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23.1 Introduction (s,mav,intro)s,mav,intro

Most of the reconstruction methods described in this book are estimators defined implicitly as the minimizer of some
cost function, such as penalized-likelihood methods. For such estimators, exact analytical expressions for statistical
properties such as the mean and covariance are usually unavailable1. In contrast, one can easily analyze the statistics
of linear reconstruction methods such as the FBP method [2] in tomography or the conjugate phase method in MRI.
Thus, investigators often resort to numerical simulations to examine statistical properties of nonlinear estimators. Al-
though empirical studies are important, analytical expressions, even if approximate, can be convenient for comparing
estimators, for designing imaging systems, and for developing intuition.

In §1.9 we analyzed the covariance of certain simple statistical methods for image restoration. This chapter de-
scribes approximations for the mean and covariance of more general implicitly defined estimators of unconstrained
continuous parameters. We derive the approximations using the implicit function theorem [3, p. 266], the Taylor ex-
pansion, and the chain rule. The expressions are defined solely in terms of the partial derivatives of whatever cost
function one uses for estimation. Simulations demonstrating that the approximations work well in two tomographic
imaging applications are given in [4]. The approximations are useful in a wide range of estimation problems. This
chapter is based largely on [4], but also includes a more accurate approximation described in [5].

23.2 Background
Let x = (x1, . . . , xnp) ∈ Rnp denote a unknown real parameter vector that is to be estimated from a real measurement
vector y = (y1, . . . , ynd

) ∈ Rnd . For many image reconstruction problems, one specifies an estimator x̂ to be the
minimizer of some cost function:

x̂ = x̂(y) = arg min
x

Ψ(x,y) . (23.2.1)
e,mav,cost

Examples of such methods include maximum-likelihood (ML) estimation, maximum a posteriori (MAP) or penalized-
likelihood methods, and linear or nonlinear least-squares methods. Except in very simple cases such as linear least-
squares estimation, there is usually no analytical form that expresses x̂ explicitly in terms of y. In other words, the
cost function (23.2.1) defines x̂ only implicitly as a function of y. Statisticians refer to (23.2.1) as an M-estimate [6].

The absence of an explicit analytical expression for x̂(y) makes it difficult to study the mean and covariance of
the estimator x̂, except through numerical simulations. Often the estimators of interest depend on one or more “tuning
parameters,” such as the regularization parameter in penalized-likelihood methods, and one would like to be able to
easily study the estimator characteristics over a range of values for those parameters. In such cases, numerical simula-
tions can be prohibitively expensive for complicated estimators (particularly when np is large). Similar considerations
apply if one wishes to compare estimator performance against the uniform Cramér-Rao bound for biased estimators
(see §23.18) to examine the bias-variance trade-off of the estimator [7], [8]. Therefore, it is useful to have approximate
expressions for the mean and covariance of implicitly defined estimators, particularly if those approximations require
less computation than multiple numerical simulations [4], [9].

For unbiased maximum-likelihood estimation, the Cramér-Rao bound can serve as an approximation to the esti-
mator variance. But bias is unavoidable for regularized methods, so the unbiased Cramér-Rao bound is inapplicable.
In the statistics literature, approximate covariances for penalized-likelihood estimates have been computed for specific
iterative algorithms [10], but most analyses of penalized-likelihood methods have focused on the asymptotic proper-
ties of mean squared error e.g., [11], [12]. For practical signal-to-noise ratios, bias and variance may have unequal
importance in imaging problems, in contrast to their equal weighting in the mean squared error performance measure.

In this chapter we apply the implicit function theorem, the Taylor expansion, and the chain rule to (23.2.1) to derive
approximate expressions for the mean and covariance of implicitly defined estimators x̂. Evaluating these expressions
numerically typically requires a similar amount of computation as one or two realizations in a numerical simulation.
Therefore these expressions allow one to quickly determine “interesting” values for the tuning parameters etc. for
further investigation using numerical simulations. In addition, one can use the variance approximation to determine
how many realizations are needed to achieve a desired accuracy in subsequent numerical simulations.

The expressions are similar to the asymptotic moments given by Serfling [6] for scalar M-estimates. Our focus
here is on presenting a simple derivation of useful approximations for multi-parameter imaging problems, rather than
on asymptotic analysis.

Because of the partial derivatives used in the derivation, our approximations are restricted to problems where x
is a continuous parameter vector. Thus the approach is inapplicable to discrete classification problems such as image

1Even in the cases described in [1] where the exact distribution of the estimator x̂ has been found, integrating that expression to find the mean
or covariance remains an open problem.
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segmentation. (Mean and variance are poor performance measures for segmentation problems anyway; analyses
of classification errors are more appropriate [13].) Furthermore, strictly speaking we must also exclude problems
where inequality constraints are imposed on x̂, because when the minimization in (23.2.1) is subject to inequality
constraints, one must replace (23.3.2) below with appropriate Karush-Kuhn-Tucker (KKT) conditions. Our focus is on
imaging problems, where often the only inequality constraint is nonnegativity of x̂. This constraint is often particularly
important in unregularized estimation methods. However, for cost functions that include a regularization term, our
experience is that nonnegativity constraints are active relatively infrequently. So the variances of the unconstrained
and constrained estimators are approximately equal for most pixels (cf. [14]). Qi and Leahy proposed generalizations
that use truncated gaussian distributions to account for nonnegativity [15], [16].

The derivations assume the estimate is computed by “completely” minimizing the cost function, i.e., the approx-
imations are not applicable to unregularized methods for which one uses a “stopping rule” to terminate the iterations
long before the minimizer is reached. In particular, our results are inapplicable to unregularized methods such as the
iterative filter-backproject method [17] and the ordered subsets expectation maximization (OSEM) algorithm [18]. Ex-
cept in simple linear cases [19], it is generally difficult to analyze the performance of methods based on stopping rules,
although Barrett et al. [20], [21] have analyzed the per-iteration behavior of the maximum-likelihood expectation
maximization (MLEM) algorithm for emission tomography, and this analysis has been generalized for other iterations
[22]–[24]. The approximations we derive are somewhat easier to use because they are independent of number of
iterations (provided sufficient iterations are used to minimize the cost function).

23.3 Covariance of implicit estimators (s,mav,cov)
s,mav,cov

Let Ψ(x,y) denote a cost function that depends on unknown parameters x and noisy measurements y. Define an
estimator x̂ = x̂(y) as the (unconstrained) minimizer of this cost function, as in (23.2.1). We assume Ψ(·,y) has a
unique global minimizer x̂ = x̂(y) ∈ Rnp for any measurement y, so that x̂(y) is a well defined function. We also
assume that Ψ is suitably regular that the partial derivatives used below exist. This section describes approximations
for the covariance of the estimator x̂.

23.3.1 Covariance approximation 1
Define the np × 1 column gradient of the cost function following the notation in (22.3.2):

Γ(x,y) , ∇[1,0] Ψ(x,y) . (23.3.1)
e,mav,kgrad

Then a necessary condition for the minimizer x̂ is that it is a zero of the gradient:

Γ(x̂(y),y) = 0. (23.3.2)
e,mav,d10=0

This requires that Ψ be suitably regular, and it is this step that restricts our approximations to continuous parameters
and that precludes inequality constraints and stopping rules. For generalizations to the constrained case, see [25].

Let x̌ denote some non-random nominal value for the parameter vector, such as xtrue, and make a first-order
Taylor series expansion (27.8.3) of Γ around x̌:

Γ(x̂,y) ≈ Γ(x̌,y) +∇[1,0]Γ(x̌,y) (x̂−x̌) , (23.3.3)
e,mav,kgrad,approx

where the np × np matrix∇[1,0]Γ is the Hessian of Ψ:

∇[1,0]Γ = ∇[2,0] Ψ .

In statistics, (23.3.3) is known as the Delta method [26, Ch. 3]. Using (23.3.2), we equate the approximation (23.3.3)
to zero, yielding:

Γ(x̌,y) ≈ −∇[1,0]Γ(x̌,y) (x̂−x̌) = −∇[2,0] Ψ(x̌,y) (x̂−x̌) .

Rearranging yields the following linearized approximations for the estimator:

x̂ ≈ x̌−
[
∇[2,0] Ψ(x̌,y)

]−1

Γ(x̌,y)

≈ x̌−H−1Γ(x̌,y), (23.3.4)

assuming that the Hessian of Ψ is invertible2, where H denotes some (non-random) approximation to the Hessian of
Ψ. This H may depend on xtrue or x̌, but not on the random measurement y. Taking the covariance of both sides of
(23.3.4) yields the following covariance approximation

Cov{x̂} ≈H−1 Cov{Γ(x̌,y)}H−1. (23.3.5)
e,mav,cov,1

Similar expressions are found in [6], [27, p. 133], [26, p. 52], for the asymptotic covariances of M-estimators. The
scalar case appeared in [28]. The practical utility of this approximation hinges on how easily one can compute or
approximate Cov{Γ(x̌,y)}, and on the choice for x̌. These considerations are discussed further below.

2For example, if Ψ has a positive definite Hessian, then H will be invertible and Ψ will be strictly convex.
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23.3.2 Choosing the linearization point x̌
The accuracy of the covariance approximation (23.3.5) will depend on how one chooses the linearization point x̌ and
the Hessian approximationH . To have the correct asymptotic properties [27, p. 133] [26, p. 52], the best choice for x̌
is

x̌ = arg min
x

E[Ψ(x,y)] = arg min
x

∫
Ψ(x,y) p(y) dy, (23.3.6)

e,mav,xch,ex

where p(y) denotes the distribution of the data y. In general, this x̌ could be difficult to compute. Fortunately, some
cost functions are effectively affine in y, meaning they are affine to within a possibly y-dependent constant that is
independent of x and hence does not affect the minimizer3. Examples include the negative log-likelihood for the
gaussian and Poisson statistical models. In such cases, x̌ simplifies as follows:

x̌ = arg min
x

Ψ(x,E[y]) = x̂(ȳ), (23.3.7)
e,mav,xch,yb

where ȳ = E[y] denotes the mean measurements, i.e., noiseless data. I used this latter choice for x̌ in [4] as an
approximation even for cases where Ψ is nonlinear in y.

