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Chapter 6

Reconstruction from Fourier Samples
(Gridding and alternatives)
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6.1 Introduction (s,four,intro)s,four,intro

There are a wide variety of inverse problems in which one can consider the available data to be samples of the Fourier
transform of an object f of interest, and the goal is to reconstruct that object from those (noisy) samples. Examples
include radio astronomy [1–5], radar [6–10], radiometers [11], ultrasound [12–14], magnetic resonance imaging [15–
18], and tomographic image reconstruction (for 2D parallel-beam geometry) based on the Fourier slice theorem as
described in §3.4. This chapter describes solution methods for such inverse problems.

Rarely is the sampled Fourier transform an exact model; for example, in MRI this formulation ignores many
physical effects such as field inhomogeneity and spin relaxation. (See Chapter 7.) Nevertheless, it can be a useful
starting point. This problem also allows us to introduce general principles for solving inverse problems without the
complications of accurate physical models.

A related problem of interest in fields such as astronomy is that of performing spectral analysis of unevenly sampled
data, e.g., [19, 20]. Some methods of this chapter may be suitable for such applications.

Throughout this chapter we focus on methods that are applicable to general sampling patterns. There are also
techniques for specific sampling patterns, such as spirals e.g., [21–23] and concentric rings [24]. In particular, the
case of polar samples has been studied extensively due to its relevance to tomography, e.g., [25–34]. Several of those
methods are based on polar to Cartesian interpolation schemes that are specific to the case of polar sampling. An
interesting open question is whether the methods for general sampling have progressed sufficiently to make the pattern
specific techniques unnecessary.
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6.1.1 Problem statement (s,four,state)s,four,state

Let f(~x) denote the unknown object, e.g., the patient’s transverse magnetization in MRI, where ~x ∈ Rd̄. Typically
d̄ = 2 or d̄ = 3, but the methods described apply to any dimension d̄ ∈ N. Sometimes we write f true rather than
just f to denote the “true” unknown object. The available measurements are nd samples of the Fourier transform of
f at spatial frequencies ~ν1, . . . , ~νnd

, contaminated by measurement noise. Fig. 6.1.1 illustrates some of the frequency
domain sampling patterns of interest in MRI. For simplicity we assume an additive noise model:

yi = F (~νi) +εi, i = 1, . . . , nd, (6.1.1)
e,four,yi

where εi is zero-mean (complex) noise, and F (~ν) denotes the Fourier transform of f for ~ν ∈ Rd̄, defined as follows:

F (~ν) =

∫
Rd̄
f(~x) e−ı2π~ν·~x d~x . (6.1.2)

e,four,Fpu

Our goal is to estimate the true object function f true from the measurement vector y = (y1, . . . , ynd
).

Cartesian Truncated Partial

Under−sampled Variable density Non−Cartesian

Figure 6.1.1: Examples of 2D k-space sampling patterns {~νi} of interest in MRI.
fig_four_kspace

We assume throughout that the frequency sample locations {~νi} are distinct. If the same spatial frequency were
sampled more than once, then one could aggregate the corresponding measurements by averaging, thereby reducing
the problem to the case of distinct frequencies.

The problem (6.1.1) involves discrete data but an unknown function f of continuous spatial variables. Such
discrete-continuous problems seem to be hopelessly non-unique, because there are infinitely many functions f̂ that
agree exactly with the measurements, i.e., that satisfy the equalities yi = F̂ (~νi) for i = 1, . . . , nd. However, in the
presence of noise, none of these possible “solutions” will match f true exactly, and most of these “solutions” will be
uselessly noisy. Thus, to “solve” this problem we must
• constrain f to lie within some set of useful functions,
• state a criterion for specifying which estimate f̂ in that set is the “best” given the measurement vector y, and
• find a numerical algorithm for computing that f̂ .

Interestingly, there are numerous publications related to partial k-space reconstruction methods, e.g., [35, 36]. Strictly
speaking, any finite set of Fourier samples is a “partial” set, because no finite set can uniquely determine f exactly,
without further constraints, even in the absence of noise.

6.1.2 Solution strategies
As summarized elegantly in [37] in the context of emission tomography, there are three general categories of solutions
to inverse problems such as (6.1.1). Because the data y is finite dimensional, one option is to also discretize or
parameterize the object f and estimate those parameters from y. This discrete-discrete approach is described in §6.2.
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Alternatively, one can tackle the discrete-continuous model (6.1.1) directly, as described in §6.3. Another option
is to imagine hypothetical measurements that are indexed by a continuous set of variables, solve for f in using those
hypothetical measurements, and then attempt to implement a practical discretization of that solution. (The FBP method
for tomographic reconstruction is an example of this approach because it is based on the idealized Radon transform
model for tomography.) This continuous-continuous formulation is particularly popular in MRI, and is described in
§6.4.1 and §6.4.3.

6.1.3 Space-limited objects
All of the methods described below assume that f is space-limited to some known subset D of Rd̄. This assumption
is reasonable physically (objects are space limited, except perhaps in astronomy), and it seems virtually essential from
sampling theory because we are sampling in frequency space. In particular, in medical imaging D corresponds to
(at most) the field of view (FOV) of the scanning device, within which the object (i.e., patient) must fit. For d̄ = 2,
typically D = [−FOV/2,FOV/2]× [−FOV/2,FOV/2], a square, or D =

{
(x, y) ∈ R2 :

√
x2 + y2 ≤ FOV/2

}
,

a circle.
For space-limited functions, we can replace (6.1.2) with an integral over D:

F (~ν) =

∫
D
f(~x) e−ı2π~ν·~x d~x,

so
F (~νi) = 〈f, φi〉 =

∫
D
f(~x)φ∗i (~x) d~x, (6.1.3)

e,four,inprod

where we define
φi(~x) , eı2π~νi·~x I{~x∈D}, i = 1, . . . , nd. (6.1.4)

e,four,basi

From (6.1.3), alternative expressions are

F (~νi) =

∫
F (~ν)S∗(~ν − ~νi) d~ν =

∫
F (~ν)S(~νi − ~ν) d~ν (6.1.5)

e,four,int,FS

= (S ∗F )(~νi), (6.1.6)
e,four,F=S.conv.F

where ∗ denotes d̄-dimensional convolution and S(~ν) denotes the d̄-dimensional Fourier transform of the spatial
support function s(~x) that is defined by

s(~x) , I{~x∈D}
FT←→ S(~ν) =

∫
D

e−ı2π~ν·~x d~x . (6.1.7)
e,four,support

TypicallyD is square or circular, so S(~ν) is a sinc or jinc function. Because s(~x) is real, S(·) has conjugate symmetry:
S(−~ν) = S∗(~ν) .

6.1.4 Operator formulation (s,four,op)s,four,op

It will simplify notation (and unify concepts) to express the model (6.1.1) using linear algebra. Defining the linear
operator A : L2(D) 7→ Cnd as follows:

[Af ]i =

∫
f(~x)φ∗i (~x) d~x, (6.1.8)

e,four,op,Aop

rewrite (6.1.1) as
yi = [Af ]i + εi,

or equivalently as
y = A f +ε, (6.1.9)

e,four,y=Aop*f+e

where ε = (ε1, . . . , εnd
). Loosely speaking, one can think of A as a nd×∞ “matrix,” conveying that this reconstruc-

tion problem is severely under-determined. (In particular, a “matrix inverse” cannot be the solution [38].)
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6.1.4.1 Adjoint operator

A few operators related to A will appear frequently. Throughout this chapter, we use the usual inner products on
L2(D) and Cnd , for which the adjoint of A, denoted A∗, is given by

g = A∗w ⇐⇒ g(~x) =

nd∑
i=1

wi φi(~x) =

{ ∑nd

i=1 wi eı2π~νi·~x , ~x ∈ D
0, otherwise.

(6.1.10)
e,four,Aadj

In Fourier transform terminology, A is the analysis operator and A∗ is a kind of synthesis operator. To verify that
A∗ is the adjoint of A, note that

〈f, A∗ v〉 =

∫
f(~x)

[
nd∑
i=1

vi φi(~x)

]∗
d~x =

nd∑
i=1

v∗i

[∫
φ∗i (~x) f(~x) d~x

]
=

nd∑
i=1

[A f ]i v
∗
i = 〈A f, v〉 .

6.1.4.2 Frame operator

The linear operator A∗A, known as the frame operator in sampling theory [39–41], acts as follows:

A∗A f =

nd∑
i=1

〈f, φi〉φi . (6.1.11)
e,four,op,Aadj,Aop

This operator is almost spatially shift invariant, as seen by the following argument:

[A∗A f ](~x) =

nd∑
i=1

φi(~x) 〈f, φi〉 =

nd∑
i=1

eı2π~νi·~x I{~x∈D}
∫
D
f(~x′) e−ı2π~νi·~x

′
d~x′ =

∫
D
f(~x′)h(~x,~x′) d~x′,

where the impulse response of the operator A∗A is given by

h(~x,~x′) ,
nd∑
i=1

eı2π~νi·(~x−~x
′) I{~x∈D}I{~x′∈D}. (6.1.12)

e,four,op,h

If we had D = Rnd , then this impulse response would be shift invariant, but in general it is not due to the support
indicator functions. However, this operator is locally approximately shift invariant. At the center of the FOV, the local
impulse response of A∗A is

h(~x,~0) = (A∗A δ)(~x) =

nd∑
i=1

eı2π~νi·~x I{~x∈D}, (6.1.13)
e,four,op,h,0

assuming that ~0 ∈ D. The corresponding local frequency response of A∗A is

H(~ν) =

nd∑
i=1

S(~ν − ~νi), (6.1.14)
e,four,op,H,0

In other words, the following “shift invariant” approximation can be useful:

A∗A ≈ F−1 D(H(~ν))F , (6.1.15)
e,four,op,A*A,fourier

where F is the d̄-dimensional Fourier transform operator and D(H(~ν)) is defined by

G = D(H(~ν))F ⇐⇒ G(~ν) = H(~ν)F (~ν), ∀~ν ∈ Rnd .

6.1.4.3 Crosstalk matrix

The nd × nd matrix K , AA∗ has been called the Fourier crosstalk matrix [42] and the point set matrix. This
matrix would be diagonal if the frequency components φi were orthogonal, such as would be the case if the frequency
samples ~νi were equally spaced with separation appropriate for the domain D. The elements of AA∗ are given by

[AA∗]il = 〈φi, φl〉 =

∫
D

e−ı2π~νi·~x eı2π~νl·~x d~x

https://creativecommons.org/licenses/by-nc-nd/4.0/
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=

∫
D

e−ı2π(~νi−~νl)·~x d~x = S(~νi − ~νl), (6.1.16)
e,four,crosstalk

where S(~ν) was defined in (6.1.7).
It is easily shown (see Problem 6.7) that the functions {φi} are linearly independent when the frequencies ~νi

are distinct, and hence the crosstalk matrix is positive definite (though possibly poorly conditioned depending on
the sampling pattern). For general sampling patterns {~νi}, the crosstalk matrix is full, so it is impractical to store it
explicitly for large nd.

x,four,crosstalk

Example 6.1.1 In the usual case where the FOV is square, i.e.,D = [−FOV/2,FOV/2]d̄, the elements of the Fourier
crosstalk matrix are samples of sinc functions: [AA∗]il = S(~νi − ~νl), where S(~ν) = FOVd̄ sincd̄(FOV ~ν) . If the
frequency sample locations are integer multiples of 1/FOV, then because of the positions of the zeros of a sinc
function, the Fourier crosstalk matrix would be a scaled identity matrix: AA∗ = FOVd̄I. Furthermore, in the 1D
case with νi = [i− (nd + 1)/2]/FOV, the impulse response (6.1.12) of the frame operator is a Dirichlet kernel:

h(x, x′) =
sin(ndπx/FOV)

sin(πx/FOV)
I{x∈D}I{x′∈D}.

