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Chapter 11

Optimization by General-Purpose Methods
ch,opt
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11.1 Introduction (s,opt,intro)s,opt,intro

Most of the image reconstruction algorithms described in this book are variations of a modest set of basic iterative
methods. This chapter describes some of those basic methods in general terms. It should be helpful to simply browse
this chapter as preparation for subsequent chapters, and then return here to the specific descriptions for details as
needed later. Entire books have been devoted to optimization e.g., [1–6], and survey papers [7–9]. We focus here
on the families of algorithms that have been applied to image reconstruction problems, or that lend insight into such
algorithms.

Throughout this chapter , our goal is to find a minimizer x̂ of a cost function Ψ(x), where Ψ : Rnp → R. We make
two general assumptions about Ψ throughout this chapter:

Assumption 1. Ψ is differentiable (11.1.1)
e,opt,diff

Assumption 2. Ψ has a finite global minimizer, i.e.,
∃ x̂ ∈ Rnp : −∞ < Ψ(x̂) ≤ Ψ(x), ∀x ∈ Rnp . (11.1.2)

e,opt,finite

Optimization of non-smooth cost functions is more complicated1. Assuming that Ψ has a finite minimizer2 excludes
functions like exp(−x). Even though this particular example is a strictly convex function (see §29.9.3), it is an
undesirable cost function. Fortunately, the cost functions of interest in imaging usually satisfy the above assumptions.

11.1.1 Iterative optimization methods
Mathematically, we are interested primarily in one or both of the following two problems3:

x̂ = arg min
x∈Rnp

Ψ(x), (11.1.3)
e,opt,unc

or the nonnegativity-constrained version (considered in Chapter 12):

x̂ = arg min
x�0

Ψ(x) . (11.1.4)
e,opt,con

In other words, our goal is to find x̂ such that Ψ(x̂) ≤ Ψ(x), ∀x ∈ Rnp or ∀x � 0. We write “x̂ = arg min” for
simplicity but if there are multiple global minimizers the notation “x̂ ∈ arg min” would be more precise.

In the absence of any constraints such as nonnegativity, a minimizer x̂ of a differentiable cost function Ψ(x) is
necessarily [10, p. 178] a solution of the following system of np equations in np unknowns:

∇Ψ(x)
∣∣∣
x=x̂

= 0, (11.1.5)
e,opt,grad=0

where 0 denotes the np × 1 vector of zeros, and∇ denotes the column gradient vector:

∇Ψ(x) ,


∂
∂x1

Ψ(x)
...

∂
∂xnp

Ψ(x)

 . (11.1.6)
e,opt,cgrad

1One context in which non-smooth optimization arises in imaging problems is when the cost function involves the absolute value function,
such as in total variation methods discussed in §2.4. One often approximates |x| with

√
x2 + ε for some small positive ε, thereby ensuring

differentiability. There are also methods for non-smooth optimization problems, such as those involving the 1-norm, as discussed in §1.12.
2Actually, it suffices for Ψ to have a finite minimizer over the set of feasible parameters when constraints such as nonnegativity are involved.

An alternative but somewhat less general condition would be to assume that Ψ is a coercive function, meaning that Ψ(x) → ∞ as ‖x‖ → ∞.
3The notation arg minx indicates the (or an) argument x that minimizes the subsequent expression.

https://creativecommons.org/licenses/by-nc-nd/4.0/
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For most of the problems of interest in image reconstruction, there are no closed-form solutions to the system of equa-
tions (11.1.5), even if we disregard the nonnegativity constraint. And in the few cases (such as weighted least squares
problems, see Chapter 16) where closed-form solutions exist, those direct solutions are generally computationally in-
tractable (usually involving the inverse of large matrices). Thus an iterative algorithm is required for optimizing Ψ
to find x̂.

11.1.2 The Hessian
Some of the algorithms described below use the Hessian matrix of the cost function Ψ, either in implementation or
in analysis. For a twice-differential cost function Ψ, the Hessian matrix

H(x) , ∇2Ψ(x) (11.1.7)
e,opt,hess

has j, kth element given by

hjk(x) =
∂2

∂xj∂xk
Ψ(x), k, j = 1, . . . , np.

For later convenience, we denote the Hessian at the nth iteration as follows:

Hn ,H(x(n)). (11.1.8)
e,opt,Hn

11.1.3 Why so many algorithms?s,opt,why

When developing algorithms for image reconstruction, there are many design considerations, most of which are com-
mon to any problem involving iterative methods. In particular, an algorithm designer should consider the impact of
design choices on the following characteristics.
• Convergence rate (as few iterations as possible)
• Computation time per iteration (as few floating point operations as possible)
• Constraints such as nonnegativity (x � 0)
• Parallelization
• Sensitivity to numerical errors
• Storage requirements (as little memory as possible)
• Memory bandwidth (data access)
• Ease of implementation and code maintenance

These are often conflicting requirements, and one must make compromises appropriate for a given application.

11.1.4 Monotonicity (s,opt,mono)s,opt,mono

Along with the properties listed above, there is an additional important property that often plays a significant role in
proving algorithm convergence: monotonicity. We say an algorithm is monotone if it generates a sequence {x(n)}
that decreases Ψ each iteration, i.e., if

Ψ
(
x(n+1)

)
≤ Ψ(x(n)), n = 0, 1, 2, . . . . (11.1.9)

e,opt,mono

Such algorithms generally have desirable convergence properties, and are analyzed in detail in Chapter 14.
d,opt,strictly,monotone

Definition 11.1.1 An algorithm is strictly monotone if and only if Ψ
(
x(n+1)

)
< Ψ(x(n)) for all x(n) that are not

minimizers, i.e., such that minx Ψ(x) < Ψ(x(n)) .

Monotonicity sometimes comes at the price of conservative convergence rates compared to some more aggressive
(but occasionally nonmonotone) method. A useful hybrid approach can be to use a monotone method as a “fallback”
update when a more aggressive optimization method fails to decrease the cost function on a given iteration.

Strict monotonicity alone does not ensure that a sequence converges, even if one also shows that the gradient
vanishes in the limit, i.e.,∇Ψ(x(n))→ 0.

x,opt,mono,fail

Example 11.1.2 Consider the convex and differentiable cost function Ψ(x) = (|x| − 1)
2 I{|x|≥1}. The sequence

x(n) = (−1)n(1 + 1/n) has the strictly monotone property Ψ
(
x(n+1)

)
< Ψ(x(n)) and derivative Ψ̇(x(n)) → 0, but

{x(n)} does not converge. For more subtle examples of such pathologies see [11, 12].

https://creativecommons.org/licenses/by-nc-nd/4.0/
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Nevertheless, suitable additional assumptions ensure that a monotone algorithm will converge to a minimizer x̂
[13]. Thus, monotone algorithms are particularly desirable.

Unconstrained minimization is the simplest case, and many general-purpose unconstrained optimization methods
have been applied to image reconstruction problems.

We focus primarily on algorithms that are suitable for large-scale optimization problems, thus excluding numerous
classical methods like the Nelder-Mead simplex algorithm [14] and related direct-search methods [15].

11.2 Fixed-point iterations (s,opt,fixed)
s,opt,fixed

Multiplying both sides of the necessary condition (11.1.5) by some np×np matrixM(x) of the algorithm designer’s
choice (that in fact may or may not depend on x), and then subtracting both sides from x̂ yields the equality

x̂ = x̂−M(x̂)∇Ψ(x̂) . (11.2.1)
e,opt,fixed

The evocative form of this equality suggests the following family of iterative algorithms:

x(n+1) = x(n) −M(x(n))∇Ψ(x(n)) . (11.2.2)
e,opt,alg,recurse

Algorithms that are “derived” by replacing an equality like (11.2.1) with a recursion like (11.2.2) are called fixed-
point iterations or successive substitution methods. Only in special circumstances will such algorithms be globally
convergent4 [10, p. 272], although they sometimes are locally convergent5. Despite this significant disadvantage,
several fixed-point iterations appear in the literature.

For specific problems, other simple manipulations can yield similar types of recursive relationships. For example,
Richardson derived a deconvolution algorithm by ad hoc manipulations of Bayes rule [16, 17]. Much later it was
shown that that Richardson-Lucy algorithm is equivalent to the emission E-ML-EM algorithm discussed in §18.5;
by that time convergence of ML-EM had been established, thereby retrospectively confirming convergence of the
(equivalent) Richardson-Lucy algorithm. But rarely does a fixed-point story have such a happy ending; usually fixed-
point iterations that are based on ad hoc choices forM(x) can diverge and should be avoided.

11.3 Preconditioned gradient descent (PGD) algorithms (s,opt,pgd)
s,opt,pgd

Choosing M(x) in (11.2.2) simply to be a fixed positive scalar α, called a step size, multiplying a fixed precondi-
tioning matrix P yields the following preconditioned gradient descent (PGD) algorithm:

x(n+1) = x(n) − αP ∇Ψ(x(n)) . (11.3.1)
e,opt,pgd,alg

For a general cost function Ψ, one may have difficulty selecting P to ensure global convergence of {x(n)} or even
monotonicity of {Ψ(x(n))}. However, for the specific cost functions Ψ of interest in statistical image reconstruction,
we will see numerous subsequent examples (e.g., (14.4)) of convergent algorithms of the form (11.3.1).

Choosing the step size α properly is quite important. It is rarely the case that α = 1 will work! Indeed, α has
physical units; in the usual case where Ψ is unitless and P = I , the units of α are the square of the units of x, because
∇Ψ has units that are the reciprocal of the units of x. The strange units for α are part of the reason why choosing α
“by hand” is difficult.

11.3.1 Monotonicity conditions for PGD
By assuming properties of Ψ beyond (11.1.1)-(11.1.2), one can specify sufficient conditions on α and P that ensure
monotonicity of PGD.

t,opt,pgd,mono,inv

Theorem 11.3.1 If the gradient of Ψ is S-Lipschitz continuous per Definition 29.9.17, i.e.,∥∥S−1 (∇Ψ(x)−∇Ψ(z))
∥∥
2
≤ ‖S′ (x− z)‖2 , ∀x, z ∈ Rnp , (11.3.2)

e,opt,pgd,lip,inv

4An algorithm is called globally convergent if x(n) → x̂ for any starting point x(0).
5An algorithm is called locally convergent if x(n) → x̂ for some nonempty set of initial guesses x(0) that are “sufficiently close” to x̂.

https://creativecommons.org/licenses/by-nc-nd/4.0/
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where S is an invertible matrix, 0 < α, and

αP ′SS′P ≺ P + P ′, (11.3.3)
e,opt,pgd,cond,inv

then the PGD algorithm (11.3.1) monotonically decreases Ψ and in fact is strictly monotone.
Proof (extended from [2, p. 21]):
By the first-order Taylor series with remainder (29.8.3) on Rnp and (29.2.8) on Cnp :

Ψ(x(n) + z) = Ψ(x(n)) + real

{∫ 1

0

〈∇Ψ(x(n) + τz), z〉dτ
}

= Ψ(x(n)) + real{〈∇Ψ(x(n)), z〉}+ real

{∫ 1

0

〈∇Ψ(x(n) + τz)−∇Ψ(x(n)), z〉dτ
}
.

Identifying z = −αP g for α ∈ R where g , ∇Ψ(x(n)), we have from (11.3.1), (11.3.2), and the Cauchy-Schwarz
inequality (27.4.2):

Ψ(x(n))−Ψ
(
x(n+1)

)
= real{〈g, αP g〉}+ real

{∫ 1

0

〈∇Ψ(x(n) − ταP g)− g, αP g〉dτ
}

=
α

2
g′ (P + P ′) g+α

∫ 1

0

real
{〈
S−1 (∇Ψ(x(n) − ταP g)− g) , S′P g

〉}
dτ

≥ α

2
g′ (P + P ′) g−α

∫ 1

0

∥∥S−1 (∇Ψ(x(n) − ταP g)− g)
∥∥
2
‖S′P g‖2 dτ

≥ α

2
g′ (P + P ′) g−α

∫ 1

0

‖S′ταP g‖2 dτ ‖S′P g‖2

=
α

2
g′ (P + P ′ − αP ′SS′P ) g ≥ 0,

where the last inequality follows from (11.3.3) and §27.2.
When x(n) is not a minimizer, g 6= 0, so the final inequality becomes> 0, showing that PGD is strictly monotone

(see Definition 11.1.1) under the conditions of this theorem. 2

c,opt,pgd,grad,0

Corollary 11.3.2 Under Assumption 2 (11.1.2), that Ψ has a finite minimum, and the conditions of Theorem 11.3.1,
the gradient∇Ψ(x(n)) converges to zero as n→∞ [2, p. 22].

(The proof follows from the inequality Ψ(x(n))−Ψ
(
x(n+1)

)
≥ α

2 〈g
(n), (P + P ′ − αP ′SS′P ) g(n)〉 in the

proof of Theorem 11.3.1.)

Preconditioners are often assumed to be (Hermitian) symmetric, but P in (11.3.3) need not be symmetric. It does
follow from (11.3.3) that P is positive definite in the restricted sense that x′Px > 0 for all x 6= 0 in Rnp . However,
if P is not symmetric, the other properties in §27.2 need not hold.

c,opt,pgd,mono,inv

Corollary 11.3.3 If P = I , and S =
√
LI , then the Lipschitz condition (11.3.2) simplifies to

‖∇Ψ(x)−∇Ψ(z)‖2 ≤ L‖x− z‖2 , ∀x, z ∈ Rnp , (11.3.4)
e,opt,pgd,lip,classic

where L is called the Lipschitz constant, and the monotonicity condition (11.3.3) simplifies to the following “classi-
cal” condition on the step size (cf. (16.5.19)):

0 < α <
2

L
. (11.3.5)

e,opt,pgd,step,classic

Establishing the Lipschitz condition (11.3.2) or (11.3.4) is perhaps easiest for twice differentiable cost functions;
Theorem 29.9.18 shows that if Ψ is twice differentiable, then (11.3.2) holds iff |||S−1∇2Ψ(x)S−H|||2 ≤ 1, ∀x ∈ Rnp .
If in addition Ψ is convex, then (11.3.2) holds iff ∇2Ψ(x) � SS′ by Corollary 29.9.20. In particular, if Ψ is convex
and quadratic with Hessian H , then (11.3.2) holds with S = H1/2. Furthermore, in that convex and quadratic case,
if P is symmetric positive definite, then (11.3.3) simplifies to

0 < α <
2

λmax(PH)
. (11.3.6)

e,opt,pgd,alf,quad

https://creativecommons.org/licenses/by-nc-nd/4.0/
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c,opt,pgd,hess

Corollary 11.3.4 If |||∇2Ψ(·) ||| is bounded by some finite constant L, i.e., if the cost function has bounded curvature,
then (11.3.2) holds with P = I , S =

√
LI , and the classic step size condition (11.3.5).

x,opt,pgd,cos

Example 11.3.5 The cost function Ψ(x) = sin(x) has second derivative Ψ̈(x) = sin(x) for which
∣∣∣Ψ̈(x)

∣∣∣ ≤ 1, so Ψ̇

is Lipschitz with L = 1. Thus PGD with P = 1 and 0 < α < 2 will decrease Ψ monotonically, and Ψ̇ will approach
zero. But because Ψ is non-convex, PGD will descend towards a local minimizer.

x,opt,pgd,huber

Example 11.3.6 The Huber function ψ(z) in (1.10.9) has derivative ψ̇(z) =

{
t, |z/δ| ≤ 1
δ sgn(z), otherwise. It is not twice

differentiable, so we cannot apply Corollary 11.3.4, but one can show (by enumerating a few cases) that ψ̇ is Lipcshitz
with L = 1. This example illustrates that the Lipschitz gradient condition Theorem 11.3.1 is more general than
curvature bounds like Theorem 29.9.18.

