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Chapter 7

Magnetic Resonance (MR) Image
Reconstruction

ch,mr
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7.1 Introduction (s,mr,intro)s,mr,intro

In Chapter 6 it was assumed that the measurements are samples of the Fourier transform of the unknown object f(~x).
That model is reasonable for some types of magnetic resonance (MR) scans, and many MR reconstruction methods
are based on that model. However, for MR scans with long readout times, such as those used in fMRI, there are
relaxation effects and/or off-resonance effects that depart from the simple Fourier model. This chapter discusses MR
image reconstruction methods in the presence of such effects. [44, 45].

7.2 Model (s,mr,model)s,mr,model

In the presence of relaxation effects and/or off-resonance effects a reasonably realistic model for MR measurements
y = (y1, . . . , ynd

) is the following:
yi = s(ti) + εi, i = 1, . . . , nd,

s(t) =

∫
D
f(~x) e− z(~x) t e−ı2π

~k(t)·~x d~x, (7.2.1)
e,mr,st

where D denotes the object FOV and the complex quantity z(~x) can include both relaxation effects and off-resonance
effects as follows:

z(~x) = α(~x) +ı ω(~x) .

The real function α(~x) corresponds to the relaxation term (e.g., an R∗2 map) at spatial position ~x, and the real function
ω(~x) corresponds to the field inhomogeneity (e.g., susceptibility) effect. Because both α(~x) and ω(~x) have inverse
time units, we refer to z(~x) as the rate map hereafter. For simplicity here, we address the problem where the rate map
z(~x) is known, i.e., where we are given relaxation maps α(~x) and field maps ω(~x) and the goal is to reconstruct the
object f from the measurements y, e.g., [59]. For field-corrected MR reconstruction, usually one assumes that α(~x)
is zero. Numerous papers have addressed this problem; for an overview see [59]. Further applications of the general
approach described here include situations where either the field map ω(~x) is unknown and also to be estimated, e.g.,
[60–62], or the relaxation map α(~x) is also to be estimated, e.g., [63, 64] or both, e.g., [65–69]. We also focus on
the case of a single receiver coil imaging although the methods extend readily to sensitivity encoded imaging with
multiple receiver coils, e.g., [70].

Failure to compensate for off-resonance effects leads to geometric distortions in echo-planar imaging, e.g., [71,
72] and blurring when imaging with non-Cartesian trajectories.

We parameterize the object f(~x) using a linear combination of np basis functions:

f(~x) =

np∑
j=1

xj b(~x− ~xj) . (7.2.2)
e,mr,basis

So the image reconstruction problem becomes that of estimating the parameter vector x = (x1, . . . , xnp
). For sim-

plicity, we focus on rect functions (the voxel basis). We also assume that the rate map has (approximately) constant
values over each voxel, so we can write

z(~x) =

np∑
j=1

zj b(~x− ~xj),

where
zj = α(~xj) +ı ω(~xj), j = 1, . . . , np. (7.2.3)

e,mr,zj

For cases where the within-voxel gradients of the rate map are significant, one can use reduced voxel sizes to reduce
signal loss [73] [74, p. 140]. However, such “over sampling” will increase computation. An alternative approach is
proposed in §7.7 below.

Under these assumptions, the integral signal model (7.2.1) simplifies to the following sum1:

ȳi(x) = E[yi] = Bi

np∑
j=1

xj e−zjti e−ı2π~νi·~xj , (7.2.4)
e,mr,ybi

1 In problems where zj is estimated by linearization, an extra “ti” term appears in the summation [69]. One can absorb this into Bi and then all
remaining formulas are also applicable to such problems.
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where ~νi = ~k(ti) denotes the (possible nonuniform) k-space sample locations,B(~ν) denotes the d̄-dimensional Fourier
transform of b(~x), and we define

Bi = B(~νi) =

∫
b(~x) e−ı2π~νi·~x d~x .

In matrix-vector form:
ȳ(x) = Ax, A = {aij} , (7.2.5)

e,mr,A

aij = Bi e−zjti e−ı2π~νi·~xj . (7.2.6)
e,mr,aij

Typically the matrix A is too large to be stored explicitly, so we would like to use procedures like FFT operations to
evaluate Ax, rather than explicit matrix-vector multiplication. Unfortunately, A is not a Fourier matrix in general. In
any case, the MR reconstruction problem is to reconstruct x from y using (7.2.5).

7.3 Regularized LS reconstruction
Because MR measurements have white complex gaussian noise, we focus on methods that form an estimate x̂ of x by
minimizing regularized least-squares cost functions of the form

Ψ(x) =
1

2
‖y − ȳ(x)‖2 + R(x), (7.3.1)

e,mr,model,kost

where R(x) denotes a roughness penalty function. (An unweighted norm is used in the usual case where the measure-
ments have equal variances, although the approach generalizes readily to weighted norms.) Now the goal is to find the
image x̂ that minimizes this cost function, typically by using gradient-based iterative algorithms. Most of the work in
such algorithms is in computing the gradient of Ψ, and we focus on this computation hereafter.

One way to write the gradient of Ψ is:

∇Ψ(x) = −A′(y −Ax) +∇R(x) . (7.3.2)
e,mr,grad1

The computational bottleneck in this expression is the calculation of the matrix-vector productsAx andA′ r, where r
denotes the residual y −Ax. Our previous approach [59] used the above gradient expression and combined NUFFTs
[75] with temporal interpolation based on a “time-segmentation” approximation [76] so as to be able to compute
efficientlyAx andA′ r. We refer to (7.3.2) as the “NUFFT approach.”

MIRT NUFFT software is available [75]. See the nufft folder.
An alternative, mathematically equivalent gradient expression is the following:

∇Ψ(x) = Tx− b+∇R(x), (7.3.3)
e,mr,grad2

where T = A′A and b = A′y. Because T is Toeplitz when the rate map is zero, with some abuse of terminology we
refer to (7.3.3) as the “Toeplitz approach.” In the context of solving the LS problem minx ‖y −Ax‖ , conventional
wisdom would advise against using the normal equations A′Ax = A′y, because the condition number of A is
squared: cond(A′A) = cond2(A), potentially leading to increased sensitivity to noise. and perhaps slower conver-
gence rates. However, when A is ill-conditioned, e.g., for irregular frequency sample locations, we should include
appropriate regularization R(x) so thatA′A+∇2R is reasonably well-conditioned, in which case (7.3.3) need not be
problematic.

Here, we first revisit and generalize the approximations used in evaluating (7.3.2). We then consider methods
for computing efficiently the gradient expression (7.3.3). We then provide numerical results showing that using the
Toeplitz approach (7.3.3) can reduce the compute time significantly relative to the NUFFT approach (7.3.2) while
preserving image quality.

An interesting open problem is whether the recursive form (1.10.16) could be combined with FFT approaches to
form an efficient iterative algorithm, somewhat akin to those in [77, 78].

7.4 Approximations for exponentials (s,mr,approx)
s,mr,approx

The problematic part of the expression (7.2.6) for the elements of the matrix A is the exponential terms e−zjti .
Direct implementation of Ax using (7.2.4) would require O(npnd) computations, which is undesirably slow. To
reduce computation, one must make approximations. We first review the previously proposed approximations for the
exponential terms, and then describe a unified framework in which to propose new approximations.
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7.4.1 Time segmentation (TS) approximations
In the context of MR reconstruction with field inhomogeneity correction, Noll et al. proposed to evaluate the expo-
nentials e−zjti at a predetermined set of time points,

{
ťl : l = 1, . . . , L

}
, and then to use a linear interpolation method

for times between those points [76, 79]. In our context, we can express this “time segmentation” approach as the
following approximation:

e−zt ≈
L∑
l=1

bl(t) e−zťl , z ∈ C,

where each bl(t) denotes a temporal interpolator. Traditionally, shift-invariant temporal interpolators such as Hanning
functions have been used [76]. These were generalized to min-max optimal temporal interpolators in [59], significantly
reducing approximation error. (See §7.4.3.4 below.)

A limitation of the above approach is that it will incur approximation error even if the rate map z(~x) is completely
uniform, if one uses conventional interpolators. To improve the time segmentation approach, one can first select a
nominal rate map value z̄ and then use following approximation:

e−zt ≈ e−z̄t
L∑
l=1

bl(t) e−(z−z̄)ťl .

This “baseline-offset time segmentation” approach reverts to the classical method if one chooses z̄ = 0. Alternatively,
if z(~x) is uniform with value z̄, then the above approximation becomes exact if we choose L = 1 and bl(ti) = 1. (The
lack of such a baseline z̄ term may in part explain the poor performance of the Hanning interpolator in [59].)

Both the classical approach and our baseline-offset time-segmentation approximations can be expressed as follows:

e−zjti ≈
L∑
l=1

bilclj , bil , bl(ti) e−z̄ti , clj , e−(zj−z̄)ťl . (7.4.1)
e,mr,ezt,time

The approximation reduces computation because it contains no terms that depend on both i and j.

7.4.2 Frequency segmentation
Instead of choosing time samples, an alternative approach is to choose a set of “frequency” samples {žl : l = 1, . . . , L}
and interpolate between these values to evaluate the exponential [79–81]. In our context, we can express this “frequency
segmentation” approach as the following approximation:

e−zt ≈ e−zt̄
L∑
l=1

cl(z) e−žl(t−t̄) , t ∈ R,

where t̄ is a nominal time reference (e.g., an echo time) and where each cl(·) denotes a frequency-domain interpolator.
In particular, we have

e−zjti ≈
L∑
l=1

bilclj , bil , e−žl(ti−t̄) , clj , cl(zj) e−zj t̄ . (7.4.2)
e,mr,ezt,freq

The classical approach uses t̄ = 0, but this choice may be suboptimal unless the interpolators clj are chosen carefully.
In the original version [79], the clj values were chosen to be either nearest-neighbor, linear, or Hanning interpo-

lators, and the choice L > 4
π
ωmax−ωmin

2 (tnd
− t1) was recommended. (See also [82].) Later, Man et al. described a

least-squares approach (cf. (7.4.6) below) to choosing the interpolation functions cl(·) for the frequency-segmentation
approach [81], and recommended choosing L > 1

π
ωmax−ωmin

2 (tnd
− t1), for uniformly spaced žl values.

In the frequency segmentation approach, a practical issue is choosing the frequency samples {žl}. The traditional
choice is to use equally-spaced frequencies that span the range of frequencies in the field map. As shown in §7.4.5, that
choice is suboptimal for nonuniform field map distributions. Instead, it is preferable to concentrate more frequency
components where they are most needed based on the rate map histogram. (When the zj values are complex, a
2D histogram is needed with separate axes for the real and imaginary components.) One expedient choice uses the
asymptotic theory of quantization, which specifies the optimal density of centroids for high-rate quantization [83].
Another option is to use the iterative Lloyd-Max algorithm for scalar quantizer design to find an “optimal” set of L

https://creativecommons.org/licenses/by-nc-nd/4.0/
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frequency values. (When the relaxation map is nonzero, one could could use the LBG algorithm for two-component
vector quantization.) To reduce computation, one can first finely quantize the zj values and then apply weighted
versions of Lloyd-Max or LBG to choose the žl quickly.

MIRT See lloyd_max_hist.m and highrate_centers.m.

7.4.3 Generalized approximations
Comparing (7.4.1) and (7.4.2), we see that both “time segmentation” and “frequency segmentation” lead to approxi-
mations of the form

e−zjti ≈
L∑
l=1

bilclj , j = 1, . . . , np, i = 1, . . . , nd, (7.4.3)
e,mr,ezt,cd

but with different choices for the bil and clj terms. Substituting such an approximation into the discrete signal model
(7.2.4) and rearranging yields

ȳi(x) = [Ax]i ≈ Bi
L∑
l=1

bil

 np∑
j=1

(xjclj) e−ı2π~νi·~xj

 . (7.4.4)
e,mr,ybi,cd

In matrix form,

A ≈ diag{Bi}
L∑
l=1

diag{bil}G diag{clj},

whereG denotes the nd×np NUFFT operator having elements gij = e−ı2π~νi·~xj .We can evaluate this expression effi-
ciently using L NUFFT calls, because the inner bracketed expression is an NUFFT of the signal (x1cl1, . . . , xnpclnp).
Thus, from the point of view of rapid computation, time segmentation and frequency segmentation are equally viable
methods, and are both special cases of the general form (7.4.3). For a given L, any choices for the bil and clj terms
lead to the same compute time for evaluatingAx andA′y.