6.1.4.4 Weighted crosstalk matrix

Define a “diagonal” image-domain weighting operator W = D(w(~x)) by

g = Wf ⇐⇒ g(~x) = w(~x) f(~x), ∀~x ∈ Rd̄.

Then generalizing (6.1.16) leads to the following weighted crosstalk matrix:

[AWA∗]il =

∫
D
w(~x) e−ı2π(~νi−~νl) d~x =

∫
s(~x)w(~x) e−ı2π(~νi−~νl)~x d~x = (S ∗W )(~νi − ~νl), (6.1.17)

e,four,op,AWA

where S(~ν) was defined in (6.1.7) and similarly W (~ν) is the d̄-dimensional Fourier transform of w(~x).

6.2 Finite-series (discrete-discrete) methods (s,four,series)
s,four,series

Because we observe only a finite number of measurements, and because computers have finite memory (and display
devices have finite pixels), it is natural to consider models for the object f that have a finite number np of unknown
parameters. Such models will only approximate the true object, but they can be useful nevertheless. Linear models are
the easiest to analyze and are hence the most common, so we focus on such models here.

6.2.1 Finite-series object model
For a finite-series approach, we first select some basis functions1 {bj(~x) : j = 1, . . . , np}, and model the object f as
follows2:

f(~x) ≈
np∑
j=1

xj bj(~x) . (6.2.1)
e,four,series

After adopting such a model, the reconstruction problem simplifies to determining the vector of unknown coefficients
x = (x1, . . . , xnp

) from the measurement vector y. Defining the “synthesis” operator3 B2 : Cnp → L2(D) by

[B2x](~x) =

np∑
j=1

xj bj(~x), (6.2.2)
e,four,basisop

we can also write (6.2.1) as f ≈ B2x.

1 Recall that the definition of a basis implies that the functions are linearly independent [43, p. 20]; this ensures that the series representation
(6.2.1) has a unique set of coefficients.

2 In this expression, ~x ∈ Rd̄ denotes spatial coordinates, whereas x = (x1, . . . , xnp ) ∈ Cnp denotes series coefficients.
3 The usual basis is a square pixel so the square subscript serves as a reminder, at least to me.

https://creativecommons.org/licenses/by-nc-nd/4.0/


c© J. Fessler. [license] December 10, 2018 6.7

Under the approximation (6.2.1), the discrete data, continuous object model (6.1.9) simplifies to the following
discrete-discrete model:

y = Ax+ ε, (6.2.3)
e,four,y=A*x+e

where the elements of the nd × np system matrixA are given by

aij =

∫
D
bj(~x) e−ı2π~νi·~x d~x = 〈bj , φi〉 . (6.2.4)

e,four,series,aij

One option for the basis functions is to use Dirac impulses:

bj(~x) = δ(~x− ~xj), (6.2.5)
e,four,series,dirac

where ~xj ∈ D denotes the location of the jth impulse. This choice is often used implicitly, and sometimes explicitly
[41, 44]. For this choice, the elements of A are simply complex exponentials: aij = e−ı2π~νi·~xj , and one can view A
as a “discretization” of the operator A.

In general, we can write the matrixA concisely as follows

A = AB2.

The relationships between the models are summarized as follows:

f → A → ȳ continuous to discrete mapping,

x→ B2 → f finite-series expansion,

x→ A = AB2 → ȳ discrete-discrete mapping.

For the discrete-discrete model (6.2.3), there are a variety of possible methods for determining x, a few of which
are described next.

6.2.2 Weighted least-squares (WLS) solution
For some choices of frequency samples {~νi} and basis functions {bj(~x)}, the matrix A has full column rank. For
example, if d̄ = 1 then having nd ≥ np (and distinct frequency samples) is sufficient to ensure A has rank np for
equally-spaced bases [41, Lemma 1] [45]. For d̄ ≥ 1, if nd ≥ 2np + d̄− 1, then a generalization of Carathéodory’s
uniqueness result ensures that A has full column rank for equally-spaced bases [46]. In such cases, the matrix A′A
will be positive definite and one could then consider a weighted least-squares (WLS) estimate of x:

x̂ = arg min
x∈Cnp

‖y −Ax‖2W 1/2 = [A′WA]−1A′Wy, (6.2.6)
e,four,ls

for some positive definite weighting matrixW . On the other hand, if nd < np, then clearlyA will be rank deficient so
the LS criterion does not specify a unique solution. Efficient characterization of the invertibility ofA′A is challenging
[45], although some results are available for random sampling patterns [47].

Even in cases where generalizations of Carathéodory’s result ensure uniqueness, stability is not ensured in general.
If the frequency samples are spaced nonuniformly, then usually the matrix A′A will be ill conditioned. And if
nd < np, thenA′A will be outright singular. So often the LS estimate (6.2.6) will be too noisy to be useful.

6.2.3 Penalized weighted least-squares (PWLS) method
To control noise, one can use the series representation (6.2.1) to translate a continuous-space penalty function R0(f)
such as (6.3.6), defined in terms of the continuous-space object f , into a corresponding penalty function R(x), defined
in terms of the coefficient vector x, as follows:

R(x) = R0(B2x) . (6.2.7)
e,four,Rx=Rf

Alternatively, one can define a convenient roughness penalty function R(x) in terms of the coefficients x directly (see
Chapter 2). In either case, we can then define an estimator x̂ as the minimizer of a PWLS cost function of the form

Ψ(x) =
1

2
‖y −Ax‖2W 1/2 + R(x) . (6.2.8)

e,four,series,pwls

https://creativecommons.org/licenses/by-nc-nd/4.0/
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If the penalty function is quadratic, i.e., R(x) = 1
2x
′Rx for some np×np, Hermitian symmetric, positive-semidefinite

matrix R, then the quadratically penalized WLS (QPWLS) estimate is

x̂ = arg min
x

Ψ(x) = [A′WA+ R]
−1
A′Wy. (6.2.9)

e,four,series,xh,qpwls

Usually the null space of R is disjoint from the null space of A, so the above inverse exists. One would almost never
compute x̂ using the expression (6.2.9). Instead, one computes x̂ by using an iteration like the conjugate gradient
algorithm to minimize the cost function (6.2.8), as described in §6.2.9.

Using the series expansion (6.2.1), if desired we could define a continuous-space estimate f̂ in terms of the vector
QPWLS estimate x̂ as follows:

f̂ = B2 x̂ = B2[A′WA+R]−1A′Wy. (6.2.10)
e,four,series,fh

This last step is unnecessary for practical purposes when we use square pixels as the basis functions and simply display
the coefficients x̂ directly. But the expression (6.2.10) is useful for theoretical comparisons.

6.2.4 Choosing the regularization parameter
As described in Chapter 1, a typical quadratic roughness penalty has the form R(x) = β 1

2 ‖Cx‖
2
, for a “differencing”

matrix C. A common concern with regularized methods like (6.2.10) is choosing the regularization parameter β.
Based on (6.2.9) we can analyze the spatial resolution properties of f̂ easily:

E
[
f̂
]

= B2[A′WA+ βC ′C]−1A′WA f .

To examine the local impulse response at the center of the FOV, consider the case where f(~x) = δ(~x) in which case
A f = 1. Furthermore, in the usual case whereW = I, we have

E
[
f̂
]

= B2[A′A+ βC ′C]−1A′1.

Using FFTs, as described in Chapter 1, this local PSF is evaluated rapidly. One can then vary β and choose the value
that yields the desired FWHM of the local PSF [48].

Alternatively, one can analyze spatial resolution properties using the discrete-discrete model (6.2.3) for the QPWLS
estimator (6.2.9), for which

E[x̂] = [A′WA+ βC ′C]
−1
A′WAx.

Setting x = ej leads to a discrete PSF, and one can choose β such that this PSF has a desired FWHM, e.g., 1.5 pixels.
MIRT See qpwls_psf.m.

Another option is to use the automatic methods described in §2.5.

6.2.5 Equally-spaced basis functions
Usually the basis functions in (6.2.1) are chosen to be equally spaced translates of a pulse-like function such as a
rectangle or triangle, although more complicated choices such as prolate spheroidal wave functions have also been
used [49]. Specifically, usually we have

bj(~x) = b(~x− ~xj), j = 1, . . . , np, (6.2.11)
e,four,series,unif

where b(~x) denotes the common function that is translated to ~xj , the center of the jth basis function.
For basis functions of the form (6.2.11), by the shift property of the Fourier transform, the elements ofA in (6.2.4)

are simply
aij = B(~νi) e−ı2π~νi·~xj , (6.2.12)

e,four,series,es,aij

where B(~ν) is the d̄-dimensional Fourier transform of b(~x). In other words, the system matrix A has the following
form:

A = BE, (6.2.13)
e,four,series,A=BE

whereB is a nd×nd diagonal matrix: B = diag{B(~νi)}, andE ∈ Cnd×np has elements Eij = e−ı2π~νi·~xj . In MRI,
the matrix E is sometimes called the Fourier encoding matrix.

https://creativecommons.org/licenses/by-nc-nd/4.0/
http://en.wikipedia.org/wiki/Prolate_spheroidal_wave_function
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6.2.6 Choice of basis functionss,four,series,basis

As described in Chapter 10, there are numerous possible choices of basis functions b(~x) that have been used in various
image reconstruction problems. In the specific context of reconstruction from Fourier samples, the following choices
seem natural.
• Some papers explicitly or implicitly assume a Dirac impulse: b(~x) = δ(~x) . For this choice,B = I, which offers a

slight simplification, but clearly the model is unrealistic physically.
• Another choice that leads to B = I is to a use sinc-like or jinc-like basis function whose support in the frequency

domain tightly covers the set of sample locations {~νi}, i.e., the convex hull thereof. In other words, choose b(~x)
such that B(~νi) = 1. In 1D, if νmax = maxi |νi| , then b(x) = 2νmax sinc(x2νmax) is one choice that satisfies this
property. However, a limitation of this choice is that sinc and jinc functions are not space limited.
• Often we choose b(~x) simply to be the indicator function corresponding to the desired pixel or voxel size. (This

is particularly natural because images are usually viewed on computer displays having square pixels of (nearly)
uniform luminance.) For d̄ = 1, a typical choice is the rectangular function: b(x) = rect(x/4X), where 4X is
the spacing of the basis functions. Of course, the discontinuous nature of these basis functions is also unrealistic
physically.
Clearly none of the above options is uniquely ideal. Whether there are other choices of basis functions, such as

Kaiser-Bessel functions, that could be preferable is an open problem.
To understand the effect of the choice of b(~x), rewrite the QPWLS estimate (6.2.9) using (6.2.13):

x̂ =
[
E′W̃E +R

]−1

E′W̃B−1y,

where we define W̃ , B′WB. We can interpret this x̂ as the QPWLS estimate with modified weighting matrix W̃ ,
pre-scaled data B−1y, and the Dirac impulse basis (6.2.5). In particular, if we were to choose the weighting matrix
W = (BB′)−1, for which there would be little justification, then the QPWLS estimate simplifies as follows:

f̂ = B2[E′E +R]−1E′B−1y.

However, usually B has smaller values for higher spatial frequencies, so such a weighting would probably over-
emphasize high-frequency noise. UsuallyW = I is used instead (see Problem 6.11).

6.2.7 Uniform frequency samples case
Although the case of nonuniformly spaced frequency samples is more interesting, it can help clarify the ideas to
consider the case of equally spaced frequencies. For example, in 1D we could have

~νi = (i− (nd + 1)/2)4ν , i = 1, . . . , nd, (6.2.14)
e,four,pui,unif

where4ν denotes the spatial frequency sample spacing. Similarly for d̄ > 1.
In this case, if nd = np and 4ν = 1/(np4X), then E is an orthogonal matrix, with E′E = npI and E−1 =

1
np
E′. Here, regularization is unnecessary because this case is perfectly conditioned, i.e., the condition number of

E′E is unity. SubstitutingR = 0 into (6.2.10) and simplifying yields

f̂ = B2

(
1

np
E′B−1y

)
.