23.3.3 Choosing the Hessian approximationH
Similarly, to ensure that (23.3.5) has the appropriate asymptotic properties [27, p. 133], we should defineH as follows:

H = E
[
∇[1,0]Γ(x̌,y)

]
= E

[
∇[2,0] Ψ(x̌,y)

]
. (23.3.8)

e,mav,cov,H,ex

With this choice, the estimates x̂ have a normal distribution asymptotically with mean x̌ and covariance given by
(23.3.5) [26, p. 52]. When the cost function Ψ is chosen as the negative log-likelihood, this Hessian H is simply the
Fisher information. However, it can be difficult to compute H in (23.3.8) in some situations. Fortunately, for cost
functions that are effectively affine in y, the Hessian simplifies as follows:

H = ∇[1,0]Γ(x̌,E[y]) = ∇[2,0] Ψ(x̌, ȳ) . (23.3.9)
e,mav,cov,H,hess

For other cases, we can consider the preceding H to be an approximation that should be accurate if the cost function
is approximately effectively affine in y. Substituting into (23.3.5) yields the following covariance approximation

Cov{x̂} ≈
[
∇[2,0] Ψ(x̌, ȳ)

]−1

Cov{Γ(x̌,y)}
[
∇[2,0] Ψ(x̌, ȳ)

]−1

. (23.3.10)
e,mav,cov,1H

This form may still be inconvenient due to the middle term.

23.3.4 Covariance approximation 2
As a further approximation, we could linearize Γ around the mean measurements:

Γ(x̌,y) ≈ Γ(x̌, ȳ) +∇[0,1]Γ(x̌, ȳ)(y − ȳ), (23.3.11)
e,mav,cov,kgrad,lin

where (see (22.3.3)):
∇[0,1]Γ(x,y) = ∇[1,1] Ψ(x,y) .

The approximation (23.3.11) is exact for cost functions that are effectively affine in y. This linearization suggests the
second approximation:

Cov{Γ(x̌,y)} ≈ [∇[1,1] Ψ(x̌, ȳ)]Cov{y}[∇[1,1] Ψ(x̌, ȳ)]′,

which, substituted into (23.3.5), yields the following covariance approximation:

Cov{x̂} ≈
[
∇[2,0] Ψ(x̌, ȳ)

]−1 [
∇[1,1] Ψ(x̌, ȳ)

]
Cov{y}

[
∇[1,1] Ψ(x̌, ȳ)

]′ [
∇[2,0] Ψ(x̌, ȳ)

]−1

. (23.3.12)
e,mav,cov,2

Clearly (23.3.12) has an additional level of approximation beyond that in (23.3.5), namely, it assumes a degree of
linearity in the effect of the measurements y on Γ that may be unrealistic. So (23.3.5) is the preferable approximation
when its use is feasible.

3In other words, the gradient∇[1,0] Ψ(x,y) is affine in y.
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23.3.5 Covariance approximation 3 (s,mav,cov,lin)s,mav,cov,lin

In (23.3.3), we used a first-order Taylor expansion of the gradient function Γ to derive the covariance approximation
(23.3.5). An alternative approach is to use a first-order Taylor expansion of the estimator itself:

x̂(y) ≈ x̂(ȳ) +∇ x̂(ȳ) (y − ȳ) , (23.3.13)
e,mav,cov,lin,xh

where ȳ was defined below (23.3.9). Taking the covariance4 of both sides yields the following well-known approxi-
mation [29, p. 426]:

Cov{x̂} = Cov{x̂(y)} ≈ ∇ x̂(ȳ) Cov{y} ∇ x̂(ȳ) . (23.3.14)
e,mav,cov,taylor

If we knew x̂(·) then we could apply (23.3.14) directly to approximate the covariance of x̂(y). But because x̂ is
unknown, (23.3.14) is not immediately useful. However, the dependence on x̂ in (23.3.14) is only through its partial
derivatives at the point ȳ. From the calculus of vector functions [30, p. 302], one can determine the partial derivatives
of an implicitly defined function by applying the chain rule, as shown in (22.3.6):

∇ x̂(y) =
[
∇[2,0] Ψ(x̂(y),y)

]−1 [
−∇[1,1] Ψ(x̂(y),y)

]
. (23.3.15)

e,mav,grad,xh

Substituting into (23.3.14) yields the same approximation as (23.3.12) [4].
To summarize, (23.3.5) and (23.3.12) are the main results here: approximate expressions for the estimator covari-

ance that depend only on the partial derivatives of the cost function Ψ, and do not require an expression for the implicit
function x̂(y). These approximations do depend on x̌, which one usually computes using (23.3.7) by applying the
estimation algorithm to the noise free data ȳ.

23.3.6 Penalized-likelihood estimators (s,mav,pl)s,mav,pl

By analogy with §22.4, focus now on penalized-likelihood estimators of the form (22.4.1):

Ψ(x,y) = L- (x,y) +R(x) .

Then the covariance approximation (23.3.12) specializes to be

Cov{x̂} ≈
[
∇[2,0] L- (x̌, ȳ) +R

]−1 (
∇[1,1] L- (x̌, ȳ)

)
Cov{y}

(
∇[1,1] L- (x̌, ȳ)

)′ [
∇[2,0] L- (x̌, ȳ) +R

]−1

,

where the penalty Hessian is R = ∇2 R(x̌) .

23.3.6.1 Independent measurements

To further simplify, follow §22.4.1 and consider the usual case where the measurements {yi} are statistically indepen-
dent and the negative log-likelihood has the form (22.4.6):

L- (x,y) =

nd∑
i=1

gi(ȳi(x), yi) .

Using the assumption (22.4.8) that leads to the log-likelihood gradient expressions (22.4.9) and substituting into the
covariance expression above yields

Cov{x̂} ≈ [B′D2(x̌, ȳ)B + R]
−1
B′D1(x̌, ȳ)Cov{y}D1(x̌, ȳ)B [B′D2(x̌, ȳ)B + R]

−1
,

whereB = ∇ ȳ(x̌) andD1 andD2 were defined in terms of the derivatives of the gi functions in (22.4.10).
UsuallyD1 Cov{y}D1 ≈D2. and the preceding covariance approximation simplifies to the form

Cov{x̂} ≈ [F + R]
−1 F [F + R]

−1
, (23.3.16)

e,mav,pl,ind

where F = B′D2B is the Fisher information for estimating x from y, evaluated at x̌.

23.3.6.2 Image reconstruction problems

Following Problem 22.4.2, for image reconstruction problems usually (22.4.13) holds:

gi(ȳi(x), yi) = hi([Ax]i , yi)

for some functions {hi}. In this case B = A and D2 is defined in terms of hi in (22.4.14). The covariance approxi-
mation (23.3.16) still holds.

4All expectations and covariances are taken with respect to the probability density of the random measurement y. Typically one assumes
this density is of the form p(y;xtrue), where xtrue is the unknown parameter to be estimated using (23.2.1). However, our approximations
do not require a parametric form for the measurement distribution; we need only that the covariance of the measurements be known (or can be
estimated—see §23.11).
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23.4 Computing covariances within a region (s,mav,cov,roi,intro)
s,mav,cov,roi,intro

When np is large, storing the full np × np covariance matrix is inconvenient, and often one is interested primarily in
the variance or covariance of certain parameters in a region of interest (ROI). Specifically, often we want to evaluate

Cov{x̂j , x̂l} = e′j Cov{x̂} el

for j, l within some ROI.

23.4.1 Matrix approach (s,mav,cov,roi,mat)s,mav,cov,roi,mat

Let ej be the jth unit vector of length np, and define

uj =
[
∇[2,0] Ψ(x̌, ȳ)

]−1

ej . (23.4.1)
e,mav,cov,roi,mat,inv

Note that one does not need to perform a np × np matrix inversion to compute uj ; one “simply” solves the equation[
∇[2,0] Ψ(x̌, ȳ)

]
uj = ej . This can be done directly when np is small, or via fast iterative methods such as Gauss-

Siedel or conjugate gradients when np is large [31]. From (23.3.12) it follows that

Cov{x̂j , x̂l} = e′j Cov{x̂} el

≈ u′j

[
∇[1,1] Ψ(x̌, ȳ)

]
Cov{y}

[
∇[1,1] Ψ(x̌, ȳ)

]′
ul, (23.4.2)

for l, j = 1, . . . , np. One can compute any portion of the covariance matrix of x̂ by using (23.4.2) repeatedly for
appropriate j and l values. In general, computing Var{x̂j} = Cov{x̂j , x̂j} for all j using this formula requires
O(n2

p + ndnp + n2
d) operations. In many problems, such as the tomographic examples in §23.10 and §23.12, the

covariance of y is diagonal and the partial derivatives have a sparse structure, so the actual computation can be much
less. Nevertheless, evaluating (23.4.1) requires about about as much work as doing iterative reconstruction, just to
predict the variance of a single voxel or ROI. Therefore, we describe simpler approximations next.

23.4.2 FFT-based approach (s,mav,cov,roi,fft)s,mav,cov,roi,fft

As described in §22.7, for problems that are locally shift invariant near pixel j0, we can make “locally circulant”
approximations for j ≈ j0:

THej ≈ Q−1 diag{Hj0,k}QTej
TJej ≈ Q−1 diag{Jj0,k}QTej ,

where

H = ∇[2,0] Ψ

J =
[
∇[1,1] Ψ

]
Cov{y}

[
∇[1,1] Ψ

]′
diag{Hj0,k} = diag{QTHej0}
diag{Jj0,k} = diag{QTJej0},

and where T is the Np × np matrix defined in §22.7, where in 2D we have Np = NM .
Substituting these approximations into (23.3.12) and simplifying yields

Cov{x̂j , x̂l} ≈ e′jQ−1 diag
{
Jj0,k/(Hj0,k)

2
}
Qel = rj0 [j − l], (23.4.3)

e,mav,cov,roi,fft,cov

for j, l ≈ j0, where the auto-correlation function rj0 [n] is the inverse DFT of the local power spectral density function
Jj0,k/ (Hj0,k)

2
. In particular, the approximate variance is

Var{x̂j} = e′j Cov{x̂j , x̂l} ej ≈ e′jQ−1 diag
{
Jj0,k/(Hj0,k)

2
}
Qej =

1

Np

∑
k

Jj0,k/(Hj0,k)
2
.

We used the property that the DFT of an impulse is unity, i.e.,Qej = 1.
For typical penalized-likelihood cost functions, usually H = F + R and J = F, so the variance expression

becomes

Var{x̂j} = e′jQ
−1 diag

{
Fj0,k

(Fj0,k + Rj0,k)
2

}
Qej =

1

Np

∑
k

Fj0,k

(Fj0,k + Rj0,k)
2 , (23.4.4)

e,mav,cov,roi,fft,var
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for j ≈ j0, where Fj0,k and Rj0,k are defined by

diag{Fj0,k} = QTFej0 (23.4.5)
diag{Rj0,k} = QRFej0 .

Usually F = A′WA for some diagonal matrix W . After computing a forward and backprojection of a single
pixel to compute Fej0 and taking the FFT to form Fj0,k, and a similar operation to find Rj0,k, one can compute the
predicted variance or any given voxel for a range of values of the regularization parameter β using just a few FFT
operations.

The variance expression (23.4.4) generalizes the analysis for image restoration (1.9.7) in several ways. First it
does not require A to be circulant, but rather only that F is locally shift invariant. Secondly it allows for nonuniform
measurement noise statistics. Finally, it depends on the choice of the reference pixel index j0, so it can characterize
non-stationary estimator statistics.