11.3.2 Convergence in norms,opt,pgd,norm

Theorem 11.3.1 provides sufficient conditions for PGD to decrease the cost function monotonically. We are also
interested in examining whether the iterates {x(n)} approach a minimizer x̂ monotonically. To provide sufficient
conditions for such monotone convergence in norm we focus on cases where Ψ is twice differentiable with positive
definite Hessian (0 ≺ ∇2Ψ, and hence is strictly convex) with unique minimizer x̂ and where P is also positive
definite (and thus has an invertible square root, per Definition 27.2.1). Because∇Ψ(x̂) = 0 we use (29.8.4) to rewrite
the PGD iteration (11.3.1) as

x(n+1) − x̂ = x(n) − x̂−αP (∇Ψ(x(n))−∇Ψ(x̂)) (11.3.7)

= x(n) − x̂−αP
(∫ 1

0

∇2Ψ(x̂+τ (x(n) − x̂)) dτ

)
(x(n) − x̂) (11.3.8)

= P 1/2

(
I − αP 1/2

(∫ 1

0

∇2Ψ(x̂+τ (x(n) − x̂)) dτ

)
P 1/2

)
P−1/2 (x(n) − x̂) . (11.3.9)

e,opt,pgd,err

Thus∥∥∥P−1/2 (x(n+1) − x̂
)∥∥∥ ≤ ∣∣∣∣∣∣∣∣∣I−αP 1/2

(∫ 1

0

∇2Ψ(x̂+τ (x(n) − x̂)) dτ

)
P 1/2

∣∣∣∣∣∣∣∣∣ ∥∥∥P−1/2 (x(n) − x̂)
∥∥∥ , (11.3.10)

e,opt,pgd,norm,mono

and using Lemma 27.2.3, if α∇2Ψ(x) ≺ P−1, ∀x, then
∥∥P−1/2 (x(n) − x̂)

∥∥, the weighted distance to minimizer x̂,
decreases every iteration. If P = I and |||∇2Ψ ||| ≤ L, then the sufficient condition is 0 < α < 1/L, which is more
restrictive than (11.3.5). The following theorem is more general, not requiring strict convexity.

t,opt,pgd,norm

Theorem 11.3.7 If Ψ is convex and its gradient ∇Ψ is S-Lipschitz per (11.3.2), if the set of minimizers X (?) =
{x(?) ∈ Cnp : Ψ(x(?)) ≤ Ψ(x), ∀x ∈ Cnp} is nonempty, and if P = [TT ′]

−1 where 0 ≺ αSS′ ≺ 2TT ′, then
‖T ′ (x(n) − x̂)‖ is monotone nonincreasing for the PGD iteration and {x(n)} converges to some x(?) ∈ X (?).
Proof:
Follow the proof of Theorem 12.2.1. See Problem 11.4.

x,opt,pgd,mono

Example 11.3.8 Consider the 1D shrinkage problem with Ψ(x) = 1
2 |y − x|

2
+ βψ(x) where 0 ≤ ψ̈ ≤ 1. Because

of this bounded curvature, it is natural to use PGD with αP = 1
1+β

. The error x(n) − x̂ decreases by at least β
1+β

each iteration. If we initialize with x(0) = y then
∣∣x(0) − x̂

∣∣ ≤ |y| so |x(n) − x̂| ≤
(

β
1+β

)n
|y| , which can provide a

(probably loose) bound on the number of iterations needed to ensure a given error tolerance.

11.3.3 Local convergence rate (s,opt,pgd,rate)s,opt,pgd,rate

An algorithm designer must choose the preconditioner P , and this choice is aided by analysis of the asymptotic
convergence rate of the PGD method. If Ψ is twice differentiable in the neighborhood of a local minimizer x̂, with
Hessian Ĥ , ∇2 Ψ̂(x̂), then Ostrowski’s theorem [18, p. 300], see (29.13.5), states that the root convergence factor
for sequences converging to x̂ is

R1 = ρ(I − αPĤ).

https://creativecommons.org/licenses/by-nc-nd/4.0/
http://en.wikipedia.org/wiki/Rate_of_convergence
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To elaborate this rate, we assume that Ψ is locally twice differentiable i.e., for x ≈ x̂:

Ψ(x) ≈ Ψ̂(x) , Ψ(x̂) +
1

2
(x− x̂)

′
Ĥ (x− x̂) , (11.3.11)

e,opt,hkost

using (11.1.5). Using this quadratic approximation for x(n) near x̂, the PGD iterates (11.3.1) are approximately:

x(n+1) ≈ x(n) − αP∇ Ψ̂(x(n)) = x(n) − αPĤ (x(n) − x̂) .

Assuming P has an invertible square root (e.g., is positive definite), the residual vector evolves according to the
recursion:

P−1/2
(
x(n+1) − x̂

)
≈
(
I − αP 1/2ĤP 1/2

)
P−1/2 (x(n) − x̂) . (11.3.12)

e,opt,pgd,rate,recurse

Hence, to within that approximation:∥∥∥P−1/2 (x(n+k) − x̂
)∥∥∥ ≤ ∣∣∣∣∣∣∣∣∣I − αP 1/2ĤP 1/2

∣∣∣∣∣∣∣∣∣k
2

∥∥∥P−1/2 (x(n) − x̂)
∥∥∥ . (11.3.13)

e,opt,pgd,norm

(Example 11.3.9 below shows that inequality (11.3.13) is tight.) Thus the asymptotic convergence rate of PGD (cf.
§29.13) is governed by the spectral radius ρ(I − αP 1/2ĤP 1/2). Qualitatively speaking, the closer αP is to Ĥ−1,
the faster the convergence asymptotically. For a given P , the best (asymptotic) step size α is

α? =
2

λmin(PĤ) + λmax(PĤ)
, (11.3.14)

e,opt,pgd,rate,best

provided PĤ has nonnegative eigenvalues (e.g., if P is positive definite), in which case

ρ(I − α?PĤ) =
λmax(PĤ)− λmin(PĤ)

λmax(PĤ) + λmin(PĤ)
=

κ−1

κ+1
, (11.3.15)

e,opt,pgd,cond

where κ , λmax(PĤ)/λmin(PĤ) denotes the condition number of PĤ . For the fastest convergence, one would
like to choose P to minimize the condition number of the product PĤ .

The approximate analysis above can be made rigorous for strongly convex cost functions [19, p. 14] [2, p. 24].
x,opt,pgd,tight

Example 11.3.9 The inequality (11.3.13) is tight. Consider the (separable!) cost function Ψ(x) = 1
2x
′Hx where

H =

[
1 0
0 κ

]
and P = I . If x(n) = c

[
± κ
1

]
, then simple algebra shows that d(n) = − κ c

[
±1
1

]
and

α? = 2
1+κ

and x(n+1) = cκ−1
κ+1

[
± κ
−1

]
, so ‖x(n)‖ =

(
κ−1
κ+1

)n ∥∥x(0)
∥∥ , which is convergence exactly at the upper

bound rate given in (11.3.13). Fig. 11.3.1 displays {x(n)} and contours of Ψ for the case κ = 4.

-4 -3 -2 -1 0
-1

0

1

1

2

3

4
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2

3

4

5

GD

Figure 11.3.1: Illustration of slow convergence of (unpreconditioned) gradient descent for a separable cost function.
The iteration begins at x(0) and the iterates {x(n)} (indicated by the circles) converge slowly to the minimizer x̂ = 0.

fig_opt_pgd_tight

https://creativecommons.org/licenses/by-nc-nd/4.0/
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11.3.4 Convergence rate of cost function decrease: O(1/n) (s,opt,pgd,1n)s,opt,pgd,1n

The local convergence rate in §11.3.3 characterizes how the iterates x(n) approach x̂ asymptotically, but says nothing
about the early iterations (except when Ψ is quadratic, in which case (11.3.11) is exact). The following classic theorem
bounds the convergence behavior of Ψ for all iterations.

t,opt,pgd,1n

Theorem 11.3.10 Suppose Ψ is convex and differentiable, with gradient satisfying a Lipschitz condition of the form
(11.3.2), and has a minimizer x̂. If we choose αP = [SS′]

−1
, then the PGD algorithm (11.3.1) produces a sequence

{x(n)} for which [20, Thm 3.1] [19]

Ψ(x(n))−Ψ(x̂) ≤
∥∥S′ (x(0) − x̂

)∥∥2
2n

, n ≥ 1. (11.3.16)
e,opt,pgd,1n

In the literature this result is often quoted as the “rate of convergence” of PGD is O(1/n). One must bear in mind
that this rate of convergence is for {Ψ(x(n))}, not {‖x(n) − x̂‖}.

The proof (see Problem 11.6) relies on the following Lemma that generalizes [20, Lemma 2.3].
l,opt,pgd,1n

Lemma 11.3.11 (See Problem 11.5.) If Ψ is convex and differentiable, with gradient satisfying a Lipschitz condition
of the form (11.3.2), and if we define the PGD update by

M(x) = x− αP ∇Ψ(x), (11.3.17)
e,opt,pgd,1n,M

where P satisfies (11.3.3), then

Ψ(x)−Ψ(M(z)) ≥ 1

2

∥∥∥B1/2 (M(z)− z)
∥∥∥2 +

1

α
〈z − x, P−1 (M(z)− z)〉,

where by (11.3.3)

B ,
1

α

(
P−1 + P−T

)
− SS′ � 0. (11.3.18)

e,opt,pgd,1n,B

Generalizing (11.3.16) to consider other preconditioners is an open problem.
The O(1/n) bound in (11.3.16) can be quite pessimistic. For any convex quadratic cost function with HessianH ,

by (11.3.11)

Ψ(x(n))−Ψ(x̂)

=
1

2
(x(n) − x̂)

′
H (x(n) − x̂) =

1

2

(
P−1/2 (x(n) − x̂)

)′
P 1/2HP 1/2

(
P−1/2 (x(n) − x̂)

)
≤ 1

2
|||P 1/2HP 1/2|||

∥∥∥P−1/2 (x(n) − x̂)
∥∥∥2

≤ 1

2
|||P 1/2HP 1/2||||||I − αP 1/2HP 1/2|||2n

∥∥∥P−1/2 (x(0) − x̂
)∥∥∥2 ,

using (11.3.10). So if 0 ≺ αH ≺ P−1 then Ψ decreases geometrically, i.e.,O(ρn), where ρ = |||I−αP 1/2HP 1/2|||2,
rather than at the “sublinear” rate of only O(1/n). More generally, for any strongly convex cost function Ψ one can
establish a geometric convergence rate for ‖x(n) − x̂‖ [19, p. 18].

Drori and Teboulle [21] derived a bound like (11.3.16) except with 4n+ 2 in the denominator. They also construct
a Huber-like function Ψ for which GD achieves that bound. Thus, the O(1/n) rate is tight over the family of cost
functions with Lipschitz gradients.

11.3.5 Relationship with optimization transfer (s,opt,pgd,ox)s,opt,pgd,ox

If ∇Ψ satisfies the Lipschitz condition (11.3.2), then Ψ has the following quadratic majorizer (cf. Chapter 14):

Ψ(x) ≤ φ(n)(x) , Ψ(x(n)) + real{〈∇Ψ(x(n)), x− x(n)〉}+
1

2
‖S′ (x− x(n))‖22 . (11.3.19)

e,opt,pgd,ox,qs

If we choose P = [SS′]
−1 then (11.3.3) simplifies to 0 < α < 2. In particular, for α = 1 the update becomes

x(n+1) = x(n) − [SS′]
−1∇Ψ(x(n)) = arg min

x
φ(n)(x) .

Optimization transfer methods in Chapter 14 typically use α = 1, which may not provide the fastest convergence rate
in light of (11.3.14). The case analyzed in Theorem 11.3.10 corresponds to α = 1 and αP = [SS′]

−1
.

https://creativecommons.org/licenses/by-nc-nd/4.0/
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11.3.6 Step-halving or backtracking (s,opt,pgd,half)s,opt,pgd,half

The PGD algorithm in general does not ensure that Ψ(x) decreases monotonically, and often it is challenging to find
an appropriate step size α. However, one can modify the algorithm by incorporating backtracking [22, p. 131] to
ensure descent. Define the search direction

d(n) = −P ∇Ψ(x(n)), (11.3.20)
e,opt,predir

and replace αd(n) in (11.3.1) with αnd(n) where we choose αn to ensure that

Ψ(x(n) + αnd
(n)) ≤ Ψ(x(n)) . (11.3.21)

e,opt,pgd,mono

In particular, one can apply a simple step-halving procedure, where one starts with some initial αn value and then
decreases αn by a factor of 2 until (11.3.21) is satisfied. Following [22, p. 131], if P is positive definite, then for
d = −P ∇Ψ(x) 6= 0, Taylor’s theorem yields

Ψ(x)−Ψ(x+ αd) = −α 〈∇Ψ(x), d〉+o(α) = α

[
d′P−1d+

o(α)

α

]
,

which will be positive for sufficiently small α, because d′P−1d > 0 for positive definite P , and o(α)/α approaches
zero as α→ 0. Thus, (11.3.20) is a descent direction at x(n), so step-halving is always guaranteed to lead (eventually)
to a value x(n+1) that decreases Ψ. However, obtaining this guarantee incurs the computational price of multiple
evaluations of Ψ(x(n) + αd(n)).

A problem with step-halving is that it is possible that the step size could become smaller each iteration possibly
preventing complete convergence. A solution to this problem is to apply the Armijo rule [3, p 29], a modified line
search that ensures a sufficient decrease in the cost function each iteration.

We call these types of approaches forced monotonic methods. In contrast, several of the algorithms described in
this book are intrinsically monotonic, and guarantee decreases in Ψ without any line search or backtracking.

11.3.7 Ideal preconditioner (s,opt,precon)s,opt,precon

From the analysis in §11.3.3, for quadratic cost functions, the ideal preconditioner would be P0 = H−1 so that
P0H = I, because the np × np identity matrix I has the minimal condition number (unity), and the PSD algorithm
would converge in one step. For nonquadratic Ψ, the inverse-Hessian preconditioner P0(x) = H−1(x) would yield
superlinear convergence rates akin to the Newton-Raphson method [23]. Because we cannot compute H−1 for large
np, one must develop preconditioners that approximateH−1; see Chapter 20.

11.3.8 Preconditioning as a coordinate transformations,opt,precon,change

If P = TT ′ where T is invertible and we consider the change of variables z = T−1x, then we can express the
(unconstrained) minimization problem (11.1.3) as follows:

ẑ = arg min
z

ΨP (z), ΨP (z) , Ψ(Tz) . (11.3.22)
e,opt,precon,change,kost,P

A gradient descent algorithm for ΨP in terms of z has the form

z(n+1) = z(n) − α∇zΨP (z(n)) = z(n) − αT ′∇Ψ(Tz(n)),

by applying the chain rule. Multiplying by T yields the PGD update (11.3.1). So preconditioning is equivalent to
a coordinate change. Geometrically, a good preconditioner is related to coordinates in which the cost function has
nearly spherical level sets, because in such a coordinate system the gradient vector points towards the minimizer.

11.4 Newton-Raphson algorithm (s,opt,nr)
s,opt,nr

From the preceding convergence analysis, the optimal preconditioner would be αP = H(x̂)−1 (asymptotically). Be-
cause x̂ is unknown, this preconditioner is impractical. However, in principle we can achieve comparable performance
by using the current Hessian Hn = H(x(n)) instead of H(x̂). This leads to the Newton-Raphson algorithm, often
called simply Newton’s method, which we develop in this section using a slightly different approach.

https://creativecommons.org/licenses/by-nc-nd/4.0/
http://en.wikipedia.org/wiki/Taylor's_theorem
http://en.wikipedia.org/wiki/Newton's_method_in_optimization
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If Ψ is twice differentiable, then we can make a 2nd-order Taylor series approximation6 using (11.1.8):

Ψ(x) ≈ Ψn(x) , Ψ(x(n)) + real{〈∇Ψ(x(n)), x− x(n)〉}+
1

2
(x− x(n))

′
Hn (x− x(n)) . (11.4.1)

e,opt,taylorn

Equating to zero the gradient of the 2nd-order approximation Ψn yields the following necessary condition for a mini-
mizer of that approximation:

0 = ∇Ψn(x)
∣∣∣
x=x(n+1)

= ∇Ψ(x(n)) +Hn (x− x(n))
∣∣∣
x=x(n+1)

. (11.4.2)
e,opt,taylorn,0

Solving for x(n+1) yields the following classical Newton-Raphson algorithm:

x(n+1) = x(n) −
[
∇2Ψ(x(n))

]−1∇Ψ(x(n)), (11.4.3)
e,opt,alg,nr

Typically this algorithm is entirely impractical for imaging problems, due to the size of the Hessian. In addition,
it is not guaranteed to monotonically decrease Ψ. (One can attempt to overcome this limitation using backtracking,
see (11.3.21), at least for convex Ψ, but in general adding a line search does not ensure convergence [24].) When
Ψ is strongly convex, and when ∇2Ψ satisfies a Lipschitz condition, one can show that Newton-Raphson is locally
convergent with a quadratic convergence rate: ‖x(n) − x̂‖ ≤ cq2

n

, for a constant c that depends on Ψ and a constant
q < 1 that depends on Ψ and x(0) [19, p. 15] [2, p. 28]. This very desirable fast convergence property is shared by
almost none of the (practical) algorithms discussed in this book .