This is essentially the conventional “inverse FFT” approach used for reconstruction from equally spaced frequency
samples.

6.2.8 Complex exponential basis
An alternative to the “shifted” basis (6.2.11) would be to use complex exponentials with equally-spaced frequencies.
For example, in 1D we could use

bj(x) = eı2π(j−(np+1)/2)4νx s(x). (6.2.15)
e,four,series,exp

In fact, because the object f has a finite support D, it has an exact Fourier series representation akin to the form
(6.2.15), but with an infinite number of terms. Further consideration of this choice is left as an exercise.

https://creativecommons.org/licenses/by-nc-nd/4.0/
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6.2.9 Conjugate-gradient algorithm for practical PWLS estimation (s,four,series,pcg)s,four,series,pcg

Chapters 11, 14 and 15 describe algorithms for computing x̂ by finding the minimizer of cost functions like (6.2.8).
However, unlike in tomography, hereA is not a sparse matrix. In fact,A is usually too large to store explicitly; instead,
all we can afford to store is the ingredients that define A in (6.2.13), namely the diagonal of B, the frequencies {~νi},
and the spatial locations {~xj}. Thus, many iterative optimization algorithms are inefficient for this application. A
notable exception is the preconditioned conjugate gradient (PCG) algorithm of §11.8 and §14.6.2. The key step in
any gradient-based descent algorithm such as PCG is computing the gradient of Ψ(x), which has the form

∇Ψ(x) = −A′W (y −Ax) +∇R(x) . (6.2.16)
e,four,series,grad

The computational bottlenecks are computing the matrix-vector multiplication Ax and its transpose A′ v, without
storingA orA′ explicitly.

Fortunately, there are efficient and very accurate algorithms for computing these matrix-vector multiplications by
using nonuniform fast Fourier transform (NUFFT) approximations [18, 50]. Specifically, each multiplication by
A or A′ requires an over-sampled FFT and some simple interpolation operations. (This operation is akin to “reverse
gridding,” e.g., [51–53].) See §6.6 for an overview. One can precompute and store the interpolation coefficients or
compute them as needed [50]. Particularly efficient methods are available for gaussian interpolation kernels [54]. Us-
ing the optimization transfer techniques described in Chapter 12, nonquadratic regularization can also be included4.
So PWLS estimators based on (6.2.8) are feasible for routine practical use.

MIRT See Gmri.m and Gnufft.m and mri_example.m.
Kadah et al. proposed to compute the 1D DFT of each row ofA and discard the small values, yielding an approxi-

mation of the formA ≈ SQ−1
1 where S is a sparse matrix andQ1 denotes the 1D DFT [56]. Then one can iteratively

update Q1x using CG using sparse matrix operations rather than FFTs each iteration. However, precomputing M is
expensive (although it only needs to be done once for a given trajectory). In contrast, the precomputation required by
the Toeplitz approach described next is simple, and requires no approximations.

6.2.10 Toeplitz embeddings,four,series,toeplitz

Usually the weighting matrix is diagonal, i.e., W = diag{wi}, and in fact usually W = I . And usually the basis
functions are equally spaced, as in (6.2.11). In these cases, the Gram matrix A′WA associated with the norm term
in (6.2.8) is block Toeplitz with Toeplitz blocks (BTTB), and has elements

[A′WA]kj =

nd∑
i=1

wi |B(~νi)|2 e−ı2π~νi·(~xj−~xk) . (6.2.17)
e,four,series,Tkj

In 1D, when d̄ = 1, we have ~xj −~xk = (j − k)∆, where ∆ denotes the basis function spacing, andA′WA is simply
Toeplitz. For d̄ > 1, the nature of ~xj − ~xk induces the block Toeplitz property. In other words, the discrete-space
Gram matrix A′WA : Cnp → Cnp is almost shift invariant, just as §6.1.4 showed that the frame operator A∗A is
almost shift invariant.

By defining the Toeplitz matrix T = A′WA and the “back-projected data” vector b = A′Wy, we can rewrite
the gradient expression (6.2.16) as follows:

∇Ψ(x) = Tx− b+∇R(x) . (6.2.18)
e,four,series,grad,T

The elements of b ∈ Cnp are given by

bj = [A′Wy]j =

nd∑
i=1

wiyi e−ı2π~νi·~xj , j = 1, . . . , np.

We can precompute b prior to iterating using an (adjoint) NUFFT operation [50]. (See §6.6. This calculation is
similar to the gridding reconstruction method described in §6.4.3.5.) Each gradient calculation requires multiplying
the np × np block Toeplitz matrix T by the current guess of x. That operation can be performed efficiently by
embedding T into a 2d̄np × 2d̄np block circulant matrix and applying a d̄-dimensional FFT [41, 44, 57–61]. (See
§6.8.) This is called the ACT method in the band-limited signal interpolation literature [41, 44], and it has also

4 The quadratic surrogates of Chapter 12 require potential functions with bounded curvatures. Generalized gaussian potentials, which have
unbounded curvatures, have also been proposed, requiring alternative minimization methods [55].

https://creativecommons.org/licenses/by-nc-nd/4.0/
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been applied to MR image reconstruction both with [62, 63] and without [64] an over-sampled FFT. It keeps getting
re-discovered [65].

The first row of the circulant matrix is constructed by using 2d̄−1 (adjoint) NUFFT calls to evaluate columns of
(6.2.17). When d̄ = 1, a single (adjoint) NUFFT will evaluate the first column of (6.2.17). (See §6.6 for the case
d̄ = 2.) (There are also non-iterative, recursive methods for inverting Toeplitz matrices, e.g., [66], but these are less
efficient.)

Using the gradient expression (6.2.16) requires two NUFFT operations per iteration. Each NUFFT requires an
over-sampled FFT and frequency-domain interpolations. In contrast, by using the Toeplitz approach (6.2.18), each
iteration requires two (double-sized) FFT operations. No interpolations are needed except in the precomputing phase
of building T and b. For an accurate NUFFT, usually we oversample the FFT by a factor of two (in each dimension).
Thus, the NUFFT approach and the Toeplitz approach require exactly the same amount of FFT effort, but the NUFFT
approach has the disadvantage of also requiring interpolations. The only apparent drawback of the Toeplitz approach
(6.2.18) is that it “squares the condition number” of the problem so may be less numerically stable. However, in most
applications the measurement noise will dominate the numerical noise, and to control measurement noise one will
need to include suitable regularization which will also reduce the condition number.

MIRT See nufft_toep.m for construction of T , and mri_example.m for a comparison.
Further simplifications are possible if the regularizer is quadratic with a Hessian R that is also block Toeplitz, since

then one can also incorporate R into T to reduce computation when finding the QPWLS estimate (6.2.9).
Excellent circulant preconditioners are available to accelerate the convergence rate of the CG algorithm for such

Toeplitz problems [58, 67].

6.2.11 Effect of number of basis functions and pixel size (s,four,series,pixel)s,four,series,pixel

A philosophical objection to the finite-series model (6.2.1) is that it requires the apparently subjective choice of basis
functions. One might imagine that using “too many, too small” basis functions would lead to unstable results. For an
unregularized approach like (6.2.6), increasing np will certainly cause instability. However, for a regularized approach
like (6.2.10), the only “problem” with increasing np beyond a certain point is that computation time increases without
any improvement in image quality.

MIRT See mri_pixel_size_example.m.
To illustrate, we simulated a spiral sampling pattern for a 2D object with a 256mm FOV with max ‖~νi‖ = 1

8

mm−1. For the object f true shown in Fig. 6.2.1, consisting of 2D rect functions and gaussian functions, we computed
nd = 642 noiseless samples along the spiral using the analytical expression for its Fourier transform. We used the
iterative PCG algorithm described in §6.2.9 to compute QPWLS estimates x̂ for rectangular basis functions with
np = N2, where N = 32, 64, . . . , 512. (As N increases, the pixel size decreases according to 4X = FOV/N .)
Fig. 6.2.1 shows the true object f̂ and the reconstructed images x̂. When np is too small, the estimates are undesirably
“blocky,” particularly for N = 32. However, as N increases, the images become indistinguishable, i.e., even when
np � nd, the regularization stabilizes the estimates.

Fig. 6.2.2 shows the central horizontal profiles through these images. The profile for the case N = 32 is poor,
whereas the other profiles are indistinguishable. This particular spiral sampling pattern was designed to be appropriate
for a 64× 64 image. Using more pixels increases computation time but yields indistinguishable results.

We conjecture that f̂∆ → f̂ as ∆→ 0, where f̂∆ denotes the QPWLS estimate in (6.2.10) using a basis consisting
of differentiable, localized functions such as cubic B-splines with support ∆, and f̂ denotes the continuous-space
QPWLS estimator of (6.3.7), assuming the penalty functions are related as in (6.2.7). A starting point for proving this
would be Theorem 6 of [44].

6.2.12 General linear reconstructor (s,four,series,lin)s,four,series,lin

The preceding sections have focused on WLS and PWLS estimators, but certainly there are other possible reconstruc-
tion methods that start from the linear model (6.2.3). Any linear estimator for x given y has the form x̂ = Zy for
some np × nd matrix Z. The question then becomes how to choose Z.

One possible criterion would be to consider the class of linear estimators that are unbiased under the discrete-
discrete model (6.2.3), i.e., those for whichZA = I , and choose among those matrices the particularZ that minimizes
the variance of each x̂j . By the Gauss-Markov theorem [68, p. 141], the optimal Z in this sense is the WLS estimator
(6.2.6) (if it exists) withW = (Cov{y})−1.

https://creativecommons.org/licenses/by-nc-nd/4.0/
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Figure 6.2.1: True object f true and QPWLS estimates f̂ for np = N ×N pixel basis functions. The tick marks are
in mm units.
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An alternative approach is to examine the properties of x̂ in terms of the original discrete data, continuous object
linear model (6.1.1), as follows:

E[x̂j ] =

nd∑
i=1

zji E[yi] =

nd∑
i=1

zji

∫
D
f(~x)φ∗i (~x) d~x =

∫
D
f(~x)h∗j (~x) d~x, hj(~x) ,

nd∑
i=1

z∗ji φi(~x),

where φi was defined in (6.1.4). The response function hj(~x) has been called the “voxel function” [69]. One could
chooseZ so that the response function hj(~x) “best matches” some desired response function hdes

j (~x). Because hj(·) =

A∗bj ,where bj is the jth column ofZ ′, one can show [69] by a least-squares criterion minZ
∥∥hdes

j (·)−hj(·)
∥∥
K−1/2 ,

for some image-domain weighting function K−1, that

bj =
[
AK−1A∗

]−1 AK−1 hdes
j (·) .

Although this Z would lead to the best match of the desired voxel response function, the corresponding estimator x̂
will not have the minimum variance provided by the WLS estimator.

6.2.13 Maximum entropy formulations (s,four,maxent)s,four,maxent

Image reconstruction methods based on maximum entropy principles have been explored in numerous imaging ap-
plications, including the problem of reconstruction from Fourier samples, e.g., [70]. A complication that arises in this
context is that often the object f may be complex, so conventional maximum entropy methods are inapplicable. Hoch
et al. compare various definitions of entropy for complex-valued functions [71], and show that for cases where A is
orthogonal, all of the versions reduce simply to shrinkage of the spectral components. Wang and Zhao [72] proposed
an iterative method that uses a version of steepest descent to minimize a cost function of the form (6.2.8) where the
regularizer R(x) involves terms of the form |xj | log |xj | as described in [71]. Constable and Henkelman strongly
critique maximum entropy methods in the context of MR reconstruction from partial k-space data [73]. On the other
hand, the entropy of the image gradient has been used successfully for motion correction [74].