IRT See qpwls_psf.m for examples.

23.4.3 Plug-in approximation for noisy data (s,mav,roi,plug)s,mav,roi,plug

The approximation (23.3.12) for the estimator covariance depends on both x̌ and Cov{y}, so as written its primary
use is in computer simulations where x̌ and Cov{y} are known. Sometimes one would like to obtain an approximate
estimate of estimator variability from a single noisy measurement (such as real data), for which xtrue is unknown, and
Cov{y} may also be unknown. In some problems this can be done using a “plug-in” estimate in which we substitute
the estimate x̂ in for x̌ in expressions like (23.3.12). The effectiveness of this approach is application dependent, but
was shown to be useful for transmission tomography in [4]. It is also useful in emission tomography provided one is
careful with some details [32].

23.5 Fast variance map predictions (s,mav,var)
s,mav,var

Using the FFT-based variance approximation (23.4.4) is practical when one is interested in the noise of only a few
pixels. But if one wants to form a variance map for the entire image, then still faster methods are desired.

We focus on the usual case where F = A′WA where W = diag{wi} is a diagonal matrix whose entries might
depend on x̌ and ȳi.

23.5.1 Tabulation approach based on certainty factors
We first simplify by making the approximation (see (22.9.3)) [33]:

F = A′WA ≈DA′AD

whereD = diag{κj} and (see (22.9.2))

κj ,

√∑nd

i=1 a
2
ijwi∑nd

i=1 a
2
ij

≈

√∑nd

i=1 aijwi∑nd

i=1 aij
.

Assume that local to the jth voxel the penalty Hessian is approximately

R ≈ βjC
′C

for a differencing matrix C. Then

Var{x̂j} ≈
1

κ2
j

e′j

[
A′A+

βj

κ2
j

R

]−1

A′A

[
A′A+

βj

κ2
j

R

]−1

ej =
1

κ2
j

σ2

(
βj

κ2
j

)
, (23.5.1)

e,mav,var,cert

where
σ2(β) , e′j [A′A+ βC ′C]

−1
A′A [A′A+ βC ′C]

−1
ej .

We can compute the table σ2(·) using circulant approximations, as described in §23.4.2.
If we use the modified regularizer of [33] (see §22.10), then βj = β0κ

2
j and the variance approximation simplifies

to
Var{x̂j} ≈

1

κ2
j

σ2(β0), (23.5.2)
e,mav,var,kapj

i.e., the noise standard deviation is inversely proportional κj . Therefore, using a modified regularizer to strive for
uniform spatial resolution can lead to nonuniform noise. There appears to be a trade-off between uniform noise and
uniform spatial resolution in systems with nonstationary measurement noise statistics like PET and X-ray CT.
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23.5.2 Analytical approximations
In some applications we can find fast approximations by replacing summations with integrals. See [34], [35] for
examples in X-ray CT.

23.6 Joint estimation (s,mav,joint)s,mav,joint

In a variety of applications we perform joint estimation of an image z and some other system-model parameters α
using a cost function of the following form

Ψ(z;y) = Ψ((x,α) ;y) =
1

2
‖y −A(α)x‖2W 1/2 + R1(x) +R2(α),

where z = (x,α). Assuming that ȳ(z) = ȳ(x,α) = A(α)x and Cov{y} = W−1, and further assuming the noise
is gaussian, the Fisher information matrix for this estimation problem is

F = E[∇ L∇ L] = (∇ ȳ)′W (∇ ȳ),

where if α ∈ RK then the gradient matrix is nd × (np +K) as follows:

∇ ȳ =
[
A ∇α ȳ

]
,

where∇α ȳ = ∇αA(α)x is the nd ×K matrix with elements

∂

∂αk
[A(α)x]i =

np∑
j=1

∂

∂αk
aij(α)xj , i = 1, . . . , nd, k = 1, . . . ,K.

This expression does not appear to simplify further in general, because ∂
∂αk

aij(α) depends on three indices. Therefore
the (np +K)× (np +K) Fisher information matrix has the following block form:

F =

[
F11 F12

F′12 F22

]
=

[
A′WA A′W (∇α ȳ)

F′12 (∇α ȳ)
′
W (∇α ȳ)

]
.

The matrix F11 is the Fisher information for estimating x assumingα is known, whereas F22 is the Fisher information
for estimating α assuming x is known.

In the presence of regularization, the estimators can be biased so the inverse of the Fisher information is not an
accurate approximation to the estimator covariance. We can apply the covariance approximation (23.3.12) to examine
the properties of estimates of the combined parameter vector (x,α). First note that

∇[1,0] Ψ = ∇z Ψ =

[
−A′W (y −Ax) +∇R1(x)

− (∇α ȳ)
′
W (y −Ax) +∇R2(α)

]
,

so it follows that

−∇[1,1] Ψ = ∇y∇z Ψ =

[
A′W

(∇α ȳ)
′
W

]
,

which is a (np +K)× nd matrix. Because Cov{y} = W−1, the middle three terms in (23.3.12) simplify to(
−∇[1,1] Ψ

)
Cov{y}

(
−∇[1,1] Ψ

)′
= F.

In addition

∇[2,0] Ψ = ∇2
z Ψ =

[
H11 H12

H ′12 H22

]
=

[
F11 + R1 H12

H ′12 F̃22 + R2

]
,

where the elements of F̃22 are

[F̃22]kl =
∂2

∂αk∂αl

1

2
〈y −A(α)x, y −A(α)x〉W

=

〈
∂

∂αk
A(α)x,

∂

∂αl
A(α)x

〉
W

−
〈

∂2

∂αk∂αl
A(α)x, y −A(α)x

〉
W

.

When we use the covariance approximation (23.3.12), we evaluate F22 at (x̌, α̌) and ȳ. Often ȳ ≈ A(α̌)x̌ in which
case we can disregard the second term and use the simpler approximation

[F̃22]kl ≈
〈

∂

∂αk
A(α)x,

∂

∂αl
A(α)x

〉
W

= [F22]kl .
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The np ×K matrixH12 is defined by

H12 = ∇α (A′(α)W (A(α)x− y)) ,

which has elements

[H12]jk =
∂

∂αk
[A′(α)W (A(α)x− y)]j

=

nd∑
i=1

aij

[
W

(
∂

∂αk
A(α)x

)]
i

+

nd∑
i=1

(
∂

∂αk
aij(α)

)
[W (ȳ−y)]i .

Again, often we can disregard the second term yielding the simpler approximationH12 ≈ F12. Combining all of these
approximations yields:

Cov

{[
x̂
α̂

]}
≈
[

F11 + R1 F12

F′12 F22 + R2

]−1 [
F11 F12

F′12 F22

] [
F11 + R1 F12

F′12 F22 + R2

]−1

.

For example use of these covariance approximation, see [36, Ch. 4].

23.7 Iteration-dependent covariance (s,mav,iter)
s,mav,iter

Many of the algorithms in this book use iterations of the form:

x(n+1) = arg min
x

φ(x,x(n),y) = M(x(n),y),

where M : Rnp × Rnd → Rnp . By linearizing the mapping M , one can analyze the noise covariance as a function of
iteration [37]. First define the “noise free” iteration sequence by

x̄(n+1) ,M(x̄(n), ȳ)

where x̄(0) is a non-random initial estimate such as a uniform image, and ȳ is noiseless data. Now linearize M about
x̄(n) and ȳ:

x(n+1) = M(x(n),y) ≈M(x̄(n), ȳ) + (∇10M)(x̄(n), ȳ)(x(n) − x̄(n)) + (∇01M)(x̄(n), ȳ)(y − ȳ).

Let δ(n) , x(n) − x̄(n) denote the randomness due to noise at the nth iteration. Then

δ(n+1) ≈ (∇10M)(x̄(n), ȳ)δ(n) + (∇01M)(x̄(n), ȳ)(y − ȳ).

From this one can derive an expression for the covariance of x(n) at each iteration:

Cov{x(n)} ≈ Un Cov{y}U ′n, (23.7.1)
e,mav,cov,iter

where Un is a np × np matrix that satisfies the following recursive expression:

Un+1 = (∇10M)(x̄(n), ȳ)Un + (∇01M)(x̄(n), ȳ).

One can show that the iteration-dependent covariance expression (23.7.1) converges to the “fixed-point” expression
(23.3.14) under suitable conditions on φ. See Problem 23.2.

23.8 Mean approximations (s,mav,mean)
s,mav,mean

To approximate the mean of x̂ = x̂(y), one has several choices, described next.

23.8.1 First-order mean approximation
The simplest approach is to take the expectation of the first-order Taylor expansion (23.3.13), yielding the approxima-
tion:

E[x̂] = E[x̂(y)] ≈ x̂(ȳ) . (23.8.1)
e,mav,mean,1

Interestingly, a 0th-order Taylor expansion yields the same result. This approximation is simply the value produced
by applying the estimator (23.2.1) to noise-free data. This approach requires modest computation, and often works
surprisingly well for penalized-likelihood cost functions. It has been used extensively by investigators in emission
tomography [20], [21], [38]. Apparently, the principal source of bias in penalized-likelihood estimators is the regular-
izing penalty that one includes in Ψ, so (23.8.1) allows one to examine the effects of the penalty separately from the
effects of noise. However, the approximation (23.8.1) is certainly not always adequate, as an example in [4] illustrates.
Therefore, we next use a second-order Taylor expansion to derive a mean approximation that is more accurate, but has
the disadvantage of greater computation.
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23.8.2 Second-order mean approximation
A second-order Taylor expansion of the estimator x̂(y) around ȳ yields:

x̂(y) ≈ x̂(ȳ) +

nd∑
i=1

∂

∂yi
x̂(ȳ) (yi − ȳi)

+
1

2

nd∑
i=1

nd∑
l=1

∂2

∂yi ∂yl
x̂(ȳ) (yi − ȳi) (yl − ȳl) . (23.8.2)

Taking the expectation of both sides yields the following well-known approximation for the mean of x̂(y):

E[x̂] ≈ x̂(ȳ) +
1

2

nd∑
i=1

nd∑
l=1

∂2

∂yi ∂yl
x̂(ȳ)Cov{yi, yl}, (23.8.3)

e,mav,mean,2

where Cov{yi, yl} = E[(yi − ȳi)(yl − ȳl)] is the (i, l)th element of the covariance matrix of y. The approxima-
tion (23.8.3) requires the second partial derivatives of x̂(y). To obtain those partial derivatives, we first rewrite the
equality (22.3.5) as follows:

0 =

np∑
k=1

∂2

∂xj ∂xk
Ψ(x̂(y),y)

