 1986), 699–712. DOI: 10.1007/BF01399689.

chambolle:15:otc

[138] A. Chambolle and C. Dossal. “On the convergence of the iterates of the "Fast iterative
shrinkage/Thresholding algorithm".” In: J. Optim. Theory Appl. 166.3 (Sept. 2015), 968–82. DOI:
10.1007/s10957-015-0746-4.

kim:18:ala

[139] D. Kim and J. A. Fessler. “Another look at the Fast Iterative Shrinkage/Thresholding Algorithm (FISTA).” In:
SIAM J. Optim. 28.1 (2018), 223–50. DOI: 10.1137/16M108940X.

varadhan:08:sag

[140] R. Varadhan and C. Roland. “Simple and globally convergent methods for accelerating the convergence of
any EM algorithm.” In: Scandinavian Journal of Statistics 35 (2008), 335–53. DOI:
10.1111/j.1467-9469.2007.00585.x (cit. on p. 14.45).

tseng:08:oap

[141] P. Tseng. On accelerated proximal gradient methods for convex-concave optimization. 2008. URL:
http://pages.cs.wisc.edu/~brecht/cs726docs/Tseng.APG.pdf.

jiang:12:aia

[142] K. Jiang, D. Sun, and K-C. Toh. “An inexact accelerated proximal gradient method for large scale linearly
constrained convex SDP.” In: SIAM J. Optim. 22.3 (2012), 1042–64. DOI: 10.1137/110847081.

scheinberg:16:pip

[143] K. Scheinberg and X. Tang. “Practical inexact proximal quasi-Newton method with global complexity
analysis.” In: Mathematical Programming 160.1 (Nov. 2016), 495–529. DOI:
10.1007/s10107-016-0997-3.

https://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.ec-securehost.com/SIAM/FA05.html
https://doi.org/10.1137/0910009
https://doi.org/10.1007/BF02149764
https://doi.org/10.1137/S0036144594276474
https://doi.org/10.1137/S1064827599351428
https://doi.org/10.1109/ICASSP.2002.1006005
https://doi.org/10.1137/0909051
https://doi.org/10.1117/12.477469
https://doi.org/10.1117/12.487300
https://doi.org/10.1117/12.587823
https://doi.org/10.1109/TIP.2006.881971
https://doi.org/10.1137/090780705
https://doi.org/10.1007/s10589-017-9896-7
https://doi.org/10.1016/j.acha.2007.02.002
https://doi.org/10.1007/BF01399689
https://doi.org/10.1007/s10957-015-0746-4
https://doi.org/10.1137/16M108940X
https://doi.org/10.1111/j.1467-9469.2007.00585.x
http://pages.cs.wisc.edu/~brecht/cs726docs/Tseng.APG.pdf
https://doi.org/10.1137/110847081
https://doi.org/10.1007/s10107-016-0997-3


c© J. Fessler. [license] February 15, 2019 14.69

csiszar:84:iga

[144] I. Csiszar and G. Tusnady. “Information geometry and alternating minimization procedures.” In: Statistics
and Decisions, Supplement Issue 1 (1984), 205–37 (cit. on pp. 14.38, 14.39, 14.45).

byrne:93:iir

[145] C. L. Byrne. “Iterative image reconstruction algorithms based on cross-entropy minimization.” In: IEEE
Trans. Im. Proc. 2.1 (Jan. 1993). Erratum and addendum: 4(2):226-7, Feb. 1995., 96–103. DOI:
10.1109/83.210869 (cit. on p. 14.38).

osullivan:98:ama

[146] J. A. O’Sullivan. “Alternating minimization algorithms: From Blahut-Arimoto to expectation-maximization.”
In: Codes, curves, and signals. Ed. by A Vardy. Hingham, MA: Kluwer, 1998, pp. 173–92. DOI:
10.1007/978-1-4615-5121-8_13 (cit. on p. 14.38).

neal:98:avo

[147] R. Neal and G. E. Hinton. “A view of the EM algorithm that justifies incremental, sparse and other variants.”
In: Learning in Graphical Models. Ed. by M. I. Jordan. Dordrencht: Kluwer, 1998, pp. 355–68. URL:
http://www.cs.toronto.edu/~radford/em.abstract.html (cit. on pp. 14.39, 14.45, 14.46).

gunawardana:99:coe

[148] A. Gunawardana and W. Byrne. Convergence of EM variants. Tech. rep. Johns Hopkins University: ECE
Dept., Feb. 1999. URL: http://www.clsp.jhu.edu/cgi-bin/zilla/showpage.prl?top
(cit. on pp. 14.39, 14.45).

byrne:99:coe

[149] W. Byrne and A. Gunawardana. “Convergence of EM variants.” In: Proc. 1999 IEEE Info. Theory Wkshp. on
Detection, Estimation, Classification and Imaging (DECI). 1999, p. 64 (cit. on p. 14.39).

byrne:00:coe

[150] W. Byrne and A. Gunawardana. “Comments on “Efficient training algorithms for HMMs using incremental
estimation”.” In: IEEE Trans. Speech & Audio Proc. 8.6 (Nov. 2000), 751–4. DOI: 10.1109/89.876315
(cit. on pp. 14.39, 14.45).

gunawardana:01:tig

[151] A. Gunawardana. “The information geometry of EM variants for speech and image processing.” PhD thesis.
Baltimore: Johns Hopkins University, 2001. URL:
https://dl.acm.org/citation.cfm?id=933549 (cit. on pp. 14.39, 14.45).

gasso:08:snc

[152] G. Gasso, A. Rakotomamonjy, and S. Canu. “Solving non-convex lasso type problems with DC
programming.” In: Proc. IEEE Wkshp. Machine Learning for Signal Proc. 2008, 450–5. DOI:
10.1109/MLSP.2008.4685522 (cit. on p. 14.40).

tao:98:adc

[153] P. D. Tao and L. T. H. An. “A D.C. optimization algorithm for solving the trust-region subproblem.” In:
siam-joo 8.2 (May 1998), 476–505. DOI: 10.1137/S1052623494274313 (cit. on p. 14.40).

schule:05:dtb

[154] T. Schule et al. “Discrete tomography by convex-concave regularization and D.C. programming.” In: Discrete
Applied Mathematics 151.1-3 (Oct. 2005), 229–43. DOI: 10.1016/j.dam.2005.02.028 (cit. on
p. 14.40).

an:10:dtb

[155] L. T. H. An, N. T. Phuc, and P. D. Tao. “Discrete tomography based on DC programming and DCA.” In:
Computing and Communication Technologies, Research, Innovation, and Vision for the Future (RIVF), 2010
IEEE RIVF International Conference on. 2010, 1–6. DOI: 10.1109/RIVF.2010.5633367 (cit. on
p. 14.40).

kim:13:gc3

[156] K-S. Kim et al. “Globally convergent 3D dynamic PET reconstruction with patch-based non-convex low rank
regularization.” In: Proc. IEEE Intl. Symp. Biomed. Imag. 2013, 1158–61. DOI:
10.1109/ISBI.2013.6556685 (cit. on p. 14.40).

yuille:03:tcc

[157] A. L. Yuille and A. Rangarajan. “The concave-convex procedure.” In: Neural Computation 15.4 (Apr. 2003),
915–36. DOI: 10.1162/08997660360581958 (cit. on p. 14.40).

kim:15:dpr

[158] K. Kim et al. “Dynamic PET reconstruction using temporal patch-based low rank penalty for ROI- based
brain kinetic analysis.” In: Phys. Med. Biol. 60.5 (Mar. 2015), 2019–46. DOI:
10.1088/0031-9155/60/5/2019.

zhang:18:mot

[159] S. Zhang and J. Xin. “Minimization of transformed L1 penalty: theory, difference of convex function
algorithm, and robust application in compressed sensing.” In: Mathematical Programming 169.1 (May 2018),
307–36. DOI: 10.1007/s10107-018-1236-x.

hero:93:acp

[160] A. O. Hero and J. A. Fessler. Asymptotic convergence properties of EM-type algorithms. Tech. rep. 282. Univ.
of Michigan, Ann Arbor, MI, 48109-2122: Comm. and Sign. Proc. Lab., Dept. of EECS, Apr. 1993. URL:
http://web.eecs.umich.edu/~fessler/papers/files/tr/93,282,hero-em.pdf
(cit. on pp. 14.40, 14.41, 14.56, 14.57).

meng:97:tea

[161] X. L. Meng and D. van Dyk. “The EM algorithm - An old folk song sung to a fast new tune.” In: J. Royal
Stat. Soc. Ser. B 59.3 (1997), 511–67. DOI: 10.1111/1467-9868.00082 (cit. on pp. 14.42, 14.45).