Variations of the Newton-Raphson algorithm for nonlinear least-squares problems include the Gauss-Newton and
Levenberg-Marquardt methods; see §14.13. For optimal second-order methods for nonconvex problems, see [25].

11.5 Preconditioned steepest descent (PSD) algorithms (s,opt,psd)
s,opt,psd

In the PGD algorithm described in (11.3.1) above, the “step size” remains constant each iteration. Often it is imprac-
tical to determine the best step size (11.3.14), both because the eigenvalues are unknown and because the Hessian Ĥ
depends on the unknown minimizer x̂. To circumvent these difficulties, one can let the preconditioned gradient vector
define a search direction and then seek the minimizer of Ψ(·) along that direction. With the search direction d(n)

defined as the (negative) preconditioned gradient in (11.3.20), the preconditioned steepest descent (PSD) algorithm
[26] is given as follows:

d(n) , −P ∇Ψ(x(n))

αn , arg min
α∈[0,∞)

Ψ(x(n) + αd(n)) (11.5.1)
e,opt,psd,line

x(n+1) = x(n) + αnd
(n), (11.5.2)

e,opt,psd,alg

where αn is called the step size or step length. The one-dimensional minimization in (11.5.1) is called a line search.
For a general nonquadratic cost function Ψ, this search may add considerable computational expense per iteration.
Often one must choose between using PGD with a conservative step size (thus requiring more iterations) and PSD that
needs more work per iteration but requires fewer iterations.

One could argue that (11.5.2) is not really an “algorithm” because the method for the required minimization
(11.5.1) remains unspecified. See §11.6 for discussion of line search methods.

11.5.1 Orthogonality and search directions
A necessary condition for finding the minimizing step size αn ∈ [0,∞) in (11.5.1) is that

0 =
∂

∂α
Ψ(x(n) + αd(n))

∣∣∣∣
α=αn

= 〈∇Ψ(x(n) + αd(n)), d(n)〉
∣∣∣
α=αn

= 〈∇Ψ
(
x(n+1)

)
, d(n)〉, (11.5.3)

e,opt,psd,gnn,dirn,0

6Readers should compare (11.4.1), which is useful for algorithm design, to (11.3.11), which is useful for algorithm analysis. See also (29.4.2).

https://creativecommons.org/licenses/by-nc-nd/4.0/
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http://en.wikipedia.org/wiki/Levenberg\T1\textendash Marquardt_algorithm
http://en.wikipedia.org/wiki/Line_search
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by applying the chain rule and (11.5.2). In other words, the next gradient ∇Ψ
(
x(n+1)

)
and the current search di-

rection d(n) are orthogonal, at least if the line search finds the exact minimizer. Fig. 11.3.1 illustrates this property.
For an inexact line search that finds only an approximate minimizer in (11.5.1), the next gradient ∇Ψ

(
x(n+1)

)
is

approximately orthogonal to d(n).

11.5.2 Complex case
We can also apply PSD to cost functions with complex-valued arguments, i.e., Ψ : Cnp → R, where x(n),d(n) ∈ Cnp ,
provided we define ∇Ψ appropriately; see (29.2.6) in Appendix 29. The line search (11.5.1) is still over α ∈ [0,∞),
even when x is complex. For complex cases,

∂

∂α
Ψ(x(n) + αd(n)) = real{〈∇Ψ(x(n) + αd(n)), d(n)〉}

and the orthogonality condition (11.5.3) becomes:

real
{
〈∇Ψ

(
x(n+1)

)
, d(n)〉

}
= 0. (11.5.4)

e,opt,psd,gnn,dirn,0,complex

MIRT See pgd_step.m.

11.5.3 Asymptotic convergence rate
Choosing the preconditioner P follows similar analysis as in §11.3.3. Using the quadratic approximation (11.3.11),
for x(n) near x̂, the PSD iterates are approximately

x(n+1) = x(n) + α̂nd̂
(n),

where d̂(n) = −P∇ Ψ̂(x(n)) = −PĤ(x(n) − x̂) and

α̂n , arg min
α

Ψ̂
(
x(n) + αd̂(n)

)
=
〈x̂−x(n), Ĥd̂(n)〉
〈d̂(n), d̂(n)〉

.

By this construction, it follows that∥∥x(n+1) − x̂
∥∥
Ĥ1/2 = min

α

∥∥∥x(n) + αd̂(n) − x̂
∥∥∥
Ĥ1/2

= min
α

∥∥∥(I − αPĤ) (x(n) − x̂)
∥∥∥
Ĥ1/2

. (11.5.5)
e,opt,psd,norm1

Assuming P and Ĥ are positive definite and defining the (weighted) error vector δ(n) = P−1/2(x(n) − x̂) and the
preconditioned Hessian matrix H̃ = P 1/2ĤP 1/2, it follows from (11.5.5) that∥∥δ(n+1)

∥∥
H̃1/2 = min

α

∥∥∥(I − αH̃)δ(n)

∥∥∥
H̃1/2

≤ min
α

∥∥∥I − αH̃∥∥∥
H̃1/2

‖δ(n)‖H̃1/2 .

In particular, following [27, p. 31],

∥∥∥I − αH̃∥∥∥
H̃1/2

= arg max
x 6=0

√
x′(I − αH̃)H̃(I − αH̃)x

‖x‖2
= arg max
j=1,...,np

|1− αλj |
√
λj ,

where the λj values are the eigenvalues of H̃ . Thus

min
α

∥∥∥I − αH̃∥∥∥
H̃1/2

= min
α

arg max
j=1,...,np

|1− αλj |
√
λj =

κ−1

κ+1
, (11.5.6)

e,opt,psd,cond

where κ , λmax(H̃)/λmin(H̃) is the condition number of H̃ . Note that the minimizing α for (11.5.7) is αn,
whereas that for the upper bound (11.5.6) is α = 2

λmin(H̃)+λmax(H̃)
. Combining the above relationships, the weighted

error norm decreases each iteration at least as much as the following [1, p. 32]:∥∥δ(n+1)
∥∥
H̃1/2 ≤

κ−1

κ+1
‖δ(n)‖H̃1/2 . (11.5.7)

e,opt,psd,norm

https://creativecommons.org/licenses/by-nc-nd/4.0/
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So the closer κ is to unity, the faster the convergence should be. By (27.1.1): κ = κ
(
H̃
)

= κ
(
P 1/2ĤP 1/2

)
=

κ
(
PĤ

)
, so one would like to choose P to minimize the condition number of the product PĤ .

It is interesting that (11.5.7) for PSD is similar to (11.3.15) for PGD, yet PSD does not require determining α?.
Example 11.3.9 shows that the inequality (11.5.7) is tight. (In that example, the line search yields αn = α? every

iteration.)
See [28] for discussion of choosing step sizes to improve the worst-case convergence rate, and see [29] for worst-

case analysis of strongly convex problems.

11.6 Line search methods (s,opt,line)s,opt,line

Several of the algorithms described in this chapter, including PSD and PCG, require a line search like (11.5.1). There
are many “classical” methods for solving this 1D minimization problem, such as the golden section search [30] and
the bisection method (or binary search). See also [31] [32]. A monotonic surrogate-function method well-suited
to inverse problems is described in §14.5.6. Rarely is the minimization in (11.5.1) exact. Often one seeks αn that
satisfies the Wolfe conditions [33, 34], including the Armijo rule [35]:

Ψ(x(n) + αnd
(n)) ≤ Ψ(x(n)) +c1αn real{〈∇Ψ(x(n)), d(n)〉}

where 0 < c1 � 1.
Most conventional methods need some initial guess for the step size. This section summarizes some alternate

methods that consider the properties of the cost function Ψ to help accelerate the line search.

11.6.1 Line search using Lipschitz conditions (s,opt,line,lips)s,opt,line,lips

If the gradient∇Ψ of the cost function is S-Lipschitz continuous per (11.3.2), then the problem of minimizing the 1D
function f(α) = Ψ(x+ αd) is simplified because f itself also has a Lipschitz continuous derivative:∣∣∣ḟ(a)− ḟ(b)

∣∣∣ = |real{〈∇Ψ(x+ ad)−∇Ψ(x+ bd), d〉}|

≤
∣∣〈S−1 (∇Ψ(x+ ad)−∇Ψ(x+ bd)) , S′d〉

∣∣
≤
∥∥S−1 (∇Ψ(x+ ad)−∇Ψ(x+ bd))

∥∥ ‖S′d‖
≤ ‖S′ (ad− bd)‖ ≤ ‖S′d‖2 |a− b| .

Thus ḟ has Lipschitz constant Lḟ = ‖S′d‖2 = d′SS′d, and we can apply gradient descent to f :

α(k+1) = α(k) − 1

Lḟ
ḟ(α(k)) = α(k) − 1

Lḟ
real

{
〈∇Ψ

(
x+ α(k)d

)
, d〉

}
.

By Theorem 11.3.1, this simple iteration is guaranteed to decrease f(α) monotonically. For an example, see Prob-
lem 11.7.

11.6.2 Step size using Newton’s method (s,opt,line,newt)s,opt,line,newt

For cost functions that are twice differentiable and approximately quadratic, one can use the 1D version of Newton’s
method as a reasonable starting point for choosing the step size αn ∈ [0,∞). Define

ψ(α) = Ψ(x(n) + αd(n)) .

Then by (11.5.3) or (11.5.4):
ψ̇(α) = real{〈∇Ψ(x(n) + αd(n)), d(n)〉}

and7

ψ̈(α) = 〈d(n), ∇2Ψ(x(n) + αd(n))d(n)〉 (11.6.1)

7In complex case, we assume ∇Ψ is holomorphic and define ∇2Ψ as in §29.4.

https://creativecommons.org/licenses/by-nc-nd/4.0/
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http://en.wikipedia.org/wiki/Wolfe_conditions
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≈ 1

ε

(
ψ̇(α+ ε)− ψ̇(α)

)
(11.6.2)

=
1

ε
(real{〈∇Ψ(x(n) + (α+ ε)d(n)), d(n)〉}− real{〈∇Ψ(x(n) + αd(n)), d(n)〉}) . (11.6.3)

e,opt,psd,ddot,f,approx

Thus the approximate minimizer is

αn = − ψ̇(0)

ψ̈(0)
≈ − real{〈∇Ψ(x(n)), d(n)〉}

1
ε real{〈∇Ψ(x(n) + εd(n))−∇Ψ(x(n)), d(n)〉}

.

This approximation requires one extra evaluation of the cost function gradient ∇Ψ and avoids computing the Hessian
of Ψ. If this step size is too large, then back track as described in §11.3.6.

11.6.3 Line search for PWLS cost functions (s,opt,line,pwls)s,opt,line,pwls

For general cost functions, repeatedly evaluating Ψ or its gradient to perform a line search may be expensive. Fortu-
nately, for the PWLS cost functions of interest in many imaging problems, we can evaluate Ψ and its gradient for a
line search fairly efficiently. If

Ψ(x) =
1

2
‖y −Ax‖22 + β

∑
k

ψ([Cx]k),

then we can write the line search cost function as

f(α) = Ψ(x(n) + αd(n)) =
1

2
‖y −A (x(n) + αd(n))‖22 + β

∑
k

ψ([C (x(n) + αd(n))]k) (11.6.4)

=
1

2
‖y − (Ax(n))− α (Ad(n))‖22 + β

∑
k

ψ([Cx(n)]k + α[Cd(n)]k) . (11.6.5)
e,opt,line,eff

We can precompute the productsAx(n),Ad(n),Cx(n) andCd(n) before starting the line search, and then use (11.6.5).
Note that

Ax(n+1) = A (x(n) + αnd
(n))

= (Ax(n)) + αn (Ad(n)) ,

so we can determineAx(n+1) from the vectorsAx(n) andAd(n) computed before starting the line search.

11.7 Accelerated first-order methods (s,opt,a1)s,opt,a1

The PGD method (11.3.1) is a first-order method because it depends only on the gradient of the cost function and
not on its second derivatives (i.e., the Hessian).

The sufficient condition for monotone convergence (11.3.2) also involves “only” ∇Ψ, although often one de-
termines the Lipschitz constant by finding (an upper bound on) the maximum eigenvalue of the Hessian of Ψ via
Corollary 11.3.4.

First-order methods are appealing for large-scale optimization problems (such as those arising in image recon-
struction) because the Hessian is too large to store. However, traditional first-order methods like PGD often converge
undesirably slowly. This has led to considerable interest in accelerated first-order methods, some of which are sum-
marized in this section. This field is evolving rapidly [36].

11.7.1 Barzilai and Borwein gradient method (s,opt,bb)s,opt,bb

The Barzilai and Borwein gradient method (BBGM) for large-scale optimization problems is the following simple
iteration [37–40]:

g(n) , ∇Ψ(x(n))

αn =

∥∥x(n) − x(n−1)
∥∥2

〈x(n) − x(n−1), g(n)− g(n−1)〉

x(n+1) = x(n) − αn g(n) .

https://creativecommons.org/licenses/by-nc-nd/4.0/
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This method has global convergence when Ψ is a strictly convex quadratic, even though it is not guaranteed to decrease
the cost function monotonically [38, 41].

For non-quadratic problems, it is important to modify the algorithm to ensure that it tends to descend, but enforcing
strict descent would reduce it to the PSD method that usually converges slowly. Raydan [39] proposed a modification
that adjusts the step size αn to enforce the following condition:

Ψ
(
x(n+1)

)
≤ max

0≤j≤M
Ψ
(
x(n−j))+γ 〈x(n+1) − x(n), g(n)〉,

where M is a nonnegative integer and γ is a small positive number, following [42, 43].
Using §11.3.8, one can derive the following preconditioned version. (Problem 11.8.)

g(n) , ∇Ψ(x(n))

αn =
α2
n−1 〈g(n−1), P g(n−1)〉

〈x(n) − x(n−1), g(n)− g(n−1)〉

x(n+1) = x(n) − αnP g(n) .

x,opt,bb

Example 11.7.1 Fig. 11.7.1 illustrates BBGM for the same problem described in Example 11.7.1 for two choices of
initial step size α0. Clearly the iterates can be non-monotonic.

-3

-2

-1

0

1

2

-4 -3 -2 -1 0

x
2

x1

α0 = 1/2
α0 = 1

x
(0)

Figure 11.7.1: Fast convergence of BBGM for the same example shown in Fig. 11.3.1. In this (strongly convex,
quadratic) case, BBGM with α0 = 1 (green) converges exactly in 3 iterations, and converges rapidly with α0 = 1/2
(blue).

fig_opt_bb1

MIRT See qpwls_bb1.m.
See [44] for other step-size rules.

11.7.2 Nesterov’s “optimal” first-order methods (s,opt,nesterov)s,opt,nesterov

Nesterov [45, 46] proposed accelerated gradient descent methods that use momentum. His methods were described
for cost functions having gradients that satisfy the classical Lipschitz condition (11.3.5). Using the coordinate change
ideas of §11.3.8, one can generalize to cases that are S-Lipschitz continuous per (11.3.2) (cf. [47–49]), leading to the
following algorithm. Starting with z(0) = x(0) and t0 = 1, Nesterov’s fast gradient method (FGM) is:

https://creativecommons.org/licenses/by-nc-nd/4.0/
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tn+1 =
(

1 +
√

1 + 4t2n

)
/2

x(n+1) = z(n) − [SS′]
−1∇Ψ(z(n))

= arg min
x

φ(n)(x), φ(n)(x) , Ψ(z(n)) +∇Ψ(z(n)) (x− z(n)) +
1

2
‖x− z(n)‖2SS′

z(n+1) = x(n+1) +
tn − 1

tn+1

(
x(n+1) − x(n)

)
.

The ratio tn−1
tn+1

for the momentum term approaches 2 as n increases. Because t0 − 1 = 0, the first iteration is simply

PGD with preconditioner P = [SS′]
−1.

This method reaches an “ε optimal solution” where Ψ(x(n)) ≤ Ψ(x̂) +ε within O(1/
√
ε) iterations, whereas

conventional PGD requires O(1/ε) iterations [45, 46]. Specifically, if Ψ is convex and has Lipschitz gradient, then

Ψ(x(n))−Ψ(x̂) ≤
2
∥∥S′ (x(0) − x̂

)∥∥2
n2

. (11.7.1)
e,opt,nesterov,1/n2

This O(1/n2) convergence rate is optimal in a certain (global, non-asymptotic) sense [5, p. 77].
The above Nesterov method requires a Lipschitz constant L or matrix S, whereas PSD, BBGM, and PCG do not.