∂

∂yi
x̂k(y) +

∂2

∂xj ∂yi
Ψ(x̂(y),y) . (23.8.4)

e,mav,chain1

Next we use the chain rule to differentiate (23.8.4) with respect to ym, obtaining:

0 =

np∑
k=1

[
np∑
l=1

∂3

∂xj∂xk∂xl
Ψ(x̂(y),y)

∂

∂ym
x̂l(y) +

∂3

∂xj∂xk∂ym
Ψ(x̂(y),y)

]
∂

∂yi
x̂k(y)

+

np∑
k=1

∂2

∂xj ∂xk
Ψ(x̂(y),y)

∂2

∂yi ∂ym
x̂k(y) +

np∑
k=1

∂3

∂xj∂xk∂yi
Ψ(x̂(y),y)

∂

∂ym
x̂k(y)

+
∂3

∂xj∂yi∂ym
Ψ(x̂(y),y), (23.8.5)

e,mav,mean,chain2

for j = 1, . . . , np, i = 1, . . . , nd, m = 1, . . . , nd. One can substitute x̌ = x̂(ȳ) and y = ȳ in the above expression to

obtain n2
d sets of np equations in the np unknowns

{
∂2

∂yi ∂ym
x̂k(ȳ)

}p
k=1

. Solving each of those systems of equations

and then substituting back into (23.8.3) yields an approximation to E[x̂] that is independent of the unknown implicit
function x̂(y). If np and nd are large in a given problem, then one must weigh the relative computational expense
of solving the above equations versus performing numerical simulations. The trade-off will depend on the structure
of the cost function Ψ. Note that (23.8.5) depends on the first partials ∂

∂yi
x̂k(y), so one must first apply (23.3.15) to

compute those partials.
Unlike expression (23.8.4), which we were able to write in the matrix form (23.3.15), there does not appear

to be a simple form for rewriting (23.8.5), except by introducing tensor products (which really do not offer much
simplification). However, the equations in (23.8.5) do simplify for some special cases for Ψ, described next.

23.8.2.1 Independent measurements

If the measurements {yi}nd

i=1 are statistically independent, then (23.8.3) simplifies to

E[x̂(y)] ≈ x̂(ȳ) +
1

2

nd∑
i=1

∂2

∂y2
i

x̂(ȳ)Var{yi} . (23.8.6)
e,mav,mean,ind

This expression depends only on the diagonal elements of the covariance of y and on the diagonal of the matrix of
second partial derivatives of x̂(y). Therefore one needs only the cases where m = i in (23.8.5), i.e., one needs to
solve nd sets of np equations in np unknowns of the form:

0 =

np∑
k=1

[∑
l

∂3

∂xj∂xk∂xl
Ψ(x̂(y),y)

∂

∂yi
x̂l(y) + 2

∂3

∂xj∂xk∂yi
Ψ(x̂(y),y)

]
∂

∂yi
x̂k(y)

+

np∑
k=1

∂2

∂xj ∂xk
Ψ(x̂(y),y)

∂2

∂y2
i

x̂k(y) +
∂3

∂xj∂y2
i

Ψ(x̂(y),y),

for j = 1, . . . , np and i = 1, . . . , nd.
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23.8.2.2 Scalar parameter

If np = 1, i.e., x is a scalar, then (23.8.5) simplifies to

0 =

[
∂3

∂θ3
Ψ(x̂(y),y)

∂

∂ym
x̂(y) +

∂3

∂θ2∂ym
Ψ(x̂(y),y)

]
∂

∂yi
x̂(y)

+
∂2

∂θ2
Ψ(x̂(y),y)

∂2

∂yi ∂ym
x̂(y) +

∂3

∂θ2∂yi
Ψ(x̂(y),y)

∂

∂ym
x̂(y)

+
∂3

∂θ∂yi∂ym
Ψ(x̂(y),y), i = 1, . . . , nd, m = 1, . . . , nd. (23.8.7)

e,mav,mean,chain2,scalar

By rearranging we can solve explicitly for the second partials of x̂(y):

∂2

∂yi ∂ym
x̂(ȳ) =

[
− ∂2

∂θ2
Ψ(x̌, ȳ)

]−1

([
∂3

∂θ3
Ψ(x̌, ȳ)

∂

∂ym
x̂(ȳ) +

∂3

∂θ2∂ym
Ψ(x̌, ȳ)

]
∂

∂yi
x̂(ȳ)

+
∂3

∂θ2∂yi
Ψ(x̌, ȳ)

∂

∂ym
x̂(ȳ) +

∂3

∂θ∂yi∂ym
Ψ(x̌, ȳ)

)
.

Substituting this expression into (23.8.3) yields the approximate mean for a scalar parameter estimator.

23.9 Example: regularized least squares (s,mav,rls)
s,mav,rls

The approximations for mean and covariance derived above are exact in the special case where the estimator is linear,
because in that case the first-order Taylor expansion (23.3.13) is exact. In this section we verify this property by
computing the covariance approximation (23.3.12) and the mean approximation (23.8.5) for a regularized least-squares
problem. The expressions are useful for comparing with the corresponding approximations for nonlinear estimators.

Suppose the measurements obey the standard linear model with additive noise:

y = Ax+ ε,

whereA is a known nd×np matrix. For such problems, the following regularized weighted least-squares cost function
is often used for estimation:

Ψ(x,y) =
1

2
(y −Ax)′W (y −Ax) + β R(x),

whereW is a positive-semidefinite weighting matrix and R(x) is a roughness penalty of the form

R(x) =
∑
k

ψk([Cx]k) . (23.9.1)
e,mav,rls,r

Note that∇[1,1]R(x) = 0, and define

R(x) = ∇2 R(x) = C ′ diag
{
ψ̈k([Cx]k)

}
C (23.9.2)

e,mav,rls,r2

to be the matrix of second partials of R(x), where ψ̈ denotes the second derivative of ψ.
Consider the quadratic case where ψ(x) = x2/2, so R = C ′C and assumeWA and C have disjoint null spaces.

In this case one can derive an explicit expression for the estimator:

x̂ = [A′WA+ βR]
−1
A′Wy, (23.9.3)

e,mav,rls,xh

from which one can derive exact expressions for the mean and covariance. However, for didactic purposes, we instead
derive the mean and covariance using the “approximations” (23.3.12) and (23.8.5).

The partial derivatives of Ψ are:

∇[2,0] Ψ = A′WA+ βR

−∇[1,1] Ψ = A′W

∇[3,0] Ψ = ∇[2,1] Ψ = ∇[1,2] Ψ = 0, (23.9.4)

so substituting into (23.8.5), one finds that∇2 x̂(y) = 0. Thus from (23.8.3):

E[x̂] = x̂(ȳ) = [A′WA+ βR]
−1
A′W ȳ,
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which of course is exactly what one would get from (23.9.3). Substituting (23.9.4) into (23.3.12) yields the estimator
covariance:

Cov{x̂} = [A′WA+ βR]
−1
A′W Cov{y}WA [A′WA+ βR]

−1
,

which again agrees with (23.9.3). If the measurement covariance is known, then usually one choosesW = Cov{y}−1,
in which case

Cov{x̂} = [F + βR]
−1 F [F + βR]

−1
, (23.9.5)

e,mav,rls,cov

where F = A′ Cov{y}−1
A is the Fisher information for estimating x from y, when the noise has a normal distribu-

tion. The covariance approximation (23.3.16) generalizes (23.9.5).
Because the mean and covariance approximations are exact for quadratic cost functions, one might expect the

approximation accuracy for a non-quadratic cost function will depend on how far the cost function departs from being
quadratic. Many cost functions are locally quadratic, so we expect that the approximation accuracy will depend on
the signal to noise ratio (SNR) of the measurements. Indeed, from (23.3.13) it is clear that as the noise variance goes
to zero, we will have yi → ȳi, so the Taylor approximation error will vanish. This asymptotic property is illustrated
empirically in [4].
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23.10 Example: transmission tomography (s,mav,ex,trans)
s,mav,ex,trans

To illustrate the accuracy of the approximation for estimator covariance given by (23.3.12), in this section we consider
the problem of tomographic reconstruction from Poisson distributed PET transmission data. Our description of the
problem is brief, for more details see [39]–[41]. Because PET transmission scans are essentially measurements of nui-
sance parameters, one would like to use very short transmission scans. Because short scans have fewer counts (lower
SNR), the conventional linear filter-backproject (FBP) reconstruction method performs poorly. Statistical methods
have the potential to significantly reduce the error variance, but because they are nonlinear, only empirical studies of
estimator performance have been previously performed to our knowledge. Analytical expressions for the variance will
help us determine (without exhaustive simulations) conditions under which statistical methods will outperform FBP.

In transmission tomography the parameter xj denotes the attenuation coefficient in the jth pixel. The transmission
measurements have independent Poisson distributions, and we assume the mean of yi is:

Ȳi(x) = Tpi(x)

pi(x) = bie
−

∑
j aijxj + ri, (23.10.1)

where the aij factors denote the intersection length of the nth ray passing though the jth pixel, {bi} denote the rates
of emissions from the transmission source, {ri} denote additive background events such as random coincidences, and
T denotes the scan duration. These nonnegative factors are all assumed known. The log-likelihood is:

L(x,y) =

nd∑
i=1

yi log Ȳi(x)− Ȳi(x), (23.10.2)
eqn-like-trans

neglecting constants independent of x. Because tomography is ill-conditioned, rather than performing ordinary ML
estimation, many investigators have used penalized-likelihood cost functions of the form5

Ψ(x,y) =
1

T
L(x,y)−βR(x), (23.10.3)

e,mav,cost-trans

where the roughness penalty R was defined in (23.9.1).
Due to the nonlinearity of (23.10.1) and the non-quadratic likelihood function (23.10.2) for Poisson statistics, the

estimate x̂ formed by maximizing (23.10.3) is presumably a very nonlinear function of y. Furthermore, because
attenuation coefficients are nonnegative, one usually enforces the inequality constraint x̂ � 0. Therefore this problem
provides a stringent test of the accuracy of the mean and variance approximations.

23.10.1 Covariance Approximation
Because the number of measurements (or rays) nd and the number of parameters (pixels) p are both large, we would
like to approximate the variance of certain pixels of interest using (23.4.2), which requires the following partial deriva-
tives:

∂

∂xj
L(x,y) = T

nd∑
i=1

aij

(
1− yi

Ȳi(x)

)
(pi(x)− ri)

− ∂2

∂xj ∂xk
L(x,y) = T

nd∑
i=1

aijaik qi(x)

qi(x) =

(
1− riyi/T

p2
i (x)

)
bie
−

∑
j aijxj

∂2

∂xj ∂yi
L(x,y) = −aij

(
1− ri

pi(x)

)
.