Because compute times are determined only by L (and np and nd), rather than by the form of bil and clj , we
should choose the bil and clj terms to minimize the error in the approximation (7.4.3). Let B = {bil} ∈ Cnd×L and
C = {clj} ∈ CL×np .We would like to find choices forB andC that are “optimal” in some sense, without necessarily
being constrained to the exponential forms used in (7.4.1) and (7.4.2).

The possibility of using non-exponential bases was explored in [81] using SVD analysis. However, that investi-
gation used equally weighted, equally-spaced frequency samples, which corresponds implicitly to rate maps having
uniform distributions (a rectangular histogram). The next subsections describe some possible approaches for designing
B andC for patient-specific rate maps , which in general do not have uniform distributions. The work in [81] focused
on conjugate-phase reconstruction, where the approximations are used only once. In contrast, in iterative image re-
construction the approximations are used every iteration, so it can be beneficial to design improved interpolators prior
to iterating.

7.4.3.1 Min-max approximations

In the spirit of previous min-max methods [59, 75], one approach to choosing B and C would be to try to minimize
the worst-case error using a min-max criterion:

arg min
B,C

max
ij

∣∣∣∣∣e−zjti −
L∑
l=1

bilclj

∣∣∣∣∣ .
In matrix notation, we have

arg min
B,C

|||E −BC|||∞,

where E is the nd × np matrix with elements eij = e−zjti . We are unaware of an efficient algorithm for solving this
min-max problem. Efficient solutions are essential because we may wish to redesign B and C for each object’s rate
map .

https://creativecommons.org/licenses/by-nc-nd/4.0/
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7.4.3.2 Weighted least-squares approximations

A simpler alternative would be to minimize the Frobenius norm

arg min
B,C

|||E −BC|||2Frob = arg min
B,C

nd∑
i=1

np∑
j=1

∣∣∣∣∣e−zjti −
L∑
l=1

bilclj

∣∣∣∣∣
2

, (7.4.5)
e,mr,BC,wls

or a weighted generalization thereof. This minimization is a “principal components” problem (see §26.12) that is
solved by the SVD of E. This solution can be of theoretical interest as a performance benchmark, but appears to
require too much memory and computation for routine use.

Rather than optimizing bothB and C jointly, one can first chooseB heuristically and then find the matrix C that
optimizes (7.4.5), or one can first choose C and then optimizeB. These two alternatives are explored next.

7.4.3.3 Histogram principal componentss,mr,hist,pc

For a given matrixB, the LS-optimal choice of C is given by

cj = [B′B]−1B′ej , (7.4.6)
e,mr,approx,vc,ls

where ej = (e−zjt1 , . . . , e−zjtnd ) is the jth column of E and cj = (c1j , . . . , cLj) is the jth column of C. If the
columns of B are orthonormal, computing cj becomes simply cj = B′ej . Because there is no loss in generality in
considering only choices forB having orthonormal columns, we now focus on choosingB efficiently.

Suppose we histogram the rate map values {zj} intoK � np bins with centers z̃k, k = 1, . . . ,K, possibly spaced
unequally, and let hk denote the number of zj values in the kth bin. Then a natural approximation to (7.4.5) is the
following WLS criterion:

arg min
B

K∑
k=1

hk ‖ẽk −BB′ẽk‖
2
, (7.4.7)

e,mr,approx,hk

where B must have L orthonormal columns and we define ẽk = (e−z̃kt1 , . . . , e−z̃ktnd ). The solution to this mini-
mization problem is given by the first L singular vectors of the nd ×K matrix

[√
h1ẽ1 . . .

√
hK ẽK

]
. (See §26.12.)

Because K � np, this SVD is much more practical than (7.4.5).
A benefit of this approach is that we can examine the singular values to determine how many components L are

needed to ensure a given desired approximation accuracy. In particular, if the rate map is uniform, using only one
component will provide exact results, whereas conventional linear interpolation would require many sample points.

7.4.3.4 Least-squares time-segmentation approachs,mr,lsts

Instead of optimizing over both B and C, a simpler approach is to choose the matrix C that corresponds to the time
segmentation approximation (7.4.1), and then optimize B by least squares [59]. (When B is thus optimized, the z̄
term in (7.4.1) is unnecessary.) Letting b(ti) = (b1(ti), . . . , bL(ti)) denote the ith row ofB, we want

b(t) = arg min
b∈CL

np∑
j=1

∣∣∣∣∣e−zjt −
L∑
l=1

bl e
−zj ťl

∣∣∣∣∣
2

. (7.4.8)
e,mr,approx,lsts,b

Slightly generalizing [59], the solution to this problem is

b(t) = [X ′X]−1X ′e(t), (7.4.9)
e,mr,c,lsts

where the j, lth element ofX is e−zj ťl , i.e.,X = CT , and ej(t) = e−zjt . Thus

[X ′e(t)]l =

np∑
j=1

e−z
∗
j ťl e−zjt , l = 1, . . . , L.

This can be computed in O(npL) for each ti. Similarly,

[X ′X]l′,l =

np∑
j=1

e−z
∗
j ťl′ e−zj ťl , l, l′ = 1, . . . , L,
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which can be computed inO(npL
2) independently of ti. So overall, precomputing (prior to iterating) the interpolation

matrixB requiresO(Lnp(nd+L)+L3nd). If the zj values are purely imaginary, then one can simplify the calculation
further [59].

We have observed empirically that if the rate map consists of a finite number of components, i.e., for each j we
have zj ∈ {z̃1, . . . , z̃K} , then the time segmentation approach works perfectly when L = K. Proving this property
formally is an open problem.

7.4.3.5 Histogram-based time-segmentation approach

Instead of using all np rate map values in the LS criterion (7.4.8), we can reduce computation significantly by his-
togramming the rate map values and replacing the above sums over j with smaller weighted sums over the histogram
bins [59]. Specifically, consider the following WLS criterion

b(t) = arg min
b∈CL

K∑
k=1

hk

∣∣∣∣∣e−z̃kt −
L∑
l=1

bl e
−z̃k ťl

∣∣∣∣∣
2

, (7.4.10)
e,mr,approx,lsts,b,hist

where hk was defined before (7.4.7). If we use K � np histogram bins, then the computation of B reduces to
O(LK(nd + L) + L3nd). When the rate map zj is purely imaginary, then one can use FFTs to further reduce
computation in the usual case where the histogram bin centers are spaced equally [59, 81].

7.4.4 Approximation summary
The preceding subsections described a variety of possible methods for choosing the basisB and coefficientC matrices
for approximating the exponential term e−zjti in (7.2.6). After using one of these choices, we can evaluate Ax and
A′y efficiently using (7.4.4), which requires L NUFFT calls. As demonstrated in [59], the approximation (7.4.4)
enables practical gradient-based optimization to find the reconstructed image x̂.

For the methods described here, we have separated the problems of designing the “temporal” interpolators B and
C and of designing the interpolators that are used in the frequency domain for the NUFFT operation. Whether one
could design both interpolators simultaneously to improve accuracy (or reduce computation) is an interesting open
problem. A starting point for such an approach would be the Frobenius norm designs considered by Neislony and
Steidl [84], or the “type 3” NUFFT described by Lee and Greengard [85], who noted that

e−ızjti e−ı2π~νi·~xj = e−ı~uj ·~vi

where ~uj , (zj ,~xj), ~vi , (ti, 2π~νi). In other words, this is a d̄+ 1-dimensional NUFFT problem! See also [86].
MIRT See mri_exp_approx.m and Gmri.m.

7.4.5 Evaluation of approximations (s,mr,eval)s,mr,eval

We evaluated the approximations described in §7.4 using the four fieldmaps shown in Fig. 7.4.1. Two of the maps are
synthetic; the first corresponding to a fieldmap with a discrete set of frequency offsets, and the second corresponding
to a linear ramp in resonant frequency across the field of view. The other two maps were acquired using standard
delayed-echo field mapping methods on a GE 3T MR scanner. One map was a brain slice at a level near the ear canals
[87], whereas the other was a cylinder phantom to which metal had been attached to induce severe field inhomogeneity.
Fig. 7.4.2 shows the histograms of these field maps.

For evaluation, we used ti values with 5 µs sampling for nd = 3770, corresponding to a 18.855 ms readout time,
which is typical for one-shot spiral trajectories on our 3T GE scanner for 64× 64 brain scans with a 22 cm FOV.

Fig. 7.4.3 shows the normalized root mean-squared error (NRMSE), defined by 1
np
|||E −BC|||Frob (see (7.4.5)),

as a function of L for each of the four fieldmaps shown in Fig. 7.4.1. Naturally, as the number of approximation
terms L increases, the error decreases. As expected, field maps that cover a larger range of resonant frequency offsets
require larger values of L for adequate accuracy. In all cases, for any given L the SVD approach has the minimum
error. We compared two approaches to choosing the frequency samples for the frequency segmentation (FS) method.
We first tried uniformly spaced frequency samples; we found that this worked well only for the ramp phantom, which
has a uniform field histogram. As an alternative, we applied the Lloyd-Max algorithm from scalar quantizer design to
the fieldmap histograms to choose the frequency samples. This reduced error in all cases. For small values of L, the
SVD method yielded much lower error than the time segmentation (TS) approximation with uniform time samples,
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Figure 7.4.1: Four field maps used to evaluate the exponential approximations.
fig_mri_exp_maps

even though the TS approach had been optimized as described in §7.4.3.4. However, as L increased, the TS method
approached the SVD accuracy, yet requires less computation for determiningB and C.

Fig. 7.4.4 shows the basis components B for the brain fieldmap for both the SVD approximation and for the
time-segmentation approximation. The SVD components are approximately sinusoidal in nature, whereas the time-
segmentation components are more sinc-like. It is interesting that despite the large differences between these bases,
the approximation accuracies are very similar.

Table 7.1 shows the minimum value of L necessary to achieve a NRMSE value less than 0.01 for the four approx-
imation methods shown in Fig. 7.4.3 and the four field maps shown in Fig. 7.4.1. Interestingly, the time segmentation
(TS) method required exactly the same number of terms as the SVD method for all cases. From these representative
results, we conclude that time segmentation approximations, when optimized as described in §7.4.3.4, are suitable for
routine use, and L < 10 should be adequate for typical situations. This conclusion is fortuitous because the Toeplitz
approach described in §7.5 is most efficient when implemented with the time segmentation approximations.
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Figure 7.4.2: Histograms of the four field maps shown in Fig. 7.4.1.
fig_mri_exp_hists

Approximation Method
Phantom FS uniform FS quantized TS uniform SVD
Discrete phantom 6 4 4 4
Ramp phantom 5 5 5 5
Brain 7 6 6 6
Phantom with metal 11 10 9 9

Table 7.1: Minimum value of L necessary to achieve NRMSE < 0.01 for each approximation method and for the four
field maps.

tab,mr,min,L
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Figure 7.4.3: Normalized root mean-squared error (NRMSE) for various approximations of the exponentials e−zjti ,
for the field maps shown in Fig. 7.4.1, for a 18.855 ms readout.
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Figure 7.4.4: Basis components B for the brain field map for the SVD approximation and for the time-segmentation
approximation.
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7.5 Toeplitz approach (s,mr,toep)
s,mr,toep

Now we turn to computing the “Toeplitz approach” (7.3.3) efficiently. Under the model (7.2.5), the matrix T in (7.3.3)
has the following elements:

Tkj = [A′A]kj =

nd∑
i=1

a∗ikaij =

nd∑
i=1

|Bi|2 e−(z∗k+zj)ti e−ı2π~νi·(~xj−~xk) . (7.5.1)
e,mr,T

In the usual case where the voxel centers ~xj are spaced equally, this matrix would be Toeplitz2 in the absence of
relaxation effects and off-resonance effects, i.e., when z(~x) = 0. The pure Toeplitz form has been used previously to
accelerate MR image reconstruction [88, 89]..

In the presence of such effects, T is not Toeplitz due to the problematic term e−(z∗k+zj)ti . So we must introduce ap-
proximations to develop fast methods for computing the matrix-vector product Tx required in the gradient calculation
(7.3.3). Two possible approaches are described next.

7.5.1 O(L2) approach
One approach is to separate the problematic exponential first, and then make approximations as follows:

e−(z∗k+zj)ti = e−z
∗
kti e−zjti ≈

[
L∑
l′=1

bil′cl′k

]∗ [ L∑
l=1

bilclj

]
,

i.e., to invoke an approximation of the form (7.4.3) twice. Substituting into (7.5.1) and rearranging leads to the
following:

T ≈
L∑
l′=1

L∑
l=1

D′l′Tl′lDl, (7.5.2)
e,mr,T,approx,L2

where

[Tl′l]kj =

nd∑
i=1

|Bi|2 b∗il′bil e−ı2π~νi·(~xj−~xk)

Dl = diag{clj} .