There are line-search variants, e.g., [50], that do not require L. See [51] for a version that estimates the Lipschitz
constant locally, during the iteration.

Fig. 11.7.2 shows example based on Example 11.3.9, using S =
√
LI .

-1

0

1

-4 -3 -2 -1 0

x
2

x1

L = 2 λmax(H)
L = λmax(H)

x
(0)

Figure 11.7.2: Illustration of Nesterov method for the same example shown in Fig. 11.3.1. For the blue curve, L =
2ρ(∇2Ψ), reflecting the fact that often the maximum eigenvalue is over-estimated. For the green curve, L = ρ(∇2Ψ),
which is the ideal Lipschitz constant. In this (strongly convex, quadratic) case, the momentum term causes the iterates
to slightly overshoot the minimizer.

fig_opt_nest1

The bound (11.7.1) is tight, to within a constant factor, because there exists a convex function for which FGM
converges at a rate within a constant factor of the lower bound [5, Thm 2.1.7] [21].

The optimized gradient method (OGM) [52] tightens the bound (11.7.1) by a factor of two using a similarly
efficient algorithm. By constructing a lower bound, Drori showed that OGM is an optimal first-order method [53].

Momentum is also used for training artificial neural nets via (stochastic) gradient descent [54, 55].

11.8 Preconditioned conjugate gradients (PCG) (s,opt,pcg)
s,opt,pcg

Both the PGD and PSD algorithms above choose the search direction according to the preconditioned gradient vector
(11.3.20). Example 11.3.9 illustrates that (11.3.20) is a somewhat inefficient choice of search direction, because PSD
required multiple iterations even for a separable 2D cost function. This section describes an improvement called

https://creativecommons.org/licenses/by-nc-nd/4.0/
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the preconditioned conjugate gradient (PCG) method. It is also called nonlinear CG when the cost function is
nonquadratic.

To further accelerate convergence, conjugate-gradient methods modify the search directions to ensure that they are
mutually conjugate (or approximately so for nonquadratic problems), meaning that they are orthogonal with respect to
an inner product related to the Hessian of Ψ. This approach ensures a more efficient search over the parameter space,
and even leads to convergence in np iterations [27, p. 36] for quadratic cost functions (in the absence of numerical
roundoff errors).

We would like to choose a search direction d(n) that is (approximately) Hn−1-orthogonal to the previous search
direction d(n−1), whereHn is the Hessian of Ψ at x(n). Specifically, we would like to choose d(n) such that

〈d(n), Hn−1d
(n−1)〉 = 0. (11.8.1)

e,opt,pcg,conj

After choosing a suitable search direction, PCG uses the PSD approach of a line search (11.5.1) and the corresponding
update (11.5.2).

A simple way to achieve conjugacy (11.8.1) is to design d(n) using the recursion8

d(n) = −P g(n) +γnd
(n−1), (11.8.2)

e,opt,pcg,dir

where g(n) , ∇Ψ(x(n)), and to choose γn to satisfy (11.8.1). Substituting into (11.8.1) and simplifying yields

γDn ,
〈Hn−1d

(n−1), P g(n)〉
〈Hn−1d(n−1), d(n−1)〉

. (11.8.3)
e,opt,pcg,gamn,daniel

Proposed by Daniel [56], this choice for γn satisfies the conjugacy condition (11.8.1) exactly, but is inconvenient (for
nonquadratic cost functions) because it depends on the Hessian Hn−1. Furthermore, after multiple iterations of the
recursion (11.8.3), it is possible that the search direction d(n) will not be a descent direction. Several alternative choices
for γn have been proposed that overcome these disadvantages. Historically [57], these alternatives were derived by
a variety of methods, often based on generalizing the PCG method for quadratic cost functions. Here we present the
alternatives as approximations to (11.8.3).

Using the 2nd-order Taylor series (11.4.1) and its gradient (11.4.2) leads to the following approximation:

g(n) ≈ g(n−1) +Hn−1
(
x(n) − x(n−1)) (11.8.4)

= g(n−1) +αn−1Hn−1d
(n−1), (11.8.5)

e,opt,pcg,gn,gnp

exploiting (11.5.2), i.e., Hn−1d
(n−1) = (g(n)− g(n−1))/αn−1. (This relation is exact for quadratic cost functions.)

Substituting into (11.8.3) yields the Hestenes-Stiefel formula [58]:

γHS
n ,

〈g(n)− g(n−1), P g(n)〉
〈g(n)− g(n−1), d(n−1)〉

. (11.8.6)
e,opt,pcg,gamn,hs

For further variations, invoke the orthogonality condition (11.5.3) or (11.5.4), i.e., 0 = real
{
〈g(n), d(n−1)〉

}
,

which holds for an exact line search. Assuming the direction design (11.8.2) is used in the previous iteration too, the
denominator in (11.8.6) simplifies as follows:

〈g(n)− g(n−1), d(n−1)〉 = −〈g(n−1), d(n−1)〉 = −〈g(n−1), −P g(n−1) +γn−1d
(n−2)〉 = 〈g(n−1), P g(n−1)〉 .

Substituting into (11.8.6) yields the Polak-Ribiere [59, 60] choice:

γPR
n ,

〈g(n)− g(n−1), P g(n)〉
〈g(n−1), P g(n−1)〉

. (11.8.7)
e,opt,pcg,gamn,pr

This choice has been used frequently for image reconstruction [31, 61, 62].
Turning now to the numerator in (11.8.6), note that by (11.8.2): and (11.8.5):

−〈P g(n−1), g(n)〉 = 〈d(n−1) − γn−1d(n−2), g(n)〉 = −γn−1 〈d(n−2), g(n)〉 (11.8.8)

≈ −γn−1 〈d(n−2), g(n−1) +αn−1Hn−1d
(n−1)〉 (11.8.9)

8Provided that P is a Hermitian postive definite preconditioning matrix, one can motivate (11.8.2) by working in the transformed coordinate
system discussed in §11.3.8.

https://creativecommons.org/licenses/by-nc-nd/4.0/
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= γn−1αn−1 〈d(n−2), Hn−1d
(n−1)〉 ≈ 0, (11.8.10)

e,opt,pcg,pgg,0

where the last approximation follows from the conjugacy condition (11.8.1) provided that Hn−1 ≈Hn−2. Applying
(11.8.10) to (11.8.6) yields the formula of Dai and Yuan [63]:

γDY
n ,

〈g(n), P g(n)〉
〈g(n)− g(n−1), d(n−1)〉

. (11.8.11)
e,opt,pcg,gamn,dy

Alternatively, applying (11.8.10) to (11.8.7) yields the classic Fletcher-Reeves formula [64]:

γFRn ,
〈g(n), P g(n)〉

〈g(n−1), P g(n−1)〉
. (11.8.12)

e,opt,pcg,gamn,fr

Because 0 = 〈g(n), d(n−1)〉 for an exact line search, 〈P
(
g(n)− g(n−1))− ζnd(n−1), g(n)〉 is an alternative to

the numerator of (11.8.6) for any value of ζn. Hager and Zhang [32, 65, 66] surveyed numerous choices for γn and
proposed the following choice that has favorable convergence properties:

γHZ
n ,

〈
P
(
g(n)− g(n−1))− ζnd(n−1), g(n)

〉
〈g(n)− g(n−1), d(n−1)〉

, ζn , 2
〈g(n)− g(n−1), P

(
g(n)− g(n−1))〉

〈g(n)− g(n−1), d(n−1)〉
. (11.8.13)

e,opt,pcg,gamn,hz

(Problem 11.9.) This choice ensures monotonicity under mild conditions, unlike many of the previous alternatives.
See also [23, 67–77].

In practice, often one uses [γn]+ in place of γn for inexact line searches [32, 78]. For cases where x is complex,
see [79–81].

The following summarizes the PCG algorithm for one of the many options for γn.

PCG Algorithm (Polak-Ribiere version of γn)

g(n) = ∇Ψ(x(n)) (gradient)
p(n) = P g(n) (precondition)

γn =


0, n = 0
real

{
〈g(n)− g(n−1), p(n)〉

}
real{〈g(n−1), p(n−1)〉}

, n > 0
(Polak-Ribiere)

d(n) = −p(n) + γnd
(n−1) (search direction) (11.8.14)

e,opt,pcg,dirn

αn = arg min
α∈[0,∞)

Ψ(x(n) + αd(n)) (step size) (11.8.15)
e,opt,pcg,step

x(n+1) = x(n) + αnd
(n) (update) (11.8.16)

e,opt,pcg,alg

For nonquadratic cost functions Ψ, one must find αn using a line-search. §11.6 and §14.5.6 describe efficient line-
search methods suitable for many imaging problems, based on majorize-minimize methods to determine the step
sizes [62] [82].

Generalizations of PCG using multiple search directions and/or preconditioners have also been proposed [83–86].
A related generalization is subspace minimization using multiple search directions simultaneously [87].

11.8.1 Asymptotic convergence rates,opt,pcg,rate

Analysis of the convergence rate of the PCG algorithm is considerably more complicated than for the steepest descent
algorithm. For quadratic cost functions, the errors decrease at least as rapidly as the following bound [27, p. 51]:

‖x(n) − x̂‖H1/2 ≤ 2

(√
κ− 1√
κ + 1

)n ∥∥x(0) − x̂
∥∥
H1/2 ,

where κ is the condition number of the preconditioned Hessian P 1/2HP 1/2 corresponding to the cost function
Ψ
(
P 1/2·

)
. Comparing to the convergence rate of PSD given in (11.5.7), we see that PCG has considerably faster

convergence (due to the square root of κ). Even tighter error bounds as a function of iteration, involving nth-order
polynomials with roots near the eigenvalues of the (preconditioned) Hessian, are given in [27, p. 51]. In short, PCG
converges quadratically [5, p. 45].

Recently, nonlinear PCG algorithms have been developed that are globally convergent under certain conditions on
the line search [32, 65, 66].

https://creativecommons.org/licenses/by-nc-nd/4.0/
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x(n+1) = x(n) − Pn∇Ψ(x(n)) (11.9.1)
e,opt,alg,qn

δ(n) , x(n+1) − x(n)

q(n) , ∇Ψ
(
x(n+1)

)
−∇Ψ(x(n))

w(n) , δ(n) − Pnq(n)

bn ,
1

〈w(n), q(n)〉
Pn+1 = Pn + bnw

(n) [w(n)]
′
. (11.9.2)

e,opt,qn,P

Table 11.1: Quasi-Newton algorithm.
tab,qn

11.9 Quasi-Newton methods (s,opt,qn)
s,opt,qn

The preconditioning matrix P remains unchanged throughout the iterations of the preceding algorithms, except in the
Newton-Raphson iteration (11.4.3), in whichP is the inverse Hessian, which is impractical to compute. Quasi-Newton
methods attempt to provide a practical approach involving more easily inverted matrices, yet hopefully accelerating
convergence (relative to algorithms with a fixed preconditioner) by updating the preconditioning matrix each iteration
in hopes of forming an improved approximation to the inverse of the Hessian matrix. A basic quasi-Newton method
uses the rank-one update of Davidon [88] to adjust the preconditioner each iteration, see [22, p. 136] and [89].

A quasi-Newton algorithm begins with some initial guess P0 of the inverse Hessian H−1(x̂), and updates both
x(n) and Pn each iteration. The principle behind quasi-Newton methods is the secant condition, which originates
from the gradient of the quadratic approximation (11.4.1) evaluated at x(n+1):

∇Ψ
(
x(n+1)

)
≈ ∇Ψ(x(n)) +Hn(x(n+1) − x(n)).

Defining
δ(n) , x(n+1) − x(n)

and
q(n) , ∇Ψ

(
x(n+1)

)
−∇Ψ(x(n))

we see that q(n) ≈Hnδ
(n). The (inverse) secant condition, which constrains the update of Pn, is defined as follows:

Pn+1q
(n) = δ(n).

Clearly there are many matrices that satisfy this condition. For simplicity, Davidon constrained Pn to evolve via a
rank-one update (so called because the matrix w(n) [w(n)]

′ has unity rank) of the following form:

Pn+1 = Pn + bnw
(n) [w(n)]

′
.

Substituting into the (inverse) secant condition we see that

bn 〈w(n), q(n)〉w(n) = δ(n) − Pnq(n).

Thus, the natural choice for w(n) is
w(n) = δ(n) − Pnq(n),

in which case we must have
bn = 1/ 〈w(n), q(n)〉 .

Combining these formulas leads to the quasi-Newton algorithm shown in Table 11.1, also known as Broyden’s
method [2, p. 77]. One can incorporate a line-search [90] or step-halving procedure into (11.9.1).

Convergence conditions are discussed in [91, 92] and [2, p. 77]. The asymptotic convergence rates of QN can be
cumbersome to analyze [2, p. 78]. See [92] for cases where QN algorithms converge Q-superlinearly.

Mat The MATLAB function fminunc is based on a quasi-Newton method.
x,opt,qn

Example 11.9.1 Fig. 11.9.1 illustrates the application of the quasi-Newton algorithm to the same problem as in Ex-
ample 11.3.9, with P0 = 1

5I . Because the cost function is quadratic, and because np = 2, after two rank-one updates
the inverse Hessian P2 is exactly H−1, so x(3) = x̂, i.e., convergence in np + 1 iterations as expected theoretically
[22, p. 138].

https://creativecommons.org/licenses/by-nc-nd/4.0/
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Figure 11.9.1: Illustration of a quasi-Newton algorithm.
fig_qn1

11.9.1 Implementation
A literal implementation using the update (11.9.2) would have prohibitive memory requirements. The only use of Pn
in the algorithm is the operation of multiplying by vectors in Rnp , which one can implement efficiently as follows:

Pnx =

[
P0 +

n−1∑
i=1

biw
(i)
[
w(i)

]′]
x = P0x+

n−1∑
i=1

bi 〈w(i), x〉w(i). (11.9.3)
e,opt,qn,Px

As long as n � np, which is the usual case in imaging problems, the preceding implementation will require much
less storage than (11.9.2).

An alternative update strategy is the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method, for which limited-
memory versions are available, e.g., [93]. There are two reasons for limited-memory versions. The obvious reason is
to reduce memory requirements, because (11.9.3) requires storage of all n previous w(i) vectors. A second reason is
that for nonquadratic cost functions, the quadratic approximation (11.4.1) may be poor for the initial x(n) values, so
“forgetting” the effects of those x(n) values as n decreases may be helpful.

Another subtle practical consideration is the need to monitor whether Pn remains positive definite, because the bn
values can be negative [22, p. 137]. The BFGS method may mitigate this concern [1, p. 63].

Choice of the initial inverse Hessian approximation P0 is critical [22, p. 137]. The (diagonal) Hessian matrices
corresponding to the separable paraboloidal surrogates discussed in subsequent chapters are particularly appealing
because those choices ensure that at least the first update (11.9.1) will decrease Ψ. This idea stems from Lange’s
proposal to use the EM complete-data information matrix [94].

For imaging applications, see [95–98].

11.10 Block coordinate descent methods (s,opt,bcm)s,opt,bcm

All of the preceding algorithms in this chapter update all pixels (elements of x) simultaneously. In many optimization
problems it can be beneficial to update a group of parameters simultaneously, holding all other parameters at their most
recent values. Such methods go by various names including block coordinate minimization (BCM), block coordi-
nate descent (BCD), grouped coordinate descent (GCD), alternating minimization (AM), or simply coordinate
descent (CD). The literature does not have standard terminology distinguishing these methods.

All such methods partition the optimization variable x into two or more “blocks” (shorter vectors) and update one
block while holding the other blocks constant. Some BCD methods use a fixed partition, whereas others allow the
partition to change as the iterations proceed.

We start with the simpler case where the partition is fixed at the outset. Partition the vector x ∈ Rnp intoK blocks:

x =

 x1

...
xK

 ∈ Rnp ,

where xk ∈ Rnk for k = 1, . . . ,K and where
∑K
k=1 nk = np. Then rewrite Ψ(x) as Ψ(x1, . . . ,xK).
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11.10.1 Block coordinate minimization (BCM)
The conceptually simplest approach sequentially minimizes over each block while holding the others fixed.