Combining the above expressions in matrix form with the expressions for the partials of R given in §23.9:

−∇20 Ψ(x,y) = A′ diag{qi(x)}A+ βR(x)

∇11 Ψ(x,y) = − 1

T
A′ diag

{
1− ri

pi(x)

}
,

whereA = {aij} is a large sparse matrix, and diag{vi} denotes a nd×nd diagonal matrix with elements v1, . . . , vnd

along the diagonal. For simplicity we focus on the case where ri = 0, in which case qi(x) = pi(x) and the above
expressions simplify to

−∇20 Ψ(x,y) = A′ diag{pi(x)}A+ βR(x)

5Due to the 1
T

term in (23.10.3), one can show that for a fixed β, as T → ∞, the maximum penalized-likelihood estimate x̂ will converge in
probability to x̌, a biased estimate [6]. For asymptotically unbiased estimates, one must let β → 0 at an appropriate rate as T →∞ [11].
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∇11 Ψ(x,y) = − 1

T
A′.

By the assumption that the measurements have independent Poisson distributions, Cov{y} = diag
{
Ȳi(xtrue)

}
. Sub-

stituting into (23.3.12) and simplifying yields the following approximation to the estimator covariance:

Cov{x̂} ≈ 1

T
[F(x̌) + βR(x̌)]

−1 F(xtrue) [F(x̌) + βR(x̌)]
−1
, (23.10.4)

eqn-cov-trans

where
F(x) = A′ diag{pi(x)}A (23.10.5)

eqn-f

is 1/T times the Fisher information for estimating x from y. Note the similarity to (23.9.5).
We compute the approximate variance of x̂j by using the following recipe.

• Compute x̌ = arg minxΨ(x, ȳ) by applying to noise-free data ȳ a maximization algorithm such as the fast
converging coordinate-ascent algorithm of Bouman and Sauer [42], [43].

• Forward project x̌ to compute pi(x̌) =
∑
j aijx̌j + ri. Likewise for pi(xtrue).

• Pick a pixel j of interest and solve the equation [A′ diag{pi(x̌)}A + βR(x̌)]uj = ej for uj using a fast
iterative method such as preconditioned conjugate gradients [44] or Gauss-Siedel [31].

• Compute 1
T (uj)

′A′ diag{pi(xtrue)}Auj by first forward projecting uj to compute v = Auj , and then sum-
ming:

Var{x̂j} ≈
1

T

nd∑
i=1

v2
i pi(xtrue).

The overall computational requirements for this recipe are roughly equivalent to two maximizations of Ψ. Thus, if one
only needs the approximate variance for a few pixels of interest, it is more efficient to use the above technique than to
perform numerical simulations that require dozens of maximizations of Ψ.

23.10.2 Empirical Results
To assess the accuracy of approximation (23.10.4), we performed numerical simulations using the synthetic attenuation
map shown in Fig. 23.14.1 as xtrue. This image represents a human thorax cross-section with linear attenuation
coefficients 0.0165mm−1, 0.0096mm−1, and 0.0025mm−1, for bone, soft tissue, and lungs respectively. The image
was a 128 by 64 array of 4.5mm pixels. We simulated a PET transmission scan with 192 radial bins and 96 angles
uniformly spaced over 180◦. The aij factors corresponded to 6mm wide strip integrals with 3mm center-to-center
spacing. (This is an approximation to the ideal line integral that accounts for finite detector width.) We generated the
bi factors using pseudo-random log-normal variates with a standard deviation of 0.3 to account for detector efficiency
variations. We performed four studies with the scale factor T set so that

∑nd

i=1 Ȳi(xtrue) was 0.25, 1, 4, and 16
million counts. We set ri = 0 for simplicity. For each study, we generated 100 realizations of pseudo-random Poisson
transmission measurements according to (23.10.1) and then reconstructed using the penalized-likelihood estimator
described by (23.10.3) using a coordinate-ascent algorithm [41]. This algorithm enforced the nonnegativity constraint
x̂ � 0. For simplicity, we used the function ψ(x) = x2/2 for the penalty in (23.9.1). We also reconstructed attenuation
maps using the conventional FBP algorithm at a matched resolution. The FBP images served as the initial estimate for
the iterative algorithm.

We computed the sample standard deviations of the estimates for the center pixel from these simulations, as well
as the approximate predicted variance given by (23.10.4). Fig. 23.14.2 shows the results, as well as the (much inferior)
performance of the conventional FBP method. The predicted variance agrees very well with the actual estimator
performance, even for measured counts lower than are clinically relevant (20% error standard deviations would be
clinically unacceptable). Therefore, for clinically relevant SNRs, the variance approximation given by (23.10.4) can
be used to predict estimator performance reliably. For the simulation with 250K counts, the approximation agreed
within 7% of the empirical results. For the simulations with more than 1M counts, the difference was smaller than 1%.
Note the asymptotic property: better agreement between simulations and predictions for higher SNR.

Many authors have reported that the 0th-order mean approximation (23.8.1) is reasonably accurate for maximum-
likelihood estimators [20], [21], [38]; we have found similar results for penalized-likelihood estimators such as (23.10.3).
(This is fortuitous because the 2nd-order expressions for mean are considerably more expensive to compute because
p = 128 · 64 and nd = 192 · 96 are very large in this example.) Fig. 23.14.3 displays a representative cross-section
through the mean predicted by (23.8.1) and the empirical sample mean computed from the 1M count simulations.
The predicted mean agrees very closely with the sample mean. These results demonstrate that the mean and vari-
ance approximations (23.8.1) and (23.3.12) are useful for predicting penalized-likelihood estimator performance in
transmission tomography.
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23.11 Post-estimation plug-in variance approximation
s,mav,plug

The approximation (23.3.12) for the estimator covariance depends on both x̌ and Cov{y}, so as written its primary use
will be in computer simulations where x̌ and Cov{y} are known. Sometimes one would like to be able to obtain an
approximate estimate of estimator variability from a single noisy measurement (such as real data), for which xtrue is
unknown, and Cov{y} may also be unknown. In some problems this can be done using a “plug-in” estimate in which
we substitute the estimate x̂ in for x̌ in (23.3.12). The effectiveness of this approach will undoubtedly be application
dependent, so in this section we focus on the specific problem of transmission tomography.

Using the transmission tomography model given in the previous section, assume we have a single noisy measure-
ment realization y and a penalized-likelihood estimate x̂ computed by maximizing the cost function (23.10.3). If we
knew x̌ and xtrue, then we could use (23.10.4) to approximate the covariance of x̂. If we only have x̂, then in light of
the form of the covariance approximation given by (23.10.4), a natural approach to estimating the covariance would
be to simply plug-in x̂ for x̌ and xtrue in (23.10.4):

Ĉov{x̂} =
1

T
[F(x̂) + βR(x̂)]

−1 F(x̂) [F(x̂) + βR(x̂)]
−1
,

from which one can compute estimates of the variance of individual pixels or region-of-interest values using the same
technique as in (23.4.2).

At first it may seem unlikely that such a simplistic approach would yield reliable estimates of variability. However,
note that in the definition (23.10.5) of F(x), the only dependence on x is through its projections pi(x). In tomography,
the projection operation is a smoothing operation, i.e., high spatial-frequency details are attenuated (hence the need
for a ramp filter in linear reconstruction methods). Therefore, if the low and middle spatial frequencies of x̂ agree
reasonably well with x̌ and xtrue, then the projections pi(x̂), pi(x̌), and pi(xtrue) will be very similar. Furthermore,
the dependence on the pi terms in (23.10.4) is through a diagonal matrix that is sandwiched between the A′ and A
matrices—which induce further smoothing.

To evaluate the reliability of this post-reconstruction plug-in estimate of variance, we used each of the 100 real-
izations described in the previous section to obtain a post-reconstruction estimate of the variance of estimate of the
center pixel of the object shown in Fig. 23.14.1. If x̂(m) denotes the mth realization (m = 1, . . . , 100), then the mth
estimate of the standard deviation of x̂j is:

σ̂
(m)
j =

[
(ej)

′Ĉov{x̂}ej
]1/2

=

[
(ej)

′ 1

T
[F(x̂) + βR(x̂)]

−1 F(x̂) [F(x̂) + βR(x̂)]
−1
ej

]1/2

. (23.11.1)
eqn-plug-var-trans

Histograms of the standard deviation estimates
{
σ̂

(m)
j

}100

m=1
are shown in Fig. 23.14.4 and Fig. 23.14.5 for the

250K and 1M count simulations respectively. The actual sample standard deviations for the two cases were 1.74 ·
10−3 and 9.30 · 10−4 respectively. For the 250K count simulations, each of the 100 estimates was within 8% of the
actual sample standard deviation. For the 1M count simulations, each of the 100 estimates was within 0.5% of the
actual sample standard deviation. These are remarkably accurate estimates of variability, and clearly demonstrate the
feasibility of estimating the variability of penalized-likelihood estimators even from single noisy measurements. One
important application of such measures of variability would be in computing weighted estimates of kinetic parameters
from dynamic PET scans [45].

23.12 Example: Emission Tomography
s,mav,ex,emis

In this section we examine the accuracy of both the mean and the variance approximations for the problem of emission
tomography. Our description of the problem is brief, for more details see [39], [46].

In emission tomography the parameter xj denotes the radionuclide concentration in the jth pixel. The emission
measurements have independent Poisson distributions, and we assume the mean of yi is:

Ȳi(x) = Tpi(x)

pi(x) =
∑
j

aijxj + ri, (23.12.1)

where the aij are proportional to the probability that an emission in voxel j is detected by the nth detector pair, {ri}
denotes additive background events such as random coincidences, and T denotes the scan duration. These nonnegative
factors are all assumed known. The log-likelihood for emission tomography has the same form as (23.10.2), but with
definition (23.12.1) for Ȳi(x). We again focus on penalized-likelihood cost functions of the form (23.10.3).

Due to the nonnegativity constraints, the nonquadratic penalty (see below), and the nonquadratic form of the
log-likelihood, this problem also provides a stringent test of the accuracy of our moment approximations.
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23.12.1 Covariance Approximation
Approximating the variance of certain pixels of interest using (23.4.2) requires the following partial derivatives:

∂

∂xj
L(x,y) = T

nd∑
i=1

aij

(
yi

Ȳi(x)
− 1

)

− ∂2

∂xj ∂xk
L(x,y) = T

nd∑
i=1

aijaik
yi/T

p2
i (x)

∂2

∂xj ∂yi
L(x,y) = aij/pi(x).

Combining the above expressions in matrix form with the expressions for the partials of R given in §23.9:

−∇20 Ψ(x,y) = A′ diag

{
yi/T

p2
i (x)

}
A+ βR(x)

∇11 Ψ(x,y) = − 1

T
A′ diag

{
1

pi(x)

}
.