Each matrix Tl′l is Toeplitz, so we can multiply this approximation to T by a vector x using L2 pairs of FFTs.
(See §6.8 and [27].) An advantage of this approach is that one can use the B and C matrices corresponding to any
exponential approximation. But a significant disadvantage is that it requires O(L2) computation.

7.5.2 O(L) approach
To reduce computation, we would like to use an approximation for the problematic exponential term that will allow
us to “separate” the z∗k + zj term in (7.5.1) after making the approximation. Of the various approximation methods
described in §7.4, only the time segmentation approach appears to have the desired property. (Fortunately the time
segmentation approach is also sufficiently accurate, as shown in Table 7.1.) Substituting the approximation (7.4.1)
into (7.5.1) yields the following approximation to the elements of T :

Tkj ≈
nd∑
i=1

|Bi|2
[
L∑
l=1

bl(ti) e−(z∗k+zj)ťl

]
e−ı2π~νi·(~xj−~xk)

=

L∑
l=1

e−z
∗
k ťl

[
nd∑
i=1

|Bi|2 bl(ti) e−ı2π~νi·(~xj−~xk)

]
e−zj ťl . (7.5.3)

e,mr,Tkj,approx

In matrix form,

T ≈
L∑
l=1

D′lTlDl, (7.5.4)
e,mr,T,approx

2 Strictly speaking, if d̄ = 1, then T would be Toeplitz, whereas if d̄ = 2, then T would be block Toeplitz with Toeplitz blocks [27]. (One
shudders to consider the 3D terminology.) For simplicity, we simply say “Toeplitz.”
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where the elements of each matrix Tl are defined by

[Tl]kj =

nd∑
i=1

|Bi|2 bl(ti) e−ı2π~νi·(~xj−~xk) (7.5.5)
s,mr,toep,Tl

Dl = diag
{

e−zj ťl
}
. (7.5.6)

s,mr,toep,Dl

Each matrix Tl is Toeplitz, so one can multiply Tl by a vector efficiently using a pair of FFTs. (See §6.8 and [27].)
These FFTs use the first row of Tl, which we precompute. Each Dl matrix is diagonal, so multiplying with it is
trivial. Thus, to compute Tx (approximately) requires L pairs of FFTs, for an operation count of O(LN logN). In
contrast, the NUFFT approach that uses the gradient expression in (7.3.2) requires L pairs of NUFFTs, which is more
computation due to interpolations [75]. (See §6.6.)

A subtle but key issue in using (7.5.3) is choosing the interpolators b(t). If the rate map zj contains frequency
offsets in the range νmin to νmax, then the term e−(z∗k+zj)t will contain frequency offsets in the range −(νmax− νmin)
to νmax − νmin. In other words, its “bandwidth” is twice as wide as the bandwidth of e−zjt. So we have found that it
can be necessary to use larger values of L for the Toeplitz approximation (7.5.3) than for the NUFFT approximation
(7.4.4). Nevertheless, by avoiding DFT interpolations, the Toeplitz approach is still faster than the NUFFT approach.

Generalizing (7.4.8), we would like to chooseB via the following LS criterion:

b(t) = arg min
b∈CL

np∑
j=1

np∑
k=1

∣∣∣∣∣e−(z∗k+zj)t −
L∑
l=1

bl e
−(z∗k+zj)ťl

∣∣∣∣∣
2

.

For a fieldmap with a given histogram {hk}, the histogram of z∗k + zj is given by the auto-correlation function
of hk. So to design b(t) for the Toeplitz approach, we first find the fieldmap histogram, then compute the auto-
correlation function of that histogram, and then apply the WLS criterion (7.4.10) using that auto-correlated histogram.
We found that this approach provided much improved accuracy relative to using (7.4.10) with the original histogram.
Furthermore, because an “auto-correlated” histogram is symmetric about zero, the resulting B matrix is real valued,
which saves computation in precomputing the Toeplitz kernels in (7.5.5).
Algorithm
• Determine the relaxation map and/or the field map to form the rate map z(~x).
• Compute the histogram of that rate map , and then the auto-correlation function of that histogram.
• Using that auto-correlated histogram, use (7.4.10) to compute the interpolators B and the coefficients C using the

LS time-segmentation method of §7.4.3.4 for l = 1 . . . , L.
• Precompute b = A′y using the combination of temporal interpolation and NUFFT methods described in [59, 75].

Because this need only be done once, rather than each iteration, it can be done with a high accuracy approximation.
• Precompute the first row of Tl for l = 1, . . . , L using (7.5.5), in preparation for using a 2× over-sampled FFT to

perform the operation of matrix-vector multiplication by Tl [27]. This requires L pairs of NUFFT calls.
• Using (7.5.4) to compute Tx approximately for the gradient expression (7.3.3), apply a gradient-based optimization

method such as the CG algorithm to find x̂ iteratively.
Fig. 7.5.1 illustrates the data flow.

Compute FFT of

Tl

Field Map
(Optional)

Relax Map
(Optional)

Gradient-based
Optimization

Image
DisplayMeasured Data

MR k-space

B

C

y

Design basis
and coefficients Toeplitz matrix row

Figure 7.5.1: Block diagram of MR image reconstruction data flow.
fig,mr,block

7.5.3 Preconditioning (s,mr,precon)s,mr,precon

When z(~x) = 0, the matrix T in (7.5.1) is Toeplitz, and there are excellent circulant preconditioners available [27].
When z(~x) 6= 0, then T is a approximately the “weighted sum” of Toeplitz matrices shown in (7.5.4). Finding an
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effective preconditioner for this sum is an open problem, although preconditioners have been developed for other
shift-variant problems [27, 90].

todob: clever FFT precon for CS pMRI: [91]

7.6 Simulation (s,mr,sim)s,mr,sim

We compared four methods for field-corrected MR image reconstruction: (i) the conjugate-phase reconstruction
method [76] using Voronoi-based density compensation factors [92] and the LS-optimal time-segmentation approx-
imation described in §7.4.3.4, (ii) the CG-NUFFT method based on the gradient expression (7.3.2), using the time-
segmentation approximation described in §7.4.3.4 [59], (iii) and the CG-Toeplitz method based on the gradient expres-
sion (7.3.3) using the O(L) approximation described in §7.5, and (iv) for completeness, the conjugate-phase method
without field correction. For the CG methods we used quadratic regularization with a small regularization parameter,
chosen such that the FWHM of the PSF was about 1.36 pixels. For simplicity we initialized the CG algorithms with
x = 0.

To evaluate the methods quantitatively, we performed simulations using the brain fieldmap shown in Fig. 7.4.1,
and the synthetic image shown in Fig. 7.6.1. We evaluated the reconstruction methods for two k-space trajectories: (1)
conventional 64× 64 Cartesian sampling with 4096 k-space points, and (2) a spiral trajectory containing 3770 points.
The sampling time is 5 µs, so the data acquisition time was 20.48 ms for the Cartesian case, and 18.855 ms for the
spiral case. This spiral trajectory is used routinely on our GE 3T MR system. To generate the (noiseless) simulated
data ȳ, we used the exact system matrix (7.2.6).

For all methods, we estimated only the 2936 pixels within the elliptical region of interest shown in Fig. 7.6.1. For
reconstruction, we used NUFFTs with 2× over-sampling and J = 6, which we have found previously to be sufficiently
accurate.

Fig. 7.6.2 and Fig. 7.6.3 show the NRMS error, defined as ‖x̂−xtrue‖ / ‖xtrue‖·100%, as a function of iteration for
the values of L listed. Larger values of L did not reduce the error further. Because there was no noise in the simulated
k-space data, the lower limit on NRMS error is a function of the (modest) regularization used and the inherent NUFFT
approximations. For these values of L (or larger) the CG algorithm converged well before 20 iterations.

Fig. 7.6.4 and Fig. 7.6.5 show the NRMS error as a function of L. For the spiral trajectory, the CG-Toeplitz
approach requires L to be slightly larger than that of the CG-NUFFT approach to achieve the same accuracy.

Fig. 7.6.6 and Fig. 7.6.7 show the reconstructed images for the Cartesian and spiral trajectories, respectively. Based
on the results in Fig. 7.6.4 and Fig. 7.6.5, we used L = 6 for the conjugate phase and CG-NUFFT approaches, and
L = 7 or L = 8 for the CG-Toeplitz approach.

(We also investigated much longer readout times, e.g., 25ms, and found that even larger L values were needed.)
Table 7.2 compares the CPU time of the various reconstruction methods (using MATLAB’s cputime on a Dell

650n with 3.06GHz Xeon CPU). For the CG methods, the times are for 15 iterations, which appears adequate based
on Fig. 7.6.2 and Fig. 7.6.3. The total times shown in the table include the time required to “precompute” B, C,
etc. The Toeplitz approach shows significant acceleration. In MATLAB, for the same L the Toeplitz approach runs
about several times faster per iteration than the NUFFT approach, because it avoids the NUFFT interpolations. Even
though the Toeplitz approach requires a slightly larger value for L and requires precomputing the kernels of the Tl
terms, overhead that partly diminishes the advantage of the Toeplitz approach, the overall compute time is still reduced
significantly.

To investigate whether the approximations would increase sensitivity to noise, we added several different levels of
pseudo-random white complex gaussian noise to ȳ and repeated the reconstructions. Table 7.2 shows that the noise
properties of the CG-NUFFT and CG-Toeplitz approach are indistinguishable, because the chosen L values ensure
that approximation error is negligible relative to estimation error.
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Figure 7.6.2: NRMSE of x̂ versus iteration for the two
CG reconstruction methods for the Cartesian trajectory.
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Figure 7.6.3: NRMSE of x̂ versus iteration for the two
CG reconstruction methods for the spiral trajectory.
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Figure 7.6.4: NRMSE of x̂ versus approximation order
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fig_mri_race_L_cartesian

https://creativecommons.org/licenses/by-nc-nd/4.0/


c© J. Fessler. [license] December 10, 2018 7.17

Precomputation NRMS % vs SNR
Method L B,C A′Dy b = A′y Tl 15 iter Total Time ∞ 50 dB 40 dB

Conj. Phase 6 0.4 0.2 0.6 30.7 37.3 46.5
CG-NUFFT 6 0.4 5.0 5.4 5.6 16.7 26.5
CG-Toeplitz 8 0.4 0.2 0.6 1.3 2.5 5.5 16.7 26.4

Table 7.2: CPU times (seconds), including precomputation times, and NRMS error (%) for three field-corrected MR
image reconstruction methods. The proposed CG-Toeplitz approach is faster than CG-NUFFT yet equally accurate.

tab,mr,cpu
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Figure 7.6.5: NRMSE of x̂ versus approximation order
L for the three field-corrected reconstruction methods for
the spiral trajectory.
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Figure 7.6.6: Reconstructed images for the Cartesian tra-
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fig_mri_race_xh_cartesian

https://creativecommons.org/licenses/by-nc-nd/4.0/


c© J. Fessler. [license] December 10, 2018 7.18

Uncorrected Conj. Phase, L=6

CG−NUFFT

L=6

CG−Toeplitz

L=8

  0

2.5

Figure 7.6.7: Reconstructed images for the spiral trajec-
tory.
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7.7 Field gradients (s,mr,grad)
s,mr,grad

The assumption that the field map ω(~x) is constant over each voxel is inaccurate in regions with susceptibility gradients
[87]. A more accurate model than (7.2.4) is to assume that ω(~x) is a linear function within each voxel:

z(~x) =

np∑
j=1

[zj + ı~γj · (~x− ~xj)] b(~x− ~xj),

where ~γj denotes the gradient vector of ω(~x) at the center of each voxel. (These gradients can be estimated from
measured field maps [87].) Under this more general model, the signal equation (7.2.1) simplifies as follows:

ȳi(x) = E[yi] =

∫ np∑
j=1

xj b(~x− ~xj) e−[zj+ı~γj ·(~x−~xj)]ti e−ı2π~νi·~x d~x

=

np∑
j=1

xj

∫
b(~x′) e−[zj+ı~γj ·~x′]ti e−ı2π~νi·(~x

′+~xj) d~x′, ~x′ = ~x− ~xj

=

np∑
j=1

xj

[
e−zjti B

(
~νi +

ti
2π
~γj

)]
e−ı2π~νi·~xj . (7.7.1)

e,mr,ybi,grad

For a fast implementation, here we need to make an approximation of the form

e−zjti B

(
~νi +

ti
2π
~γj

)
≈

L∑
l=1

bilclj .