Block coordinate minimization (BCM) “Algorithm”
for n = 0, 1, . . . {

for k = 1, . . . ,K {

x(n+1)
k := arg min

xk∈Rnk

Ψ
(
x(n+1)
1 , . . . ,x(n+1)

k−1 ,xk,x
(n)

k+1, . . . ,x
(n)

K

)
. (11.10.1)

e,opt,bcm

}
}

Variants include choosing the block order non-sequentially, including random order selection.

11.10.2 Block coordinate descent (BCD)
In some applications it is impractical to solve the inner block minimization (11.10.1) exactly, and we settle for simply
decreasing the cost function for each update, rather than finding each block-wise minimizer.

Block coordinate descent (BCD) “Algorithm”
for n = 0, 1, . . . {

for k = 1, . . . ,K {

Find x(n+1)
k ∈ Rnk such that Ψ

(
x(n+1)
1 , . . . ,x(n+1)

k−1 ,x(n+1)
k ,x(n)

k+1, . . . ,x
(n)

K

)
≤Ψ

(
x(n+1)
1 , . . . ,x(n+1)

k−1 ,x(n)

k ,x(n)

k+1, . . . ,x
(n)

K

)
. (11.10.2)

e,opt,bcd

}
}

The MM approaches in Chapter 14 can be particularly useful for such inexact updates.
When written side by side, the difference between BCM (11.10.1) and BCD (11.10.2) is clear, but the literature

rarely carefully distinguishes the two forms.

11.10.3 Iteration-dependent partitions
It is conceptually straightforward to generalize BCM and BCD to cases where the block partition can change each
iteration, but describing such methods mathematically requires extra notation.

An index set S is a nonempty subset of the set {1, . . . , np}. The set S̃ denotes the complement of S in {1, . . . , np}.
Let |S| denote the cardinality of S. We use xS to denote the |S|-dimensional vector consisting of the |S| elements of x
indexed by the members of S. We similarly define xS̃ as the np − |S| dimensional vector consisting of the remaining
elements of x. For example, if np = 5 and S = {1, 3, 4}, then S̃ = {2, 5}, xS = (x1, x3, x4), and xS̃ = (x2, x5).
Occasionally we use S as a superscript of a function or matrix, to serve as a reminder that the function or matrix
depends on the choice of S.

One more notational convention is helpful. Functions like Ψ(x) expect a np-dimensional vector argument, but
it is often convenient to split the argument x into two vectors: xS and xS̃ , as defined above. Therefore, we define
expressions such as the following to be equivalent: Ψ(xS ,xS̃) = Ψ(x) .

Using that notation, in the general BCM method one sequences through different index sets Sn and updates only
the elements xSn of x while holding the other parameters xS̃n fixed [31]. At the nth iteration one would like to assign

x(n+1)
Sn to the argument that minimizes Ψ

(
xSn ,x

(n)

S̃n

)
over xSn , as summarized in the following algorithm.
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General BCM “Algorithm”

Choose Sn
x(n+1)

S̃n
= x(n)

S̃n

x(n+1)
Sn = arg min

xSn∈R|Sn|
Ψ
(
xSn ,x

(n)

S̃n

)
. (11.10.3)

e,opt,bcm,direct

As always, the minimization will be subject to any applicable constraints. This type of approach has been applied in a
variety of fields [99–102]. This approach is globally convergent under remarkably broad conditions [103].

In many imaging problems, the minimization (11.10.3) is difficult, even if Sn only consists of a few pixels. One
could apply any of the previously described iterative methods, such as the Newton-Raphson algorithm, to perform the
minimization (11.10.3), which would require subiterations within the iterations. Often one settles for descent, leading
so a general BCD alternative to BCM, e.g., by using an MM approach of Chapter 14 for updating xSn .

Specific examples of such methods in the imaging literature are numerous, including [104–108].

11.10.4 Convergence propertiess,opt,bcm,conv

Convergence results (for limit points) under weak assumptions are given in [3, p. 268]. See also [109–112]. Gen-
eralizations for non-smooth and non-convex functions are in [111, 113–116]. This is an evolving area because of
growing interest in BCD methods. Limitations of BCD methods are difficulty with parallelism and getting stuck at
non-stationary points for non-smooth cost functions.

11.10.5 Coordinate descent methods (s,opt,cd)s,opt,cd

A special case of BCM/BCD is when each block is just xj , a single pixel. Again one can minimize or descend,
but typically both cases are called coordinate descent (CD) in the literature. This method is also called nonlinear
Gauss-Siedel and the method of alternating variables [117, p. 53]. Here is the general method:

Coordinate Descent (CD) “Algorithm”
for n = 0, 1, . . . {

for j = 1, . . . , np {

x(n+1)
j := arg min

xj

Ψ
(
x(n+1)
1 , . . . , x(n+1)

j−1 , xj , x
(n)

j+1, . . . , x
(n)

np

)
. (11.10.4)

e,opt,cd,alg

}
}

The operation in (11.10.4) is performed “in place,” i.e., the new value of xj replaces the old value, so that the most
recent values of all elements of x are always used. An early use of such a method for tomography was in [118].

The coordinate descent approach is often characterized as “very inefficient” in the general optimization literature
(e.g., [119, p. 413]), and its computational requirements have been reported incorrectly in the image reconstruction
literature (e.g., [120]). Sauer and Bouman analyzed such algorithms using clever frequency domain arguments [121],
and showed that sequential algorithms yield iterates whose high spatial-frequency components converge fastest. This
is often ideal for tomography, because we can use a low-resolution FBP image as the initial guess, and then iterate
to improve resolution and reduce noise, because these are mostly high spatial-frequency effects. (An exception is in
limited-angle tomography where the FBP image can have significant low spatial-frequency errors.) Using a uniform
or zero initial image for coordinate descent is a very poor choice in tomography because low frequencies can converge
very slowly. (This discussion assumes the use of a regularized cost function. Coordinate descent may be inappropriate
for ill-conditioned problems without regularization.) Furthermore, with an efficient implementation (see §16.7.2),
the computational requirements become (nearly) comparable with many other approaches if the system matrix is
precomputed. However, there is a significant practical disadvantage that arises in very large inverse problems (e.g., 3D
PET and CT): coordinate descent methods essentially require that the system matrix be stored by columns, whereas
most other algorithms can accommodate more general storage methods, such as factored forms, e.g., [122].
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The general method described by (11.10.4) is not exactly an “algorithm,” because the procedure for performing
the 1D minimization is yet unspecified. In practice it is usually impractical to find the exact minimizer, even in the 1D
problem (11.10.4), so we settle for methods that approximate the minimizer or at least monotonically decrease Ψ.

11.10.5.1 Coordinate-descent Newton (CD-NR)-Raphson

If Ψ(x) were a quadratic functional, then the natural approach to performing the minimization in (11.10.4) would be
Newton’s method, which would yield the exact 1D minimizer in (11.10.4) in one iteration. When Ψ(x) in (11.1.3) is
nonquadratic, applying Newton’s method to (11.10.4) does not guarantee monotonic decreases in Ψ, but one might still
try it anyway and hope for the best. In practice, mild nonmonotonicity often does not seem to be a problem in some
cases, as suggested by the success of this approach in [123, 124]. For such a coordinate-descent Newton-Raphson
(CD-NR) algorithm, we replace (11.10.4) with the following update:

x(n+1)
j =

x(n)

j −
∂
∂xj

Ψ(x)
∣∣∣
x=x̃

∂2

∂x2
j

Ψ(x)
∣∣∣
x=x̃


+

. (11.10.5)
e,opt,alg,cd-nr

The optional [·]+ operation enforces the nonnegativity constraint, if needed.
An alternative approach to ensuring monotonicity would be to evaluate the cost function Ψ after updating each

pixel, and impose a step-halving search (cf. §11.3) in the (hopefully relatively rare) cases where the cost function
increases. However, evaluating Ψ after every pixel update would add considerable computational overhead.

11.10.5.2 Asymptotic convergence rate of CD

If Ψ is twice differentiable, then for x ≈ x̂ the quadratic approximation (11.3.11) is reasonable. Furthermore, if the
CD-NR algorithm converges, then near x̂ its approximate form is

x(n+1)
j ≈

x(n)

j −
∂
∂xj

Ψ̂(x)
∣∣∣
x=x̃

∂2

∂x2
j

Ψ̂(x)
∣∣∣
x=x̂


+

.

Thus, the asymptotic behavior of the CD-NR algorithm is comparable to that of the coordinate descent algorithm for
least-squares problems, as described in §16.7.3. Specifically, from §16.7.3:∥∥x(n+1) − x̂

∥∥
H1/2 ≤ ρ(MGS) ‖x(n) − x̂‖H1/2 ,

whereH = ∇2 Ψ(x̂) = L+D+L′ whereD is diagonal and L is lower triangular, andMGS = I − [D+L]−1H .
Formal analysis of the convergence rate of “pure” CD (11.10.4) follows as a special case of the analysis of SAGE

in [125], and agrees with the above approximation.
Convergence of the coordinate descent method for strictly convex, twice-differentiable cost functions is analyzed

in detail in [126], including consideration of box constraints. Powell demonstrates that uniqueness of the “arg min”
step is important to ensure convergence [127].

Convergence rate analysis, including constrained cases, is given in [115, 128].

11.11 Annealing methods (s,opt,anneal)
s,opt,anneal

Virtually all of the algorithms described above are descent methods. The iterates {x(n)} gradually decrease the cost
function Ψ each iteration, and, if Ψ is strictly convex and therefore has a unique minimizer x̂, most of the algorithms
described above will eventually converge to x̂.

For cost functions with multiple local minima, descent methods typically converge to a local minimizer that is near
the initial guess x(0). In some situations, this local convergence may in fact be adequate if x(0) is a reasonably good
guess at the outset and perhaps if there are relatively few local minima of Ψ.

However, in situations where Ψ has many local extrema or where a good initial guess is unavailable, alternative op-
timization strategies are required. One such strategy is simulated annealing, which can “guarantee” (in a probabilistic
sense) convergence to a global minimizer of Ψ, but with the price of requiring a very large number of iterations. An
alternative strategy is deterministic annealing, which does not guarantee global convergence, but often yields good
local minimizers in fewer iterations than simulated annealing.
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11.11.1 Simulated annealing
The simulated annealing method was originally designed for optimization problems with discrete parameters, such
as the famous traveling salesman problem [129]. In such problems there is no gradient so “steepest descent” is
inapplicable. The majority of image reconstruction problems involve continuous parameters. A notable exception is
problems related to image segmentation, such as with attenuation maps for PET and SPECT attenuation correction.
Some formulations of that reconstruction problem assume a discrete set of attenuation coefficients, either from the
projection domain, e.g., [130–132], or as an image post-processing procedure e.g., [133, 134]. When such problems
are posed as optimization problems, a method like simulated annealing would be needed to ensure global convergence.

Curiously, simulated annealing has been applied even to ordinary least-squares problems, i.e., convex problems in
continuous parameters e.g., [135–137], as well as to the ML emission tomography problem [138]. For these problems
that have no local minimum, much better methods exist!

A concise summary of how one can adapt the Metropolis algorithm [139] to perform annealing is given in [119],
as well as extensions of the method to continuous parameter problems.

An alternative to simulated annealing is the covariance matrix adaptation evolution strategy (CMA-ES).

11.11.2 Deterministic annealing and graduated nonconvexity
Chapter 14 illustrates how to simplify the optimization problem of a difficult cost function Ψ by iteratively replacing
it with a sequence of more easily minimized surrogate functions. One can apply a similar philosophy to multimodal
cost functions Ψ, by replacing Ψ with a sequence of “better behaved” cost functions {Ψk} , k = 1, 2, . . .. This type
of approach is called deterministic annealing or graduated nonconvexity and has been applied successfully in a
variety of imaging problems, e.g., [140–148].

11.11.3 Other global optimization methods
There is a rich literature on global optimization methods. For differentiable functions, one interesting approach is
multilevel coordinate search [149] which combines global search (splitting boxes with large unexplored territory)
and local search (splitting boxes with good function values). However, such methods are likely to be impractical for
large-scale imaging problems.

11.12 Problems (s,opt,prob)s,opt,prob

p,opt,pgd,lip1

Problem 11.1 Consider the differentiable cost function Ψ(x) = 1
1+x2 . Determine the (smallest possible) Lipschitz

constant L for its derivative Ψ̇. What happens if we apply GD with α = 1/L?
p,opt,pgd,mono

Problem 11.2 Generalize the monotone convergence in norm theory of PGD in §11.3.2 to cases where P is not
necessarily Hermitian positive definite. (Solve?)

p,opt,pgd,circ

Problem 11.3 The PGD method is applied to the quadratic cost function Ψ(x) = 1
2 ‖y −Ax‖

2
+ β 1

2 ‖Cx‖
2 where

F = A′A and R = C ′C are both circulant. The preconditioner is simply P = I and suppose the optimal step size
α? is used from §11.3.3. Analyze (11.3.12) in the frequency domain to determine which spatial frequency components
converge quickly and slowly. As an example, consider the case of Tikhonov regularization where C = I and assume
that F has a low-pass nature.

p,opt,pgd,norm

Problem 11.4 Prove the PGD convergence theorem Theorem 11.3.7.
p,opt,pgd,1n,lem

Problem 11.5 Prove Lemma 11.3.11 used to establish O(1/n) convergence of PGD.
p,opt,pgd,1n,thm

Problem 11.6 Prove the O(1/n) convergence of PGD in Theorem 11.3.10 using Lemma 11.3.11.
p,opt,line,pwls

Problem 11.7 Determine a Lipschitz constant Lḟ for the derivative of the 1D function f(α) = Ψ(x+ αd) when Ψ is

the following regularized LS cost function: Ψ(x) = 1
2 ‖y −Ax‖

2
2 + βR(x), R(x) =

∑
k ψ([Cx]k) . Assume that

ψ̇ is Lipschitz continuous with constant Lψ̇ . As discussed in §11.6, the Lipschitz constant Lḟ enables a simple descent
method for the line search.

p,opt,bb,pre

Problem 11.8 Use §11.3.8 to derive the preconditioned BB algorithm of §11.7.1.
p,opt,pcg,hz

Problem 11.9 The formula for γHZ
n given in [66, p. 2] was for the case P = I . Use the coordinate transformation

ideas of §11.3.8 to derive the preconditioned version (11.8.13).

https://creativecommons.org/licenses/by-nc-nd/4.0/
http://en.wikipedia.org/wiki/CMA-ES


c© J. Fessler. [license] February 4, 2020 11.24

11.13 Bibliography
bertsekas:82

[1] D. P. Bertsekas. Constrained optimization and Lagrange multiplier methods. New York: Academic-Press,
1982. URL: http://www.athenasc.com/ (cit. on pp. 11.2, 11.11, 11.19).

polyak:87

[2] B. T. Polyak. Introduction to optimization. New York: Optimization Software Inc, 1987 (cit. on pp. 11.2,
11.5, 11.7, 11.10, 11.18).

bertsekas:99

[3] D. P. Bertsekas. Nonlinear programming. 2nd ed. Belmont: Athena Scientific, 1999. URL:
http://www.athenasc.com/nonlinbook.html (cit. on pp. 11.2, 11.9, 11.21).

boyd:04

[4] S. Boyd and L. Vandenberghe. Convex optimization. UK: Cambridge, 2004. URL:
http://web.stanford.edu/~boyd/cvxbook.html (cit. on p. 11.2).

nesterov:04

[5] Y. Nesterov. Introductory lectures on convex optimization: A basic course. Springer, 2004. DOI:
10.1007/978-1-4419-8853-9 (cit. on pp. 11.2, 11.15, 11.17).

lange:13

[6] K. Lange. Optimization. Springer, 2013. DOI: 10.1007/978-1-4614-5838-8 (cit. on p. 11.2).
migdalas:03:noa

[7] A. Migdalas, G. Toraldo, and V. Kumar. “Nonlinear optimization and parallel computing.” In: Parallel
computing 29.4 (Apr. 2003), 375–91. DOI: 10.1016/S0167-8191(03)00013-9 (cit. on p. 11.2).

lange:14:abs

[8] K. Lange, E. C. Chi, and H. Zhou. “A brief survey of modern optimization for statisticians.” In: Int. Stat.
Review 82.1 (Apr. 2014), 46–70. DOI: 10.1111/insr.12022 (cit. on p. 11.2).

chambolle:16:ait

[9] A. Chambolle and T. Pock. “An introduction to continuous optimization for imaging.” In: Acta Numerica 25
(2016), 161–319. DOI: 10.1017/S096249291600009X (cit. on p. 11.2).