Thus

−∇20 Ψ(x̌, ȳ) = A′ diag

{
pi(xtrue)

p2
i (x̌)

}
A+ βR(x̌)

∇11 Ψ(x̌, ȳ) = − 1

T
A′ diag

{
1

pi(x̌)

}
.

By the assumption that the measurements have independent Poisson distributions, Cov{y} = diag
{
Ȳi(xtrue)

}
. Sub-

stituting into (23.3.12) and simplifying yields the following approximation to the estimator covariance:

Cov{x̂} ≈ 1

T
[F + βR(x̌)]

−1 F [F + βR(x̌)]
−1
, (23.12.2)

eqn-cov-emis

where

F = A′ diag

{
pi(xtrue)

p2
i (x̌)

}
A. (23.12.3)

eqn-f-trans

We compute the approximate variance of x̂j using a recipe similar to that given in §23.10.

23.12.2 Empirical Results
To assess the accuracy of approximation (23.12.2), we performed numerical simulations using the synthetic brain
image shown in Fig. 23.14.6 as xtrue, with radioisotope concentrations 4 and 1 (arbitrary units) in gray and white
matter respectively. The image was a 112 by 128 array of 2mm pixels. We simulated a PET emission scan with 80
radial bins and 110 angles uniformly spaced over 180◦. The aij factors correspond to 6mm wide strip integrals on 3mm
center-to-center spacing, modified by pseudo-random log-normal variates with a standard deviation of 0.3 to account
for detector efficiency variations, and by head attenuation factors. Four studies were performed, with the scale factor
T set so that

∑nd

i=1 Ȳi(xtrue) was 0.2, 0.8, 3.2, and 12.8 million counts. The ri factors were set to a uniform value
corresponding to 10% random coincidences. For each study, 100 realizations of pseudo-random Poisson transmission
measurements were generated according to (23.12.1) and then reconstructed using a space-alternating generalized EM
algorithm [46], that enforces the nonnegativity constraint x̂ � 0. FBP images served as the initial estimate for the
iterative algorithm.

For the penalty function ψ we studied two cases: the simple quadratic case ψ(x) = x2/2, as well as a nonquadratic
penalty: the third entry in Table III of [47]:

ψ(x) = δ2 [|x|/δ − log(1 + |x|/δ)] ,

with δ = 1. This nonquadratic penalty blurs edges less than the quadratic penalty.
We computed the sample standard deviations of the estimates, as well as the approximate predicted variance given

by (23.10.4) for two pixels: one at the center and one at the right edge of the left thalamus (oval shaped region near
image center).

The results for the quadratic penalty are shown in Fig. 23.14.7 and Fig. 23.14.8. The trends are similar to those
reported for transmission tomography: good agreement between the empirical standard deviations and the analytical
predictions, with improving accuracy with increasing counts. Note that for the quadratic penalty, pixels at the center
and edge of the thalamus have similar variances.

The results for the nonquadratic penalty are shown in Fig. 23.14.9 and Fig. 23.14.10. For the pixel at the edge of the
thalamus, the predicted and empirical variances agree well. But for the pixel at the center of the thalamus, the empirical
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variance was significantly higher than the predicted value for the 0.8M count case. Further work is therefore needed
for nonquadratic penalties. Note that the edge pixel had higher variance than the center pixel with the nonquadratic
penalty. The importance of this nonuniformity also needs investigation. Overall though, as in the transmission case
we conclude that the variance approximation (23.3.12), (23.12.2) gives reasonably accurate predictions of estimator
performance, with better agreement at higher SNR.

We also investigated the post-estimation plug-in approach described in §23.11 for the 0.8M count emission case.
The plug-in estimates of standard deviation for the two pixels considered were all within 1% of the predicted values for
the standard deviation. Thus, plugging in x̂ to (23.12.2) yields essentially the same value as one gets by using x̌ and
xtrue. Thus it appears that the intrinsic error in the approximation (23.12.2) is more significant than the differences
between x̂ and xtrue. Practically, this suggests that if one can establish by simulation that the approximation error
is small for measurements with more than a certain number of counts from a given tomograph, then one can use the
plug-in approximation with such measurements and have confidence in the accuracy of the results even though xtrue

is unknown.
As illustrated by Fig. 23.14.11, the 0th-order mean approximation (23.8.1) again compares closely with the em-

pirical sample mean for this likelihood-based estimator. However, the next subsection demonstrates that this accuracy
does not apply to the very nonlinear data-weighted least squares estimator for emission tomography.

23.12.3 Mean: 2nd Order
This subsection illustrates an application of the second-order approximation for estimator mean given by (23.8.6). In
the routine practice of PET and SPECT, images are reconstructed using non-statistical Fourier methods [48]. Often
one can obtain more accurate images using likelihood-based methods. Because there is no closed form expression
for Poisson likelihood-based estimates, one must resort to iterative algorithms, many of which converge very slowly.
Therefore, some investigators have replaced the log-likelihood with a weighted least-squares or quadratic cost function
for which there are iterative algorithms that converge faster (e.g., [42], [43], [49], [50]). Unfortunately, in the context
of transmission tomography, quadratic cost functions lead to estimation bias for low-count measurements [41]. To
determine whether a similar undesirable bias exists for the quadratic approximation in the emission case, we now use
the analytical expression (23.8.6) for estimator mean.

The log-likelihood is non-quadratic, and the idea of using quadratic approximations to the log-likelihood has
been studied extensively. Bouman and Sauer have nicely analyzed the approximations using a second-order Taylor
expansion. Following [42], [43], the quadratic approximation to the log-likelihood ΨL(x, Y ) = L(x, Y ) is

ΨQ(x,y) = −1

2

∑
n : yi>0

1

yi
(yi − Ȳi(x))2.

The cost functions ΨL and ΨQ each implicitly define a nonlinear estimator. Even when p = 1, there is no closed
form solution for the maximum-likelihood estimate, except in the special case when ri/ai is a constant independent
of n.

For large images, the computation required for solving (23.8.6) appears prohibitive. Therefore, we consider a
highly simplified version of emission tomography, where the unknown is a scalar parameter (p = 1). This simplified
problem nevertheless provides insight into the estimator bias without the undue notation of the multi-parameter case.
In Table 23.1 we derive the partial derivatives necessary for evaluating (23.8.6) for each cost function (for p = 1). In
this table Fx denotes the Fisher information for estimating x from y:

Fx = −E
[
∇2
x log f(y,x)

]
=

nd∑
i=1

a2
i /Ȳi(x) =

nd∑
i=1

a2
i

aiθ + ri
.

The second and final two rows of Table 23.1 show three important points:

• For each cost function,∇10 Ψ(x, ȳ(x)) = 0, so that x̌ = h(ȳ(x)) = x, i.e., the estimators work perfectly with
noiseless data. Therefore the 0th-order approximation (23.8.1) yields E[x̂] = x, which is inaccurate for the ΨQ

estimator.

• The variances of the estimators are approximately equal.

• The maximum-likelihood estimate is unbiased to second order, whereas the quadratic estimate is biased.

Fig. 23.14.12 compares the bias predicted analytically using the approximation (23.8.6) with an empirically com-
puted bias performed by numerical simulations. In these simulations we used xtrue = 1, ri = 0, ai = 1, and nd = 10,
and varied T so that 1

nd

∑nd

i=1 Ȳi(xtrue) (average number of counts per detector) ranged from 2 to 100. The predicted
and empirical results again agree very closely except when there are fewer than 4 average counts per detector. These
results show that if the average counts per detector is below 10, then using the quadratic approximation to the Pois-
son log-likelihood can lead to biases exceeding 10%. In practice, the importance of this bias should be considered
relative to other inaccuracies such as the approximations used in specifying ai. When the bias due to the quadratic
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approximation is significant, one can apply a hybrid Poisson/polynomial cost function similar to that proposed for
transmission tomography [41]. In this approach, one uses the quadratic approximation for the high-count detectors,
but the original log-likelihood for the low-count measurements, thereby retaining most of the computational advantage
of the quadratic cost function without introducing bias [41].

23.13 Discussion
We have derived approximations for the mean and covariance of estimators that are defined as the maximum of
some cost function. In the context of imaging applications with large numbers of unknown parameters, the variance
approximation and the 0th-order mean approximation should be useful for predicting the performance of penalized-
likelihood estimators. For applications with fewer parameters, one can also use the second-order mean approximation
for improved accuracy.

In some applications one would like to perform estimation by maximizing an cost function subject to certain
equality constraints. One can use methods similar to the derivation of the constrained Cramér-Rao lower bound
[51], [52] to generalize the covariance approximation (23.3.12) to include the reduction in variance that results from
including constraints.

Our empirical results indicate that the accuracy of the proposed approximations improve with increasing SNR,
which is consistent with the asymptotics discussed in the Appendix. If the SNR is too low, the approximation accuracy
may be poor, but “how low is too low” will obviously be application dependent. The approximations are also likely
to overestimate the variance of pixels that are near zero when one enforces nonnegativity constraints. Thus these
approximations do not eliminate the need for careful numerical simulations.

In our own work, thus far we have primarily used the approximations to determine useful values of the regulariza-
tion parameter prior to performing simulations comparing various approaches (as in §23.10. In the future, we expect
to evaluate the post-reconstruction estimate of region variability §23.11 for performing weighted estimates of kinetic
parameters from dynamic PET emission scans [45]. Many PET scan protocols are indeed dynamic scans acquired for
the purpose of extracting kinetic parameters; therefore, the ability to estimate region variability is essential. Because
FBP is a linear reconstruction algorithm, it is straightforward to compute estimates of variability for Poisson emission
measurements [45], [53]. If nonlinear penalized-likelihood methods are ever to replace FBP in the routine practice of
PET, reliable estimates of variability (such as the plug-in method we have proposed) will be needed for a variety of
purposes.

23.14 Appendix
This appendix synopsizes the asymptotic variance of M-estimates given by Serfling [6]. The results in Serfling are for
a scalar parameter x, so we consider the scalar case below. (See [27] for the multiparameter case.) As in §( I ), let
Φ(x, Y ) be the cost function that is to be maximized to find x̂, and define

ψ(x, Y ) =
∂

∂x
Φ(x, Y ).