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1109/83.210869
https://doi.org/10.1007/978-1-4615-5121-8_13
http://www.cs.toronto.edu/~radford/em.abstract.html
http://www.clsp.jhu.edu/cgi-bin/zilla/showpage.prl?top
https://doi.org/10.1109/89.876315
https://dl.acm.org/citation.cfm?id=933549
https://doi.org/10.1109/MLSP.2008.4685522
https://doi.org/10.1137/S1052623494274313
https://doi.org/10.1016/j.dam.2005.02.028
https://doi.org/10.1109/RIVF.2010.5633367
https://doi.org/10.1109/ISBI.2013.6556685
https://doi.org/10.1162/08997660360581958
https://doi.org/10.1088/0031-9155/60/5/2019
https://doi.org/10.1007/s10107-018-1236-x
http://web.eecs.umich.edu/~fessler/papers/files/tr/93,282,hero-em.pdf
https://doi.org/10.1111/1467-9868.00082


c© J. Fessler. [license] February 15, 2019 14.70

stark:86

[162] H. Stark and J. W. Woods. Probability, random processes, and estimation theory for engineers. Englewood
Cliffs, NJ: Prentice-Hall, 1986 (cit. on p. 14.44).

kay:93

[163] S. M. Kay. Fundamentals of statistical signal processing: Estimation theory. New York: Prentice-Hall, 1993
(cit. on p. 14.44).

hebert:89:age

[164] T. Hebert and R. Leahy. “A generalized EM algorithm for 3-D Bayesian reconstruction from Poisson data
using Gibbs priors.” In: IEEE Trans. Med. Imag. 8.2 (June 1989), 194–202. DOI: 10.1109/42.24868
(cit. on p. 14.44).

rubin:82:fml

[165] D. B. Rubin and T. H. Szatrowski. “Finding maximum likelihood estimates of patterned covariance matrices
by the EM algorithm.” In: Biometrika 69.3 (Dec. 1982), 657–60. DOI: 10.1093/biomet/69.3.657
(cit. on p. 14.45).

little:83:oje

[166] R. J. Little and D. B. Rubin. “On jointly estimating parameters and missing data by maximizing the
complete-data likelihood.” In: American Statistician 37.3 (Aug. 1983), 218–20. URL:
http://www.jstor.org/stable/2683374 (cit. on p. 14.45).

cover:84:aaf

[167] T. M. Cover. “An algorithm for maximizing expected log investment return.” In: IEEE Trans. Info. Theory
30.2 (Mar. 1984), 369–73. DOI: 10.1109/TIT.1984.1056869 (cit. on p. 14.45).

laird:87:mlc

[168] N. Laird, N. Lange, and D. Stram. “Maximum likelihood computations with repeated measures: Application
of the EM algorithm.” In: J. Am. Stat. Assoc. 82.387 (Mar. 1987), 97–105. URL:
http://www.jstor.org/stable/2289129 (cit. on p. 14.45).

feder:88:peo

[169] M. Feder and E. Weinstein. “Parameter estimation of superimposed signals using the EM algorithm.” In:
IEEE Trans. Acoust. Sp. Sig. Proc. 36.4 (Apr. 1988), 477–89. DOI: 10.1109/29.1552 (cit. on p. 14.45).

weiss:88:mla

[170] A. J. Weiss, A. S. Willsky, and B. C. Levy. “Maximum likelihood array processing for the estimation of
superimposed signals.” In: Proc. IEEE 76.2 (Feb. 1988). Correction in IEEE Proc., Vol. 76, No. 6, p. 734,
June 1988., 203–5. DOI: 10.1109/5.4396 (cit. on p. 14.45).

feder:89:mln

[171] M. Feder, A. Oppenheim, and E. Weinstein. “Maximum likelihood noise cancellation using the EM
algorithm.” In: IEEE Trans. Acoust. Sp. Sig. Proc. 37.2 (Feb. 1989), 204–16. DOI: 10.1109/29.21683
(cit. on p. 14.45).

segal:91:ema

[172] M. Segal, E. Weinstein, and B. R. Musicus. “Estimate-maximize algorithms for multichannel time and signal
estimation.” In: IEEE Trans. Sig. Proc. 39.1 (Jan. 1991), 1–16. DOI: 10.1109/78.80760 (cit. on p. 14.45).

snyder:92:dst

[173] D. L. Snyder, T. J. Schulz, and J. A. O’Sullivan. “Deblurring subject to nonnegativity constraints.” In: IEEE
Trans. Sig. Proc. 40.5 (May 1992), 1143–50. DOI: 10.1109/78.134477 (cit. on p. 14.45).

boyles:83:otc

[174] R. Boyles. “On the convergence of the EM algorithm.” In: J. Royal Stat. Soc. Ser. B 45.1 (1983), 47–50. URL:
http://www.jstor.org/stable/2345622 (cit. on p. 14.45).

wu:83:otc

[175] C. F. J. Wu. “On the convergence properties of the EM algorithm.” In: Ann. Stat. 11.1 (Mar. 1983), 95–103.
DOI: 10.1214/aos/1176346060 (cit. on p. 14.45).

meng:92:ret

[176] X. L. Meng and D. B. Rubin. “Recent extensions to the EM algorithm.” In: Bayesian Statistics 4. Ed. by
J M Bernardo et al. Oxford: Clarendon Press, 1992, pp. 307–20 (cit. on p. 14.45).

kim:95:tre

[177] D. K. Kim and J. M. G. Taylor. “The restricted EM algorithm for maximum likelihood estimation under
linear restrictions on the parameters.” In: J. Am. Stat. Assoc. 90.430 (June 1995), 708–16. URL:
http://www.jstor.org/stable/2291083 (cit. on p. 14.45).

liu:98:pef

[178] C. H. Liu, D. B. Rubin, and Y. N. Wu. “Parameter expansion for EM acceleration - The PX-EM algorithm.”
In: Biometrika 85.4 (Dec. 1998), 755–70. DOI: 10.1093/biomet/85.4.755 (cit. on p. 14.45).

liu:99:pes

[179] C. H. Liu and Y. N. Wu. “Parameter expansion scheme for data augmentation.” In: J. Am. Stat. Assoc. 94.448
(Dec. 1999), 1264–74. URL: http://www.jstor.org/stable/2669940 (cit. on p. 14.45).

matsuyama:03:tae

[180] Y. Matsuyama. “The alpha-EM algorithm: surrogate likelihood maximization using alpha-logarithmic
information measures.” In: IEEE Trans. Info. Theory 49.3 (Mar. 2003), 692–706. DOI:
10.1109/TIT.2002.808105 (cit. on p. 14.45).

hathaway:85:acf

[181] R. J. Hathaway. “A constrained formulation of maximum-likelihood estimation for normal mixture
distributions.” In: Ann. Stat. 13.2 (June 1985), 795–800. DOI: 10.1214/aos/1176349557 (cit. on
p. 14.45).