luenberger:69

[10] D. G. Luenberger. Optimization by vector space methods. New York: Wiley, 1969. URL:
http://books.google.com/books?id=lZU0CAH4RccC (cit. on pp. 11.2, 11.4).

jacobson:07:aet

[11] M. W. Jacobson and J. A. Fessler. “An expanded theoretical treatment of iteration-dependent
majorize-minimize algorithms.” In: IEEE Trans. Im. Proc. 16.10 (Oct. 2007), 2411–22. DOI:
10.1109/TIP.2007.904387 (cit. on p. 11.3).

jacobson:04:pom

[12] M. W. Jacobson and J. A. Fessler. Properties of MM algorithms on convex feasible sets: extended version.
Tech. rep. 353. Univ. of Michigan, Ann Arbor, MI, 48109-2122: Comm. and Sign. Proc. Lab., Dept. of
EECS, Nov. 2004. URL:
http://web.eecs.umich.edu/~fessler/papers/files/tr/04,jacobson.pdf (cit. on
p. 11.3).

meyer:76:scf

[13] R. R. Meyer. “Sufficient conditions for the convergence of monotonic mathematical programming
algorithms.” In: J. Comput. System. Sci. 12.1 (1976), 108–21. DOI:
’10.1016/S0022-0000(76)80021-9’ (cit. on p. 11.4).

nelder:65:asm

[14] J. A. Nelder and R. Mead. “A simplex method for function minimization.” In: Computer Journal 7.4 (1965),
308–13. DOI: 10.1093/comjnl/7.4.308 (cit. on p. 11.4).

kolda:03:obd

[15] T. G. Kolda, R. M. Lewis, and V. Torczon. “Optimization by direct search: new perspectives on some
classical and modern methods.” In: SIAM Review 45.3 (2003), 385–482. DOI:
10.1137/S00361445024288 (cit. on p. 11.4).

richardson:72:bbi

[16] W. H. Richardson. “Bayesian-based iterative method of image restoration.” In: J. Opt. Soc. Am. 62.1 (Jan.
1972), 55–9. DOI: 10.1364/JOSA.62.000055 (cit. on p. 11.4).

lucy:74:ait

[17] L. Lucy. “An iterative technique for the rectification of observed distributions.” In: The Astronomical Journal
79.6 (June 1974), 745–54. URL: http://adsabs.harvard.edu/cgi-bin/nph-
bib_query?bibcode=1974AJ.....79..745L (cit. on p. 11.4).

ortega:70

[18] J. M. Ortega and W. C. Rheinboldt. Iterative solution of nonlinear equations in several variables. New York:
Academic, 1970. DOI: 10.1137/1.9780898719468 (cit. on p. 11.6).

levitin:66:cmm

[19] E. S. Levitin and B. T. Polyak. “Constrained minimization methods.” In: USSR Computational Mathematics
and Mathematical Physics 6.5 (1966), 1–50. DOI: ’10.1016/0041-5553(66)90114-5’ (cit. on
pp. 11.7, 11.8, 11.10).

beck:09:fgb

[20] A. Beck and M. Teboulle. “Fast gradient-based algorithms for constrained total variation image denoising
and deblurring problems.” In: IEEE Trans. Im. Proc. 18.11 (Nov. 2009), 2419–34. DOI:
10.1109/TIP.2009.2028250 (cit. on p. 11.8).

https://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.athenasc.com/
http://www.athenasc.com/nonlinbook.html
http://web.stanford.edu/~boyd/cvxbook.html
https://doi.org/10.1007/978-1-4419-8853-9
https://doi.org/10.1007/978-1-4614-5838-8
https://doi.org/10.1016/S0167-8191(03)00013-9
https://doi.org/10.1111/insr.12022
https://doi.org/10.1017/S096249291600009X
http://books.google.com/books?id=lZU0CAH4RccC
https://doi.org/10.1109/TIP.2007.904387
http://web.eecs.umich.edu/~fessler/papers/files/tr/04,jacobson.pdf
https://doi.org/'10.1016/S0022-0000(76)80021-9'
https://doi.org/10.1093/comjnl/7.4.308
https://doi.org/10.1137/S00361445024288
https://doi.org/10.1364/JOSA.62.000055
http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=1974AJ.....79..745L
http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=1974AJ.....79..745L
https://doi.org/10.1137/1.9780898719468
https://doi.org/'10.1016/0041-5553(66)90114-5'
https://doi.org/10.1109/TIP.2009.2028250


c© J. Fessler. [license] February 4, 2020 11.25

drori:14:pof

[21] Y. Drori and M. Teboulle. “Performance of first-order methods for smooth convex minimization: A novel
approach.” In: Mathematical Programming 145.1-2 (June 2014), 451–82. DOI:
10.1007/s10107-013-0653-0 (cit. on pp. 11.8, 11.15).

lange:99

[22] K. Lange. Numerical analysis for statisticians. New York: Springer-Verlag, 1999 (cit. on pp. 11.9, 11.18,
11.19).

albaali:96:oto

[23] M. Al-Baali and R. Fletcher. “On the order of convergence of preconditioned nonlinear conjugate gradient
methods.” In: SIAM J. Sci. Comp. 17.3 (May 1996), 658–65. DOI: 10.1137/S1064827591194303
(cit. on pp. 11.9, 11.17).

jarre:16:sef

[24] F. Jarre and P. L. Toint. “Simple examples for the failure of Newton’s method with line search for strictly
convex minimization.” In: Mathematical Programming 158.1 (July 2016), 23–34. DOI:
10.1007/s10107-015-0913-2 (cit. on p. 11.10).

cartis:19:urm

[25] C. Cartis, N. I. Gould, and P. L. Toint. “Universal regularization methods: varying the power, the smoothness
and the accuracy.” In: SIAM J. Optim. 29.1 (Jan. 2019), 595–615. DOI: 10.1137/16m1106316 (cit. on
p. 11.10).

cauchy:1847:mgp

[26] A. Cauchy. “Methode générale pour la résolution des systems d’équations simultanées.” In: Comp. Rend. Sci.
Paris 25 (1847), 536–8 (cit. on p. 11.10).

greenbaum:97

[27] A. Greenbaum. Iterative methods for solving linear systems. Philadelphia: Soc. Indust. Appl. Math., 1997
(cit. on pp. 11.11, 11.16, 11.17).

gonzaga:16:otw

[28] C. C. Gonzaga. “On the worst case performance of the steepest descent algorithm for quadratic functions.” In:
Mathematical Programming 160.1 (Nov. 2016), 307–20. DOI: 10.1007/s10107-016-0984-8 (cit. on
p. 11.12).

deklerk:17:otw

[29] E. de Klerk, Francois Glineur, and A. B. Taylor. “On the worst-case complexity of the gradient method with
exact line search for smooth strongly convex functions.” In: Optics Letters 11.7 (Oct. 2017), 1185–99. DOI:
10.1007/s11590-016-1087-4 (cit. on p. 11.12).

kiefer:53:sms

[30] J. Kiefer. “Sequential minimax search for a maximum.” In: Proc. Amer. Math. Soc. 4.3 (1953), 502–6. DOI:
10.2307/2032161 (cit. on p. 11.12).

press:88

[31] W. H. Press et al. Numerical recipes in C. New York: Cambridge Univ. Press, 1988 (cit. on pp. 11.12, 11.16,
11.20).

hager:05:anc

[32] W. W. Hager and H. Zhang. “A new conjugate gradient method with guaranteed descent and an efficient line
search.” In: SIAM J. Optim. 16.1 (2005), 170–92. DOI: 10.1137/030601880 (cit. on pp. 11.12, 11.17).

wolfe:69:ccf

[33] P. Wolfe. “Convergence conditions for ascent methods.” In: SIAM Review 11.2 (1969), 226–35. DOI:
10.1137/1011036 (cit. on p. 11.12).

wolfe:71:ccf

[34] P. Wolfe. “Convergence conditions for ascent methods. II: Some corrections.” In: SIAM Review 13.2 (1971),
185–8. DOI: 10.1137/1013035 (cit. on p. 11.12).

armijo:66:mof

[35] L. Armijo. “Minimization of functions having continuous derivatives.” In: Pacific J. Math 16.1 (1966), 1–3.
URL: http://projecteuclid.org/euclid.pjm/1102995080 (cit. on p. 11.12).

odonoghue:15:arf

[36] B. O’Donoghue and E. Candes. “Adaptive restart for accelerated gradient schemes.” In: Found. Comp. Math.
15.3 (June 2015), 715–32. DOI: 10.1007/s10208-013-9150-3 (cit. on p. 11.13).

barzilai:88:tps

[37] J. Barzilai and J. Borwein. “Two-point step size gradient methods.” In: IMA J. Numerical Analysis 8.1 (1988),
141–8. DOI: 10.1093/imanum/8.1.141 (cit. on p. 11.13).

raydan:93:otb

[38] M. Raydan. “On the Barzilai and Borwein choice of steplength for the gradient method.” In: IMA J.
Numerical Analysis 13.3 (1993), 321–6. DOI: 10.1093/imanum/13.3.321 (cit. on pp. 11.13, 11.14).

raydan:97:tba

[39] M. Raydan. “The Barzilai and Borwein gradient method for the large scale unconstrained minimization
problem.” In: SIAM J. Optim. 7.1 (1997), 26–33. DOI: 10.1137/S1052623494266365 (cit. on
pp. 11.13, 11.14).

fletcher:05:otb

[40] R. Fletcher. “On the Barzilai-Borwein method, optimization and control with applications.” In: Appl. Optics
96.II (2005), 235–56. DOI: 10.1007/0-387-24255-4_10 (cit. on p. 11.13).

dai:02:rlc

[41] Y-H. Dai and L-Z. Liao. “R-linear convergence of the Barzilai and Borwein gradient method.” In: IMA J.
Numerical Analysis 22.1 (2002), 1–10. DOI: 10.1093/imanum/22.1.1 (cit. on p. 11.14).

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1007/s10107-013-0653-0
https://doi.org/10.1137/S1064827591194303
https://doi.org/10.1007/s10107-015-0913-2
https://doi.org/10.1137/16m1106316
https://doi.org/10.1007/s10107-016-0984-8
https://doi.org/10.1007/s11590-016-1087-4
https://doi.org/10.2307/2032161
https://doi.org/10.1137/030601880
https://doi.org/10.1137/1011036
https://doi.org/10.1137/1013035
http://projecteuclid.org/euclid.pjm/1102995080
https://doi.org/10.1007/s10208-013-9150-3
https://doi.org/10.1093/imanum/8.1.141
https://doi.org/10.1093/imanum/13.3.321
https://doi.org/10.1137/S1052623494266365
https://doi.org/10.1007/0-387-24255-4_10
https://doi.org/10.1093/imanum/22.1.1


c© J. Fessler. [license] February 4, 2020 11.26

grippo:86:anl

[42] L. Grippo, F. Lampariello, and S. Lucidi. “A nonmonotone line search technique for Newton’s method.” In:
SIAM J. Numer. Anal. 23.4 (1986), 707–16. DOI: 10.1137/0723046 (cit. on p. 11.14).

grippo:91:aco

[43] L. Grippo, F. Lampariello, and S. Lucidi. “A class of nonmonotone stabilization methods in unconstrained
optimization.” In: Numerische Mathematik 59.5 (1991), 779–805. DOI: 10.1007/BF01385810 (cit. on
p. 11.14).

yuan:06:ssf

[44] Y. Yuan. Step-sizes for the gradient method. 2006. URL:
ftp://lsec.cc.ac.cn/pub/yyx/papers/p0504.pdf (cit. on p. 11.14).

nesterov:83:amf

[45] Y. Nesterov. “A method for unconstrained convex minimization problem with the rate of convergence
O(1/k2).” In: Dokl. Akad. Nauk. USSR 269.3 (1983), 543–7 (cit. on pp. 11.14, 11.15).

nesterov:05:smo

[46] Y. Nesterov. “Smooth minimization of non-smooth functions.” In: Mathematical Programming 103.1 (May
2005), 127–52. DOI: 10.1007/s10107-004-0552-5 (cit. on pp. 11.14, 11.15).

zuo:11:aga

[47] W. Zuo and Z. Lin. “A generalized accelerated proximal gradient approach for total-variation-based image
restoration.” In: IEEE Trans. Im. Proc. 20.10 (Oct. 2011), 2748–59. DOI: 10.1109/TIP.2011.2131665
(cit. on p. 11.14).

kim:13:axr

[48] D. Kim, S. Ramani, and J. A. Fessler. “Accelerating X-ray CT ordered subsets image reconstruction with
Nesterov’s first-order methods.” In: Proc. Intl. Mtg. on Fully 3D Image Recon. in Rad. and Nuc. Med. 2013,
22–5. URL: http://web.eecs.umich.edu/~fessler/papers/files/proc/13/web/kim-
13-axr.pdf (cit. on p. 11.14).

kim:15:cos

[49] D. Kim, S. Ramani, and J. A. Fessler. “Combining ordered subsets and momentum for accelerated X-ray CT
image reconstruction.” In: IEEE Trans. Med. Imag. 34.1 (Jan. 2015), 167–78. DOI:
10.1109/TMI.2014.2350962 (cit. on p. 11.14).

zibetti:17:aoa

[50] M. V. W. Zibetti, E. S. Helou, and D. R. Pipa. “Accelerating overrelaxed and monotone fast iterative
shrinkage-thresholding algorithms with line search for sparse reconstructions.” In: IEEE Trans. Im. Proc.
26.7 (July 2017), 3569–78. DOI: 10.1109/TIP.2017.2699483 (cit. on p. 11.15).

baes:14:aap

[51] M. Baes and M. Bürgisser. “An acceleration procedure for optimal first-order methods.” In: Optim. Meth.
Software 29.3 (2014), 610–28. DOI: 10.1080/10556788.2013.835812 (cit. on p. 11.15).

kim:16:ofo

[52] D. Kim and J. A. Fessler. “Optimized first-order methods for smooth convex minimization.” In: Mathematical
Programming 159.1 (Sept. 2016), 81–107. DOI: 10.1007/s10107-015-0949-3 (cit. on p. 11.15).

drori:17:tei

[53] Y. Drori. “The exact information-based complexity of smooth convex minimization.” In: J. Complexity 39
(Apr. 2017), 1–16. DOI: 10.1016/j.jco.2016.11.001 (cit. on p. 11.15).

rumelhart:86:lrb

[54] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. “Learning representations by back-propagating errors.” In:
Nature 323.6088 (Oct. 1986), 533–6. DOI: 10.1038/323533a0 (cit. on p. 11.15).

sutskever:13:oti

[55] I. Sutskever et al. “On the importance of initialization and momentum in deep learning.” In: Proc. Intl. Conf.
Mach. Learn. 2013, 1139–47. URL:
http://www.cs.utoronto.ca/~ilya/pubs/2013/1051_2.pdf (cit. on p. 11.15).

daniel:67:tcg

[56] J. W. Daniel. “The conjugate gradient method for linear and nonlinear operator equations.” In: SIAM J.
Numer. Anal. 4.1 (1967), 10–26. DOI: 10.1137/0704002 (cit. on p. 11.16).

golub:89:sho

[57] G. H. Golub and D. P. O’Leary. “Some history of the conjugate gradient and Lanczos methods.” In: SIAM
Review 31.1 (Mar. 1989), 50–102. DOI: 10.1137/1031003 (cit. on p. 11.16).

hestenes:52:moc

[58] M. Hestenes and E. Stiefel. “Methods of conjugate gradients for solving linear systems.” In: J. Research Nat.
Bur. Standards 49.6 (Dec. 1952), 409–36. URL: http://archive.org/details/jresv49n6p409
(cit. on p. 11.16).

polak:69:nsl

[59] E. Polak and G. Ribière. “Note sur la convergence de méthodes de directions conjuguées.” In: Rev. Française
Informat. Recherche Opérationnelle 3 (1969), 35–43 (cit. on p. 11.16).

polyak:69:tcg

[60] B. T. Polyak. “The conjugate gradient method in extremal problems.” In: USSR Comp. Math. Math. Phys. 9
(1969), 94–112 (cit. on p. 11.16).

mumcuoglu:94:fgb

[61] E. U. Mumcuoglu et al. “Fast gradient-based methods for Bayesian reconstruction of transmission and
emission PET images.” In: IEEE Trans. Med. Imag. 13.3 (Dec. 1994), 687–701. DOI:
10.1109/42.363099 (cit. on p. 11.16).