6.2.14 Sparse reconstruction (s,four,sparse)s,four,sparse

A contemporary research topic in signal processing is the problem of reconstructing a signal that is sparse in the
frequency domain from random samples in the time domain [75–78].

The dual problem that is relevant to image reconstruction from Fourier samples is the problem of reconstructing an
image that is sparse from random sample in the Fourier domain. [79–81]. In some applications such as angiography,
the image itself is sparse and sparse reconstruction methods can be applied directly. Often it is more natural to consider
the image to have a sparse representation in terms of some orthogonal basis such as wavelets, or to assume that the
gradients of the image are sparse [82], i.e., that that image is piecewise constant. This is a rapidly evolving field.

6.3 Discrete-data, continuous-object methods (s,four,dc)
s,four,dc

If the results of §6.2.11 are unconvincing, then one could attempt to circumvent completely any subjectivity associated
with the choice of basis functions {bj(~x)} in (6.2.1) by returning to the original discrete data, continuous object model
(6.1.9). This section describes such methods [83].

6.3.1 Minimum-norm least-squares methods (s,four,minnorm)s,four,minnorm

There are many functions f that exactly satisfy y = A f ; one approach to selecting one of these possible solutions is
to first choose a reference function f0, and then to select the solution to y = A f that is closest (in some sense) to f0,
i.e.,

min
f∈L2(D)

‖f − f0‖K−1/2 s.t. y = A f, (6.3.1)
e,four,mnls,norm

where K denotes some user-selected, self-adjoint, positive-definite weighting operator on L2(D), and ‖·‖ denotes the
usual norm on L2(D) corresponding to the inner product defined in (6.1.3). Usually K = I , where I denotes the
identity operator on L2(D). The solution to this problem is [43, p. 65] [84] (cf. (26.9.2)):

f̂ = f0 +K1/2(AK1/2)†(y −A f0)

https://creativecommons.org/licenses/by-nc-nd/4.0/
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Figure 6.3.1: Illustration of minimum-norm least-squares solution.
fig,four,minnorm

= f0 +KA∗[AKA∗]†(y −A f0), (6.3.2)
e,four,fh,minnorm

where C† denotes the pseudo-inverse of C. Fig. 6.3.1 illustrates this solution graphically.
The nd × nd Gram matrix

K̃ , AKA∗ (6.3.3)
e,four,Kg

is a weighted version of the Fourier crosstalk matrix in (6.1.16) akin to (6.1.17).
As discussed in §6.1.4, K̃ is non-singular for distinct frequency samples, so the pseudo-inverse of K̃ in (6.3.2)

can be expressed as an inverse. Van de Walle et al. [85] investigated estimates of the form (6.3.2) for the “usual” case
where f0 = 0 and K = I , i.e.,

f̂MNLS = A†y = A∗[AA∗]−1y, (6.3.4)
e,four,fh,mnls

noting that the inverse of the crosstalk matrix could be precomputed if one needed to determine estimates for many
different data vectors y but for the same set of frequency sample locations {~νi}. They emphasized that the minimum-
norm least-squares (MNLS) solution (6.3.4) requires discretization only for image display; there is no discretization
of the object f in the problem formulation, unlike a series expansion like (6.2.1).

However, the distinction is smaller than one might see at first. If we choose the object basis functions in (6.2.1)
to be the complex exponentials in (6.1.4), i.e., we choose np = nd and bj(~x) = φj(~x), or equivalently we choose
B2 = A∗, then the QPWLS solution (6.2.10) with W = I and R = 0 simplifies exactly to the MNLS solution
(6.3.4). So (6.3.4) is simply a special case of the more general series formulation (6.2.1).

The basis choice B2 = A∗ is sometimes described as natural pixels [86–88]; a discomforting property of this
choice is that it depends on the set of frequency samples; changing those samples will change the object basis. Further-
more, although the choice of object basis functions in (6.2.1) is somewhat subjective, so too is the choice of reference
image f0 in (6.3.2).

In summary, the MNLS solution has been suggested to be somehow more “pure” than finite-series methods, but
the bottom line is that there are infinitely many exact “solutions” to y = A f , and “even more” approximate solutions.
All criteria for singling out a particular estimate f̂ involve subjective preferences about the expected characteristics
of f .

The bias of the MNLS method (6.3.2) is

E
[
f̂
]
− f = f0 +KA∗[AKA∗]†(A f −A f0)− f

=
(
I −KA∗[AKA∗]†A

)
(f0− f)

= K1/2
(
I −K1/2A∗[AKA∗]†AK1/2

)
K−1/2(f0− f)

= K1/2P⊥K1/2A∗K
−1/2(f0− f),

where P⊥C denotes the orthogonal projection onto the subspace perpendicular to the range of C. Unsurprisingly, the
bias depends on the choice of reference image f0.

6.3.2 Penalized least-squares for discrete data, continuous object model (s,four,pls)s,four,pls

In many of the applications where (6.1.9) applies, the noise has (at least approximately) a gaussian distribution. So by
analogy with the regularized least-squares approach described in §1.8 and §4.3.3, a natural approach to estimating f
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would be to find the minimizer f̂ of a penalized weighted-least squares (PWLS) cost function of the form

f̂ = arg min
f∈L2(D)

Ψ(f), Ψ(f) =
1

2
‖y −Af‖2W 1/2 + R0(f), (6.3.5)

e,four,pls,kost

where W ∈ Cnd×nd is a user-selected, positive-definite weighting matrix. (By the Gauss-Markov theorem [68,
p. 141], ideally W would be the matrix inverse of the covariance of y.) The functional R0(f) denotes a continuous-
space roughness penalty function such as those described in §2.4. Sophisticated roughness penalties based on meth-
ods such as level sets have been proposed, e.g., [89]. For simplicity of analysis, consider the following first-order,
rotationally-invariant quadratic roughness penalty

R0(f) =

∫
D

1

2
‖∇ f‖2 d~x =

1

2
‖C f‖2 =

1

2
〈C f, C f〉 =

1

2
〈C∗C f, f〉, (6.3.6)

e,four,pls,R0(f)

where C f yields the gradient field of f . The first norm above is the d̄-space Euclidean norm whereas the second
norm is the “usual” norm for d̄-space gradient fields over L2(D), e.g., for d̄ = 2:

‖C f‖2 =

∫
D

∣∣∣∣ ∂∂x1
f(~x)

∣∣∣∣2 +

∣∣∣∣ ∂∂x2
f(~x)

∣∣∣∣2 d~x .

(Strictly speaking this is a semi-norm, a secondary technical detail.)
For such a quadratic regularizer, any minimizer f̂ of the cost function (6.3.5) must satisfy the following normal

equations [43, p. 160]:
[A∗WA + R0] f̂ = A∗Wy, (6.3.7)

e,four,pls,normal

where R0 , C∗C. Usually the null space of R0 consists only of functions that are constants over D, and such
functions are not in the null space of A since the DC value ~ν = ~0 is usually available. So the operator [A∗WA + R0]
is usually invertible (in principle). Unfortunately, unlike in the tomography problem described in §4.3.3, here the
operator A∗A is never exactly shift invariant when the number of samples nd is finite, so exact Fourier methods
are inapplicable5, except perhaps for equally spaced frequencies (cf. Problem 6.9). I am unaware of any practical
numerical procedures for solving (6.3.7), although some ideas are sketched in [90, 91].

If R is approximately shift invariant with frequency response R(~ν), then by (6.1.15), for W = I an approximate
solution to the above normal equations is

f̂ ≈ F−1 D
(

1

H(~ν) +R(~ν)

)
FA∗y = F−1 D

(
1

H(~ν) +R(~ν)

) nd∑
i=1

yi S(~ν − ~νi),

where H(~ν) was defined in (6.1.14). This approximation could be implemented easily using gridding and FFTs. The
evaluation of such a method is an interesting open problem.

Although the formulations (6.1.9) and (6.3.5) allow f to be any continuous-space function, the solution (6.3.7)
turns out to lie in a finite-dimensional subspace of L2(D). In particular,

f̂(~x) =

nd∑
i=1

gi(~x)yi, (6.3.8)
e,four,pls,fh,sum,gi

where each gi satisfies
[A∗WA + R0] gi = A∗Wei, i = 1, . . . , nd,

and where ei denotes the ith unit vector in Rnd . Even though (6.3.5) is a nonparametric, continuous-space formulation,
we see that it leads to a solution (6.3.8) that is a finite linear combination of certain functions {gi(~x)}. (These basis
functions are related to the “equivalent kernels” as analyzed in the context of nonparametric regression [92].) The
finite-series methods described in §6.2 could be considered to be generalizations that allow “basis functions” other
than the above gi functions.

5 If the FOV is D = Rnd and W is diagonal, then the Gram operator A∗WA is shift-invariant with impulse response h(~x) =∑nd
i=1 wi e

−ı2π~νi·~x and frequency response H(~ν) =
∑nd
i=1 wi δ(~ν − ~νi) . But for any realistic bounded domain D, the Gram operator is

shift variant.
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6.3.3 Relation between MNLS and QPWLS (s,four,dc,mnls)s,four,dc,mnls

The MNLS solution (6.3.4) is a special case of the continuous-space QPWLS solution of (6.3.7). Taking W = I and
R = εK−1 in (6.3.7) and applying the push through identity (26.1.10) leads to the QPWLS estimator

f̂ε =
[
A∗A + εK−1

]−1 A∗y

= KA∗ [AKA∗ + εI]
−1
y

→ KA∗[AKA∗]†y = f̂MNLS, as ε→ 0.

6.4 Continuous-continuous methods (s,four,cc)s,four,cc

Thus far we have described solution methods that are based on problem formulations that acknowledge explicitly the
fact that the available data y is discrete. Interestingly, the most common methods used for MR image reconstruction
are based on solutions that are first formulated using a continuous-continuous model, and then the “harsh reality” that
the data is discrete is incorporated after finding an analytical solution. The continuous model is simply the ordinary
Fourier transform expression in (6.1.2). If we had available F (~ν) for all ~ν ∈ Rd̄, then it would be trivial to “derive”
an analytical solution; we would simply use the inverse Fourier transform:

f(~x) =

∫
Rd
F (~ν) eı2π~ν·~x d~ν . (6.4.1)

e,four,wish

This expression is the analog of the FBP or BPF methods for tomographic reconstruction; if we had F (·), we could
compute f easily. Many papers on this problem begin with this “solution,” even though the continuum of data {F (~ν)}
is never available in practice. So (6.4.1) is wishful thinking.

To estimate f using (6.4.1) as a starting point, one must discretize the integral. (Of course, as soon as it is
discretized, the method is no longer continuous-continuous so perhaps the section heading is a misnomer.) There
are two general categories of discretization methods. One approach is to discretize (6.4.1) using the nonuniform
sample locations {~νi}. §6.4.1 describes the resulting conjugate phase reconstruction method. Alternatively, one can
use a uniform discretization over ~ν by applying an frequency domain interpolation step, as described in §6.4.3. A
particularly popular version of frequency domain interpolation is called gridding, as described in §6.4.3.5.

6.4.1 Conjugate phase method (s,four,conj)s,four,conj

To estimate f using (6.4.1) as a starting point, one approach is to discretize the integral using the nonuniform sample
locations {~νi}. Consider the following weighted summation estimator

f̂(~x) =

nd∑
i=1

yi eı2π~νi·~x wi s(~x) ≈
nd∑
i=1

F (~νi) eı2π~νi·~x wi s(~x), (6.4.2)
e,four,conj,fh,sum

where {wi} denotes sampling density compensation factors that account for the nonuniform sampling density of
the ~νi locations in Rd̄, and the spatial support s(~x) was defined in (6.1.7). In MRI, this estimator is known as the
conjugate phase reconstruction method. If f(~x) (and s(~x)) are unitless and ~x has units cm, then the units of F (~ν) are
cmd̄ and hence the units of wi must be 1/cmd̄.