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1109/42.24868
https://doi.org/10.1093/biomet/69.3.657
http://www.jstor.org/stable/2683374
https://doi.org/10.1109/TIT.1984.1056869
http://www.jstor.org/stable/2289129
https://doi.org/10.1109/29.1552
https://doi.org/10.1109/5.4396
https://doi.org/10.1109/29.21683
https://doi.org/10.1109/78.80760
https://doi.org/10.1109/78.134477
http://www.jstor.org/stable/2345622
https://doi.org/10.1214/aos/1176346060
http://www.jstor.org/stable/2291083
https://doi.org/10.1093/biomet/85.4.755
http://www.jstor.org/stable/2669940
https://doi.org/10.1109/TIT.2002.808105
https://doi.org/10.1214/aos/1176349557


c© J. Fessler. [license] February 15, 2019 14.71

nettleton:99:cpo

[182] D. Nettleton. “Convergence properties of the EM algorithm in constrained parameter spaces.” In: The
Canadian Journal of Statistics 27.3 (1999), 639–48. URL:
http://www.jstor.org/stable/3316118 (cit. on p. 14.45).

segal:88:tce

[183] M. Segal and E. Weinstein. “The cascade EM algorithm.” In: Proc. IEEE 76.10 (Oct. 1988), 1388–90. DOI:
10.1109/5.16341 (cit. on pp. 14.45, 14.57).

titterington:84:rpe

[184] D. M. Titterington. “Recursive parameter estimation using incomplete data.” In: J. Royal Stat. Soc. Ser. B
46.2 (1984), 257–67. URL: http://www.jstor.org/stable/2345509 (cit. on p. 14.45).

frenkel:99:rem

[185] L. Frenkel and M. Feder. “Recursive expectation-maximization (EM) algorithms for time-varying parameters
with applications to multiple target tracking.” In: IEEE Trans. Sig. Proc. 47.2 (Feb. 1999), 306–20. DOI:
10.1109/78.740104 (cit. on p. 14.45).

roche:11:otc

[186] A. Roche et al. “On the convergence of EM-like algorithms for image segmentation using Markov random
fields.” In: Med. Im. Anal. 15.6 (2011), 830–9. DOI: 10.1016/j.media.2011.05.002 (cit. on
p. 14.45).

louis:82:fto

[187] T. A. Louis. “Finding the observed information matrix when using the EM algorithm.” In: J. Royal Stat. Soc.
Ser. B 44.2 (1982), 226–33. URL: http://www.jstor.org/stable/2345828 (cit. on p. 14.45).

meng:91:uet

[188] X. L. Meng and D. B. Rubin. “Using EM to obtain asymptotic variance-covariance matrices: the SEM
algorithm.” In: J. Am. Stat. Assoc. 86.416 (Dec. 1991), 899–909. URL:
http://www.jstor.org/stable/2290503 (cit. on p. 14.45).

meng:93:mle

[189] X. L. Meng and D. B. Rubin. “Maximum likelihood estimation via the ECM algorithm: A general
framework.” In: Biometrika 80.2 (June 1993), 267–78. DOI: 10.1093/biomet/80.2.267 (cit. on
p. 14.45).

segal:94:vfm

[190] M. R. Segal, P. Bacchetti, and N. P. Jewell. “Variances for maximum penalized likelihood estimates obtained
via the EM algorithm.” In: J. Royal Stat. Soc. Ser. B 56.2 (1994), 345–52. URL:
http://www.jstor.org/stable/2345905 (cit. on p. 14.45).

vandyk:95:mle

[191] D. A. van Dyk, X. L. Meng, and D. B. Rubin. “Maximum likelihood estimation via the ECM algorithm:
computing the asymptotic variance.” In: Statistica Sinica 5.1 (Jan. 1995), 55–76. URL:
http://www3.stat.sinica.edu.tw/statistica/j5n1/j5n14/j5n14.htm (cit. on
p. 14.45).

horng:87:eos

[192] S. C. Horng. “Examples of sublinear convergence of the EM algorithm.” In: Proc. of Stat. Comp. Sect. of
Amer. Stat. Assoc. 1987, 266–71 (cit. on p. 14.45).

meilijson:89:afi

[193] I. Meilijson. “A fast improvement to the EM algorithm on its own terms.” In: J. Royal Stat. Soc. Ser. B 51.1
(1989), 127–38. URL: http://www.jstor.org/stable/2345847 (cit. on p. 14.45).

liu:94:tea

[194] C. H. Liu and D. B. Rubin. “The ECME algorithm: a simple extension of EM and ECM with faster monotone
convergence.” In: Biometrika 81.4 (Dec. 1994), 633–48. DOI: 10.1093/biomet/81.4.633 (cit. on
p. 14.45).

meng:94:otg

[195] X. L. Meng and D. B. Rubin. “On the global and componentwise rates of convergence of the EM algorithm.”
In: Linear Algebra and its Applications 199.1 (Mar. 1994), 413–25. DOI:
10.1016/0024-3795(94)90363-8 (cit. on p. 14.45).

meng:94:otr

[196] X. L. Meng. “On the rate of convergence of the ECM algorithm.” In: Ann. Stat. 22.1 (Mar. 1994), 326–39.
DOI: 10.1214/aos/1176325371 (cit. on p. 14.45).

hsiao:02:apc

[197] I. T. Hsiao, A. Rangarajan, and G. Gindi. “A provably convergent OS-EM like reconstruction algorithm for
emission tomography.” In: Proc. SPIE 4684 Medical Imaging: Image Proc. 2002, 10–19. DOI:
10.1117/12.467144 (cit. on p. 14.45).

hathaway:86:aio

[198] R. J. Hathaway. “Another interpretation of EM algorithm for mixture distributions.” In: Statist. Probab.
Letters 4.2 (Mar. 1986), 53–6. DOI: 10.1016/0167-7152(86)90016-7 (cit. on p. 14.45).

celeux:01:acw

[199] G. Celeux et al. “A component-wise EM algorithm for mixtures.” In: J. Computational and Graphical Stat.
10.4 (Dec. 2001), 697–712. URL: http://www.jstor.org/stable/1390967 (cit. on p. 14.45).

nocedal:96:lsu

[200] J. Nocedal. “Large scale unconstrained optimization.” In: The State of the Art in Numerical Analysis. Ed. by
A. Watson and I. Duff. Oxford: Oxford University Press, 1996. URL:
http://www.ece.nwu.edu/~nocedal/recent.html (cit. on p. 14.46).

https://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.jstor.org/stable/3316118
https://doi.org/10.1109/5.16341
http://www.jstor.org/stable/2345509
https://doi.org/10.1109/78.740104
https://doi.org/10.1016/j.media.2011.05.002
http://www.jstor.org/stable/2345828
http://www.jstor.org/stable/2290503
https://doi.org/10.1093/biomet/80.2.267
http://www.jstor.org/stable/2345905
http://www3.stat.sinica.edu.tw/statistica/j5n1/j5n14/j5n14.htm
http://www.jstor.org/stable/2345847
https://doi.org/10.1093/biomet/81.4.633
https://doi.org/10.1016/0024-3795(94)90363-8
https://doi.org/10.1214/aos/1176325371
https://doi.org/10.1117/12.467144
https://doi.org/10.1016/0167-7152(86)90016-7
http://www.jstor.org/stable/1390967
http://www.ece.nwu.edu/~nocedal/recent.html


c© J. Fessler. [license] February 15, 2019 14.72

kibardin:79:dif

[201] V. M. Kibardin. “Decomposition into functions in the minimization problem.” In: Avtomatika i
Telemekhanika 9 (Sept. 1979). Translation: p. 1311-23 in Plenum Publishing Co. "Adaptive Systems", 66–79.
URL: http://mi.mathnet.ru/eng/at/y1979/i9/p66 (cit. on p. 14.46).