To choose B and C here, we can histogram the zj and ~γj values and apply the histogram PCA method described in
§7.4.3.3.

todoa: study full SVD for this case? Man’s argument that exponential basis is nearly optimal would not apply here.
todoa: because B is sinc = sin(x) / x, then perhaps we still almost have exponentials here!
todoa: idea: for estimating field map and its gradients, parameterize map, map-x-gradient, and map-y-gradient,

and penalize difference between the map finite differences and the map-*-gradient.
todoa: susp gradient about 0.02 G/cm, whereas slice-selection gradient about 0.5 G/cm
We have focused in this section on local gradients in the field map ω(~x). Using Laplace transforms instead of

Fourier transforms, one could generalize the results to consider gradients in the relaxation map α(~x), but that is
unlikely to have significant effects.

todoa: [93] susceptibility gradient mapping (SGM)

7.8 Through-plane field gradients
In the recent literature on MR image reconstruction, iterative methods have been proposed for reconstructing fMRI im-
ages while compensating for the effects of field inhomogeneity e.g., [59, 94]. However, the existing methods assume
that the field inhomogeneity is constant within each voxel. In practice, the field varies across each voxel, a physically
important property that is ignored by the existing methods. The through-plane field gradients are particularly important
and are the focus here.

For slice-selective MR imaging a reasonable model for the received signal is

s(t) =

∫∫∫
h(z) f(x, y, z) e−ıω(x,y,z)t e−ı2π(kx(t)x+ky(t)y) dxdy dz, (7.8.1)

e,mr,grad,s

where h(z) denotes the (known) slice-selection profile, f(x, y, z) denotes the (unknown) transverse magnetization, ω
(x,y,z) denotes the off-resonance frequency (field map) and (kx(t), ky(t)) denotes the k-space trajectory of the scan.
The goal in 2D imaging is to estimate f(x, y, 0) from noisy samples of the received signal s(t).

In fMRI, through-plane field gradients cause spins in different planes within a voxel to become out of phase and
thus lead to significant signal losses in images reconstructed by conventional methods. Iterative image reconstruction
methods offer the option of modeling the effects of through-plane field gradients and thus may provide improved
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image quality. If we focus on the through-plane field gradients (and ignore for simplicity the in-plane field gradients)
a reasonable model for the off-resonance frequency (field map) is

ω(x, y, z) =

np∑
j=1

rect2

(
x− xj

∆
,
y − yj

∆

)
(ωj + 2πgjz) (7.8.2)

e,mr,grad,om

where (xj , yj) denotes the center of the jth voxel, ωj denotes the off-resonance frequency at the center of the jth voxel
and gj denotes the field map through-plane gradient within the jth voxel, in units of Hz per cm. We can determine
{ωj} and {gj} using field map estimation methods and central differences [95]. For the transverse magnetization of
the object we use the usual series expansion model:

f(x, y, z) =

np∑
j=1

fj rect2

(
x− xj

∆
,
y − yj

∆

)
. (7.8.3)

e,mr,grad,f

Substituting (7.8.2) and (7.8.3) into (7.8.1) and simplifying leads to the model

s(t) =

∫∫ np∑
j=1

H(tgj) fj rect2

(
x− xj

∆
,
y − yj

∆

)
e−ıωjt e−ı2π(kx(t)x+ky(t)y) dxdy

= sinc2(kx(t)∆, ky(t)∆)

np∑
j=1

H(tgj) e−ıωjt e−ı2π(kx(t)xj+ky(t)yj) fj , (7.8.4)
e,mr,grad,s,disc

where H denotes the Fourier transform of h. In the absence of through-plane field gradients, i.e., if gj = 0, then the
above model is equivalent to the approach described in [59, 94] and is thus amenable to the fast iterative algorithms
described therein. However, the presence of the term H(tgj) prohibits use of those previous methods.

To address this problem, we consider a 2nd-order Taylor expansion of H around the point gj = 0:

H(ν) ≈ H(0) +
1

2
Ḧ(0) ν2 = 1 +

1

2
Ḧ(0) ν2, (7.8.5)

e,mr,grad,H

where we assume that Ḣ(0) = 0 because the slice profile h(z) is symmetric, and furthermore that the slice profile is
normalized such that H(0) = 1. For example, for a gaussian slice profile with h(z) = (1/4Z) e−π(z/4Z)2 , we have
H(ν) = e−π(4Zν)2 so Ḧ(0) = −2π42

Z .As another example, if h(z) = (1/4Z) rect(z/4Z) thenH(ν) = sinc(4Zν)
so Ḧ(0) = − 42

Z π
2/3. Physically, these negative signs correspond to the signal loss associated with through-plane

gradients.
Substituting (7.8.5) into (7.8.4) leads to the approximate signal model

s(t) ≈ sinc2(kx(t)∆, ky(t)∆)

np∑
j=1

e−ıωjt e−ı2π(kx(t)xj+ky(t)yj) fj (7.8.6)

+
1

2
Ḧ(0) t2 sinc2(kx(t)∆, ky(t)∆)

np∑
j=1

e−ıωjt e−ı2π(kx(t)xj+ky(t)yj) (g2
j fj). (7.8.7)

e,mr,grad,s,approx

This model is now amenable to the types of fast algorithms described in [59, 94]. Essentially, to compute the signal
samples s(ti) using the above model requires two time-segmented NUFFT calls [59], one applied to {fj} itself, and
the other applied to

{
g2
j fj
}

, along with some other simple multiplication operations.
To increase accuracy, one could use a 4th-order Taylor series, which would then require three time-segmented

NUFFT calls for each signal evaluation (or adjoint thereof). Alternatively, one could apply generalizations any of the
approximations described in §7.4 [94], i.e., find bil and clj values for which

H(tigj) e−ıωjti ≈
L∑
l=1

bilclj ,

which leads to the signal approximation

s(ti) ≈
L∑
l=1

bil sinc2(kx(ti)∆, ky(ti)∆)

 np∑
j=1

e−ı2π(kx(ti)xj+ky(ti)yj) (cljfj)

 .
This can be implemented using L NUFFT calls. An intriguing option is the histogram PCA approach of §7.4.3.3.
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7.9 Fieldmap estimation (s,mr,fieldmap)
s,mr,fieldmap

For field-corrected MR image reconstruction, one must have available an estimate of the fieldmap ω = (ω1, . . . , ωnp
).

A common approach to measuring fieldmaps is to acquire two scans of the object with slightly different echo times,
and then to reconstruct images y and z (without field correction) from those two scans. The usual model for those
reconstructed images is

yj = fj + εj

zj = fj eıωj4T + ηj , (7.9.1)
e,mr,fieldmap,yz

where 4T denotes the echo-time difference, fj denotes the underlying complex transverse magnetization in the jth
voxel, and εj and ηj denote (complex) noise. The goal is to estimate ω from y and z, whereas f = (f1, . . . , fnp)
is a nuisance parameter vector. For simplicity, we define the unknown phase to be xj = ωj4T, so that the goal is
to estimate x from y and z. The next section reviews the standard approach for this problem. Subsequent sections
describe three new and improved methods.

7.9.1 Conventional phase / fieldmap estimator
The usual estimator x̂j uses the phase difference of the two images, computed as follows:

x̂j = ∠(y∗j zj) = ∠zj − ∠yj , (7.9.2)
e,mr,fieldmap,usual

and the fieldmap estimate is simply a scaled version: ω̂j = x̂j/ 4T . This expression would work perfectly in the
absence of noise and phase wrapping, within any voxels where |fj | > 0. However, (7.9.2) can be very sensitive to
noise, particularly in voxels where the image magnitude |fj | is small relative to the noise deviations. Furthermore,
that estimate ignores our a priori knowledge that fieldmaps tend to be smooth or piecewise smooth. Although one
could try to smooth the above estimate using a lowpass filter, usually many of the x̂j values are severely corrupted so
smoothing will further propagate such errors. Instead, we propose below to integrate the smoothing into the estimation
of x in the first place, rather than trying to “fix” the noise in x̂ by post processing.

7.9.2 Maximum-likelihood phase / fieldmap estimations,mr,fieldmap,ml

The conventional estimate (7.9.2) appears to disregard noise effects, so a natural approach is to estimate x using a
maximum likelihood (ML) method based on a statistical model for the measurements y and z. In MR, the k-space
measurements have zero-mean white gaussian complex noise, and we furthermore assume that the additive noise
values in y and z in (7.9.1) are independent and have the same variance σ2. Under these assumptions, the joint
log-likelihood for f and x given y and z is

log p(y;f) + log p(z;f ,x) ≡ −1

2σ2

np∑
j=1

|yj − fj |2 + |zj − fj eıxj |2 ,

where “≡” denotes equality to within constants independent of x. Thus, simultaneous ML estimation of f and x is
achieved by the following minimization problem:

arg min
x∈Rnp

arg min
f∈Cnp

np∑
j=1

∥∥∥∥[ yj
zj

]
−
[

1
eıxj

]
fj

∥∥∥∥2

.

This problem is quadratic in fj , leading to the following ML estimate:

f̂j =
yj + e−ıxj zj

2
.

Substituting this estimate back into the cost function and simplifying yields the following minimization problem for
ML estimation of x:

arg min
x

Ψ(x), Ψ(x) =

np∑
j=1

1

2

∣∣yj − e−ıxj zj
∣∣2 . (7.9.3)

e,mr,fieldmap,ml,kost
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Now note that

1

2

∣∣yj − e−ıxj zj
∣∣2 ≡ −1

2

(
yj eıxj z∗j + y∗j e−ıxj zj

)
= − real

{
y∗j e−ıxj zj

}
= − |yjzj | cos(∠zj − ∠yj − xj) .

Thus the cost function is equivalent to

Ψ(x) ≡
np∑
j=1

|yjzj | [1− cos(∠zj − ∠yj − xj)] . (7.9.4)
e,mr,fieldmap,Kx,ML

The ML estimate is not unique here due to the possibility of phase wrapping. But ignoring that issue, because 1−cos(t)
has a minimum at zero, the ML estimate of x is x̂j = ∠zj − ∠yj , which is simply the usual estimate (7.9.2) once
again. Thus the usual method is in fact an ML estimator under the white gaussian noise model!

7.9.3 Penalized likelihood phase / fieldmap estimation
The ML estimator ignores our a priori knowledge that fieldmaps tend to be spatially smooth functions due to the
physical nature of main field inhomogeneity and susceptibility effects. A natural approach to incorporating this char-
acteristic is to add a regularizing roughness penalty to the cost function. (A similar approach was applied for estimating
spin density, T1, and T2 maps in [114].) Here we regularize only the phase map x and not the magnetization map f ;
we expect f to be far less smooth because it contains anatomical details. Such regularization is equivalent to replacing
ML estimation with a certain Bayesian MAP estimator. In either case, the resulting regularized cost function has the
form

Ψ(x) =

np∑
j=1

|yjzj | [1− cos(∠zj − ∠yj − xj)] + βR(x), (7.9.5)
e,mr,fieldmap,Kx,PL

where R(x) is a spatial roughness penalty. This cost function automatically gives low weight to any voxels where the
magnitude |yjzj | is small. (Similar weighting appeared in the weighted phase estimate proposed in [115] for angiog-
raphy.) For such voxels, the regularization term will have the effect of smoothing or extrapolating the neighboring
values. Thus, this approach avoids the phase “outlier” problem that plagues the usual estimate (7.9.2) in voxels with
low signal magnitude.

If x corresponds to a M ×N fieldmap x[m,n], then a typical regularizing roughness penalty uses the differences
between horizontal and vertical neighboring voxel values as follows:

R(x) =

M−1∑
m=1

N−1∑
n=0

ψ(x[m,n]−x[m− 1, n]) +

M−1∑
m=0

N−1∑
n=1

ψ(x[m,n]−x[m,n− 1]) . (7.9.6)
e,mr,fieldmap,R,1st

Usuallyψ is differentiable, so we can minimize the cost function Ψ(x) either by conventional gradient descent methods
or by optimization transfer methods as described in §20.18. In particular, in the usual case where ψ̇(t) /t is bounded
by unity, then the following iteration is guaranteed to decrease Ψ(x) monotonically:

x(n+1) = x(n) − diag

{
1

|yjzj |+ β · 4

}
∇Ψ(x(n)), (7.9.7)

e,mr,fieldmap,xnn

because the second derivative of 1−cos t is bounded above by unity. This algorithm will converge to a local minimizer
of Ψ(x) within the “basin” that contains the initial estimate [116]. We use the ML estimate to initialize x(0).