Defining the sampling density compensation vector w = (w1, . . . , wnd
), in operator notation the conjugate

phase estimator is
f̂ = ZD(w)y, (6.4.3)

e,four,conj,fh,op

whereD(w) = diag{wi} and Z : Cnd → L2(D). To match (6.4.2), the natural choice for Z is

Z = A∗, (6.4.4)
e,four,conj,Zop

where A∗ was defined in (6.1.10). However, throughout this section we use the notation Z rather than A∗ because
approximations to A∗ are often used in practice. In MRI, an unweighted version of this estimator was first proposed
by Macovski [93]. A year later the desirability of including weights was realized [94]. The weighted version has
been called the weighted correlation method [95]. It is somewhat analogous to the FBP reconstruction method for
tomography, considering Z to be a kind of “backprojection” that maps frequency-space values back into complex
exponential functions in object space.
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In practice one evaluates f̂(~x) at only a finite set of sample locations, e.g., ~x = n4X, n = −N/2, . . . , N/2− 1 in
1D. At these locations, the estimator (6.4.2) evaluates to:

f̂(n4X) = s(n4X)

nd∑
i=1

wiyi eı(2πνi4X)n . (6.4.5)
e,four,conj,fhpx,sampled

The summation in (6.4.5) is the adjoint of the DSFT operation, and can be computed approximately using a NUFFT
(see §6.6). Of course (6.4.5) maps a finite input vector y into a finite set of image samples, so one might call it a
discrete-discrete method, but its origins are the continuous-continuous “solution” (6.4.1).

MIRT Gdsft’ or Gnufft’
Comparing the conjugate phase estimator (6.4.3) to the MNLS solution (6.3.2) for the case f0 = 0, we see that if

we were to choose D = [AKA∗]† and Z = KA∗, then the two estimators would be identical. However, in practice
the conjugate phase solution (6.4.3) is usually, if not always, implemented with a diagonal matrix D(w), because a
diagonal requires far less computation than the inverse of the Fourier cross-talk matrix.

The estimator (6.4.3) involves two nontrivial issues, both of which have been explored at length in the literature.
One issue is computing efficiently the product Z times D(w)y. The usual approach, when Z = A∗, is called
gridding, as discussed in §6.4.3.5. Alternative approximations have also been explored such as look-up tables [96]
and equal phase lines [97]. Efficient methods have been developed for evaluating (6.4.2) using NUFFT tools [54,
98–107] (see §6.7). In essence, the computational issue is well understood. The next section focuses on the more
vexing issue of choosing the density compensation factors w.

6.4.2 Sampling density compensation (s,four,dens)s,four,dens

If the conjugate phase estimator (6.4.3) were used withD = I , then spatial frequencies that are near higher sampling
densities would be over-emphasized. For example, spiral and radial sampling patterns used in MRI have high sampling
densities near ~ν = ~0, so low spatial frequencies would be over-emphasized. So it is important to choose w carefully.
Many methods have been proposed for choosing w. Many of the proposals have been described in the context of
gridding-based reconstruction. We consider the general estimator (6.4.3), keeping Z distinct from A∗ where possible.

x,four,dens,1d,cart

Example 6.4.1 As a concrete example, consider the 1D case with equally spaced frequency samples: νk = k
αFOV

for k ∈ Z, where α ≥ 1 is an “over-sampling” factor. Since f(x) is space-limited, by the sampling theorem we can
reconstruct F (~ν) from its samples by sinc interpolation as follows:

F (ν) =

∞∑
k=−∞

sinc(ναFOV − k)F

(
k

αFOV

)

=⇒ f(x) =
1

αFOV
rect

( x

αFOV

) ∞∑
k=−∞

eı2π
k

αFOVx F

(
k

αFOV

)
.

For this example, the proper choice for w is indisputably wi = 1
αFOV , i.e., wi should be inversely proportional to the

FOV and to the over-sampling factor. It is easy to generalize this example to higher dimensions.

For nonuniform sampling patterns, the best choice of w is less apparent. Methods for choosing w can be catego-
rized as either heuristic or as being based on some optimality criterion.

6.4.2.1 Noise considerations (s,four,dens,noise)s,four,dens,noise

The covariance of the conjugate phase estimator (6.4.3) is

Covw
{
f̂
}

= ZD(w)Cov{y}D∗(w)Z∗,

where Cov{y} = σ2I for the usual additive white gaussian noise model. It is clear from this expression that larger
values of the DCF elements wi can increase the noise covariance.

For the estimator (6.4.2), the variance of the reconstructed image at any given spatial location is given by

Var
{
f̂(~x)

}
= s2(~x)σ2

nd∑
i=1

w2
i ≈

∫
w2(~k)d(~k) d~k,
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where d(~k) denotes the sampling density at k-space location ~k. Comparing this to iterative reconstruction methods is
an interesting open problem.

One natural scalar measure of the “overall” noise in f̂ is the following weighted total noise variance:

σ2
total(w) , trace

{
K−1/2 Covw

{
f̂
}
K−1/2

}
= σ2 trace{D(w)D∗(w)J} = σ2

nd∑
i=1

|wi|2 Jii,

where K is user-selected weighting and we define the following weighted relative of the crosstalk matrix in (6.3.3):

J , Z∗K−1Z. (6.4.6)
e,four,dens,Je

A natural choice for the weighting K−1 is K−1 = D(c(~x)), where c(~x) denotes an approximation to s(~x) defined
below in (6.4.53), and usually Z = A∗, in which case the diagonal elements of J are

Jii = [Z∗D(c(~x))Z]ii = [AD(c(~x))A∗]ii =

∫
D
c(~x) d~x,

which is a constant. In this typical case, the total noise variance is proportional to the norm of the DCF vector:

σ2
total(w) = σ2

(∫
D
c(~x) d~x

)
‖w‖22 . (6.4.7)

e,four,dens,noise,total

In light of this analysis, it is natural to consider the norm ‖w‖ of the DCF vector for DCF design, either by using
a constraint or by using a regularizer of the form β ‖w‖22 . See §6.4.2.4.5.

6.4.2.2 Heuristic methods (s,four,dens,heur)s,four,dens,heur

Several heuristic methods for DCF design have been proposed, and many of these remain quite popular due to their
simplicity.

6.4.2.2.1 Jacobian determinant Some sampling patterns can be treated as a continuous and invertible mapping
of uniformly spaced samples. For such patterns, the Jacobian determinant of the transformation (or approximations
thereof) at each sample ~νi has been used to define w [23, 108–115]. This approach is computationally efficient
compared to most of the alternatives below. However, it is specific to special sampling patterns, such as spirals, and it
is difficult to accommodate self-crossing sampling trajectories or other departures from the ideal analytical formula for
the sampling pattern [113]. This method also does not seem to account fully for the fact that nd is finite. Nevertheless,
it is particularly popular for certain sampling patterns such as spirals.

6.4.2.2.2 Voronoi cell volume A simple approach that is applicable to arbitrary sampling patterns is to let wi be
the volume of the Voronoi cell around frequency sample ~νi [1, 116]. Fig. 6.4.1 shows a 2D example. Combinations
of Voronoi cell volume and Jacobian determinants have also been suggested [117, 118].

Sample points at the outer boundaries of the sampling pattern (i.e., points ~νi that are outside the convex hull of the
other points) have Voronoi cells with infinite area. Thus one must somehow choose reasonable finite values for wi for
those locations.

MIRT voronoin, convhulln, mri_density_comp

6.4.2.2.3 Cell counting A simpler alternative to Voronoi cell volume is to partition frequency space into rectangu-
lar “Nyquist” cells (having dimensions corresponding to the reciprocals of the dimensions of the field of view D), and
to let wi be the reciprocal of the number of frequency samples in the cell that contains ~νi. This is called the cell count-
ing method [44]. Presumably one must make adjustments for samples that lie on cell boundaries. Ignoring such cor-
rections, the 1D version is: Ik , [(k − 1/2)/FOV, (k + 1/2)/FOV), Nk ,

∑nd

i=1 I{νi∈Ik}, wi =
∑
k

1
Nk

I{νi∈Ik}.

6.4.2.2.4 Sinc overlap density The sinc function has the following “sampling density” property:

0 < ∆ < 2 =⇒
∞∑

k=−∞

sinc(k∆) =
1

∆
. (6.4.8)

e,four,dens,sinc,property

https://creativecommons.org/licenses/by-nc-nd/4.0/


c© J. Fessler. [license] December 10, 2018 6.19

ν1

-1 0 1

ν
2

-1

0

1

Figure 6.4.1: Illustration of nonuniform frequency sampling pattern (the dots along the spiral) and the corresponding
Voronoi cells. Areas of such cells have been used for sampling density compensation.

fig_four_voronoi

Since S(~ν) in (6.1.7) is usually a sinc-like function, this property suggests the following choice of sampling density
compensation:

wi =
1∑nd

l=1 S(~νi − ~νl)
=

1∑nd

l=1 [AA∗]il
=

1

[AA∗1]i
, (6.4.9)

e,four,dens,sinc

or equivalently
w = 1� (AA∗1), (6.4.10)

e,four,dens,1/K1

where� denotes element-wise division and the nd×nd crosstalk matrix AA∗ was defined in (6.1.16). This definition
ofw is ideal in the (uncommon) case of equally spaced frequency samples whose density exceeds the Nyquist spacing
corresponding to D.

6.4.2.2.5 Jackson’s area density In convolutional gridding methods such as [16, 119, 120] (see §6.4.3.5), the
traditional choice for sampling density compensation is [16, eqn. (8)]:

wi =
1∑nd

l=1 C(~νi − ~νl)
. (6.4.11)

e,four,dens,conv

The denominator of (6.4.11) has been called the area density, where C(~ν) denotes the gridding kernel (such as a
Kaiser-Bessel function); see (6.4.52). Presumably this choice is motivated in part by (6.4.9), because gridding kernels
are finite-support approximations to S(~ν). The other heuristic methods for sampling density compensation depend
only on the sample locations {~νi}, thereby avoiding the question of how to best choose C(~ν) in (6.4.11).

In light of (6.1.17), Jackson’s area density can also be written approximately in terms of a weighted crosstalk
matrix as follows:

w ≈ 1� (AD(c(~x))A∗1) = 1�
(
K̃1

)
, (6.4.12)

e,four,dens,conv,approx

where c(~x)
FT←→ C(~ν), and where K̃ was defined in (6.3.3) with K = D(c(~x)) here. The approximation is valid

provided c(~x) s(~x) ≈ s(~x). This never holds exactly because C(~ν) has finite support for gridding, so c(~x) has infinite
support6. The form (6.4.12) may be convenient for computation in some cases.

Although the area density (6.4.11) is computed easily, it does not appear to be based on any optimality criterion;
several methods based on such criteria have been found to yield estimates f̂ with reduced RMS error, so we focus on
such methods next.

6 The Kaiser Bessel windows that are used for C(~ν) in gridding are close approximations to the prolate spheroidal wave functions [121, 122].
The corresponding functions c(~x) have minimal energy outside of D so the approximation (6.4.12) should be reasonable.
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6.4.2.3 Optimality criteria: image domain (s,four,dens,im)s,four,dens,im

Several “optimal” methods for choosing the sampling density compensation vector w have been proposed, most
of which are based on analyzing a discrete-discrete version of the estimator (6.4.2), i.e., corresponding to the model
(6.2.3). Most analyses consider the case of noiseless data, i.e., when y = ȳ , E[y] = Af.