bertsekas:97:anc

[202] D. P. Bertsekas. “A new class of incremental gradient methods for least squares problems.” In: SIAM J.
Optim. 7.4 (Nov. 1997), 913–26. DOI: 10.1137/S1052623495287022 (cit. on p. 14.46).

nedic:00:cro

[203] A. Nedic and D. Bertsekas. “Convergence rate of incremental subgradient algorithms.” In: Stochastic
Optimization: Algorithms and Applications. Ed. by S. Uryasev and P. M. Pardalos. New York: Kluwer, 2000,
pp. 263–304. URL: http://web.mit.edu/6.291/www/ (cit. on p. 14.46).

nedic:01:dai

[204] A. Nedic, D. Bertsekas, and V. Borkar. “Distributed asynchronous incremental subgradient methods.” In:
Inherently Parallel Algorithms in Feasibility and Optimization and Their Applications. Ed. by D. Butnariu,
Y. Censor, and S. Reich. Amsterdam: Elsevier, 2001, pp. 381–407. DOI:
’10.1016/S1570-579X(01)80023-9’ (cit. on p. 14.46).

nedic:01:ism

[205] A. Nedic and D. P. Bertsekas. “Incremental subgradient methods for nondifferentiable optimization.” In:
SIAM J. Optim. 12.1 (2001), 109–38. DOI: 10.1137/S1052623499362111 (cit. on p. 14.46).

censor:04:ssp

[206] Y. Censor, A. R. De Pierro, and M. Zaknoon. “Steered sequential projections for the inconsistent convex
feasibility problem.” In: Nonlinear Analysis: Theory, Methods & Applications (Series A: Theory and
Methods) 59.3 (Nov. 2004), 385–405. DOI: 10.1016/j.na.2004.07.018 (cit. on p. 14.46).

mairal:15:imm

[207] J. Mairal. “Incremental majorization-minimization optimization with application to large-scale machine
learning.” In: SIAM J. Optim. 25.2 (2015), 829–55. DOI: 10.1137/140957639 (cit. on p. 14.46).

lan:18:aor

[208] G. Lan and Y. Zhou. “An optimal randomized incremental gradient method.” In: Mathematical Programming
171.1-2 (Sept. 2018), 167–215. DOI: 10.1007/s10107-017-1173-0 (cit. on p. 14.46).

hebert:90:tdm

[209] T. Hebert, R. Leahy, and M. Singh. “Three-dimensional maximum-likelihood reconstruction for an
electronically collimated single-photon-emission imaging system.” In: J. Opt. Soc. Am. A 7.7 (July 1990),
1305–13. DOI: 10.1364/JOSAA.7.001305 (cit. on p. 14.46).

holte:90:iir

[210] S. Holte et al. “Iterative image reconstruction for emission tomography: A study of convergence and
quantitation problems.” In: IEEE Trans. Nuc. Sci. 37.2 (Apr. 1990), 629–35. DOI: 10.1109/23.106689
(cit. on p. 14.46).

herman:93:art

[211] G. T. Herman and L. B. Meyer. “Algebraic reconstruction techniques can be made computationally efficient.”
In: IEEE Trans. Med. Imag. 12.3 (Sept. 1993), 600–9. DOI: 10.1109/42.241889 (cit. on p. 14.46).

hudson:94:air

[212] H. M. Hudson and R. S. Larkin. “Accelerated image reconstruction using ordered subsets of projection data.”
In: IEEE Trans. Med. Imag. 13.4 (Dec. 1994), 601–9. DOI: 10.1109/42.363108 (cit. on p. 14.46).

manglos:95:tml

[213] S. H. Manglos et al. “Transmission maximum-likelihood reconstruction with ordered subsets for cone beam
CT.” In: Phys. Med. Biol. 40.7 (July 1995), 1225–41. DOI: 10.1088/0031-9155/40/7/006 (cit. on
p. 14.46).

kamphuis:98:ait

[214] C. Kamphuis and F. J. Beekman. “Accelerated iterative transmission CT reconstruction using an ordered
subsets convex algorithm.” In: IEEE Trans. Med. Imag. 17.6 (Dec. 1998), 1001–5. DOI:
10.1109/42.746730 (cit. on p. 14.46).

kudo:99:cbi

[215] H. Kudo, H. Nakazawa, and T. Saito. “Convergent block-iterative method for general convex cost functions.”
In: Proc. Intl. Mtg. on Fully 3D Image Recon. in Rad. and Nuc. Med. 1999, 247–250 (cit. on p. 14.46).

erdogan:99:osa

[216] H. Erdogan and J. A. Fessler. “Ordered subsets algorithms for transmission tomography.” In: Phys. Med.
Biol. 44.11 (Nov. 1999), 2835–51. DOI: 10.1088/0031-9155/44/11/311 (cit. on p. 14.46).

ahn:01:gco

[217] S. Ahn and J. A. Fessler. “Globally convergent ordered subsets algorithms: Application to tomography.” In:
Proc. IEEE Nuc. Sci. Symp. Med. Im. Conf. Vol. 2. 2001, 1064–8. DOI:
10.1109/NSSMIC.2001.1009736 (cit. on p. 14.46).

bental:01:tos

[218] A. Ben-Tal, T. Margalit, and A. Nemirovski. “The ordered subsets mirror descent optimization method with
applications to tomography.” In: SIAM J. Optim. 12.1 (2001), 79–108. DOI:
10.1137/S1052623499354564 (cit. on p. 14.46).

byrne:96:bim

[219] C. L. Byrne. “Block-iterative methods for image reconstruction from projections.” In: IEEE Trans. Im. Proc.
5.5 (May 1996), 792–3. DOI: 10.1109/83.499919 (cit. on p. 14.46).

byrne:98:ate

[220] C. L. Byrne. “Accelerating the EMML algorithm and related iterative algorithms by rescaled block-iterative
methods.” In: IEEE Trans. Im. Proc. 7.1 (Jan. 1998), 100–9. DOI: 10.1109/83.650854 (cit. on p. 14.46).

https://creativecommons.org/licenses/by-nc-nd/4.0/
http://mi.mathnet.ru/eng/at/y1979/i9/p66
https://doi.org/10.1137/S1052623495287022
http://web.mit.edu/6.291/www/
https://doi.org/'10.1016/S1570-579X(01)80023-9'
https://doi.org/10.1137/S1052623499362111
https://doi.org/10.1016/j.na.2004.07.018
https://doi.org/10.1137/140957639
https://doi.org/10.1007/s10107-017-1173-0
https://doi.org/10.1364/JOSAA.7.001305
https://doi.org/10.1109/23.106689
https://doi.org/10.1109/42.241889
https://doi.org/10.1109/42.363108
https://doi.org/10.1088/0031-9155/40/7/006
https://doi.org/10.1109/42.746730
https://doi.org/10.1088/0031-9155/44/11/311
https://doi.org/10.1109/NSSMIC.2001.1009736
https://doi.org/10.1137/S1052623499354564
https://doi.org/10.1109/83.499919
https://doi.org/10.1109/83.650854


c© J. Fessler. [license] February 15, 2019 14.73

robbins:51:asa

[221] H. Robbins and S. Monro. “A stochastic approximation method.” In: Ann. Math. Stat. 22.3 (Sept. 1951),
400–7. URL: http://www.jstor.org/stable/2236626 (cit. on p. 14.46).