7.9.4 Phase-based estimator
An alternative approach is to discard the magnitude of zj and yj and use only the phases ∠zj and ∠yj . The distribution
of these phases is given in [117], along with a convenient approximation. The drawback of using only the phase
information is that it disregards the fact that the magnitude fj is the same (in the absence of motion etc.) between zj
and yj , and this constraint adds information. Quantifying the benefit of this constraint is an open problem.

7.9.5 PWLS fieldmap estimator
Usually the time delay 4T is chosen to ensure that there will be little if any phase wrapping. In such cases, we can
simplify computation by approximating the 1 − cos term in (7.9.5) with its second-order Taylor series: 1 − cos(t) ≈
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t2/2. Substituting this approximation into (7.9.5) leads to the following penalized weighted least squares (PWLS) cost
function for estimating x:

x̂ = arg min
x

Ψ(x), Ψ(x) =

np∑
j=1

wj
1

2
(∠zj − ∠yj − xj)2

+ βR(x), (7.9.8)
e,mr,fieldmap,pwls

where we define a magnitude-dependent weighting function as follows:

wj , |yjzj | . (7.9.9)
e,mr,fieldmap,wj

Similar PWLS estimators have been applied in a variety of applications, including PET image reconstruction [118]
and in gradient vector flow [119] for contour estimation. Such estimators give more weight to the “good data” and
less weight to the noisy data, and use regularization to control noise. Weighting has been used previously for field map
fitting, e.g., [80].

In the current image processing literature, edge-preserving potential functions ψ are quite popular. However,
because fieldmaps are spatially smooth and often free of “edges,” typically we use the quadratic function ψ(t) = t2/2.
Because in this case the cost function (7.9.8) is quadratic, it is minimized easily by the conjugate-gradient (CG)
algorithm. We denote the resulting method as QPWLS-CG. If one encounters fieldmaps that have steep gradients,
then it may be preferable to use an edge-preserving potential function ψ. In such cases one can use a CG algorithm
with a modified line search [90] to minimize Ψ efficiently. However, the model (7.9.1) may be unrealistic if the field
gradients are so steep that there is substantial within-voxel variation. For such cases it may be necessary to consider
other formulations such as the k-space approach described in §7.9.8.

To further simplify processing, one could binarize the weights wj using a threshold:

wj ,

{
1, |yjzj | > γ
0, otherwise,

(7.9.10)
e,mr,fieldmap,wj,binary

where we set the threshold γ to include only voxels with “sufficiently large” magnitude, e.g., γ = 0.4 maxj |yjzj | .
This approach was used routinely in our group prior to the development of the ML-based weighting in (7.9.8).

The primary limitation on of the cost function (7.9.8) is that it ignores any phase wrap that may occur when
evaluating (7.9.2). If such phase wrap is possible, then it may be preferable to use the penalized likelihood estimator
(7.9.5).

MIRT See mri_phase_denoise.m.

7.9.6 Results
Fig. 7.9.1 shows an example of the data magnitude |yj | and the usual phase estimate (7.9.2) which is very noisy. It
also shows the penalized likelihood estimate based on (7.9.7), the QPWLS estimate from (7.9.8), and the QPWLS
estimate using (7.9.10). The normalized RMS difference between the penalized likelihood method and the QPWLS
approximation (7.9.8) was 3.1%, whereas the QPWLS results based on the binary weights (7.9.10) differed by over
40% normalized RMS.

For a quantitative evaluation, Fig. 7.9.2 shows a simulation case. We used the fieldmap shown in Fig. 7.9.2 as the
true fieldmap. We multiplied the magnitude image shown in Fig. 7.9.2 by eıωj4T and added complex white gaussian
noise, yielding an SNR of 16.4 dB. Fig. 7.9.3 shows a second simulation, using a synthetic fieldmap, where the SNR
was 10.1 dB. The accuracy of the estimated fieldmaps is summarized in the following table.

Simulation 1 Simulation 2
Method RMS Error [Hz] Max Error [Hz] RMS Error [Hz] Max Error [Hz]
Conventional 23.3 270 16.0 198
Penalized-likelihood 2.7 19 5.9 63
QPWLS (ML wi) 2.7 20 5.8 64
QPWLS (simple wi) 14.3 119 8.6 110

In all of these results, and others not shown, the PL method and the QPWLS method using (7.9.9) performed the
best. Compared to penalized-likelihood, the QPWLS cost function is somewhat easier to minimize, so QPWLS with
the approximation (7.9.8) is a practical and accurate approach in the usual cases where phase wrapping is not expected.
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Figure 7.9.1: Top row: magnitude image |yj |, usual phase estimate (7.9.2), and binary weights wj in (7.9.10). Bottom
row (phase estimates): penalized likelihood using (7.9.7), QPWLS using (7.9.8), and QPWLS using (7.9.10).
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Figure 7.9.2: Images used for fieldmap smoothing simulation. Top row: true field map xj/4T, usual estimate (7.9.2),
penalized likelihood using (7.9.7), QPWLS using (7.9.8), and QPWLS using (7.9.10). Display range from -40 to 120
Hz. Bottom row magnitude image |yj |, and error of each estimate, displayed over the range -20 to 20 Hz.
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Figure 7.9.3: Simulation results using a synthetic fieldmap. (Display is same as Fig. 7.9.2.)
fig_mri_phase_denoise_sim2

7.9.7 Spatial resolution analysis of fieldmap estimation
One drawback of the regularized methods (7.9.5) and (7.9.8) above is that the user must select the regularization
parameter β, which could seem tedious if one uses trial-and-error methods. Fortunately, it is particularly simple to
analyze the spatial resolution properties for this problem, using the methods in [120] for example. (See Chapter 22.)
The local frequency response of the QPWLS estimator (7.9.8) at the jth voxel can be shown to be

H(Ω1,Ω2) ≈ 1

1 + β/wj(Ω2
1 + Ω2

2)p
, (7.9.11)

e,mr,fieldmap,Hoo

where p = 1 for regularization based on first-order differences as in (7.9.6), and p = 2 for 2nd-order finite differences.
(See [121] for related analysis.) Using this form, one can use the inverse 2D DSFT to compute the PSF h[m,n] and
tabulate its FWHM as a function of β/wj . Fig. 7.9.4 shows this FWHM as a function of log2(β/wj), for both p = 1
and p = 2. The FWHM increases monotonically with β, as expected, although the “knees” in the curve are curious.
Nevertheless, one can use this graph to select the appropriate β given the desired spatial resolution in the estimated
fieldmap. To simplify such selection, we normalize the weights in (7.9.9) by the median of the nonzero values so that
the “typical” wj value is unity. The resulting spatial resolution will be inherently nonuniform, with more smoothing
in the regions with low magnitudes wj and vice versa. One could explore modified regularization methods [120]
to make the resolution uniform, but in this application nonuniform resolution seems appropriate because the goals
include “interpolating” across signal voids.

Fig. 7.9.5 shows that the shape of the PSF depends strongly on whether one uses regularization based on 1st-order
or 2nd-order finite differences. These profiles suggest that 2nd-order differences are preferable because the PSF tails
decrease more rapidly even though the FWHM values are identical.

MIRT See qpwls_psf.m.

7.9.8 Fieldmap estimation in k-spaces,mr,fieldmap,kspace

The methods described above estimate the fieldmap from two reconstructed images. To work well, those images
should be relatively free of artifacts, blur, and distortions, necessitating appropriate data acquisition types. For pulse
sequences with long readout times, it may be more appropriate to estimate the fieldmap directly from the raw k-space
data. A typical scenario is that we can collect two sets of k-space data, with slightly different echo times. A reasonable
model for the data is:

E
[
y

(l)
i

]
=

∫
f(~x) e−ı ω(~x)(ti+l4T) e−ı2π~νi·~x d~x, l = 0, 1.
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Figure 7.9.4: Angularly averaged FWHM of PSF for fieldmap estimation as a function of log2 β for wj = 1.
fig_mr_fieldmap_psf

−20 −10 0 10 20

0

0.2

0.4

0.6

0.8

1

horizontal pixel

N
o

rm
a

liz
e

d
 P

S
F

 p
ro

fi
le

2nd−order

1st−order

Figure 7.9.5: Profiles through reconstructed PSF corresponding to (7.9.11) for regularization based on 1st-order or
2nd-order finite differences. The regularization parameter β was chosen in both cases so that the FWHM was 3 pixels.
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We want to estimate f(~x) and ω(~x) from y(0) and y(1). This is a joint estimation problem like that described in [62].
One can define a cost function in terms of f and ω, and then alternate between holding ω fixed and minimizing over f
(using the conjugate gradient methods) and then holding f fixed and minimizing overω (using steepest descent [62] or
linearization [69] or optimization transfer methods akin to [122]). These k-space methods require considerably more
computation than the image domain methods, so one should first apply an image-domain method to get a reasonable
initial estimate of the fieldmap ω. It might be particularly easy to implement such methods using modified EPI
trajectories [123].

todob: elaborate on approach in [122] i.e., separate regularization of magnitude and phase. In particular, as
suggested by Gary Glover (at ISBI 2004?), could start by deriving a majorizer for both magnitude and phase jointly
See also [124–126].

It would be of interest to generalize the approach to phased array coils cf., [127].
todoa: using multiple echos [47, 128, 129].
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7.10 Relaxation map estimation (s,mr,relaxmap)
s,mr,relaxmap

In some MR applications, it is useful to estimate tissue relaxation parameters, particularly T2, on a pixel-by-pixel
basis, e.g., [130–132]. One approach to measuring such relaxation parameters is to acquire a “baseline” scan of the
object and then acquire L ≥ 1 additional scans having different echo times. One then reconstructs images y and
z1, . . . ,zL from those scans. The usual model for those reconstructed images is

yj = fj + εj

zlj = fj e−τlxj + ηj , (7.10.1)
e,mr,relaxmap,yz

where τl denotes the echo-time difference of the lth scan relative to the baseline scan, fj denotes the underlying com-
plex transverse magnetization in the jth voxel for the baseline scan, and εj and ηj denote (complex) noise. The goal
is to estimate the relaxation parameters x = (x1, . . . , xnp

) and the magnetization values f = (f1, . . . , fnp
) from the

images y and {zl}. The most challenging aspect of this problem is that the signal model (7.10.1) depends nonlinearly
on the relaxation parameters x. The next section reviews the standard approach for this problem. Subsequent sections
describe new methods.

7.10.1 Conventional relaxation map estimator
The usual estimator x̂j uses a pixel-wise LS fit to the log of the image magnitudes, as follows:

arg min
β0,xj

∥∥∥∥∥∥∥∥∥


log |yj |
log |z1j |
...
log |zLj |

−


1 0
1 −τ1
...

...
1 −τL


[
β0

xj

]∥∥∥∥∥∥∥∥∥ .
The solution is:

x̂j =
τs log |yj |+

∑L
l=1(τs − (L+ 1)τl) log |zlj |

(L+ 1)
∑L
l=1 τ

2
l − τ2

s

, (7.10.2)
e,mr,relaxmap,usual

where τs ,
∑L
l=1 τl. In particular, when L = 1 this simplifies to

x̂j =
log |yj | − log |z1j |

τ1
. (7.10.3)

e,mr,relaxmap,xhj,L=2

These expressions would work perfectly in the absence of noise, within any voxels where |fj | > 0. However, (7.10.2)
can be very sensitive to noise, particularly in voxels where the image magnitude |fj | is small relative to the noise
deviations. One could apply post-processing to try to filter out the noise, e.g., [133], but it would be preferable to
reduce the errors at the outset.