We begin by considering image-domain optimality criteria. For accurate reconstruction from noiseless data using
(6.4.3), we would like to choose w such that [123, eqn. 13]

f ≈ E
[
f̂
]

= ZD(w)E[y] = ZD(w)Af. (6.4.13)
e,four,dens,im,f,approx

6.4.2.3.1 Object-dependent image-domain DCF Although f is unknown in practice, for the purposes of estab-
lishing an ultimate performance bound in simulations, we could choose w by the following optimization criterion:

ŵ = arg min
w

‖f −ZD(w)Af‖2K−1/2 , (6.4.14)
e,four,dens,im,od,id

where K is a user-selected, positive-definite weighting operator on L2(D). This ŵ is the ultimate object-dependent,
image-domain choice, perhaps useful as a benchmark for comparing other methods.

Simplifying the cost function (6.4.14) yields

‖f −ZD(w) ȳ‖2K−1/2 = ‖f‖2K−1/2 − 2 real
{
〈K−1 f, ZD(w) ȳ〉

}
+ ‖ZD(w) ȳ‖2K−1/2

= ‖f‖2K−1/2 − 2 real
{
〈Z∗K−1 f, D(w) ȳ〉

}
+ 〈K−1ZD(w) ȳ, ZD(w) ȳ〉

= ‖f‖2K−1/2 − 2 real
{
w′ diag{ȳi}′Z∗K−1 f

}
+w′ diag{ȳi}′ J diag{ȳi}w,

where J was defined in (6.4.6). So the gradient with respect to w is

2 diag{ȳi}′
(
J diag{ȳi}w −Z∗K−1 f

)
.

The (unconstrained, possibly complex) minimizer satisfies

J diag{A f}w = Z∗K−1 f . (6.4.15)
e,four,dens,im,w,equality

If we choose Z = KA∗, then J = K̃, and the above system of equations always has a solution since K̃ is invertible
for distinct frequency samples. One can solve easily an equation of the form K̃ u = v using the PCG iteration with
a gridding approximation. If J is nearly singular, or if the noiseless data ȳ has zeros, then there are multiple density
compensation vectors w that will minimize (6.4.14) nearly equally well. In that case, one could use the flexibility
afforded by having multiple solutions to enforce other desirable constraints, such as nonnegativity: w � 0, or some
criterion related to the noise properties, as described in §6.4.2.1.

Rearranging (6.4.15), if J is invertible then the minimizer satisfiesD(w)A f = J−1Z∗K−1 f, so the minimum
(weighted) error in (6.4.14) is∥∥f −ZJ−1Z∗K−1 f

∥∥
K−1/2 =

∥∥∥K1/2
(
I −K−1/2ZJ−1Z∗K−1/2

)
K−1/2 f

∥∥∥
K−1/2

=
∥∥∥P⊥K−1/2ZK−1/2 f

∥∥∥ .
When Z = KA∗, this is the same (weighted) error produced by the MNLS method (6.3.2) for noiseless data and
when f0 = 0.

6.4.2.3.2 Min-max image-domain DCF Because f is unknown in practice, it is necessary to design the DCF with-
out considering a specific object f . One possibility would be to minimize the worst-case error of the approximation
(6.4.13) over some set F of possible objects by the following min-max optimality criterion:

ŵ = arg min
w

max
f∈F
‖f −ZD(w)Af‖K−1/2

2
, (6.4.16)

e,four,dens,im,minmax

where K2 denotes a user-selected, positive-definite image domain weighting operator on L2(D). If one were to choose
the set

F =
{
f ∈ L2(D) : ‖f‖K−1/2

1
≤ 1
}
, (6.4.17)

e,four,f<=1
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then the min-max criterion (6.4.16) would be equivalent to the following optimization criterion:

ŵ = arg min
w

|||K−1/2
2 (I −ZD(w)A)K1/2

1 |||. (6.4.18)
e,four,dens,im,minmax,mnorm

However, because the null space of AK1/2
1 is nonempty, one can show that |||K−1/2

2 (I −ZD(w)A)K1/2
1 ||| is

independent of w. So one must choose a set F that is orthogonal to the null space of A. One possibility is to choose
F = RZ ∩

{
f ∈ L2(D) : ‖f‖K−1/2

1
≤ 1
}
, in which case the min-max criterion (6.4.16) simplifies (Problem 6.16)

to
arg min

w
|||J1/2

2 (I −D(w)AZ)J
−1/2
1 |||, (6.4.19)

e,four,dens,im,minmax,range,Zop

where, cf. (6.4.6), we define
J1 , Z∗K−1

1 Z, J2 , Z∗K−1
2 Z.

Computing this min-max solution efficiently appears to be a challenging open problem.
An alternative condition was studied by Choi and Munson [124] in the context of band-limited signal interpolation.

Because components of f in the null space of A are unrecoverable by linear methods, we should restrict attention to
objects f that are not in that null space, specifically: F =

{
f ∈ L2(D) ∩N⊥A : ‖f‖ ≤ 1

}
. If we assume that Z =

A∗, then the solution given in [124, eqn. (31)] applies, which requires that one choosew to cluster the eigenvalues of
K̃ D(w) near unity, an impractical procedure for large nd. Finding such a solution for more general Z appears to be
an open problem. (See (6.4.41) too.)

6.4.2.3.3 Weighted Frobenius norm criterion in data domain A simpler alternative to (6.4.19) would be to use
a (possibly weighted) Frobenius norm criterion:

arg min
w

|||W 1/2
1 (I −D(w)AZ)W

1/2
2 |||Frob, (6.4.20)

e,four,dens,im,dat,frob

whereW1 andW2 are user-selected, positive-semidefinite nd×nd weighting matrices. By Problem 6.3, the minimizer
satisfies

Hŵ = v

Hli = [W1]li[AZW2Z∗A∗]il
vi = [W1W2Z∗A∗]ii, i = 1, . . . , nd. (6.4.21)

e,four,dens,im,dat,frob,sol-a

In particular, if we choose Z = KA∗, then the solution simplifies to

Hli = [W1]li[K̃W2K̃]il

vi = [W1W2K̃]ii, i = 1, . . . , nd. (6.4.22)
e,four,dens,im,dat,frob,sol-b

There may be a variety of choices of frequency domain weighting matricesW1 andW2 that lead to useful methods.
(See Problem 6.5.) Instead of pursuing these, §6.4.2.3.4 considers another optimality formulation that turns out to be
somewhat more general.

s,four,dens,im,frob,im

6.4.2.3.4 Weighted Frobenius norm criterion in image domain Another alternative to (6.4.18) is the following
object-domain weighted Frobenius norm criterion:

ŵ = arg min
w

|||W1/2
1 [I −ZD(w)A]W1/2

2 |||Frob, (6.4.23)
e,four,dens,im,frob2

where W1 and W2 are user-selected, positive-semidefinite object-domain weighting operators. Such weighting could
be useful when different image regions (e.g., near borders) have different importance; see [16] for Schwab’s weighting
function. The unweighted version of this Frobenius norm was used implicitly to choose ŵ via iterative minimization
methods in [94]. However, one can find the following explicit closed-form solution by Problem 6.3 (cf. [125, p. 311]):

Hŵ = v

Hli = [Z∗W1Z]li[AW2A∗]il
vi = [Z∗W1W2A∗]ii, i = 1, . . . , nd. (6.4.24)

e,four,dens,im,sedarat
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Although this solution is explicit, it would still appear to require considerable computation in general.
If we choose W1 = K−1

1 ZJ−1
1 W1J

−1
1 Z∗K−1

1 and W2 = ZW2Z∗, then the solution (6.4.24) becomes identi-
cal to (6.4.21). So the frequency domain Frobenius criterion (6.4.20) is a special case of the object-domain Frobenius
criterion (6.4.23). One can show that the solutions (6.4.24) are in fact more general than (6.4.21) (see Problem 6.18),
but whether that generality leads to useful methods is an open problem. We now consider several special cases for the
choices of W1, W2, and Z .
• For the choice W1 = A∗K̃−2A, W2 = KA∗K̃−2AK, and Z = KA∗, we find H = I and vi =

[
K̃−1

]
ii

, so
the solution is the diagonal of the inverse of the weighted crosstalk matrix:

ŵi =
[
K̃−1

]
ii
.

This matrix inverse seems impractical.
• If we choose W1 = K−1, W2 = KA∗K̃−2AK, and Z = KA∗, then H = diag

{
K̃ii

}
and v = 1 so the

solution is the reciprocal of the diagonal of the weighted crosstalk matrix:

ŵi = 1/K̃ii.

If we choose K = D(c(~x)), then K̃ii is the constant value (C ∗S)(~0), so this choice is useless.
• For the choice W1 = K−1, W2 = KA∗K̃−111′K̃−1AK, and Z = KA∗, then H = K̃ and v = 1 so the

minimizer is
ŵ = K̃−11.

Although this expression appears to involve a matrix inverse, it can be computed simply by solving the system of
equations

K̃ŵ = 1 (6.4.25)
e,four,dens,im,Kw=1

using an iterative algorithm like the conjugate gradient (CG) method, so it can be made practical. In particular, if
we make the choice

K = D
(
|c(~x)|2

)
,

where c(~x) s(~x) ≈ c(~x), then by using (6.1.17) we see that

K̃il ≈ (C ∗C)(~νi − ~νl).

Because this is a (block) banded matrix, one can solve (6.4.25) iteratively fairly easily.

• If we choose W1 = K−1, W2 = K, and Z = KA∗, then Hli =
∣∣∣K̃li

∣∣∣2 and vi = K̃ii. In particular, if we choose

K = D
(
|c(~x)|2

)
, then Hil ≈ |(C ∗C)(~νi − ~νl)|2 and vi ≈ (C ∗C)(0). This too is a (block) banded system of

equations; developing an efficient implementation of this solution is an open problem.
Different choices for W1, W2, and Z lead to quite different choices for ŵ. These could be compared for a given
object of interest f using (6.4.14).

s,four,dens,pinv

6.4.2.3.5 Pseudo-inverse criteria (s,four,dens,pinv) If f were in the intersection of the range of A∗ and the range
of Z , then the approximation (6.4.13) would be exact if we could choose D to be a nd × nd matrix of the following
imposing form:

D0 = W1Z∗[ZW1Z∗]†[A∗W2A]†A∗W2,

where W1,W2 ∈ Cnd×nd are user-selected, positive-definite, Hermitian weighting matrices. A similar expression
was suggested in [125, eqn. (6)]. This D0 is not diagonal, so one could attempt to find a diagonal approximation to it
by an optimality criterion such as the following:

arg min
w

|||D0 −D(w) |||
W

1/2
3
,

where W3 ∈ Cnd×nd is another user-selected, positive-definite, Hermitian weighting matrix. It is somewhat difficult
to see what the most suitable choices forW1,W2, andW3 would be, and difficult to solve the minimization problem
because of the pseudo-inverse.

The problem becomes more tractable if instead we use a Frobenius norm:

ŵ = arg min
w

|||W 1/2
3 (D(w)−D0)W

1/2
4 |||Frob.
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Problem 6.3 shows that the minimizer satisfies

Hŵ = v

Hli = [W3]li[W4]il

vi = [W3D0W4]ii, i = 1, . . . , nd. (6.4.26)
e,four,dens,im,diag,frob

If eitherW3 orW4 are diagonal, then so isH , and the solution simplifies to

ŵi =
[W3D0W4]ii
[W3]ii[W4]ii

.