kesten:58:asa

[222] H. Kesten. “Accelerated stochastic approximation.” In: Ann. Math. Stat. 29.1 (Mar. 1958), 41–59. URL:
http://www.jstor.org/stable/2237294 (cit. on p. 14.46).

tsitsiklis:86:dad

[223] J. N. Tsitsiklis, D. P. Bertsekas, and M. Athans. “Distributed asynchronous deterministic and stochastic
gradient optimization algorithms.” In: IEEE Trans. Auto. Control 31.9 (Sept. 1986), 803–12. DOI:
10.1109/TAC.1986.1104412 (cit. on p. 14.46).

dupuis:91:osc

[224] P. Dupuis and R. Simha. “On sampling controlled stochastic approximation.” In: IEEE Trans. Auto. Control
36.8 (Aug. 1991), 915–24. DOI: 10.1109/9.133185 (cit. on pp. 14.46, 14.49).

spall:92:msa

[225] J. C. Spall. “Multivariate stochastic approximation using a simultaneous perturbation gradient
approximation.” In: IEEE Trans. Auto. Control 37.3 (Mar. 1992), 332–41. DOI: 10.1109/9.119632
(cit. on p. 14.46).

spall:00:asa

[226] J. C. Spall. “Adaptive stochastic approximation by the simultaneous perturbation method.” In: IEEE Trans.
Auto. Control 45.10 (Oct. 2000), 1839–53. DOI: 10.1109/TAC.2000.880982 (cit. on p. 14.46).

hutchison:04:sai

[227] D. W. Hutchison and J. C. Spall. “Stochastic approximation in finite samples using surrogate processes.” In:
Proc. Conf. Decision and Control. Vol. 4. 2004, 4157–62. DOI: 10.1109/CDC.2004.1429404 (cit. on
p. 14.46).

plakhov:04:asa

[228] A. Plakhov and P. Cruz. “A stochastic approximation algorithm with step size adaptation.” In: J. of
Mathematics and Sciences 120.1 (Mar. 2004), 964–73. DOI:
10.1023/B:JOTH.0000013559.37579.b2 (cit. on p. 14.46).

bousquet:08:tto

[229] O. Bousquet and Leon Bottou. “The tradeoffs of large scale learning.” In: Neural Info. Proc. Sys. Vol. 20.
2008, 161–8. URL:
http://papers.nips.cc/paper/3323-the-tradeoffs-of-large-scale-learning
(cit. on p. 14.46).

nemirovski:09:rsa

[230] A. Nemirovski et al. “Robust stochastic approximation approach to stochastic programming.” In: SIAM J.
Optim. 19.4 (2009), 1574–609. DOI: 10.1137/070704277 (cit. on p. 14.46).

byrd:11:otu

[231] R. Byrd et al. “On the use of stochastic Hessian information in optimization methods for machine learning.”
In: SIAM J. Optim. 21.3 (2011), 977–95. DOI: 10.1137/10079923X (cit. on p. 14.46).

devolder:11:sfo

[232] O. Devolder. Stochastic first order methods in smooth convex optimization. 2011. URL:
http://www.optimization-online.org/DB_HTML/2012/01/3321.html (cit. on p. 14.46).

niu:11:hal

[233] F. Niu et al. “HOGWILD!: A lock-free approach to parallelizing stochastic gradient descent.” In: Neural Info.
Proc. Sys. 2011, 693–701. URL: http://pages.cs.wisc.edu/~brecht/publications.html
(cit. on pp. 14.46, 14.49).

duchi:12:rsf

[234] J. Duchi, P. Bartlett, and M. Wainwright. “Randomized smoothing for stochastic optimization.” In: SIAM J.
Optim. 22.2 (2012), 674–701. DOI: 10.1137/110831659 (cit. on p. 14.46).

lan:12:aom

[235] G. Lan. “An optimal method for stochastic composite optimization.” In: Mathematical Programming 133.1
(June 2012), 365–97. DOI: 10.1007/s10107-010-0434-y (cit. on p. 14.46).

leroux:13:asg

[236] N. Le Roux, M. Schmidt, and F. Bach. A stochastic gradient method with an exponential convergence rate for
strongly-convex optimization with finite training sets. 2013. URL:
http://arxiv.org/abs/1202.6258 (cit. on p. 14.46).

johnson:13:asg

[237] R. Johnson and T. Zhang. “Accelerating stochastic gradient descent using predictive variance reduction.” In:
Neural Info. Proc. Sys. 2013, 315–23. URL:
http://papers.nips.cc/paper/4937-accelerating-stochastic-gradient-
descent-using-predictive-variance-reduction.pdf (cit. on pp. 14.46, 14.49).

wang:13:vrf

[238] C. Wang et al. “Variance reduction for stochastic gradient optimization.” In: Neural Info. Proc. Sys. 2013.
URL: http://papers.nips.cc/paper/5034-variance-reduction-for-stochastic-
gradient-optimization (cit. on p. 14.46).

friedlander:14:hds

[239] M. P. Friedlander and M. Schmidt. Hybrid deterministic-stochastic methods for data fitting. 2014. URL:
http://arxiv.org/abs/1104.2373 (cit. on p. 14.46).

nedic:14:oss

[240] A. Nedic and S. Lee. “On stochastic subgradient mirror-descent algorithm with weighted averaging.” In:
SIAM J. Optim. 24.1 (2014), 84–107. DOI: 10.1137/120894464 (cit. on p. 14.46).

https://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.jstor.org/stable/2236626
http://www.jstor.org/stable/2237294
https://doi.org/10.1109/TAC.1986.1104412
https://doi.org/10.1109/9.133185
https://doi.org/10.1109/9.119632
https://doi.org/10.1109/TAC.2000.880982
https://doi.org/10.1109/CDC.2004.1429404
https://doi.org/10.1023/B:JOTH.0000013559.37579.b2
http://papers.nips.cc/paper/3323-the-tradeoffs-of-large-scale-learning
https://doi.org/10.1137/070704277
https://doi.org/10.1137/10079923X
http://www.optimization-online.org/DB_HTML/2012/01/3321.html
http://pages.cs.wisc.edu/~brecht/publications.html
https://doi.org/10.1137/110831659
https://doi.org/10.1007/s10107-010-0434-y
http://arxiv.org/abs/1202.6258
http://papers.nips.cc/paper/4937-accelerating-stochastic-gradient-descent-using-predictive-variance-reduction.pdf
http://papers.nips.cc/paper/4937-accelerating-stochastic-gradient-descent-using-predictive-variance-reduction.pdf
http://papers.nips.cc/paper/5034-variance-reduction-for-stochastic-gradient-optimization
http://papers.nips.cc/paper/5034-variance-reduction-for-stochastic-gradient-optimization
http://arxiv.org/abs/1104.2373
https://doi.org/10.1137/120894464


c© J. Fessler. [license] February 15, 2019 14.74

needell:14:sgd

[241] D. Needell, N. Srebro, and R. Ward. Stochastic gradient descent and the randomized Kaczmarz algorithm.
2014. URL: http://arxiv.org/abs/1310.5715 (cit. on p. 14.46).