7.10.2 Maximum-likelihood relaxation map estimations,mr,relaxmap,ml

Because the conventional estimate (7.10.2) appears to disregard noise effects, a natural approach is to estimate x using
a maximum likelihood (ML) method based on a statistical model for the measurements y and z = z1, . . . ,zL. In
MR, the measurements have white gaussian complex noise, and we assume that the additive noise values in y and z
in (7.10.1) are independent and have the same variance σ2. Under these assumptions, the log-likelihood for f and x
given y and z is

log p(y;f) + log p(z;f ,x) ≡ −1

2σ2

np∑
j=1

[
|yj − fj |2 +

L∑
l=1

∣∣zlj − fj e−τlxj
∣∣2] ,

where “≡” denotes equality to within constants independent of x. We would like to jointly minimize over f and x
for simultaneous ML estimation For the case L = 1, one can show (with tedious algebra) that (7.10.3) is in fact the
ML estimate of xj . For L > 1, there is no apparent simple expression for the ML estimate, but presumably it is still
sensitive to noise for voxels where |fj | is small, because when |fj | is small, the measurements zlj in (7.10.1) depend
only weakly on xj .
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7.10.3 Penalized-likelihood relaxation map estimation
To control noise, we introduce regularization, albeit cautiously because relaxation maps are likely to be much less
smooth than fieldmaps and sensitivity maps, because relaxation is a tissue characteristic. We propose the following
regularized cost function:

np∑
j=1

[
|yj − fj |2 +

L∑
l=1

∣∣zlj − fj e−τlxj
∣∣2]+ βR(x) +R0(f), (7.10.4)

e,mr,relaxmap,Kx,PL

where R(x) and R0(f) are spatial roughness penalties. We will use edge-preserving regularization.
To minimize this cost function, we initialize x̂ using the usual estimator (7.10.2). We then alternate between

updating f̂ and then updating x̂. The data-fit term above is quadratic in f , so the CG algorithm is well suited to
updating f̂ . For updating x̂, one option is to use CG after linearizing around the previous estimate of x. Alternatively,
we can apply optimization transfer methods. We rewrite the second term above as

np∑
j=1

L∑
l=1

h̄i(xj ; zlj , fj , τl),

where we define the marginal negative log-likelihood by

h̄i(x; z, f, t) =
1

2

∣∣z − f e−tx
∣∣2 ≡ 1

2
|f |2 e−2tx − real{z∗f} e−tx .

The second derivative of this function is

∂2

∂x2
¨̄hi(x; z, f, t) = 2t2 |f |2 e−2tx − t2 real{z∗f} e−tx = t2 e−tx

(
2 |f |2 e−tx − real{z∗f}

)
,

which, for x ≥ 0, is bounded above by

c̆i = 2t2 |f |2 + t2 [− real{z∗f}]+ .

Thus we can use a separable quadratic surrogate with those (maximum) curvatures to minimize the above cost function
with respect to x via a monotonic algorithm.

todo: does it satisfy the conditions in [49]? if so, replace with optimal curvature. paul reggentin project w15

7.10.4 Multiple receive coils
If we have multiple receive coils, an appropriate measurement model is

zklj = skjfj e−τlxj + εklj

for k = 1, . . . ,K where K is the number of coils and for l = 0, . . . , L where τ0 = 0, and where skj is the sensitivity
of the kth coil at the jth voxel. Ignoring possible noise correlation between coils, the negative log-likelihood is

L- (x, s,f) =
1

2σ2

K∑
k=1

L∑
l=0

∣∣zklj − skjfj e−τlxj
∣∣2 .

We can jointly estimate the underlying object f , the sensitivity maps s1, . . . , sK for each coil, and the relaxation map
x by combining this log-likelihood with appropriate regularizers. We would use strong quadratic regularization for
the coil sensitivity maps because they are smooth functions.

For optimization we need the following partial derivatives:

∂

∂xj
L- (x, s,f) =

1

σ2

K∑
k=1

L∑
l=0

real
{
s∗kjf

∗
j τl e

−τlxj
(
zklj − skjfj e−τlxj

)}
∂2

∂x2
j

L- (x, s,f) ≈ 1

σ2

K∑
k=1

L∑
l=0

∣∣skjfjτl e−τlxj
∣∣2 ≈ κ2

j ,
1

σ2

L∑
l=0

τl

K∑
k=1

|zklj |2 .

We want a “typical” κj value in a good signal region to be about unity to facilitate regularization parameter selection.
Let κ̄ denote, say, the median of the κj values in the high signal regions. Then we normalize the data by

z̃klj , zklj/κ̄,

so that the typical κj value will be about unity.
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7.10.5 Regularized linear LS relaxation map estimation
Regularized (linear) weighted least-squares methods are also be possible for this problem by taking the logarithm of
the magnitudes of yj and zlj [68].

7.10.6 Relaxation map estimation from k-space datas,mr,relaxmap,kspace

The image-domain measurement model (7.10.1) assumes implicitly that all of the relaxation occurs at the echo time.
In practice, there is also relaxation during the signal readout, e.g., [132], and in some types of scans modeling this
relaxation may be important, so we may want to estimate the relaxation map directly from the k-space data. Further-
more, starting with reconstructed images (7.10.1) requires that we either fully sample k-space, or use parallel imaging
and/or compressed sensing to handle under-sampled k-space data. Since fj is complex and xj is real, there are 3 real
unknown parameters per voxel, whereas there are 2(L+ 1) complex reconstructed image values per voxel in (7.10.1)
so possibly even more under-sampling could be tolerated. Exploiting this potential is an open problem. Ignoring field
inhomogeneity, a reasonable model for the k-space data is:

E
[
y

(l)
i

]
=

∫
f(~x) e−(ti+τl)α(~x) e−ı2π~νi·~x d~x, l = 0, 1, . . . , L,

where α(~x) denotes the unknown relaxation map. We want to estimate f(~x) and α(~x) from
{
y(l)
}

. This is a joint
estimation problem like that described in [69]. One can define a cost function in terms of f and α, and then alternate
between holding α fixed and minimizing over f (using the conjugate gradient methods) and then holding f fixed
and minimizing over ω (using steepest descent with linearization [69]). Developing suitable optimization transfer
methods akin to [122] is an open problem. These k-space methods require considerably more computation than the
image domain methods, so one should first apply an image-domain method to get a reasonable initial estimate of the
relaxation map α.

There is also an exponential relationship between contrast concentration and MR signal in some applications, e.g.,
[134]. Adapting the techniques described above to such applications is an interesting open problem.
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7.11 B1+ map estimation (s,mr,b1map)
s,mr,b1map

A challenge in MR imaging is that RF transmit coils produce nonuniform field strengths, so an excitation pulse will
produce tip angles that vary substantially from the desired tip angle over the field of view. For parallel transmit
excitation (using a coil array), it is important to have a map of the B1+ field strength (and phase) for RF pulse design.

A conventional approach to B1 mapping is to collect two scans, one of which uses twice the RF amplitude of the
other, e.g., [135–139]. A model for the reconstructed images is

yj1 = fj sin(αj) +ε1j

yj2 = fj sin(2αj) +ε1j ,

where αj is the unknown tip angle at the jth voxel. Estimating αj is equivalent to estimating the B1+ field strength at
the jth voxel. Using the double angle formula:

E[yj2]

E[yj1]
=

sin(2αj)

sin(αj)
= 2 cos(αj) .

The standard estimate of αj is a method-of-moments estimator that ignores the noise in the data:

α̂j = arccos

(
1

2

yj2
yj1

)
. (7.11.1)

e,mr,b1map,alf

This method has several limitations. It performs poorly in image regions with low spin density, i.e., where yj1 is small.
It suffers from 2π ambiguities if αj is too large, yet it would be sensitive to noise if αj is too small. And it does not
immediately generalize to the more general case where we acquire multiple scans to cover a larger range of tip angles,
possibly even angles that are larger than 2π in some image regions.

7.11.1 Signal model for multiple coils, multiple tip angles
Suppose there are K coils and we separately transmit from each coil and then receive from a common coil. Suppose
for each coil we apply a sequence of L nominal tip angles with known relative RF amplitudes al, for l = 1, . . . , L. We
model the resulting K × L reconstructed images as follows:

yjkl = fj eıϕjk sin(alxjk) +εjkl (7.11.2)
e,mr,b1mp,yjkl

for k = 1, . . . ,K and j = 1, . . . , np, where fj denotes the underlying object transverse magnetization in the jth
voxel, ϕjk denotes the phase of the kth coil at the jth voxel, and εjkl denotes zero-mean complex gaussian noise.
Finally, xjk denotes the unknown “B1 map” that relates RF amplitude to tip angle at the jth voxel for the kth coil. If
the units of the amplitudes al are gauss, then the units of xjk will be radians per gauss. More typically, the units of al
are arbitrary, and all that is known is their relative values. In this case xjk will have units such that the product of al
and xjk has units of radians. This should suffice for RF pulse design.

The goal is to estimate each B1 map xk , (x1k, . . . , xnpk) and phase map φk , (ϕ1k, . . . , ϕnpk) from the
reconstructed images {yjkl}. The underlying magnetization f , (f1, . . . , fnp) is also unknown but is a nuisance
parameter. We would like the estimator to work robustly even in image regions where fj is small.

If fj were allowed to be complex, then the model above would be non-identifiable because we could add phase to
f and subtract the same phase from each φk and E[yjkl] would remain unchanged. To make the problem identifiable,
one could assume that ϕj1 is zero and then all the other ϕjk values would be relative phases. Instead, we take the
approach of constraining f to be real. This reduces the ambiguity to a sign change of f and a corresponding π phase
shift in each ϕjk.

Kerr et al. [140] consider a similar problem, except they assume the al values are powers of two, and they use the
following cost function: ∑

l

(|yjkl| − |fj | sin(|alxjk|))2
.

This cost function does not corresponding to the complex gaussian statistical model for the data. They applied a
general purpose minimization method from MATLAB. Most importantly, for each voxel they used only the value of
tip index l for which the tip was closest to π/2. In contrast, we use all the data at every voxel, with a statistically
motivated cost function, and a minimization algorithm that is tailored to this problem. We allow arbitrary choices for
the al values, although powers of two may be a reasonable choice.
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7.11.2 Regularized estimator
We propose to jointly estimate the B1 maps x = (x1, . . . ,xK), the phase maps φ = (φ1, . . . ,φK), and the object f
by finding minimizers of the following cost function:

Ψ(x,φ,f) =

K∑
k=1

 np∑
j=1

L∑
l=1

1

2
|yjkl − fj eıϕjk sin(alxjk)|2 + β1 R(xk) +β2 R(φk)

 .
We use quadratic regularization for the B1 maps xk and the phase maps φk because these are expected be spatially
smooth [141, 142], although edge-preserving regularization could be used if needed. However, we choose not to
regularize the magnetization image f because it will contain detailed structural information.

There is no analytical solution for the minimizer of Ψ(x,φ,f) over all three sets of parameters, so iterative
methods are required. We consider an block alternating minimization approach in which we minimize Ψ by cycling
over each of the three parameter types and minimizing with respect to one parameter vector while holding the other
two at their most recent values.

For given estimates of φ and x, the minimizer of Ψ with respect f is found analytically to be

fj = real

{∑K
k=1

∑L
l=1 e−ıϕjk sin(alxjk) yjkl∑K

k=1

∑L
l=1 sin2(alxjk)

}
. (7.11.3)

e,mr,b1map,fj

For given φ and f values, the problem of minimizing Ψ with respect to the B1 map xk appears nontrivial because
of the nonlinearity of sin(alxjk). Consider just one term in this cost function:

ψ(y, g, a, x) =
1

2
|y − g sin(ax)|2 ≡ − real{yg∗} sin(ax) +

1

2
|g|2 sin2(ax) .

The relevant derivatives of this term are:

∂

∂x
ψ(y, g, a, x) = − real{yg∗} a cos(ax) + |g|2 a sin(ax) cos(ax)

= −a cos(ax) real{g∗ (y − g sin(ax))}
∂2

∂x2
ψ(y, g, a, x) = real{yg∗} a2 sin(ax) + |g|2 a2 cos(2ax) . (7.11.4)

e,mr,b1map,dder

An upper bound for the curvature is

∂2

∂x2
ψ(y, g, a, x) ≤ a2

[
|yg| sin(ax) + |g|2 cos(2ax)

]
≈ a2 |g|2

[
sin2(ax) + cos(2ax)

]
= a2 |g|2 cos2(ax) ≤ a2 |g|2 .

Thus, using the quadratic majorizer principles described in [143] and Chapter 12, a natural iteration for updating xk
is:

x(n+1)

k = x(n)

k − diag

{
1∑L

l=1 a
2
l |fj |

2
+ rβ1

}
∇xk

Ψ(x(n),φ,f) .

The factor “r” depends on the choice of the regularizer R(xk); see (1.11.5) and Example 12.6.1. For 2nd-order finite
differences with the 8 nearest neighbors, this factor is 4 · 4 · (2 + 2/

√
2).

MIRT See Robject.denom.
For given f and x values, the problem of finding the minimizer with respect to the phase map φ has essentially

the same mathematical form as the fieldmap estimation problem described in (7.9.3) and (7.9.5). In particular,

K∑
k=1

L∑
l=1

1

2
|yjkl − fj eıϕjk sin(alxjk)|2 ≡ −

K∑
k=1

real

{[
fj

L∑
l=1

sin(alxjk) yjkl

]
e−ıϕjk

}
. (7.11.5)

e,mr,b1map,kost,phi

Therefore we can apply the iteration (7.9.7) with appropriate variables, as follows:

φ(n+1)

k = φ(n)

k − diag

{
1∑L

l=1 |yjklfj sin(alxjk)|+ rβ2

}
∇φk

Ψ(x,φ(n),f) .