For W3 = W4 = I , this is simply the diagonal of D0. In particular, for the case Z = A∗, using the approximation
(6.1.15) yields

[D0]ii = e′iA[A∗A]†[A∗A]†A∗ei ≈ e′iAF−1 D
(
|H(~ν)|2

)†
FA∗ei =

∫
|S(~ν − ~νi)|2

|H(~ν)|2
d~ν,

where H(~ν) was defined in (6.1.14). Evaluating this choice, e.g., by using NUFFTs, is an open problem.
Sedarat and Nishimura proposed a closely related optimality criterion [125] (in the context of gridding), that we

generalize here. Let f̂ ref = Ry denote a good “reference” reconstruction method, for example, we could use R =
A∗D0. The difference between the reference reconstruction and the conjugate-phase estimate based on a diagonal
D(w) is f̂ − f̂ ref = ZD(w)y −Ry = (ZD(w)−R)y. So a natural criterion forw is to minimize the following
weighted Frobenius norm:

|||K1/2
1 (ZD(w)−R)W

1/2
3 |||Frob = |||K1/2

1 RW 1/2
3 −K1/2

1 ZD(w)W
1/2
3 |||Frob, (6.4.27)

e,four,dens,im,R

where K1/2
1 and W 1/2

3 are any Hermitian symmetric, positive definite image domain operator and nd × nd matrix,
respectively. Problem 6.3, which generalizes [125, eqn. (8)], shows that the minimizer satisfies

Hŵ = v

Hli = [Z∗K1Z]li[W3]il

vi = [Z∗K1RW3]ii, i = 1, . . . , nd. (6.4.28)
e,four,dens,im,frob,wtd,sedarat

In particular, ifW3 is any diagonal matrix, thenH is also diagonal and

ŵi =
[Z∗K1R]ii
[Z∗K1Z]ii

.

Interestingly, for R = K1/2
2

[
AK1/2

2

]†
and W3 = AK2A∗, the solution (6.4.28) simplifies to (6.4.24). Apparently

(6.4.27) is more general than (6.4.23). However, the obvious choices for W3 and R lead to solutions shown in
§6.4.2.3.4, so whether this additional generality is useful is an open problem.

6.4.2.4 Optimality criteria: PSF (s,four,dens,psf)s,four,dens,psf

If f(~x) = δ(~x), a Dirac impulse at the center of the spatial coordinates, then Af = 1, the vector of nd ones, in which
case

ZD(w)Af = Zw,

which is sometimes called “the” point-spread function (PSF) of the reconstruction method (6.4.3). This terminology
is imprecise because the method (6.4.3) is not exactly shift invariant in general, due to the s(~x) term in (6.4.2). So in
fact there is a somewhat different PSF for each spatial location. Nevertheless, for good spatial resolution, we would
like this PSF to closely approximate a Dirac impulse. However, the Dirac impulse is not in L2(D), so we must choose
a square-integrable “target” PSF for optimizing w. (In some cases one can consider a Dirac impulse by limiting
arguments [126].) A logical choice of target impulse response would be the function whose spectrum is unity over a
set C that closely approximates the convex hull of the sample locations {~νi} and is zero otherwise. For example, for a
spiral sampling pattern, C would be a disk. We could then define the target PSF as follows

h(~x) =

∫
C

eı2π~ν·~x d~ν .
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It follows that Ah ≈ 1; the reason this is only approximate is that the target PSF h is not exactly support limited to
D. (An alternative target PSF would be the function h that is support limited to D that is as close to unity over C and
to zero over the complement of C as possible.)

Having chosen such a target PSF, we can then optimize w by minimizing the following WLS cost function:

‖h−Zw‖2W1/2
0
≡ w′J̃w − 2 real{w′ u}, (6.4.29)

e,four,dens,psf

for some user-selected weighting operator W0, where

J̃ , Z∗W0Z (6.4.30)
e,four,dens,Jh

is a nd × nd relative of the weighted Fourier crosstalk matrix K̃ in (6.3.3), and where

u , Z∗W0h.

If Z = A∗ and W0 = D
(
|c(~x)|2

)
, then J̃ is a symmetric banded matrix with entries

J̃il = (C ∗C)(~νi − ~νl).

The gradient (see §28.2) of this cost function with respect to w is

J̃w − u .

For unconstrained minimization of (6.4.29), the optimal w satisfies

J̃ŵ = u, (6.4.31)
e,four,dens,Jw=u

i.e., is given by
ŵ = J̃−1 u = [Z∗W0Z]

−1 Z∗W0h.

Because J̃ is too large to invert directly, iterative methods are needed.
If Z = W−1

0 A∗ and we choose W0 = K−1, then u = Z∗W0h = Ah ≈ 1, and Z∗W0Z = AK−1A∗ = K̃,
so the desired w corresponds to “solving” the following system of equations

K̃ŵ = 1. (6.4.32)
e,four,dens,Kw=1

Several methods related to solving (6.4.32) or an approximation thereof have been proposed in the literature. How-
ever, if Z is a crude approximation to A∗, then u 6= 1. Most published methods have ignored this distinction, the
importance of which is an open problem.

6.4.2.4.1 Pipe and Menon’s iteration In the context of gridding, Pipe and Menon [17] observed (for u = 1) that
dividing both sides of (6.4.31) into the vector w yields the following equality

ŵ = ŵ �
[
u�

(
J̃ŵ

)]
,

where � and � denote element-wise division and multiplication (Hadamard product). This equality suggests the
following multiplicative fixed-point iteration

w(n+1) = w(n) �
[
u�

(
J̃w(n)

)]
, (6.4.33)

e,four,dens,pipe

I am unaware of any proof of convergence for this iteration, nor does this iteration appear to be related to any specific
optimality criterion. It does have the property that if the initial vectorw(0) is nonnegative, then all subsequent iterations
w(n) will be nonnegative if the elements of J̃ and u are nonnegative and real.

https://creativecommons.org/licenses/by-nc-nd/4.0/
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6.4.2.4.2 An EM iteration The form of (6.4.33) is suggestively close to the EM algorithm for emission tomogra-
phy described in Chapter 16. In the notation used here, that EM iteration is:

w(n+1) = w(n) �
[
J̃
(
u�

[
J̃w(n)

])]
�
(
J̃1
)
. (6.4.34)

e,four,dens,em

Normally this type of iteration is associated with Poisson measurement noise, but it also has been proposed for prob-
lems with nonnegativity constraints and noiseless “data” [127, 128]. This iteration is associated with an optimality
criterion:

min
w�0

nd∑
i=1

κ
(

1,
[
J̃w

]
i

)
,

where κ denotes the Kullback-Leibler divergence (16.4.11). However, the algorithm (6.4.34) requires roughly twice
as much computation per iteration as (6.4.33). If there is a nonnegative ŵ that satisfies (6.4.32), then (6.4.34) will
converge to ŵ [129], whereas the most that we can state about (6.4.33) is that ŵ is a fixed point.

6.4.2.4.3 Qian et al.’s iteration Considering (6.4.32), Qian et al. [130] proposed (for u = 1) the following
additive fixed-point iteration:

w(n+1) = w(n) + α
(
u−K̃w(n)

)
,

with the step size α chosen empirically. Although it was not derived explicitly as such, we see that this iteration is
gradient descent of (6.4.29) with Z = W−1

0 A∗. For a square FOV, K̃ consists of samples of sinc functions, and
Qian et al. found that truncating the sinc (to reduce computation) degraded ŵ. They also had to make certain ad
hoc modifications near the densely sampled origin of a spiral sampling pattern. They reported modest improvements
relative to the method of Pipe and Menon [17] in (6.4.33). Apparently their algorithm did not enforce the constraint
w � 0.

Dwork et al. [131] also proposed using LSQR to solve the same (unweighted) least-squares criterion (6.4.29),
again with no mention of a nonnegativity constraint.

6.4.2.4.4 Samsonov et al.’s iteration Samsonov et al. [132] proposed (for u = 1) a variation of this method that
enforced the constraint w � 0 using a projected preconditioned steepest descent algorithm (cf. §11.3). Essentially,
that algorithm tries to solve the following optimization problem

min
w�0

∥∥∥J̃w − u∥∥∥
W 1/2

, (6.4.35)
e,four,dens,samsonov

for the unweighted case W = I . They initialized the iteration using (6.4.11), and they found that the RMS error
between f̂ and f was smaller when using (6.4.35) than when they used the method of Pipe and Menon [17] in (6.4.33).

s,four,dens,psf,reg

6.4.2.4.5 Alternative PSF-based methods None of the four preceding algorithms are exactly equivalent to solving
the original minimization problem (6.4.29) subject to a nonnegativity constraint. Instead, they all aim to approximate
the unconstrained solution (6.4.32). A more principled approach is the following:

ŵ = arg min
w∈Rnd , w�0

Ψ(w), Ψ(w) =
1

2
w′J̃w −w′ real{u}+β

1

2
‖w‖2 , (6.4.36)

e,four,dens,psf,reg

where the regularizer β ‖w‖2 is desirable when J̃ is poorly conditioned. This regularizer is motivated by the noise
considerations in §6.4.2.1. Finding a good iterative algorithm to minimize this cost function subject to the nonnegativ-
ity constraint, for example, by using the optimization methods described in Chapter 14, is an interesting open problem.
A natural approach is FISTA because of the nonnegativity constraint. Given the availability of approximate solutions,
it should be possible to find a good preconditioner.

The criterion (6.4.29) was developed only for the PSF located at the center. An interesting open problem is to
formulate criteria that involve all possible PSF locations, e.g., using a min-max approach or averaging to combine.

The most common choice for the reconstructor Z is the gridding method of §6.4.3.5; finding iterative methods for
computing w in that context specifically is an interesting open problem.

Yet another approach is to minimize the maximum PSF sidelobe level while constraining mainlobe width, using
linear matrix inequality constraints. [133]. Comparing this approach to the many alternatives described here is an
open problem.
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6.4.2.5 Optimality criteria: frequency domain (s,four,dens,freq)s,four,dens,freq

Since the measurements are recorded in the frequency domain, it seems desirable for the spectrum of the estimate f̂ to
approximate closely the frequency samples, at least in the absence of noise. In other words, we would like

A f̂ = AZD(w)y ≈ y,

or equivalently
MD(w)y = M diag{yi}w ≈ y, (6.4.37)

e,four,dens,freq,=

where we defineM = AZ. This criterion is a kind of “self consistency.”
The desired equality (6.4.37) suggests the following data-dependent (and hence impractical) optimality criterion:

min
w
‖y −M diag{yi}w‖W 1/2 . (6.4.38)

e,four,dens,opt,y

IfM is invertible, which certainly is the case for distinct frequencies with Z = A∗, then the “optimal” data-dependent
density compensation vector w is

ŵ = diag{1/yi}M−1y,

assuming each yi 6= 0. If yi = 0 for any i, then there will be multiple optimal w, and we could replace diag{1/yi}
with a pseudo-inverse. Alternatively, we could introduce regularization as in (6.4.36), leading to the (unconstrained)
solution

ŵ =
[
diag{yi}′M ′WM diag{yi}+βI

]−1
diag{yi}′M ′Wy.

Recomputing w for each y using (6.4.38) would be inconvenient in practice. Is there a particular y that would be
useful for design? A reasonable choice would be y = 1. This choice is equivalent to requiring spectrum of f̂ be
consistent with the data in the case of constant measurements. This requirement seems very reasonable. Such a
density compensation vectorw must satisfy the equality (6.4.32) discussed previously from a PSF perspective. So that
equality and the corresponding criterion (6.4.35) have an additional justification.

If we restrict attention to nonnegative density compensation vectors, then in general the desired equality (6.4.37)
will not hold exactly for anyw � 0. Furthermore, this consistency criterion may be unreasonably restrictive for noisy
measurements, and may even be undesirable, particularly in densely sampled regions of frequency space.