nocedal:14:doa

[242] J. Nocedal. “Devising optimization algorithms for machine learning.” In: SIAM News 47.7 (Sept. 2014), 1–2.
URL: https://sinews.siam.org/Details-Page/Devising-Optimization-
Algorithms-for-Machine-Learning (cit. on p. 14.46).

ghadimi:16:agm

[243] S. Ghadimi and G. Lan. “Accelerated gradient methods for nonconvex nonlinear and stochastic
programming.” In: Mathematical Programming 156.1 (Mar. 2016), 59–99. DOI:
10.1007/s10107-015-0871-8 (cit. on p. 14.46).

schmidt:17:mfs

[244] M. Schmidt, N. Le Roux, and F. Bach. “Minimizing finite sums with the stochastic average gradient.” In:
Mathematical Programming 162.1 (Mar. 2017), 83–112. DOI: 10.1007/s10107-016-1030-6 (cit. on
p. 14.46).

depierro:01:fel

[245] A. R. De Pierro and M. E. B. Yamagishi. “Fast EM-like methods for maximum ‘a posteriori’ estimates in
emission tomography.” In: IEEE Trans. Med. Imag. 20.4 (Apr. 2001), 280–8. DOI: 10.1109/42.921477
(cit. on pp. 14.47, 14.53).

hong:10:upc

[246] I. K. Hong et al. “Ultrafast preconditioned conjugate gradient OSEM algorithm for fully 3D PET
reconstruction.” In: Proc. IEEE Nuc. Sci. Symp. Med. Im. Conf. 2010, 2418–9. DOI:
10.1109/NSSMIC.2010.5874221 (cit. on p. 14.49).

guan:94:apa

[247] H. Guan and R. Gordon. “A projection access order for speedy convergence of ART (algebraic reconstruction
technique): a multilevel scheme for computed tomography.” In: Phys. Med. Biol. 39.11 (Nov. 1994),
2005–22. DOI: 10.1088/0031-9155/39/11/013 (cit. on p. 14.49).

byrd:12:sss

[248] R. H. Byrd et al. “Sample size selection in optimization methods for machine learning.” In: Mathematical
Programming 134.1 (Aug. 2012), 127–55. DOI: 10.1007/s10107-012-0572-5 (cit. on p. 14.49).

pasupathy:14:hmt

[249] R. Pasupathy et al. How much to sample in simulation-based stochastic recursions? 2014. URL:
http://bibbase.org/network/publication/pasupathy-glynn-ghosh-hahemi-
howmuchtosampleinsimulationbasedstochasticrecursions-2014 (cit. on p. 14.49).

ahn:06:cio

[250] S. Ahn et al. “Convergent incremental optimization transfer algorithms: Application to tomography.” In:
IEEE Trans. Med. Imag. 25.3 (Mar. 2006), 283–96. DOI: 10.1109/TMI.2005.862740 (cit. on p. 14.51).

blatt:07:aci

[251] D. Blatt, A. O. Hero, and H. Gauchman. “A convergent incremental gradient method with a constant step
size.” In: SIAM J. Optim. 18.1 (2007), 29–51. DOI: 10.1137/040615961 (cit. on p. 14.52).

depierro:98:fbe

[252] A. R. De Pierro. “Fast Bayesian estimation methods in emission tomography.” In: Proc. SPIE 3459 Bayesian
inference for inverse problems. 1998, 100–5. DOI: 10.1117/12.323789 (cit. on p. 14.53).

nelson:96:imr

[253] L. B. Nelson and H. V. Poor. “Iterative multiuser receivers for CDMA channels: an EM-based approach.” In:
IEEE Trans. Comm. 44.12 (Dec. 1996), 1700–10. DOI: 10.1109/26.545900 (cit. on p. 14.56).

johnston:99:fds

[254] L. A. Johnston and V. Krishnamurthy. “Finite dimensional smoothers for MAP state estimation of bilinear
systems.” In: IEEE Trans. Sig. Proc. 47.9 (Sept. 1999), 2444–59. DOI: 10.1109/78.782188 (cit. on
p. 14.56).

fessler:94:pwl

[255] J. A. Fessler. “Penalized weighted least-squares image reconstruction for positron emission tomography.” In:
IEEE Trans. Med. Imag. 13.2 (June 1994), 290–300. DOI: 10.1109/42.293921 (cit. on p. 14.57).

abdalla:92:epi

[256] M. Abdalla and J. W. Kay. “Edge-preserving image restoration.” In: Stochastic Models, Statistical Methods,
and Algorithms in Im. Analysis. Ed. by P Barone, A Frigessi, and M Piccioni. Vol. 74. Lecture Notes in
Statistics. New York: Springer, 1992, pp. 1–13. DOI: 10.1007/978-1-4612-2920-9_1 (cit. on
p. 14.58).

depierro:87:ago

[257] A. R. De Pierro. A generalization of the EM algorithm for maximum likelihood estimates from incomplete
data. Tech. rep. MIPG119. Univ. of Pennsylvania: Med. Im. Proc. Group, Dept. of Radiol., Feb. 1987 (cit. on
p. 14.58).

herman:92:omf

[258] G. T. Herman, A. R. De Pierro, and N. Gai. “On methods for maximum a posteriori image reconstruction
with a normal prior.” In: J. Visual Comm. Im. Rep. 3.4 (Dec. 1992), 316–24. DOI:
10.1016/1047-3203(92)90035-R (cit. on p. 14.58).

lange:84:era

[259] K. Lange and R. Carson. “EM reconstruction algorithms for emission and transmission tomography.” In: J.
Comp. Assisted Tomo. 8.2 (Apr. 1984), 306–16 (cit. on p. 14.58).

https://creativecommons.org/licenses/by-nc-nd/4.0/
http://arxiv.org/abs/1310.5715
https://sinews.siam.org/Details-Page/Devising-Optimization-Algorithms-for-Machine-Learning
https://sinews.siam.org/Details-Page/Devising-Optimization-Algorithms-for-Machine-Learning
https://doi.org/10.1007/s10107-015-0871-8
https://doi.org/10.1007/s10107-016-1030-6
https://doi.org/10.1109/42.921477
https://doi.org/10.1109/NSSMIC.2010.5874221
https://doi.org/10.1088/0031-9155/39/11/013
https://doi.org/10.1007/s10107-012-0572-5
http://bibbase.org/network/publication/pasupathy-glynn-ghosh-hahemi-howmuchtosampleinsimulationbasedstochasticrecursions-2014
http://bibbase.org/network/publication/pasupathy-glynn-ghosh-hahemi-howmuchtosampleinsimulationbasedstochasticrecursions-2014
https://doi.org/10.1109/TMI.2005.862740
https://doi.org/10.1137/040615961
https://doi.org/10.1117/12.323789
https://doi.org/10.1109/26.545900
https://doi.org/10.1109/78.782188
https://doi.org/10.1109/42.293921
https://doi.org/10.1007/978-1-4612-2920-9_1
https://doi.org/10.1016/1047-3203(92)90035-R


c© J. Fessler. [license] February 15, 2019 14.75

fessler:93:ncd

[260] J. A. Fessler and A. O. Hero. “New complete-data spaces and faster algorithms for penalized-likelihood
emission tomography.” In: Proc. IEEE Nuc. Sci. Symp. Med. Im. Conf. Vol. 3. 1993, 1897–901. DOI:
10.1109/NSSMIC.1993.373624 (cit. on p. 14.58).

fessler:94:sag-tr

[261] J. A. Fessler and A. O. Hero. Space-alternating generalized EM algorithms for penalized
maximum-likelihood image reconstruction. Tech. rep. 286. Univ. of Michigan, Ann Arbor, MI, 48109-2122:
Comm. and Sign. Proc. Lab., Dept. of EECS, Feb. 1994. URL:
http://web.eecs.umich.edu/~fessler/papers/files/tr/94,286,sage.pdf (cit. on
p. 14.58).