Note that the only “coupling” between the estimates for the various coils occurs in the object update (7.11.3). The
updates to the B1 maps xk and the phase maps ϕk are decoupled, so they can be parallelized.
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7.11.3 Initializations,mr,b1map,init

The cost function Ψ is nonconvex, so the alternating minimization algorithm described above will descend from the
initial estimates to a local minimum [116]. Thus it is desirable to choose reasonable initial estimates. For xk, the
standard double angle method (7.11.1) is a natural choice. For ϕk, (7.11.5) suggests:

ϕjk = ∠

(
fj

L∑
l=1

sin(alxjk) yjkl

)
.

Finally, for f we can use (7.11.3).
MIRT See mri_b1map.

7.11.4 Cramér-Rao bound analysis
What are the optimal relative amplitudes {al} for B1 mapping? To address this question, we turn to the Cramér-Rao
bound (CRB). Consider the 1D model

yl = g sin(alx) +εl,

with independent complex gaussian noise. Let θ = a1x and define cl = al/a1. Then the negative log-likelihood for θ

− log p(y; θ) ≡
L∑
l=1

1

2σ2
|yl − g sin(clθ)|2

so the Fisher information with respect to θ is, using (7.11.4):

−E

[
∂2

∂θ2
log p(y; θ)

]
=
|g|2

σ2

L∑
l=1

c2l
[
sin2(clθ) + cos(2clθ)

]
=
|g|2

σ2

L∑
l=1

c2l cos2(clθ) .

This expression is the product of a signal-to-noise ratio, |g|2/σ2, times a factor that depends both on the tip angle
θ, and the relative amplitudes {cl}. We would like the estimator to have high Fisher information regardless of the
(unknown) value of θ. A natural criterion is to maximize the worst-case Fisher information:

max
{cl}

min
θ

L∑
l=1

c2l cos2(clθ) =

[
cos2(θ) +

L∑
l=2

c2l cos2(clθ)

]
.

Performing this optimization numerically, we find that c = (1, 2) is optimal for L = 2. For L = 3, the best choice
depends on the maximum relative amplitude allowed. If we require c3 < 4.3, then the optimum is c = (1, c3 − 1, c3),
e.g., c = (1, 3, 4). If we can allow c3 > 4.3, then the optimum is c = (1, c3/2, c3), and one should increase c3 as
much as possible to maximize the worst-case Fisher information, e.g., c = (1, 3, 6). The choice c = (1, 3, 4) has
slightly higher worst-case Fisher information than the choice c = (1, 2, 4), and also has modestly better mean Fisher
information (averaged over possible θ values). It seems difficult to generalize these conclusions to L > 3, so one
would need to use numerical methods.

7.11.5 Simulation study
To evaluate the regularized B1 map estimation method described above, we performed a simulation study using the
true images shown in Fig. 7.11.3. We simulated noisy reconstructed images for L = 3 different nominal tip angles and
K = 4 different transmit coils using the measurement model (7.11.2). The relative amplitudes were al = (10, 20, 30).
We added complex gaussian noise such that the SNR, defined by 10 log10(‖y‖/‖y − E[y]‖) was about 21 dB, yielding
the images shown in Fig. 7.11.1. Fig. 7.11.2 shows the initial estimates using the methods described in §7.11.3. Note
that the standard double angle method only uses two of the three scans. Fig. 7.11.4 shows the regularized estimates.
The reduced noise due to regularization and due to using all the scan data is evident.
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Figure 7.11.1: Simulated MR scans for L = 3 different nominal tip angles for K = 4 different transmit coils.
fig_mri_b1map_sim1_yi
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Figure 7.11.2: Initial estimates of B1 maps, phase maps, and object.
fig_mri_b1map_sim1_init
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Figure 7.11.3: True B1 maps, phase maps, and object used in simulation.
fig_mri_b1map_sim1_true
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Figure 7.11.4: Regularized estimates of B1 maps, phase maps, and object.
fig_mri_b1map_sim1_hat
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7.12 Sensitivity encoded (SENSE) imaging (s,mr,sense)
s,mr,sense

The standard Fourier model considered in Chapter 6 ignores the nonuniform sensitivity of receive coils used in MR
imaging. For qualitative MR imaging, these nonuniform sensitivities are a minor inconvenience and just cause some
image shading. For quantitative purposes like image segmentation, nonuniform coil sensitivity creates a significant
challenge and numerous post-processing methods have been developed for correcting these effects, often called bias
correction, e.g., [152–160]. When multiple receive coils are available, each with a distinct sensitivity pattern, the
partial spatial localization provided by the coils can be exploited to accelerate scanning. This is known as parallel
imaging in MRI. We focus here on sensitivity encoded or (SENSE) imaging [161, 162].

In sensitivity encoding MR imaging, the signal model becomes

sl(t) =

∫
D
f(~x) sl(~x) e−ı2π

~k(t)·~x d~x,

where sl(~x) is the sensitivity map of the lth of L receive coils. Sampling and discretizing as in §7.2 yields the matrix
formulation

y = Bx+ ε, y =

 y1

...
yL

 , B =

 AS1

...
ASL

 , (7.12.1)
e,mr,sense,B

where Sl = diag{slj} with slj = sl(~xj) and A is the Fourier encoding matrix given in (7.2.5). Given sensitivity
maps {s1, . . . , sL}, one can perform penalized-likelihood image reconstruction of x by minimizing the following
cost function:

x̂ = arg min
x

Ψ(x), Ψ(x) =
1

2
(y −Bx)

′
W (y −Bx) + R(x), (7.12.2)

e,mr,sense,cost

whereW denotes the inverse of the noise covariance matrix, i.e.,W = [Cov{y}]−1
.

One can combine SENSE with other acceleration techniques including compressed sensing approaches [163].

7.12.1 Quadratic regularization
The estimator (7.12.2) is simplest if the regularizer R(x) in (7.12.2) is quadratic with Hessian R. We focus on that case
hereafter. (This includes the particularly popular case where Tikhonov regularization is used, i.e., R(x) = β 1

2 ‖x‖
2
,

in which case R = βI. In the quadratic case we have the analytical solution:

x̂ = [B′WB + R]
−1
B′Wy = [F + R]

−1
B′Wy, (7.12.3)

e,mr,sense,xh

where the Fisher information matrix is given by

F = B′WB.

Because of the data ordering in (7.12.1), the covariance matrixW will have the form

W = K ⊗ I,

where I is a nd × nd identity matrix, and K is the inverse of the L × L covariance matrix of the L × 1 vector
y:,i = (y1i, . . . , yLi) . Thus the Fisher information matrix simplifies to

F =

L∑
l′=1

L∑
l=1

Kl′lS
′
l′A
′ASl. (7.12.4)

e,mr,sense,F

The simplest case is whenW = I , in which case

F =

L∑
l=1

S′lA
′ASl.

For the caseR = βI , one can choose β based on the maximum eigenvalue of F [164].
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7.13 Sensitivity map estimation (s,mr,sensemap)
s,mr,sensemap

In sensitivity encoding MR imaging [161], many image reconstruction methods require estimates of the sensitivity
maps of each receive coil. This section describes estimation methods for sensitivity maps.

7.13.1 Estimation from L+ 1 images
The standard approach to estimating sensitivity maps uses the following procedure. First one collects fully-sampled
k-space data using both the body coil and each of the L individual receive coils. Then one reconstructs L+ 1 images
from those measured k-space data sets. Assuming that the body coil has essentially uniform sensitivity over the field
of view, one models the image y reconstructed from the body coil image as

yj = fj + εj , j = 1, . . . , np, (7.13.1)
e,mr,sensemap,yj

where f = f1, . . . , fnp
denotes the true underlying object magnetization, and ε represents noise in that body coil

image. Then one models the images reconstructed from each of the other receive coils as follows:

zlj = sljfj + ηlj , l = 1, . . . , L, j = 1, . . . , np, (7.13.2)
e,mr,sensemap,zlj

where sl = (sl1, . . . , slnp
) denotes the sensitivity map of the lth coil. The goal is to estimate the slj factors from

the L + 1 images y, z1, . . . ,zL. Because RF coil sensitivity factors are complex in general, one must use complex
reconstructed images here.

7.13.1.1 Conventional approach for L+ 1 images

The conventional estimate is to simply divide the body coil image into each receive coil image as follows [162]:

ŝconventional
lj =

zlj
yj
, l = 1, . . . , L, j = 1, . . . , np. (7.13.3)

e,mr,sensemap,usual

This estimate would work adequately in the absence of noise, but, being a ratio, noise will severely corrupt this estimate
anywhere that the body coil image magnitude is small. One can attempt to smooth the ratio to reduce the noise [162],
under the (usually reasonable) assumption that the sensitivity map is a spatially smooth function. But such smoothing
is difficult because the variance of the estimate is very nonstationary.

A preferable approach is to avoid the division altogether, by treating the task as an estimation problem. The
following sections describe estimation methods both for the model (7.13.2) and for a practically preferable case where
no body coil image is acquired.

7.13.1.2 Maximum-likelihood estimation for L+ 1 images

Following §7.9.2, we first analyze a ML approach to finding {s1, . . . , sL} and f from y and {z1, . . . ,zL}. We assume
that the measurement noise values in (7.13.1) and (7.13.2) are all complex white gaussian with the same variance σ2

and independent. Defining s = (s1, . . . , sL), the joint negative log-likelihood of f and s is

L- (f , s) = − log p(y;f)−
L∑
l=1

log p(zl;f , sl)

≡
np∑
j=1

[
|yj − fj |2 +

L∑
l=1

|zlj − sljfj |2
]

=
1

2σ2

np∑
j=1

‖ajfj − bj‖2 , (7.13.4)
e,mr,sensemap,ll

where aj , (1, s1j , . . . , sLj) and bj , (yj , z1j , . . . , zLj). Joint ML estimation of f and s involves the following
optimization problem:

arg min
s∈Cnp×L

arg min
f∈Cnp

L- (f , s) .

Minimizing first over s yields ŝlj = zlj/f̂j , and then substituting this into (7.13.4) and minimizing over fj yields
f̂j = yj . Combining these two ML estimates yields the usual sensitivity map estimator (7.13.3). Just as in the
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fieldmap estimation problem, the conventional method for determining coil sensitivity patterns is in fact a ML estima-
tor. Because this estimator is sensitive to noise, we again proceed to explore regularized alternatives.

In the fieldmap case, we first found the ML estimate of f , substituted that into the log-likelihood, and then added
a penalty function to discourage rough fieldmaps. We can also attempt the same approach here. The ML estimate of
fj for given value of s is

f̂j =
a′jbj

‖aj‖2
=
yj +

∑L
l=1 s

∗
ljzlj

1 +
∑L
l=1 |slj |

2
. (7.13.5)

e,mr,sensemap,fhj

Substituting this estimate back into the log-likelihood and simplifying yields the following expression for the negative
log-likelihood after optimizing over f :

L- (s) , min
f

L- (f , s) ≡
np∑
j=1

∣∣a′jbj∣∣2
‖aj‖2

=

np∑
j=1

∣∣∣yj +
∑L
l=1 s

∗
ljzlj

∣∣∣2
1 +

∑L
l=1 |slj |

2
.

One could incorporate a roughness penalty for s and then optimize the resulting penalized-likelihood objective func-
tion by some gradient-based method to estimate the sensitivity maps s. However, the form of the “reduced” log-
likelihood L- (s) seems more complicated than the original form in (7.13.4). Perhaps there is some quadratic approx-
imation to L- (s) that could be made, by analogy with (7.9.4), but finding one is an open problem. Instead, the next
section formulates a penalized-likelihood approach using the original expression (7.13.4).

An alternative approach is given in [169]. That method assumes a certain noise model for the sensitivity maps
ŝlj and accounts for that variability in the data covariance. Other joint estimation approaches are in [170–172]. [173]
[174] [175]. [176]

7.13.1.3 Penalized-likelihood approach for L+ 1 images

To control noise in the sensitivity maps s, and to provide interpolation and extrapolation of those maps to voxels where
the image magnitude is small, we propose a joint estimation approach based on the following penalized-likelihood
objective function:

L- (f , s) +β

L∑
l=1

R(sl), (7.13.6)
e,mr,sensemap,pl

where R(sl) is a roughness penalty that encourages the lth sensitivity map to be smooth.
To compute the penalized-likelihood estimates, we propose an alternating maximization approach in which we

alternate between updating the estimate of the image f using (7.13.5), and then using that new estimate to update all
of the sensitivity maps. This two-step process is then repeated, hopefully leading to convergence. Given the current
estimate of f , the estimates of each sl can proceed in parallel. To maximize the penalized-likelihood objective function
with respect to sl is equivalent to minimizing the following cost function:

sl
new = arg min

sl∈Cnp

Ψl(sl), Ψl(sl) =
∥∥∥zl − diag

{
f̂j

}
sl

∥∥∥2

+ βR(sl) . (7.13.7)
e,mr,sensemap,pl,vsl

Some recent methods based on related formulations have used edge preserving regularization, e.g., [177]. Because
sensitivity maps are usually smooth, we usually use quadratic regularization, in which case (7.13.7) is a standard
quadratically penalized least-squares problem. The QPWLS-CG algorithm can readily minimize Ψl(sl).