Assume Y has a probability distribution F (y;xtrue), and let x̄ be the value of x that satisfies:∫
ψ(x, y) dF (y;xtrue) = 0. (23.14.1)

a1

Serfling [6] shows that x̂ is asymptotically normal with mean x̄ and variance∫
ψ2(x̄, y) dF (y;xtrue)[

∂
∂x

∫
ψ2(x, y) dF (y;xtrue)

∣∣
x=x̄

]2 . (23.14.2)
a2

This asymptotic variance is somewhat inconvenient to use in imaging problems for the following reasons.
• The term x̄ plays a role similar to our x̌, but solving the integral equation (23.14.1) for x̄ is in general more work

than calculating x̌ by maximizing Φ(·, ȳ).
• Both x̄ and the expression for the asymptotic variance depend on the entire measurement distribution F (y;xtrue),

whereas our approximation depends only on the mean and covariance of the measurements.
With some additional work, one can show that if ψ(x, Y ) is affine in Y , then x̄ and x̌ are equal, and (23.14.2)
is equivalent to (23.3.12). Both gaussian and Poisson measurements yield ψ that are affine in Y (cf (23.10.2)), so
(23.3.12) is the asymptotic covariance in those cases, provided the penalty is data-independent. For data-dependent
penalties [54] or for more complicated noise distributions, such as the Poisson/gaussian model for CCD arrays [55],
the covariance approximation given by (23.3.12) will probably be easier to implement than (23.14.2).
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Objective
Term Likelihood Quadratic

Ψ(x,y)
∑nd

i=1 yi log Ȳi(x)− Ȳi(x) − 1
2

∑nd

i=1(yi − Ȳi(x))2/yi

∂
∂θ Ψ(x,y)

∑nd

i=1 ai(yi/Ȳi(x)− 1)
∑nd

i=1 ai(1− Ȳi(x)/yi)

− ∂2

∂θ2 Ψ(x,y)
∑nd

i=1 a
2
i yi/Ȳi(x)2

∑nd

i=1 a
2
i /yi

∂3

∂θ3 Ψ(x,y)
∑nd

i=1 2a3
i yi/Ȳi(x)3 0

∂2

∂θ ∂yi
Ψ(x,y) ai/Ȳi(x) aiȲi(x)/y2

i

∂3

∂θ∂y2i
Ψ(x,y) 0 −2aiȲi(x)/y3

i

∂3

∂θ2∂yi
Ψ(x,y) −a2

i /Ȳi(x)2 a2
i /y

2
i

− ∂2

∂θ2 Ψ(x, ȳ) Fx Fx

∂3

∂θ3 Ψ(x, ȳ) 2
∑nd

i=1 a
3
i /Ȳ

2
i 0

∂2

∂θ ∂yi
Ψ(x, ȳ) ai/Ȳi ai/Ȳi

∂3

∂θ∂y2i
Ψ(x, ȳ) 0 −2ai/Ȳ

2
i

∂3

∂θ2∂yi
Ψ(x, ȳ) −a2

i /Ȳ
2
i a2

i /Ȳ
2
i

∂
∂yi

h(ȳ) ai/(ȲiFx) ai/(ȲiFx)

∂2

∂y2i
h(ȳ) 2

F2
x

a2i
Ȳ 2
i

[
1
Fx

∑nd

i=1 a
3
i /Ȳ

2
i − ai/Ȳi

]
2
Fx

ai
Ȳ 2
i

[
a2i
ȲiFx

− 1
]

Var{x̂} ≈ 1/Fx 1/Fx

E[x̂]−x ≈ 0 1
F2
x

∑nd

i=1
a3i
Ȳ 2
i
− 1

Fx

∑nd

i=1
ai
Ȳi

Table 23.1: Objective functions and partial derivatives for scalar emission tomography problem with Ȳi(x) = aix.
table-emis

Figure 23.14.1: Simulated thorax attenuation map used to evaluate the mean and variance approximations for
penalized-likelihood estimators in transmission tomography.
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Figure 23.14.2: Variance for center pixel of attenuation map as predicted by (23.10.4) compared with simulation
results from penalized-likelihood estimator (23.10.3). Also shown is the variance of conventional FBP.
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Figure 23.14.3: Horizontal cross-section through predicted estimator mean and empirical sample mean. Despite the
nonlinearity of the estimator, the prediction agrees closely with the empirical performance.
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Figure 23.14.4: Histogram of 100 post-reconstruction plug-in estimates of variability Var{x̂j} described by (23.11.1),
where j corresponds to the center pixel of the attenuation map shown in Fig. 23.14.1, for 250K count measurements.
The empirical standard deviation from 100 realizations was 1.74 · 10−3mm−1.
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Figure 23.14.5: As in previous figure, but for 1M count measurements. The empirical standard deviation from 100
realizations was 9.30 · 10−4mm−1.
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PhantomFBPPenalized Likelihood

Figure 23.14.6: Simulated brain radioisotope emission distribution.
fig,obj,emis
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Figure 23.14.7: Comparison of predicted variance from (23.12.2) with empirical performance of penalized-likelihood
emission image reconstruction with quadratic penalty for pixel at center of thalamus.
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Proposed analytical approximationPenalized likelihood estimator   10510610710800.20.40.60.81Total Measured Counts [Millions]Standard DeviationEstimator Variance in Emission TomographyQuadratic penaltyEdge of thalamus

Figure 23.14.8: As in Fig. 23.14.7 but for pixel at edge of thalamus.
fig,std,53,67,-2,quad,1,-,8e5,r10

Proposed analytical approximationPenalized likelihood estimator   10510610710800.20.40.60.81Total Measured Counts [Millions]Standard DeviationEstimator Variance in Emission TomographyLange3 penaltyCenter of thalamus

Figure 23.14.9: As in Fig. 23.14.7 but for nonquadratic penalty (see text).
fig,std,49,64,-2,lange3,1,-,1p0,3,8e5,r10
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Figure 23.14.10: As in Fig. 23.14.8 but for nonquadratic penalty (see text).
fig,std,53,67,-2,lange3,1,-,1p0,3,8e5,r10
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Figure 23.14.11: Horizontal profile through emission phantom, 0th-order predicted mean, and empirical mean from
penalized-likelihood estimator using nonquadratic penalty for 0.8M count case.

fig,mean,emis,lange3
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Figure 23.14.12: Bias for scalar emission estimation problem for the maximum-likelihood estimator and for the
weighted least-squares estimator based on a quadratic approximation to the log-likelihood. Solid lines are the an-
alytical formulas in the last row of Table I; the other points are empirical results.

fig-emis-bias
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23.15 Asymptotics of penalized-likelihood estimators (s,mav,pl,asymp)
s,mav,pl,asymp

It may be useful to consider when and how the covariance approximations in §23.3 become more accurate “asymptot-
ically.” To address this, we must first consider what are the appropriate asymptotics for imaging problems. One might
like to consider cases where we collect more and more projection views in tomography, or more and more k-space
data in MRI, but those types of asymptotics are not considered here. Instead, we consider the hypothetical case where
we acquire repeated scans of the same (unchanging) object and imagine reconstructing a single image from N such
scans and consider what happens as N increases. For Poisson statistics, this turns out to be equivalent to letting the
number of collected counts increase asymptotically.

If we were to collect N repeated scans, then it would be reasonable to consider the following penalized-likelihood
cost function:

Ψ(x,y) =

N∑
n=1

L- (x,yn) +βNR(x),

where L- denotes the negative log-likelihood, and {yn} are i.i.d. random vectors.
Assume that βN/N → β ≥ 0 as N →∞, and define

x̌ , arg min
x

E[L- (x,y1)] +βR(x).

In other words, x̌ denotes the estimate computed from the average penalized-likelihood function, cf. [27, p. 132]. For
certain statistical models, such as the normal and Poisson cases, the log-likelihood is effectively affine in the data, in
which case

E[L- (x,y1)] = L- (x, ȳ1),

where ȳn = E[yn]. In such cases, x̌ is interpreted as the estimate given noiseless data. However, we need not use this
special case in what follows. Define the negative log-likelihood Hessian L by

L , E
[
∇[2,0] L- (x̌,y1)

]
,

and let R denote the Hessian of R(x) at x̌.
Because the yn vectors are independent,

Cov{Γ(x̌,y)} = N Cov{∇x L- (x̌,y1)},

where Γ was defined in (23.3.1). Thus the covariance approximation (23.3.5) simplifies to

Cov{x̂} ≈ [NL+ βNR]
−1
N Cov{∇x L- (x̌,y1)} [NL+ βNR]

−1

=
1

N

[
L+

βN
N

R

]−1

Cov{∇x L- (x̌,y1)}
[
L+

βN
N

R

]−1

.

The form of this covariance approximation suggests the following asymptotic result, which is shown rigorously in
[27, p. 133] [56] Under reasonable regularity conditions on the likelihood L- and penalty function R, the normalized
error vector √

N(x̂−x̌)

is asymptotically normally distributed with mean zero and covariance

[L+ βR]
−1 Cov{∇x L- (x̌,y1)} [L+ βR]

−1
. (23.15.1)

e,mav,cov,pl

Furthermore, if L- is effectively affine in yn, then

Cov{∇x L- (x̌,y1)} =
[
∇[1,1] L- (x̌, ȳ1)

]
Cov{y}

[
∇[1,1] L- (x̌, ȳ1)

]′
.

For more accurate approximations, the methods used in [57] may be useful.
If β = 0, then x̂ is simply the ML estimator, and then in many cases it will turn out that x̌ = xtrue and (23.15.1)

simplifies to the inverse of the Fisher information matrix, corresponding to the well-known asymptotic efficiency of
ML estimators.

However, when β 6= 0, the estimator x̂ is not asymptotically efficient but (23.15.1) nevertheless describes the
asymptotic covariance and x̌ is the asymptotic mean. Furthermore, penalized-likelihood estimators are optimal with
respect to the uniform CR bound for biased estimators [56].

x,cov,robust

Example 23.15.1 The simplest such problem would be the unregularized case with a scalar unknown and i.i.d. scalar
measurements:

Ψ(θ,y) =

N∑
n=1

ψ(θ, yn) .
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Define
θ̌ = arg min

θ
E[ψ(θ, Y )]

then
√
N(θ̂ − θ̌) is asymptotically normal with variance

Var
{
ψ̇
(
θ̌, Y

)}
/E2
[
ψ̈(θ, Y )

]
.

For comparison, the approximation (23.3.12) developed in [4] suggests

Var
{
θ̂
}
≈ Var{Y }

N

[∇[1,1] ψ
(
θ̌, Ȳ

)
]2

[ψ̈
(
θ̌, Ȳ

)
]2

.

If ψ(x, y) = ψ(x− y) then ∇[1,1] ψ = ψ̈ in which case that approximation reduces to simply Var
{
θ̂
}
≈ Var{Y }/N.

This is insufficiently accurate for nonquadratic cost functions as seen in the nonquadratic regularization results in
(23.3.12).

The following relationships may be useful for further investigations:

E
[
ψ̈
(
θ̌ − Y

)]
=

∫
ψ̈
(
θ̌ − y

)
p(y) dy

Var
{
ψ̇
(
θ̌ − Y

)}
=

∫
[ψ̇
(
θ̌ − y

)
−0]2 p(y) dy

because
E
[
ψ̇
(
θ̌, Y

)]
= 0.
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23.16 Local second-order statistics (s,mav,local)s,mav,local

23.16.1 Continuous-space random processes
Let g(~x) denote a continuous-space random process with mean function E[g(~x)] and autocorrelation function

Rg(~x,~y) = E[g(~x) g∗(~y)] .