hebert:89:abr

[262] T. Hebert and R. Leahy. “A Bayesian reconstruction algorithm for emission tomography using a Markov
random field prior.” In: Proc. SPIE 1092 Med. Im. III: Im. Proc. 1989, 458–66. DOI:
10.1117/12.953287 (cit. on p. 14.58).

xie:06:anb

[263] D. Xie. “A new block parallel SOR method and its analysis.” In: SIAM J. Sci. Comp. 27.5 (2006), 1513–33.
DOI: 10.1137/040604777 (cit. on p. 14.58).

xie:99:nps

[264] D. Xie and L. Adams. “New parallel SOR method by domain partitioning.” In: SIAM J. Sci. Comp. 20.6
(1999), 2261–81. DOI: 10.1137/S1064827597303370 (cit. on p. 14.58).

geiping:18:cob

[265] J. Geiping and M. Moeller. Composite optimization by nonconvex majorization-minimization. 2018. URL:
http://arxiv.org/abs/1802.07072.

barber:16:mmc

[266] R. F. Barber and E. Y. Sidky. “MOCCA: mirrored convex/concave optimization for nonconvex composite
functions.” In: J. Mach. Learning Res. 17.44 (2016), 1–51. URL:
http://www.jmlr.org/papers/v17/15-583.html.

dauphin:14:iaa

[267] Y. Dauphin et al. Identifying and attacking the saddle point problem in high-dimensional non-convex
optimization. 2014. URL: http://arxiv.org/abs/1406.2572.

byrne:15:amo

[268] C. L. Byrne. Alternating minimization, optimization transfer and proximal minimization are equivalent. 2015.
byrne:15:amp

[269] C. L. Byrne and J. S. Lee. Alternating minimization, proximal minimization and optimization transfer are
equivalent. 2015. URL: http://arxiv.org/abs/1512.03034.

parizi:15:gmm

[270] S. N. Parizi et al. Generalized majorization-minimization. 2015. URL:
http://arxiv.org/abs/1506.07613.

selesnick:09:srw

[271] I. W. Selesnick and Mário A T Figueiredo. “Signal restoration with overcomplete wavelet transforms:
comparison of analysis and synthesis priors.” In: Proc. SPIE 7446 Wavelets XIII. Wavelets XIII. 2009,
p. 74460D. DOI: 10.1117/12.826663.

bauschke:08:tpa

[272] H. Bauschke et al. “The proximal average: basic theory.” In: SIAM J. Optim. 19.2 (2008), 766–85. DOI:
10.1137/070687542.

bauschke:08:htt

[273] H. H. Bauschke, Y. Lucet, and M. Trienis. “How to transform one convex function continuously into
another.” In: SIAM Review 50.1 (2008), 115–32. DOI: 10.1137/060664513.

yu:13:baa

[274] Y-L. Yu. “Better approximation and faster algorithm using the proximal average.” In: Neural Info. Proc. Sys.
2013. URL: http://papers.nips.cc/paper/4934-better-approximation-and-
faster-algorithm-using-the-proximal-average.

mehranian:13:aos

[275] A. Mehranian et al. “An ordered-subsets proximal preconditioned gradient algorithm for edge-preserving
PET image reconstruction.” In: Med. Phys. 40.5 (2013), p. 052503. DOI: 10.1118/1.4801898.

wang:12:plp

[276] G. Wang and J. Qi. “Penalized likelihood PET image reconstruction using patch-based edge-preserving
regularization.” In: IEEE Trans. Med. Imag. 31.12 (Dec. 2012), 2194–204. DOI:
10.1109/TMI.2012.2211378.

yang:13:nro

[277] Z. Yang and M. Jacob. “Nonlocal regularization of inverse problems: A unified variational framework.” In:
IEEE Trans. Im. Proc. 22.8 (Aug. 2013), 3192–203. DOI: 10.1109/TIP.2012.2216278.

perona:90:ssa

[278] P. Perona and J. Malik. “Scale-space and edge detection using anisotropic diffusion.” In: IEEE Trans. Patt.
Anal. Mach. Int. 12.7 (July 1990), 629–39.

catte:92:iss

[279] F. Catté et al. “Image selective smoothing and edge detection by nonlinear diffusion.” In: SIAM J. Numer.
Anal. 29.1 (1992), 182–93. DOI: 10.1137/0729012.

alvarez:92:iss

[280] L. Alvarez, P-L. Lions, and J-M. Morel. “Image selective smoothing and edge detection by nonlinear
diffusion. II.” In: SIAM J. Numer. Anal. 29.3 (1992), 845–66. DOI: 10.1137/0729052.

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1109/NSSMIC.1993.373624
http://web.eecs.umich.edu/~fessler/papers/files/tr/94,286,sage.pdf
https://doi.org/10.1117/12.953287
https://doi.org/10.1137/040604777
https://doi.org/10.1137/S1064827597303370
http://arxiv.org/abs/1802.07072
http://www.jmlr.org/papers/v17/15-583.html
http://arxiv.org/abs/1406.2572
http://arxiv.org/abs/1512.03034
http://arxiv.org/abs/1506.07613
https://doi.org/10.1117/12.826663
https://doi.org/10.1137/070687542
https://doi.org/10.1137/060664513
http://papers.nips.cc/paper/4934-better-approximation-and-faster-algorithm-using-the-proximal-average
http://papers.nips.cc/paper/4934-better-approximation-and-faster-algorithm-using-the-proximal-average
https://doi.org/10.1118/1.4801898
https://doi.org/10.1109/TMI.2012.2211378
https://doi.org/10.1109/TIP.2012.2216278
https://doi.org/10.1137/0729012
https://doi.org/10.1137/0729052


c© J. Fessler. [license] February 15, 2019 14.76

weickert:98:ear

[281] J. Weickert, B. MT. H. Romeny, and M. A. Viergever. “Efficient and reliable schemes for nonlinear diffusion
filtering.” In: IEEE Trans. Im. Proc. 7.3 (Mar. 1998), 398–410. DOI: 10.1109/83.661190.

mjolsness:90:ato

[282] E. Mjolsness and C. Garrett. “Algebraic transformations of objective functions.” In: Neural Networks 3.6
(1990), 651–69. DOI: 10.1016/0893-6080(90)90055-P.

rangarajan:99:rpf

[283] A. Rangarajan, H. Chui, and J. S. Duncan. “Rigid point feature registration using mutual information.” In:
Med. Im. Anal. 3.4 (Dec. 1999), 425–40. DOI: 10.1016/S1361-8415(99)80034-6.

levenberg:1944:amf

[284] K. Levenberg. “A method for the solution of certain non-linear problems in least squares.” In: Quart. Appl.
Math. 2.2 (July 1944), 164–8. URL: http://www.jstor.org/stable/43633451 (cit. on p. 14.60).

marquardt:63:aaf

[285] D. W. Marquardt. “An algorithm for least-squares estimation of nonlinear parameters.” In: J. Soc. Indust.
Appl. Math. 11.2 (June 1963), 431–41. URL: http://www.jstor.org/stable/2098941 (cit. on
p. 14.60).

costa:05:rgf

[286] J. Costa. “Random graphs for structure discovery in high-dimensional data.” PhD thesis. Ann Arbor, MI:
Univ. of Michigan, Ann Arbor, MI, 48109-2122, 2005. URL:
https://hdl.handle.net/2027.42/125332 (cit. on p. 14.60).