7.13.1.4 Approximate regularized approach for L+ 1 images

If the SNR in the body coil image y is reasonable, then one might hope that the estimate of f in (7.13.5) would con-
verge approximately to simply f̂j = yj . Substituting this approximation into (7.13.7) yields the following regularized
least-squares cost function:

Ψ̃(sl) = ‖zl − diag{yj} sl‖2 + βR(sl) . (7.13.8)
e,mr,sensemap,kost,approx

With this approximation, we estimate each sensitivity map independently of the others by minimizing Ψ̃(sl) using
QPWLS-CG, or by a non-iterative method that exploits the fact that the Hessian is banded in this case. Computa-
tionally, (7.13.8) is preferable because there is no need to alternate between updating s and f , but it has the potential
drawback that it does not fully exploit the dependence of zl on f . A variational version of this simplified approach
was presented in [178].
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7.13.2 Sensitivity map estimation from L images
Acquiring a body coil image y requires extra data acquisition time, and can be inconvenient in some MR scan proto-
cols. It would be preferable to estimate the L sensitivity maps s1, . . . , sL from the L receive coil images z1, . . . ,zL
alone, without using any body coil image y. A few methods have been proposed for this problem, e.g., [179, 180].
Because the underlying object image f is also unknown, this task may seem impossible because there are L + 1
unknown vectors, but only L data vectors given.

7.13.2.1 Conventional approach for L images

When combining images from multiple coils, often one simply takes the square root of the sum-of-squares (SSOS) of
the images [181, 182]:

zj ,

√√√√ L∑
l=1

|zlj |2. (7.13.9)
e,mr,sensmap,ssos

The resulting image will be shaded by the nonuniformity of the SSOS of the coil sensitivity patterns, i.e.,

zj ≈ |fj | ηj ,

where

ηj ,

√√√√ L∑
l=1

|slj |2.

Often these factors {ηj} are sufficiently smooth and uniform so the residual shading is tolerable. Post-processing
methods can correct for such intensity variations, as mentioned in §7.12.

Assume that the phase of the sensitivity map is likely to be much smoother than the phase of the image f . Com-
bining this with the intuition of the SSOS approach leads to the following “conventional” approach for estimating
sensitivity maps:

ŝlj ,
zlj
zj

e−ı∠z1j . (7.13.10)
e,mr,sensemap,L,ratio

(The phase term is not always included, and the numerator and denominator may be smoothed prior to the ratio [182].)
In the absence of noise, i.e., if zlj = sljfj , then we would have

ŝlj = sljfj e−ı∠(s1jfj) / (|fj | ηj) = |slj | e−ı∠(slj−s1j) /ηj ,

which would be adequate for SENSE reconstruction because the relative coil phases would be correct and the mag-
nitudes would be approximately correct to within the SSOS factors ηj that are hopefully approximately spatially
uniform. However, in the presence of noise, the ratio in (7.13.10) will be sensitive to noise in regions with low signal.
We use the sum-of-squares example above and hereafter, but the ideas generalize readily to other such “normalization”
methods. All such methods will exhibit similar problems in low-signal regions.

We know that physically the sensitivity maps are smooth, including in regions where the body coil image magni-
tude is small. This suggests that we can use regularization to estimate the sensitivity maps, avoiding the division.

7.13.2.2 SSOS revisited as a ML estimator

Using the conventional sensitivity map ratio estimate (7.13.10), the ML estimate for the object fj , ignoring noise
correlations, is similar to (7.13.5):

f̂j =

∑L
l=1 ŝ

∗
ljzlj∑L

l=1 |ŝlj |
2

= eı∠z1j zj

∑L
l=1 z

∗
ljzlj∑L

l=1 |zlj |
2

= eı∠z1j zj , (7.13.11)
e,mr,sensemap,ml,combine

which is the same as the SSOS estimate (7.13.9) except for the (optional) complex phase associated with the first
coil. In other words, the SSOS estimate is a ML estimate of fj based on the (noisy) ratio estimate (7.13.10) for the
sensitivity maps.

A better approach is to use a regularized estimate of the sensitivity maps, as described next.
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7.13.2.3 Regularized approach for L images

Rearranging the division in (7.13.10) suggests the following:

zlj ≈ sljzj eı∠z1j ,

where zj ,
√∑L

l=1 |zlj |
2
. In the presence of noise with variance σ2, it may be better to use the estimate:

zj ,

√√√√[( L∑
l=1

|zlj |2
)
− Lσ2

]
+

.

Therefore we propose the following regularized cost function for estimating (separately) each sensitivity map:

ŝl , arg min
s∈Cnp

1

2

∥∥zl − diag
{
zj eı∠z1j

}
s
∥∥2

+ βR(s) . (7.13.12)
e,mr,sensemap,reg

Spatial resolution analysis Chapter 22 shows that the effective regularization parameter here is β/z2
j , so there is more

smoothing in the regions with low signal, as desired. To simplify selecting β, we normalize the zj values by the
median of all values above 10% of the maximum zj value prior to iterating.

To accelerate computation, it may be helpful to use a preconditioner such as the diagonal of the Hessian of the
above cost function, given by

D = diag
{
|zj |2

}
+Kβ,

where K is the typical element of C ′C and corresponds to the number of neighbors or
∑
k |ckj |

2.
For moderate sized images and quadratic regularization, one can solve (7.13.12) noniteratively using a sparse

Cholesky decomposition [16].
MIRT See mri_sensemap_denoise.m.

After estimating the sensitivity maps using this regularized approach, one can perform the ML coil combination
(7.13.11) to estimate fj .

MIRT See ir_mri_coil_combine.m.

7.13.2.4 Regularized joint-estimation approach for L images

Because the sensitivity maps are smooth, the number of degrees of freedom needed to estimate each sl should be less
than the number of pixels np. This fact suggests that it may be possible to estimate the L + 1 unknowns s1, . . . , sL
and f from the L images z1, . . . ,zL by using suitable regularization. For this problem we propose a joint estimation
approach based on a regularized least-squares cost function:

(ŝ1, . . . , ŝL, f̂) = arg min
s∈Cnp×L

arg min
f∈Cnp

Ψ(s1, . . . , sL,f)

Ψ(s1, . . . , sL,f) ,
L∑
l=1

[
‖zl − diag{f} sl‖2 + R(sl)

]
+ R0(f), (7.13.13)

e,mr,sensemap,kost,L

where R0(f) is an optional regularizer for the object that can help control noise in areas where the object magnitude
is small.

Again, a natural approach to minimizing the cost function Ψ is to use alternating minimization, wherein we
alternate between updating the estimate of the image f and then updating the estimates of the sensitivity maps {sl},
always descending the cost function. We can form initial estimates of the sensitivity maps either by using physical
models of the coils, or by strongly smoothing each coil image. For given estimates of {sl}, the cost function is
quadratic in f and is minimized easily to update f . Likewise, given an updated estimate of f , one can easily minimize
Ψ to update each {sl} as described above.

If it is found that the above procedure does not constraint s sufficiently, then one could add another penalty term
to the cost function that encourages the sensitivity map estimates to satisfy constraints such as those in the literature,
e.g., the sum of the logarithms of the sl maps should be zero or nearly so [180].

There are alternative methods described in the parallel imaging literature that avoid the use of a sensitivity image
altogether, e.g., [183].
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7.13.2.5 Estimation from L k-space data sets

The approach in the previous section may work poorly if the k-space trajectories are under-sampled, because in such
cases the individual images {zl} will have large aliasing artifacts. For such situations, it may be more effective to
estimate s1, . . . , sL and f directly from the k-space data. A natural cost function is

Ψ(s,f) =

L∑
l=1

[
‖yl −A diag{sl}f‖2 + R(sl)

]2
+ R0(f), (7.13.14)

e,mr,sensemap,kspace

where yl denotes the k-space data for the lth array coil, and A denotes the encoding/system matrix that includes the
k-space trajectory and perhaps field inhomogeneity effects, but does not include the coil sensitivity effects because
those are modeled by the diag{sl} term. One can alternate between updating each sl for fixed f and then updating f
for fixed s using the usual CG algorithm.

A problem with (7.13.14) is that one can multiply the image f by a factor and divide each sl map by that same
factor and the data-fit term is unchanged, so the problem is essentially not identifiable. A more reasonable approach
may be to minimize Ψ subject to an equality constraint on the sum of the image values to fix the “scale” of the image
relative to some reference. Mathematically this can be expressed as the constraint 1′f = c for some constant c. To
solve this constrained problem we use the Lagrange multiplier approach, in which we must minimize the augmented
cost function

Ψ(s1, . . . , sL,f) +λ (1′f − c) .

This changes only the update formulas for f . Setting the gradient w.r.t. f to zero yields

f̂λ = f̂0 − λu

f̂0 = [A′A+C ′C]
−1
A′y

u = [A′A+C ′C]
−1

1,

whereA ,

 A diag{s1}
...

A diag{sL}

 and C and y are defined similarly. Satisfying the constraint requires

λ̂ =
1′f̂0 − c
1′ u

.

So the final estimator f̂λ̂ requires two runs of the iterative CG algorithm to form f̂0 and u.
An alternative approach would be to constrain the sensitivity maps. Note that we can rewrite data-fit term as

‖yl −A diag{slj/ dj} (Df)‖2

for any diagonal matrix D = diag{dj}. A natural choice is dj =

√∑L
l=1

∣∣∣s(0)

lj

∣∣∣2, where s(0)

lj is an initial estimate

of the sensitivity maps. Then we could minimize Ψ(s,f) subject to the quadratic constraint d2
j =

∑L
l=1

∣∣∣s(0)

lj

∣∣∣2 .
Comparing these methods is an open problem.

7.13.3 Simulation results
We simulated coil sensitivity patterns using the formula derived in [184] for four circular coils of radius 10cm, as
shown in Fig. 7.13.1. Using a brain image from BrainWeb [185], we simulated noisy array coil scans {zl} as shown
in Fig. 7.13.2, as well as a body coil scan (not shown) having uniform RF sensitivity.

Fig. 7.13.3 shows the conventional sensitivity map estimates based on (7.13.3). There was considerable noise
anywhere the signal magnitudes were small, including within the ventricles. To reduce this noise, we first computed
the median of all slj estimates within voxels where |zlj |was above 5% of the maximum zlj value. Then, anywhere |zlj |
was below 5% of the maximum zlj value, we replaced the corresponding slj estimate that median value. Fig. 7.13.4
shows the regularized sensitivity map estimates based on (7.13.8). The regularization controls the noise. Fig. 7.13.5
shows the error images for both the conventional and regularized estimates. The regularized method has reduced error
within the head interior relative to the conventional ratio estimates.

MIRT See mri_sensemap1.m.
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True sensivity maps
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64
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Figure 7.13.1: True sensitivity maps {sl} used in simu-
lations.

fig_mr_sensemap1_map

Array coil images

1 64
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64

Figure 7.13.2: Noisy brain images {zl} with RF coil
sensitivity effects.

fig_mr_sensemap1_zl

Ratio sensitivity maps

1 64

1

64

0

1.4

Figure 7.13.3: Conventional sensitivity map estimates
based on (7.13.3).
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Regularized sensitivity maps
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Figure 7.13.4: Regularized sensitivity map estimates
based on (7.13.8).
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Error: ratio estimates

1 64
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64

Error: regularized estimates
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64

Figure 7.13.5: Error images for the estimates shown in Fig. 7.13.3 and Fig. 7.13.4, with gray scale display range from
0 to 0.25.

fig_mr_sensemap1_err

7.14 Problems (s,mr,prob)s,mr,prob

Problem 7.1 In the presence of field inhomogeneity, determine whether the following estimators are invariant to a
time-shift of the form ti 7→ ti+τ in both the model and the estimator: (i) the conjugate phase method, (ii) unregularized
least-squares, (iii) regularized least-squares with R(x) = ‖x‖2, and (iii) regularized least-squares with a roughness
penalty.
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