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1137/0723046
https://doi.org/10.1007/BF01385810
ftp://lsec.cc.ac.cn/pub/yyx/papers/p0504.pdf
https://doi.org/10.1007/s10107-004-0552-5
https://doi.org/10.1109/TIP.2011.2131665
http://web.eecs.umich.edu/~fessler/papers/files/proc/13/web/kim-13-axr.pdf
http://web.eecs.umich.edu/~fessler/papers/files/proc/13/web/kim-13-axr.pdf
https://doi.org/10.1109/TMI.2014.2350962
https://doi.org/10.1109/TIP.2017.2699483
https://doi.org/10.1080/10556788.2013.835812
https://doi.org/10.1007/s10107-015-0949-3
https://doi.org/10.1016/j.jco.2016.11.001
https://doi.org/10.1038/323533a0
http://www.cs.utoronto.ca/~ilya/pubs/2013/1051_2.pdf
https://doi.org/10.1137/0704002
https://doi.org/10.1137/1031003
http://archive.org/details/jresv49n6p409
https://doi.org/10.1109/42.363099


c© J. Fessler. [license] February 4, 2020 11.27

fessler:99:cgp

[62] J. A. Fessler and S. D. Booth. “Conjugate-gradient preconditioning methods for shift-variant PET image
reconstruction.” In: IEEE Trans. Im. Proc. 8.5 (May 1999), 688–99. DOI: 10.1109/83.760336 (cit. on
pp. 11.16, 11.17).

dai:99:anc

[63] Y. H. Dai and Y. Yuan. “A nonlinear conjugate gradient method with a strong global convergence property.”
In: SIAM J. Optim. 10.1 (1999), 177–82. DOI: 10.1137/S1052623497318992 (cit. on p. 11.17).

fletcher:64:fmb

[64] R. Fletcher and C. M. Reeves. “Function minimization by conjugate gradients.” In: Comput. J 7.2 (1964),
149–54. DOI: 10.1093/comjnl/7.2.149 (cit. on p. 11.17).

hager:06:a8c

[65] W. W. Hager and H. Zhang. “Algorithm 851: CG-DESCENT, a conjugate gradient method with guaranteed
descent.” In: ACM Trans. Math. Software 32.1 (Mar. 2006), 113–37. DOI: 10.1145/1132973.1132979
(cit. on p. 11.17).

hager:06:aso

[66] W. W. Hager and H. Zhang. “A survey of nonlinear conjugate gradient methods.” In: Pacific J Optimization
2.1 (Jan. 2006), 35–58. URL: http://www.ybook.co.jp/online2/pjov6-1.html (cit. on
pp. 11.17, 11.23).

broyden:96:ant

[67] C. G. Broyden. “A new taxonomy of conjugate gradient methods.” In: Computers & Mathematics with
Applications 31.4-5 (1996), 7–17. DOI: 10.1016/0898-1221(95)00211-1 (cit. on p. 11.17).

dai:99:cpo

[68] Y. Dai et al. “Convergence properties of nonlinear conjugate gradient methods.” In: SIAM J. Optim. 10.2
(1999), 345–58. DOI: 10.1137/S1052623494268443 (cit. on p. 11.17).

dai:01:ncc

[69] Y. H. Dai and L. Z. Liao. “New conjugacy conditions and related nonlinear conjugate gradient methods.” In:
Appl. Math. Optim. 43.1 (Jan. 2001), 87–101. DOI: 10.1007/s002450010019 (cit. on p. 11.17).

labat:07:coc

[70] C. Labat and Jerome Idier. “Convergence of conjugate gradient methods with a closed-form stepsize
formula.” In: J. Optim. Theory Appl. 136.1 (Jan. 2007), 43–60. DOI: 10.1007/s10957-007-9306-x
(cit. on p. 11.17).

labat:08:coc

[71] C. Labat and Jerome Idier. “Convergence of conjugate gradient methods with a closed-form stepsize
formula.” In: J. Optim. Theory Appl. 136 (2008), 43–60. DOI: 10.1007/s10957-007-9306-x (cit. on
p. 11.17).

andrei:09:hcg

[72] N. Andrei. “Hybrid conjugate gradient algorithm for unconstrained optimization.” In: J. Optim. Theory Appl.
141.2 (May 2009), 249–64. DOI: 10.1007/s10957-008-9505-0 (cit. on p. 11.17).

dai:10:ncg

[73] Y-H. Dai. Nonlinear conjugate gradient methods. Wiley Encyclopedia of Operations Research and
Management Science, edited by James J. Cochran. 2010. DOI: 10.1002/9780470400531.eorms0183
(cit. on p. 11.17).

narushima:11:att

[74] Y. Narushima, H. Yabe, and J. A. Ford. “A three-term conjugate gradient method with sufficient descent
property for unconstrained optimization.” In: SIAM J. Optim. 21.1 (2011), 212–30. DOI:
10.1137/080743573 (cit. on p. 11.17).

andrei:13:acg

[75] N. Andrei. “Another conjugate gradient algorithm with guaranteed descent and conjugacy conditions for
large-scale unconstrained optimization.” In: J. Optim. Theory Appl. 159.1 (Oct. 2013), 159–82. DOI:
10.1007/s10957-013-0285-9 (cit. on p. 11.17).

dai:13:anc

[76] Y. Dai and C. Kou. “A nonlinear conjugate gradient algorithm with an optimal property and an improved
Wolfe line search.” In: SIAM J. Optim. 23.1 (2013), 296–320. DOI: 10.1137/100813026 (cit. on
p. 11.17).

dai:17:coh

[77] Z. Dai. “Comments on hybrid conjugate gradient algorithm for unconstrained optimization.” In: J. Optim.
Theory Appl. 175.1 (Oct. 2017), 286–91. DOI: 10.1007/s10957-017-1172-6 (cit. on p. 11.17).

powell:86:cpo

[78] M. J. D. Powell. “Convergence properties of algorithms for nonlinear optimization.” In: SIAM Review 28.4
(Dec. 1986), 487–500. DOI: 10.1137/1028154 (cit. on p. 11.17).

joly:93:ccg

[79] P. Joly and Gerard Meurant. “Complex conjugate gradient methods.” In: Numer. Algorithms 4.3 (1993),
379–406. DOI: 10.1007/BF02145754 (cit. on p. 11.17).

freund:92:cgt

[80] R. W. Freund. “Conjugate gradient-type methods for linear systems with complex symmetric coefficient
matrices.” In: SIAM J. Sci. Stat. Comp. 13.1 (1992), 425–48. DOI: 10.1137/0913023 (cit. on p. 11.17).

bunsegerstner:99:oac

[81] A. Bunse-Gerstner and R. Stover. “On a conjugate gradient-type method for solving complex symmetric
linear systems.” In: Linear Algebra and its Applications 287.1-3 (Jan. 1999), 105–23. DOI:
10.1016/S0024-3795(98)10091-5 (cit. on p. 11.17).

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1109/83.760336
https://doi.org/10.1137/S1052623497318992
https://doi.org/10.1093/comjnl/7.2.149
https://doi.org/10.1145/1132973.1132979
http://www.ybook.co.jp/online2/pjov6-1.html
https://doi.org/10.1016/0898-1221(95)00211-1
https://doi.org/10.1137/S1052623494268443
https://doi.org/10.1007/s002450010019
https://doi.org/10.1007/s10957-007-9306-x
https://doi.org/10.1007/s10957-007-9306-x
https://doi.org/10.1007/s10957-008-9505-0
https://doi.org/10.1002/9780470400531.eorms0183
https://doi.org/10.1137/080743573
https://doi.org/10.1007/s10957-013-0285-9
https://doi.org/10.1137/100813026
https://doi.org/10.1007/s10957-017-1172-6
https://doi.org/10.1137/1028154
https://doi.org/10.1007/BF02145754
https://doi.org/10.1137/0913023
https://doi.org/10.1016/S0024-3795(98)10091-5


c© J. Fessler. [license] February 4, 2020 11.28

chouzenoux:11:amm

[82] E. Chouzenoux, J. Idier, and Said Moussaoui. “A majorize-minimize strategy for subspace optimization
applied to image restoration.” In: IEEE Trans. Im. Proc. 20.6 (June 2011), 1517–28. DOI:
10.1109/TIP.2010.2103083 (cit. on p. 11.17).

gu:04:msd-1

[83] T. Gu et al. “Multiple search direction conjugate gradient method I: methods and their propositions.” In: Int.
J. of Computer Mathematics 81.9 (Sept. 2004), 1133–43. DOI: 10.1080/00207160410001712305
(cit. on p. 11.17).

gu:04:msd-2

[84] T. Gu et al. “Multiple search direction conjugate gradient method II: theory and numerical experiments.” In:
Int. J. of Computer Mathematics 81.10 (Oct. 2004), 1289–307. DOI:
10.1080/00207160412331289065 (cit. on p. 11.17).

bridson:06:amp

[85] R. Bridson and C. Greif. “A multi-preconditioned conjugate gradient algorithm.” In: SIAM J. Matrix. Anal.
Appl. 27.4 (2006), 1056–68. DOI: 10.1137/040620047 (cit. on p. 11.17).

florescu:14:amm

[86] A. Florescu et al. “A majorize-minimize memory gradient method for complex-valued inverse problems.” In:
Signal Processing 103 (Oct. 2014), 285–95. DOI: 10.1016/j.sigpro.2013.09.026 (cit. on p. 11.17).

elad:07:cas

[87] M. Elad, B. Matalon, and M. Zibulevsky. “Coordinate and subspace optimization methods for linear least
squares with non-quadratic regularization.” In: Applied and Computational Harmonic Analysis 23.3 (Nov.
2007), 346–67. DOI: 10.1016/j.acha.2007.02.002 (cit. on p. 11.17).

davidon:59:vmm

[88] W. C. Davidon. Variable metric methods for minimization. Tech. rep. ANL-5990. Argonne National
Laboratory, USA: AEC Research and Development Report, 1959 (cit. on p. 11.18).

khalfan:93:ata

[89] H. F. Khalfan, R. H. Byrd, and R. B. Schnabel. “A theoretical and experimental study of the symmetric
rank-one update.” In: SIAM J. Optim. 3.1 (Feb. 1993), 1–24. DOI: 10.1137/0803001 (cit. on p. 11.18).

more:94:lsa

[90] J. J. Moré and D. J. Thuente. “Line search algorithms with guaranteed sufficient decrease.” In: ACM Trans.
Math. Software 20.3 (Sept. 1994), 286–307. DOI: 10.1145/192115.192132 (cit. on p. 11.18).

kolda:98:bwu

[91] T. G. Kolda, D. P. O’Leary, and L. Nazareth. “BFGS with update skipping and varying memory.” In: SIAM J.
Optim. 8.4 (1998), 1060–83. DOI: 10.1137/S1052623496306450 (cit. on p. 11.18).

dennis:74:aco

[92] J. E. Dennis and J. Moré. “A characterization of superlinear convergence and its application to quasi-newton
methods.” In: Mathematics of Computation 28.126 (Apr. 1974), 549–60. URL:
http://www.jstor.org/stable/2005926 (cit. on p. 11.18).

zhu:97:a7l

[93] C. Zhu et al. “Algorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound-constrained
optimization.” In: ACM Trans. Math. Software 23.4 (Dec. 1997), 550–60. DOI:
10.1145/279232.279236 (cit. on p. 11.19).

lange:95:aqn

[94] K. Lange. “A Quasi-Newton acceleration of the EM Algorithm.” In: Statistica Sinica 5.1 (Jan. 1995), 1–18.
URL: http://www3.stat.sinica.edu.tw/statistica/j5n1/j5n11/j5n11.htm (cit. on
p. 11.19).

jamshidian:97:aot

[95] M. Jamshidian and R. I. Jennrich. “Acceleration of the EM algorithm by using quasi-Newton methods.” In: J.
Royal Stat. Soc. Ser. B 59.3 (1997), 569–87. DOI: 10.1111/1467-9868.00083 (cit. on p. 11.19).

klose:03:qnm

[96] A. D. Klose and A. H. Hielscher. “Quasi-Newton methods in optical tomographic image reconstruction.” In:
Inverse Prob. 19.2 (Apr. 2003), 387–409. DOI: 10.1088/0266-5611/19/2/309 (cit. on p. 11.19).

ramirezgiraldo:11:npi

[97] J. C. Ramirez-Giraldo et al. “Nonconvex prior image constrained compressed sensing (NCPICCS): Theory
and simulations on perfusion CT.” In: Med. Phys. 38.4 (Apr. 2011), 2157–67. DOI: 10.1118/1.3560878
(cit. on p. 11.19).

tsai:18:fqn

[98] Y-J. Tsai et al. “Fast quasi-Newton algorithms for penalized reconstruction in emission tomography and
further improvements via preconditioning.” In: IEEE Trans. Med. Imag. 37.4 (Apr. 2018), 1000–10. DOI:
10.1109/tmi.2017.2786865 (cit. on p. 11.19).

ziskind:88:mll

[99] I. Ziskind and M. Wax. “Maximum likelihood localization of multiple sources by alternating projection.” In:
IEEE Trans. Acoust. Sp. Sig. Proc. 36.10 (Oct. 1988), 1553–60 (cit. on p. 11.21).

hathaway:91:gcm

[100] R. J. Hathaway and J. C. Bezdek. “Grouped coordinate minimization using Newton’s method for inexact
minimization in one vector coordinate.” In: J. Optim. Theory Appl. 71.3 (Dec. 1991), 503–16. DOI:
10.1007/BF00941400 (cit. on p. 11.21).

jensen:91:gca

[101] S. T. Jensen, S. Johansen, and S. L. Lauritzen. “Globally convergent algorithms for maximizing a likelihood
function.” In: Biometrika 78.4 (Dec. 1991), 867–77. DOI: 10.1093/biomet/78.4.867 (cit. on
p. 11.21).

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1109/TIP.2010.2103083
https://doi.org/10.1080/00207160410001712305
https://doi.org/10.1080/00207160412331289065
https://doi.org/10.1137/040620047
https://doi.org/10.1016/j.sigpro.2013.09.026
https://doi.org/10.1016/j.acha.2007.02.002
https://doi.org/10.1137/0803001
https://doi.org/10.1145/192115.192132
https://doi.org/10.1137/S1052623496306450
http://www.jstor.org/stable/2005926
https://doi.org/10.1145/279232.279236
http://www3.stat.sinica.edu.tw/statistica/j5n1/j5n11/j5n11.htm
https://doi.org/10.1111/1467-9868.00083
https://doi.org/10.1088/0266-5611/19/2/309
https://doi.org/10.1118/1.3560878
https://doi.org/10.1109/tmi.2017.2786865
https://doi.org/10.1007/BF00941400
https://doi.org/10.1093/biomet/78.4.867


c© J. Fessler. [license] February 4, 2020 11.29

clinthorne:94:acd

[102] N. H. Clinthorne. “A constrained dual-energy reconstruction method for material-selective transmission
tomography.” In: Nucl. Instr. Meth. Phys. Res. A. 353.1 (Dec. 1994), 347–8. DOI:
10.1016/0168-9002(94)91673-X (cit. on p. 11.21).

grippo:99:gcb

[103] L. Grippo and M. Sciandrone. “Globally convergent block-coordinate techniques for unconstrained
optimization.” In: Optim. Meth. Software 10.4 (Apr. 1999), 587–637. DOI:
10.1080/10556789908805730 (cit. on p. 11.21).

sauer:95:pco

[104] K. D. Sauer, S. Borman, and C. A. Bouman. “Parallel computation of sequential pixel updates in statistical
tomographic reconstruction.” In: Proc. IEEE Intl. Conf. on Image Processing. Vol. 3. 1995, 93–6. DOI:
10.1109/ICIP.1995.537422 (cit. on p. 11.21).

fessler:97:gca

[105] J. A. Fessler et al. “Grouped-coordinate ascent algorithms for penalized-likelihood transmission image
reconstruction.” In: IEEE Trans. Med. Imag. 16.2 (Apr. 1997), 166–75. DOI: 10.1109/42.563662
(cit. on p. 11.21).

fessler:97:gcd

[106] J. A. Fessler. “Grouped coordinate descent algorithms for robust edge-preserving image restoration.” In:
Proc. SPIE 3170 Im. Recon. and Restor. II. 1997, 184–94. DOI: 10.1117/12.279713 (cit. on p. 11.21).