groenen:93

[287] P. J. F. Groenen. The majorization approach to multidimensional scaling: some problems and extensions.
Leiden, The Netherlands: DSWO Press, 1993 (cit. on p. 14.60).

cetin:01:fes

[288] M. Cetin and W. C. Karl. “Feature-enhanced synthetic aperture radar image formation based on nonquadratic
regularization.” In: IEEE Trans. Im. Proc. 10.4 (Apr. 2001), 623–31. DOI: 10.1109/83.913596 (cit. on
p. 14.62).

cetin:02:epi

[289] M. Cetin, W. C. Karl, and A. S. Willsky. “Edge-preserving image reconstruction for coherent imaging
applications.” In: Proc. IEEE Intl. Conf. on Image Processing. Vol. 2. 2002, 481–4. DOI:
10.1109/ICIP.2002.1039992 (cit. on p. 14.62).

sajda:04:nmf

[290] P. Sajda et al. “Nonnegative matrix factorization for rapid recovery of constituent spectra in magnetic
resonance chemical shift imaging of the brain.” In: IEEE Trans. Med. Imag. 23.12 (Dec. 2004), 1453–65.
DOI: 10.1109/TMI.2004.834626 (cit. on p. 14.62).

hoyer:04:nnm

[291] P. O. Hoyer. “Non-negative matrix factorization with sparseness constraints.” In: J. Mach. Learning Res. 5
(Dec. 2004), 1457–69. URL: http://jmlr.org/papers/v5/hoyer04a.html (cit. on p. 14.62).

jolliffe:02

[292] I. T. Jolliffe. Principal component analysis. Springer, 2002. DOI: 10.1007/b98835 (cit. on p. 14.62).
figueiredo:07:mma

[293] M. A. T. Figueiredo, Jose M Bioucas-Dias, and R. D. Nowak. “Majorization-minimization algorithms for
wavelet-based image restoration.” In: IEEE Trans. Im. Proc. 16.12 (Dec. 2007), 2980–91. DOI:
10.1109/TIP.2007.909318 (cit. on p. 14.62).

bioucasdias:06:bwb

[294] J. M. Bioucas-Dias. “Bayesian wavelet-based image deconvolution: a GEM algorithm exploiting a class of
heavy-tailed priors.” In: IEEE Trans. Im. Proc. 15.4 (Apr. 2006), 937–51. DOI:
10.1109/TIP.2005.863972 (cit. on p. 14.62).

schultz:94:aba

[295] R. R. Schultz and R. L. Stevenson. “A Bayesian approach to image expansion for improved definition.” In:
IEEE Trans. Im. Proc. 3.3 (May 1994), 233–42. DOI: 10.1109/83.287017 (cit. on p. 14.62).

raj:07:fas

[296] A. Raj and K. Thakur. “Fast and stable Bayesian image expansion using sparse edge priors.” In: IEEE Trans.
Im. Proc. 16.4 (Apr. 2007), 1073–84. DOI: 10.1109/TIP.2006.891339 (cit. on p. 14.62).

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1109/83.661190
https://doi.org/10.1016/0893-6080(90)90055-P
https://doi.org/10.1016/S1361-8415(99)80034-6
http://www.jstor.org/stable/43633451
http://www.jstor.org/stable/2098941
https://hdl.handle.net/2027.42/125332
https://doi.org/10.1109/83.913596
https://doi.org/10.1109/ICIP.2002.1039992
https://doi.org/10.1109/TMI.2004.834626
http://jmlr.org/papers/v5/hoyer04a.html
https://doi.org/10.1007/b98835
https://doi.org/10.1109/TIP.2007.909318
https://doi.org/10.1109/TIP.2005.863972
https://doi.org/10.1109/83.287017
https://doi.org/10.1109/TIP.2006.891339

	Optimization Transfer Methods
	Introduction (s,ox,intro)
	History
	Optimization transfer principle
	Monotonicity
	Optimization transfer versus augmentation
	Asymptotic convergence rate (s,ox,rate)

	Surrogate minimization methods (s,ox,min)
	Nested surrogates
	One Newton step for the surrogate
	Surrogate minimization by quasi-Newton
	Surrogate preconditioned steepest descent
	Surrogate minimization by preconditioned ``conjugate'' gradients
	Multiple search direction methods
	Acceleration methods

	Surrogate design for general cost functions (s,ox,design)
	Surrogates for twice-differentiable cost functions (s,ox,design2)
	Convex surrogates
	Huber's algorithm for quadratic surrogates (s,ox,huber)
	Existence of quadratic surrogate
	Optimal curvature matrices (s,ox,qs,opt)

	Surrogates for once-differentiable cost functions (s,ox,design1)
	Surrogates for concave terms
	Surrogates for nested concave terms
	Gradient-based surrogates
	Quadratic surrogates
	Relationship between quadratic surrogates and the Lipschitz condition for gradient projection

	Separable surrogates for convex cost functions (s,ox,design0)
	Separable surrogates for additive updates
	Separable surrogates for multiplicative updates

	Example: mixture model estimation (s,ox,mixture)

	Surrogate design for image reconstruction cost functions (s,ox,recon)
	Convex surrogates
	Derivative-based surrogate
	Surrogates for multiplicative updates
	Parabola surrogates (s,ox,recon,parab)
	Optimal curvature
	Maximum curvature
	Derivative-based curvatures (s,ox,recon,deriv)
	Huber's curvatures (s,ox,recon,huber)
	Half-quadratic curvatures (s,ox,recon,halfquad)
	Multiplicative form
	Additive form



	Quadratic surrogate algorithms (s,ox,recon,ps)
	Huber's algorithm
	Coordinate descent of quadratic surrogates
	Coordinate descent via quadratic surrogates
	Preconditioned steepest descent of surrogates
	Surrogate semi-conjugate gradients
	Monotonic line searches (s,ox,line)
	Separable quadratic surrogates (s,ox,sps)
	Comparison to general additive update
	Example: denoising SQS (s,ox,ex2)
	Example: iterative thresholding (s,ox,it)

	Grouped coordinate algorithms (s,ox,group)
	Direct minimization
	Surrogate minimization

	Examples (s,ox,ex)
	Simple 1D minimization (s,ox,ex1)
	l1 regression (s,ox,l1)


	Acceleration via momentum, e.g., FISTA (s,ox,fista)
	Alternating-minimization procedure (s,ox,amp)
	Relationship to optimization transfer
	Incremental methods

	Difference of convex functions procedure (s,ox,dc)
	Expectation-maximization (EM) methods (s,ox,em)
	Algorithm
	Monotonicity (s,ox,em,mono)
	Asymptotic convergence rate (s,ox,em,rate)
	Example application with missing data (s,ox,em,ex)
	Generalized EM (GEM) methods (s,ox,em,gem)
	Relationship to optimization transfer methods
	Generalizations (s,ox,em,more)
	Incremental EM algorithms (s,ox,em,inc)

	Incremental gradient or ordered subset methods (s,ox,os)
	Incremental optimization transfer (IOT) (s,ox,inc)
	Quadratic surrogates
	Incremental aggregated gradient (IAG) methods
	Nested quadratic surrogates for penalized-likelihood problems (s,ox,inc,pl)

	Space-alternating generalized EM (SAGE) methods (s,ox,sage)
	Problem
	Hidden-data space
	Algorithm
	Choosing index sets
	Convergence rate
	SAGE example with missing data (s,ox,sage,ex)

	Nonlinear least squares: Gauss-Newton and Levenberg-Marquardt (s,ox,nls)
	Summary (s,ox,summ)
	Problems (s,ox,prob)
	Bibliography