In general, such a random process need not be wide-sense stationary (WSS), so it need not have a power spectrum P0.
However, often for image reconstruction problems, the second-order statistics of g(~x) may vary slowly spatially, so it
can be useful to define a local autocorrelation function R0(~τ) and a local power spectrum P0(~ν) near some point ~x0

of interest.
One intuitive definition for the local autocorrelation function near a point ~x0 is the following6:

R0(~τ) , Rg(~x0 + ~τ ,~x0) .

An alternative definition is the following [58, p. 870]:

R0(~τ) , Rg(~x0 + ~τ/2,~x0 − ~τ/2) . (23.16.1)
e,mav,local,1/2

In fact, to generalize these definitions one might consider an entire family of the form

R0(~τ) , Rg(~x0 + α~τ,~x0 − (1− α)~τ) (23.16.2)
e,mav,local,alf

for various α ∈ [0, 1]. Note that for any such definition we have that

R0

(
~0
)

= Rg(~x0,~x0) = E
[
|g(~x0)|2

]
,

so all such definitions lead to the correct variance expression. This property is important for approximation accuracy
because the Cauchy-Schwarz inequality ensures that autocorrelation functions are peaked at the origin ~0.

The local WSS approximation that follows from defining a local autocorrelation function is the following:

Rg(~x,~y) ≈ R0(~x− ~y)

provided both ~x and ~y are “sufficiently close” to the point ~x0.
We define the local power spectrum as the Fourier transform of the local autocorrelation function:

P0(~ν) ,
∫

R0(~τ) e−ı2π~ν·~τ d~τ .

Note that when we choose α = 1/2, i.e., (23.16.1), then R0(·) is symmetric, i.e., R0(−~τ) = R0(~τ) . This ensures
that the local power spectrum approximation P0 is real (when g(~x) is real). Other choices of α need not ensure this
desirable property.

23.16.2 Discrete-space random processes
Now consider a d̄-dimensional discrete-space random process g[~n] for ~n ∈ Zd̄ having autocorrelation function

Rg[~n, ~m] = E[g[~n] g[~m]] .

A generalized definition of local autocorrelation function like (23.16.2) seems inapplicable because here Rg is defined
only on the integers. Therefore the natural definition of the local autocorrelation function near a point ~n0 is

R0[~n] , Rg[~n0 + ~n, ~n0] .

If it happens that the form of Rg[~n, ~m] (or an approximation thereof) can be defined sensibly for non-integer arguments
(even though g[n,m] itself cannot), then we can make a generalized definition of the local autocorrelation function as
follows:

R0[~n] , Rg[~n0 + α~n, ~n0 − (1− α)~n]

for some α ∈ [0, 1]. (Such a situation arises in §25.7.12 for example.) Given any such definition, there are two useful
approximations to the local power spectrum, described next.

6When defining R0(·), our notation suppresses the dependence on the point ~x0. Nevertheless, this dependence is quite important.
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For the first case, if g[~n] is an image with finite support N1 ×N2 × · · · ×Nd, then we may want to consider g[~n]
to be a cyclicly WSS random process and interpret all of the arguments above modulo Nk. In this case the natural
definition of power spectrum uses a ~N -point discrete Fourier transform (DFT) as follows7:

P0

[
~k
]

=

~N/2−1∑
~n=− ~N/2

R0[~n] e−ı2π~n·(
~k/ ~N) .

Alternatively, we might consider g[~n] to be defined over all of Zd̄ (regardless of whether it really is), in which case
the natural definition of power spectrum uses a discrete-space Fourier transform (DSFT) as follows:

P0(~ω) =
∑
~n

R0[~n] e−ı~ω·~n .

Both definitions are merely approximations when g[~n] is not WSS.
Note again that if we can choose α = 1/2, then R0 is symmetric and P0 is real.

23.17 Bias of data-weighted least-squares (DWLS) (s,mav,dwls,bias)
s,mav,dwls,bias

As detailed in [41], data-weighted least-squares (DWLS) cost functions can lead to significant biases for Poisson data.
See [59] for alternative cost functions such as

nd∑
i=1

(yi + min(yi, 1)− ȳi)2/(yi + 1).

7Above, ~N = (N1, N2, . . . , Nd̄) and “~k/ ~N” denotes element-wise division.
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23.18 Cramér-Rao bound (s,mav,crb)s,mav,crb

This section presents a succinct derivation of the Cramer-Rao bound (CRB) for both unbiased and biased estimators.
Covariance bounds are useful for establishing performance limits of estimators, and for imaging system design.

Consider a noisy measurement vector y ∈ Rnd whose distribution p(y;x) depends on a parameter vectorx ∈ Rnp .
The log likelihood for x is log p(y;x) . We denote the np × 1 column gradient of the log-likelihood as

g = g(x,y) = ∇x log p(y;x) =
1

p(y;x)
∇x p(y;x) . (23.18.1)

e,mav,crb,lgrad

Let x̂ = x̂(y) denote an estimator for x, and let µ = µ(x) denote its expectation8:

µ(x) = E[x̂(y)] =

∫
x̂(y) p(y;x) dy .

We say that x̂ is an unbiased estimator if µ(x) = x. However, in image formation problems, rarely do we have
unbiased estimators, so it is important to analyze the case of biased estimators.

The following theorem gives two important properties of the log-likelihood gradient g.
t,mav,crb,prop

Theorem 23.18.1 Under suitable regularity conditions, the log-likelihood gradient g in (23.18.1) satisfies:

E[g] = 0

E[x̂ g′] = Cov{x̂, g} = ∇µ(x).
Proof:
Assuming p(y;x) is sufficiently regular to allow exchange of the order of integration and differentiation [60, p. 118]:

E[g] =

∫
[∇x log p(y;x)] p(y;x) dy

=

∫ [
1

p(y;x)
∇x p(y;x)

]
p(y;x) dy

=

∫
∇x p(y;x) dy = ∇x

∫
p(y;x) dy = ∇x1 = 0.

Similarly

∇µ(x) = ∇x
∫
x̂(y) p(y;x) dy =

∫
x̂(y)

[
1

p(y;x)
∇x p(y;x)

]
p(y;x) dy

=

∫
x̂(y) g′(x,y) p(y;x) dy = E[x̂ g′] = Cov{x̂, g},

where the latter equality follows because g is zero mean. 2

Using Theorem 23.18.1, we can now derive the CRB. We first define the Fisher information matrix:

F = F(x) = E[g g′] =

∫
[∇ log p(y;x)] [∇ log p(y;x)] p(y;x) dy = Cov{g} . (23.18.2)

e,mav,crb,F

The covariance of any random vector is necessarily positive-semidefinite, i.e., Cov{z} � 0. With the benefit of
hindsight, we examine the particular vector x̂−S g, where S is any np × np matrix, as follows:

0 � Cov{x̂−S g} = Cov{x̂}−Cov{x̂, g}S′ − S Cov{g, x̂}+S Cov{g}S′.

Rearranging yields the following lower bound for any estimator x̂:

Cov{x̂} � ∇µS′ + S (∇µ)
′ − SFS′,

which holds for any np × np matrix S. We get the desired lower bound by choosing S = ∇µF†, which yields the
following CRB for biased estimators:

Cov{x̂} � ∇µF† (∇µ)
′
. (23.18.3)

e,mav,crb

Another form for this bound uses the bias:

b(x) = E[x̂]−x = µ(x)− x,

with its corresponding bias gradient matrix
∇b = ∇µ− I.

8To be explicit, we could write Ex[·] throughout, to note that the expectation depends on the true value of the parameter x.
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Thus we can write the biased CRB as follows:

Cov{x̂} � [I +∇b] F† [I +∇b]′ .

If x̂ is an unbiased estimator for x, then µ(x) = x so∇µ = I and∇v = 0, leading to the conventional CRB for
unbiased estimators:

Cov{x̂} � F†. (23.18.4)
e,mav,crb,unbiased

x,mav,crb,lin

Example 23.18.2 Consider the linear signal model with additive gaussian noise: y = Ax+ ε, where ε ∼ N(0,Π),
with corresponding Fisher information matrix F = A′Π−1A′.

Consider any linear estimator x̂ = Ly for this problem. For example, for the quadratically penalized weighted
least squares estimator

x̂ = arg min
x

‖y −Ax‖2W 1/2 + x′Rx = [A′WA+R]
−1
A′Wy,

we would have L = [A′WA+R]
−1
A′W .

Then in general the covariance is Cov{x̂} = LΠL′ and the mean gradient is ∇µ = LA. So the biased CRB
(23.18.3) for this estimator is

LΠL′ = Cov{x̂} � LA
[
A′Π−1A

]†
A′L′.

Unfortunately, this inequality does not shed any insight on how to “best” choose the reconstruction matrix L.
As a curiosity, considering the case L = I leads to the following interesting matrix inequality:

Π � A
[
A′Π−1A

]†
A′.

Unfortunately, the biased CRB is of very limited practical use because it is estimator dependent; i.e., it only applies
to estimators with a given mean gradient ∇µ, which is usually a very small family of estimators. So the biased CRB
cannot be used as a fundamental benchmark against which to compare a wide variety of estimation methods. It could
be used for imaging system design if one is willing to design the system around a given estimator.

The uniform CR bounds considered in [56], [61] overcome this limitation by bounding estimation variance subject
to constraints on the allowable bias.

For the case of complex parameter vectors, see [62].

23.19 CRB with equality constraints
s,mav,crb,constrian

Following [51], [52], [63], if we have two sets of parametersx =

[
x1

x2

]
then the CRB is Cov{x̂} �

[
F11 F12

F′12 F22

]−1

.

Using the block matrix inverse formula (26.1.11): Cov{x̂1} �
[
F11 − F12F

−1
22F
′
12

]−1
. If we know x2 (i.e., if we

have an equality constraint for x2) then we need only estimate x1 and we get the following constrained CRB:
Cov{x̂1} � F−1

11 . Note that
[
F11 − F12F

−1
22F
′
12

]−1 � F−1
11 , so incorporating equality constraints reduces the covariance

lower bound for unbiased estimators.

23.20 Problems (s,mav,prob)s,mav,prob

p,mav,nec

Problem 23.1 A widely-used metric of PET scanner performance is noise equivalent counts (NEC). Stearns analyzed
FBP to relate NEC to local image noise [64]. Use the techniques in this chapter and Chapter 22 to relate NEC and
spatial resolution (local impulse response) for penalized-likelihood or PWLS image reconstruction methods. (Need
typed.)

p,mav,iter

Problem 23.2 Prove that the iteration-dependent covariance expression (23.7.1) converges to the “fixed-point” ex-
pression (23.3.14) under suitable conditions on φ. (Solve?)
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