fessler:11:abc

[107] J. A. Fessler and D. Kim. “Axial block coordinate descent (ABCD) algorithm for X-ray CT image
reconstruction.” In: Proc. Intl. Mtg. on Fully 3D Image Recon. in Rad. and Nuc. Med. 2011, 262–5. URL:
http://www.fully3d.org (cit. on p. 11.21).

mcgaffin:14:fep

[108] M. G. McGaffin and J. A. Fessler. “Fast edge-preserving image denoising via group coordinate descent on
the GPU.” In: Proc. SPIE 9020 Computational Imaging XII. 2014, 90200P. DOI: 10.1117/12.2042593
(cit. on p. 11.21).

tseng:01:coa

[109] P. Tseng. “Convergence of a block coordinate descent methods for nondifferentiable minimization.” In: J.
Optim. Theory Appl. 109 (2001), 475–94. DOI: 10.1023/A:1017501703105 (cit. on p. 11.21).

nesterov:12:eoc

[110] Y. Nesterov. “Efficiency of coordinate descent methods on huge-scale optimization problems.” In: SIAM J.
Optim. 22.2 (2012), 341–62. DOI: 10.1137/100802001 (cit. on p. 11.21).

xu:13:abc

[111] Y. Xu and W. Yin. “A block coordinate descent method for regularized multiconvex optimization with
applications to nonnegative tensor factorization and completion.” In: SIAM J. Imaging Sci. 6.3 (2013),
1758–89. DOI: 10.1137/120887795 (cit. on p. 11.21).

shi:16:abc

[112] Z. Shi and R. Liu. A better convergence analysis of the block coordinate descent method for large scale
machine learning. 2016. URL: http://arxiv.org/abs/1608.04826 (cit. on p. 11.21).

razaviyayn:13:auc

[113] M. Razaviyayn, M. Hong, and Z. Luo. “A unified convergence analysis of block successive minimization
methods for nonsmooth optimization.” In: SIAM J. Optim. 23.2 (2013), 1126–53. DOI:
10.1137/120891009 (cit. on p. 11.21).

bolte:14:pal

[114] J. Bolte, S. Sabach, and M. Teboulle. “Proximal alternating linearized minimization for nonconvex and
nonsmooth problems.” In: Mathematical Programming 146.1 (Aug. 2014), 459–94. DOI:
10.1007/s10107-013-0701-9 (cit. on p. 11.21).

yun:14:oti

[115] S. Yun. “On the iteration complexity of cyclic coordinate gradient descent methods.” In: SIAM J. Optim. 24.3
(2014), 1567–80. DOI: 10.1137/130937755 (cit. on pp. 11.21, 11.22).

chouzenoux:16:abc

[116] E. Chouzenoux, J-C. Pesquet, and A. Repetti. “A block coordinate variable metric forward-backward
algorithm.” In: J. of Global Optimization 66.3 (Nov. 2016), 457–85. DOI:
10.1007/s10898-016-0405-9 (cit. on p. 11.21).

nocedal:99

[117] J. Nocedal and S. J. Wright. Numerical optimization. New York: Springer, 1999 (cit. on p. 11.21).
gullberg:87:mer

[118] G. Gullberg and B. M. W. Tsui. “Maximum entropy reconstruction with constraints: iterative algorithms for
solving the primal and dual programs.” In: Proc. Tenth Intl. Conf. on Information Processing in Medical Im.
Ed. by C N de Graaf and M A Viergever. New York: Plenum Press, 1987, pp. 181–200 (cit. on p. 11.21).

press:92

[119] W. H. Press et al. Numerical recipes in C. 2nd ed. New York: Cambridge Univ. Press, 1992 (cit. on pp. 11.21,
11.23).

lu:98:crw

[120] H. H-S. Lu, C-M. Chen, and I-H. Yang. “Cross-reference weighted least square estimates for positron
emission tomography.” In: IEEE Trans. Med. Imag. 17.1 (Feb. 1998), 1–8. DOI: 10.1109/42.668690
(cit. on p. 11.21).

sauer:93:alu

[121] K. Sauer and C. Bouman. “A local update strategy for iterative reconstruction from projections.” In: IEEE
Trans. Sig. Proc. 41.2 (Feb. 1993), 534–48. DOI: 10.1109/78.193196 (cit. on p. 11.21).

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/0168-9002(94)91673-X
https://doi.org/10.1080/10556789908805730
https://doi.org/10.1109/ICIP.1995.537422
https://doi.org/10.1109/42.563662
https://doi.org/10.1117/12.279713
http://www.fully3d.org
https://doi.org/10.1117/12.2042593
https://doi.org/10.1023/A:1017501703105
https://doi.org/10.1137/100802001
https://doi.org/10.1137/120887795
http://arxiv.org/abs/1608.04826
https://doi.org/10.1137/120891009
https://doi.org/10.1007/s10107-013-0701-9
https://doi.org/10.1137/130937755
https://doi.org/10.1007/s10898-016-0405-9
https://doi.org/10.1109/42.668690
https://doi.org/10.1109/78.193196


c© J. Fessler. [license] February 4, 2020 11.30

qi:98:hr3

[122] J. Qi et al. “High resolution 3D Bayesian image reconstruction using the microPET small-animal scanner.” In:
Phys. Med. Biol. 43.4 (Apr. 1998), 1001–14. DOI: 10.1088/0031-9155/43/4/027 (cit. on p. 11.21).

bouman:93:fnm

[123] C. Bouman and K. Sauer. “Fast numerical methods for emission and transmission tomographic
reconstruction.” In: Proc. 27th Conf. Info. Sci. Sys., Johns Hopkins. 1993, 611–6 (cit. on p. 11.22).

bouman:95:tma

[124] C. A. Bouman, K. Sauer, and S. S. Saquib. “Tractable models and efficient algorithms for Bayesian
tomography.” In: Proc. IEEE Conf. Acoust. Speech Sig. Proc. Vol. 5. 1995, 2907–10. DOI:
10.1109/ICASSP.1995.479453 (cit. on p. 11.22).

fessler:94:sag

[125] J. A. Fessler and A. O. Hero. “Space-alternating generalized expectation-maximization algorithm.” In: IEEE
Trans. Sig. Proc. 42.10 (Oct. 1994), 2664–77. DOI: 10.1109/78.324732 (cit. on p. 11.22).

luo:92:otc

[126] Z. Q. Luo and P. Tseng. “On the convergence of the coordinate descent method for convex differentiable
minimization.” In: J. Optim. Theory Appl. 72.1 (Jan. 1992), 7–35. DOI: 10.1007/BF00939948 (cit. on
p. 11.22).

powell:73:osd

[127] M. J. D. Powell. “On search directions for minimization algorithms.” In: Mathematical Programming 4.1
(1973), 193–201. DOI: 10.1007/BF01584660 (cit. on p. 11.22).

luo:93:otc

[128] Z-Q. Luo and P. Tseng. “On the convergence rate of dual ascent methods for linearly constrained convex
minimization.” In: Math. Oper. Res. 18.4 (Nov. 1993), 846–67. URL:
http://www.jstor.org/stable/3690126 (cit. on p. 11.22).

kirkpatrick:83:obs

[129] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. “Optimization by simulated annealing.” In: Science 220.4598
(May 1983), 671–80 (cit. on p. 11.23).

fessler:92:sac

[130] J. A. Fessler. “Segmented attenuation correction for PET using ICM.” In: Proc. IEEE Nuc. Sci. Symp. Med.
Im. Conf. Vol. 2. 1992, 1182–4. DOI: 10.1109/NSSMIC.1992.301040 (cit. on p. 11.23).

kudo:00:ana

[131] H. Kudo and H. Nakamura. “A new approach to SPECT attenuation correction without transmission
measurements.” In: Proc. IEEE Nuc. Sci. Symp. Med. Im. Conf. Vol. 2. 2000, 13/58–62. DOI:
10.1109/NSSMIC.2000.949991 (cit. on p. 11.23).

kudo:00:sam

[132] H. Kudo and H. Nakamura. “Segmented attenuation map reconstruction from incomplete transmission data.”
In: Proc. IEEE Nuc. Sci. Symp. Med. Im. Conf. Vol. 2. 2000, 13/1–5. DOI:
10.1109/NSSMIC.2000.949979 (cit. on p. 11.23).

xu:91:asa

[133] E. Z. Xu et al. “A segmented attenuation correction for PET.” In: J. Nuc. Med. 32.1 (Jan. 1991), 161–5. URL:
http://jnm.snmjournals.org/cgi/content/abstract/32/1/161 (cit. on p. 11.23).

bettinardi:99:aac

[134] V. Bettinardi et al. “An automatic classification technique for attenuation correction in positron emission
tomography.” In: Eur. J. Nuc. Med. 26.5 (May 1999), 447–58. DOI: 10.1007/s002590050410 (cit. on
p. 11.23).

webb:89:srb

[135] S. Webb. “SPECT reconstruction by simulated annealing.” In: Phys. Med. Biol. 34.3 (Mar. 1989), 259–82.
DOI: 10.1088/0031-9155/34/3/001 (cit. on p. 11.23).

kearfott:90:sai

[136] K. J. Kearfott and S. E. Hill. “Simulated annealing image reconstruction method for a pinhole aperture single
photon emission computed tomograph (SPECT).” In: IEEE Trans. Med. Imag. 9.2 (June 1990), 128–43. DOI:
10.1109/42.56337 (cit. on p. 11.23).

sundermann:94:sai

[137] E. Sundermann, I. Lemahieu, and P. Desmedt. “Simulated annealing image reconstruction for PET.” In: Intl.
Conf. Med. Phys. Biomed. Eng. Vol. 1. 1994, 175–9 (cit. on p. 11.23).

girodias:91:psa

[138] K. A. Girodias, H. H. Barrett, and R. L. Shoemaker. “Parallel simulated annealing for emission tomography.”
In: Phys. Med. Biol. 36.7 (July 1991), 921–38. DOI: 10.1088/0031-9155/36/7/002 (cit. on p. 11.23).

metropolis:53:eos

[139] N. Metropolis et al. “Equation of state calculations by fast computing machines.” In: J. Chem. Phys. 21.6
(June 1953), 1087–92. DOI: 10.1063/1.1699114 (cit. on p. 11.23).

blake:89:cot

[140] A. Blake. “Comparison of the efficiency of deterministic and stochastic algorithms for visual reconstruction.”
In: IEEE Trans. Patt. Anal. Mach. Int. 11.1 (Jan. 1989), 2–12. DOI: 10.1109/34.23109 (cit. on p. 11.23).

geiger:91:pad

[141] D. Geiger and F. Girosi. “Parallel and deterministic algorithms from MRF’s: Surface reconstruction.” In:
IEEE Trans. Patt. Anal. Mach. Int. 13.5 (May 1991), 401–12. DOI: 10.1109/34.134040 (cit. on
p. 11.23).

bilbro:92:mfa

[142] G. L. Bilbro et al. “Mean field annealing: A formalism for constructing GNC-like algorithms.” In: IEEE
Trans. Neural Net. 3.1 (Jan. 1992), 131–8. DOI: 10.1109/72.105426 (cit. on p. 11.23).

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1088/0031-9155/43/4/027
https://doi.org/10.1109/ICASSP.1995.479453
https://doi.org/10.1109/78.324732
https://doi.org/10.1007/BF00939948
https://doi.org/10.1007/BF01584660
http://www.jstor.org/stable/3690126
https://doi.org/10.1109/NSSMIC.1992.301040
https://doi.org/10.1109/NSSMIC.2000.949991
https://doi.org/10.1109/NSSMIC.2000.949979
http://jnm.snmjournals.org/cgi/content/abstract/32/1/161
https://doi.org/10.1007/s002590050410
https://doi.org/10.1088/0031-9155/34/3/001
https://doi.org/10.1109/42.56337
https://doi.org/10.1088/0031-9155/36/7/002
https://doi.org/10.1063/1.1699114
https://doi.org/10.1109/34.23109
https://doi.org/10.1109/34.134040
https://doi.org/10.1109/72.105426


c© J. Fessler. [license] February 4, 2020 11.31

bedini:93:ama

[143] L. Bedini et al. “A mixed-annealing algorithm for edge preserving image reconstruction using a limited
number of projections.” In: Signal Processing 32.3 (June 1993), 397–408. DOI:
10.1016/0165-1684(93)90009-Y (cit. on p. 11.23).

gindi:93:brf

[144] G. Gindi et al. “Bayesian reconstruction for emission tomography via deterministic annealing.” In:
Information Processing in Medical Im. Ed. by H H Barrett and A F Gmitro. Vol. 687. Lecture Notes in
Computer Science. Berlin: Springer Verlag, 1993, pp. 322–38 (cit. on p. 11.23).

berthod:95:dad

[145] M. Berthod, Z. Kato, and J. Zerubia. “DPA: a deterministic approach to the MAP problem.” In: IEEE Trans.
Im. Proc. 4.9 (Sept. 1995), 1312–3. DOI: 10.1109/83.413175 (cit. on p. 11.23).

lee:95:bir

[146] S-J. Lee, A. Rangarajan, and G. Gindi. “Bayesian image reconstruction in SPECT using higher order
mechanical models as priors.” In: IEEE Trans. Med. Imag. 14.4 (Dec. 1995), 669–80. DOI:
10.1109/42.476108 (cit. on p. 11.23).

snyder:95:irr

[147] W. Snyder et al. “Image relaxation: Restoration and feature extraction.” In: IEEE Trans. Patt. Anal. Mach. Int.
17.6 (June 1995), 620–4. DOI: 10.1109/34.387509 (cit. on p. 11.23).

nikolova:98:iol

[148] M. Nikolova, J. Idier, and A. Mohammad-Djafari. “Inversion of large-support ill-posed linear operators using
a piecewise Gaussian MRF.” In: IEEE Trans. Im. Proc. 7.4 (Apr. 1998), 571–85. DOI:
10.1109/83.663502 (cit. on p. 11.23).

huyer:99:gob

[149] W. Huyer and A. Neumaier. “Global optimization by multilevel coordinate search.” In: J. Global
Optimization 14.4 (June 1999), 331–55. URL:
http://www.wkap.nl/issuetoc.htm/0925-5001+14+4+1999 (cit. on p. 11.23).

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/0165-1684(93)90009-Y
https://doi.org/10.1109/83.413175
https://doi.org/10.1109/42.476108
https://doi.org/10.1109/34.387509
https://doi.org/10.1109/83.663502
http://www.wkap.nl/issuetoc.htm/0925-5001+14+4+1999

	Optimization by General-Purpose Methods
	Introduction (s,opt,intro)
	Iterative optimization methods
	The Hessian
	Why so many algorithms?
	Monotonicity (s,opt,mono)

	Fixed-point iterations (s,opt,fixed)
	Preconditioned gradient descent (PGD) algorithms (s,opt,pgd)
	Monotonicity conditions for PGD
	Convergence in norm
	Local convergence rate (s,opt,pgd,rate)
	Convergence rate of cost function decrease: O(1/n) (s,opt,pgd,1n)
	Relationship with optimization transfer (s,opt,pgd,ox)
	Step-halving or backtracking (s,opt,pgd,half)
	Ideal preconditioner (s,opt,precon)
	Preconditioning as a coordinate transformation

	Newton-Raphson algorithm (s,opt,nr)
	Preconditioned steepest descent (PSD) algorithms (s,opt,psd)
	Orthogonality and search directions
	Complex case
	Asymptotic convergence rate

	Line search methods (s,opt,line)
	Line search using Lipschitz conditions (s,opt,line,lips)
	Step size using Newton's method (s,opt,line,newt)
	Line search for PWLS cost functions (s,opt,line,pwls)

	Accelerated first-order methods (s,opt,a1)
	Barzilai and Borwein gradient method (s,opt,bb)
	Nesterov's ``optimal'' first-order methods (s,opt,nesterov)

	Preconditioned conjugate gradients (PCG) (s,opt,pcg)
	Asymptotic convergence rate

	Quasi-Newton methods (s,opt,qn)
	Implementation

	Block coordinate descent methods (s,opt,bcm)
	Block coordinate minimization (BCM)
	Block coordinate descent (BCD)
	Iteration-dependent partitions
	Convergence properties
	Coordinate descent methods (s,opt,cd)
	Coordinate-descent Newton (CD-NR)-Raphson
	Asymptotic convergence rate of CD


	Annealing methods (s,opt,anneal)
	Simulated annealing
	Deterministic annealing and graduated nonconvexity
	Other global optimization methods

	Problems (s,opt,prob)
	Bibliography