If we wanted to find a single coefficient vector w that provides consistency for any set of measurements y, then
we must have

MD(w) = I. (6.4.39)
e,four,dens,freq,all,y

In general, no such vector w exists, so we can only have approximate consistency, no matter how fancy an iterative
algorithm is used to find w. Again a min-max optimality criterion is a natural extension of (6.4.38):

min
w

max
‖y‖≤1

‖y −M diag{yi}w‖ = min
w

max
‖y‖≤1

‖y −MD(w)y‖ = min
w
‖I −MD(w)‖2 . (6.4.40)

e,four,dens,freq,minmax,y

This norm criterion appears inconvenient for routine computation.
An object-based alternative to the min-max criterion (6.4.40) is the following:

min
w

max
‖f‖≤1

‖A f −AZD(w)A f‖W1/2 .

This optimization problem appears to be even more complicated.

6.4.2.5.1 Weighted Frobenius norm in data domain An alternative to (6.4.40) is the following weighted Frobe-
nius norm motivated by (6.4.39), with regularization:

Ψ(w) = |||W 1/2
1 (I −MD(w))W

1/2
2 |||2Frob + β ‖w‖2 . (6.4.41)

e,four,dens,freq,frob,crit

Generalizing Problem 6.3, the minimizer satisfies

[H + βI]w = v

Hli = [M ′W1M ]li[W2]il

vi = [M ′W1W2]ii. (6.4.42)
e,four,dens,freq,frob,sol
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In particular, ifW2 is a diagonal matrix, then

ŵi =
[M ′W1]ii [W2]ii

[M ′W1M ]ii [W2]ii + β
. (6.4.43)

e,four,dens,freq,frob,den

This solution generalizes the Frobenius approach given in [124, eqn. (34)]. In general, neither this explicit solution
nor iterative methods for the minimization appear to be practical for large nd.

Now consider the specific case where Z = KA∗ andW2 = I . ThenM = K̃ and the solution simplifies to

ŵi =
[K̃W1]ii

[K̃W1K̃]ii + β
. (6.4.44)

e,four,dens,freq,M=K

Choices forW1 like K̃−2, K̃−1, and K̃−111′K̃−1, lead to the solutions presented in §6.4.2.3.4.
If we chooseW1 = I and K = D

(
|c(~x)|2

)
, then K̃il = (C ∗C)(~νi − ~νl). Thus the solution becomes

ŵi =

∫
|C(~ν)|2 d~ν∑

l |(C ∗C)(~νi − ~νl)|2 + β
≈

∫
|C(~ν)|2 d~ν∑

l |C(~νi − ~νl)|2 + β
.

These solutions appear to be quite practical. Whether they work well is an open problem. A similar method akin to
the choice c(~x) = s(~x) was examined in [134]. In particular, in that case we have

ŵi =
S
(
~0
)

∑nd

l=1 |S(~νl − ~νi)|2 + β
.

Despite the infinite support of S(~ν), one can evaluate the denominator summation efficiently using NUFFT operations
[134], because

nd∑
l=1

|S(~νi − ~νl)|2 =

∫
(s ? s)(~x)

[
nd∑
l=1

eı2π~νl·~x

]
e−ı2π~νi·~x d~x .

The inner bracketed expression is the adjoint of a NUFFT, and the outer integral, when discretized, is a NUFFT [50].

6.4.2.6 Density compensation summary (s,four,dens,summ)s,four,dens,summ

There are many possible methods for choosingw for use with the non-iterative conjugate-phase reconstruction method
(6.4.3). There are a few simple choices that can be computed easily, and there are many possible “optimal” choices.

We have described all of the methods in terms of the operator A and in terms of a fixed reconstruction operator Z .
An interesting extension is to consider joint optimization of Z andw, such as simultaneously optimizing the gridding
kernel(s) and w [125].

Another intriguing extension would be to allow space varying sampling density compensation, i.e., to replace
(6.4.2) with the following estimator

f̂(~x) =

nd∑
i=1

wi(~x)yi eı2π~νi·~x ,

where now one must design the density compensation functions {wi(~x)}. Noll et al. [115] have proposed such a
method in the context of MR imaging using spiral sampling patterns in the presence of magnetic field inhomogeneity.
The extension to other sampling patterns is an interesting open problem; see [135, 136].

Another possibility would be to allow D to have a banded structure instead of being restricted to diagonal [124,
125]. Density compensation methods for under-sampled cases have also been investigated [137].

All of these possible extensions add further complications, and at some point one might as well abandon the
conjugate-phase reconstruction method (6.4.3), and instead use iterative methods, such as the QPWLS approach de-
scribed in §6.3.2, that conveniently do not require any density compensation!

For additional methods, see [138] [139] [140].
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6.4.3 Frequency-domain interpolation methods (s,four,freq)s,four,freq

The methods described above all attempt to estimate directly the object f from the data y. An alternative approach
is to first use the measurements y to find an estimate F̂ (~ν) of the spectrum of f , and then estimate f by an inverse
Fourier transform:

f̂(~x) =

∫
F̂ (~ν) eı2π~ν·~x d~ν .

In practice, usually this integral is approximated by a finite sum. In particular, discretizing the integral using uniform
spacing corresponds to an inverse FFT.

Many methods for estimating F (~ν) from y assume the data is noiseless, i.e., yi = F (~νi). Since f is assumed to
be space limited to a bounded domain D, estimating F (~ν) from a noiseless y is equivalent to the classical problem of
interpolating band-limited signals from nonuniformly spaced samples, for which there is extensive literature e.g., [59,
61, 109, 124, 126, 141–156].

The assumption that f is space limited is very realistic physically in many imaging applications. In contrast, the
conventional assumption that signal samples are taken from a band-limited signal is often a mathematical convenience
rather than an absolute physical constraint. Indeed, some interpolation methods include procedures for estimating the
band width from the data [44].

Usually the estimate F̂ (~ν) is a linear function of y, i.e., it has the form

F̂ (~ν) =

nd∑
i=1

Ri(~ν)yi (6.4.45)
e,four,freq,linear

for some functions {Ri(~ν)}. In that case the corresponding image-domain estimate is “simply”

f̂(~x) =

nd∑
i=1

ri(~x) yi,

where ri(~x) is the inverse FT of Ri(~ν). Various linear methods differ “only” in the choice of {Ri(~ν)}.

6.4.3.1 Block spectral interpolation methods (s,four,freq,block)s,four,freq,block

In the general linear expression (6.4.45) above, for any frequency ~ν the estimate F̂ (~ν) could depend on all data values
{yi}. Such an approach would be practical only for problems with very few measurements (small nd). For large
problems like those in imaging, usually we estimate F (~ν) for any given frequency ~ν using only the frequency samples
~νi in the local neighborhood of ~ν, i.e., we replace (6.4.45) with a sum of the form

F̂ (~ν) =
∑
i∈I~ν

Ri(~ν)yi, (6.4.46)
e,four,freq,block

where I~ν is a subset of {1, . . . , nd}, such as the K neighbors in {~νi} that are closest to ~ν, or perhaps the following

I~ν = {i ∈ {1, . . . , nd} : ‖~ν − ~νi‖ ≤ νradius} .

Such methods have been called block interpolation methods and proposals for their use date back at least to [157] in
band-limited signal interpolation and to [4] in imaging.

For notational simplicity, we describe many of the interpolation methods in subsequent subsections using the
general linear form (6.4.45). But the reader should remember that all such methods can be applied using local block
interpolation (6.4.46) and indeed would need to be for practical use.

6.4.3.2 The “block uniform resampling” (BURS) method

In the context of MRI, Rosenfeld [123] proposed a block interpolation method that he called the “block uniform
resampling” (BURS) method.

For simplicity, consider the 1D case with support D = [−FOV/2,FOV/2]. It then follows from the sampling
theorem that

F (ν) =

∞∑
k=−∞

sinc(νFOV − k)F (kFOV).
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Since f is space limited, its spectrum F (ν) must have infinite support, so the above summation must be infinite for
exact equality. Nevertheless, if f is approximately band limited, then one could form an approximation using a finite
sum in the above expression. This leads to the following relationship:

v = S u,

where we are given vi = F (νi), i = 1, . . . , nd, and Sij = sinc(νiFOV − j), and we want to find the following
uniformly spaced samples {uj = F (κj)} , where κj = (j − (np + 1)/2)/FOV, j = 1, . . . , np. Rosenfeld [123]
proposed using the SVD to compute the pseudo inverses of blocks of the rows of S, i.e.,

ûj = e′jS
†
j vj ,

where vj denotes a subset of v corresponding to nonuniform frequency samples near the jth uniform sample location,
and Sj denotes a submatrix of S with the corresponding rows. (And possibly a subset of the columns too.) This is
called the block uniform resampling (BURS) method. (Similar methods had been proposed previously for image
restoration problems, e.g., [158].) Applying rows of the blocks to the data y yields estimates of F (~ν) on a Cartesian
grid, and then an inverse FFT is performed to estimate f . This approach was found to be sensitive to noise, so he
also proposed regularization methods [159]. Only a limited family of regularization methods is applicable to BURS,
whereas iterative methods as described in §6.2.9 can accommodate the entire spectrum of regularization methods and
have other advantages as well.

An alternative to the SVD approach is to use the CG algorithm to solve the system of equations S′jSj uj = S′j vj
[160]. Another related method is [161].

Another method is [162, 163]. This method can be written as

f̂ = ZPy

where here P is a nd × nd sparse matrix instead of a diagonal matrix as used in the conjugate phase reconstruction
approach (6.4.3). To contain computation, the matrix P is allowed to have a finite number (say L� nd) of non-zero
elements per row so that the matrix vector multiplication Py is O(ndL). The nonzero elements are selected via an
orthogonal matching pursuit (OMP) approach [163]. This method is most useful when the same non-Cartesian
sampling pattern will be used for numerous reconstructed images, such as in fMRI or dynamic studies.

6.4.3.3 Min-max spectral interpolation (s,four,freq,minmax)s,four,freq,minmax

In the context of band-limited signal interpolation, Yen showed in 1956 that the estimate F̂ (~ν) that has minimum
energy ‖F (·)‖ and corresponds to a signal with support D has the form (6.4.45) with

Ri(~ν) =

nd∑
l=1

S(~ν − ~νl)[K−1]il, (6.4.47)
e,four,freq,minmax

so that

F̂ (~ν) =

nd∑
i=1

S(~ν − ~νi)
[
K−1y

]
i
, (6.4.48)

e,four,freq,yen

where S(~ν) was defined in (6.1.7), and K is the Fourier crosstalk matrix in (6.1.16) for W = I . This solution
is impractical for large nd, both due to the large support of S(~ν) and due to the large size of K (and K is often
ill-conditioned), so block methods are essential for its use in practice. For a non-block method, applying an inverse
Fourier transform to (6.4.48) yields the MNLS estimator (6.3.4).

This result has been derived from various perspectives [164–167]. Generalizations include consideration of band-
pass support [168], multiple dimensions [169], using blocks of neighboring samples [126, 157], multiple dimensions
[144, 167], stochastic formulations [152], and using weighting functions other than W = I [126, 170]. Wingham
[149] proposed an SVD approach for regularizing the inverse in (6.4.48). Miller regularization [171], where εI is
added to the diagonal ofK, has also been proposed [149, 170].

It was also found that (6.4.47) is optimal from the following min-max perspective [172]. Defining FD as in
(6.4.17), one can show [124] that (6.4.47) is the frequency-domain interpolator that minimizes the worst-case error
over FD ∩N⊥A . This result is invariant to the norm used [148].

Choi and Munson [124] proposed to replace K−1 in (6.4.47) with a diagonal matrix D(w) where w minimizes
|||KD(w)−I|||Frob. For such a diagonal matrix, the resulting estimator is simply a form of the conjugate phase
method, and this criterion for choosing w is a special case of (6.4.41). An interesting open problem would be to find
the min-max optimal choice of w with S(·) in (6.4.47) replaced by a finite-support convolution kernel. Judging from
the form of the interpolation error in [124], finding the min-max choice may be challenging.
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6.4.3.4 Iterative spectrum estimation (s,four,freq,iter)s,four,freq,iter

Particularly in the context of band-limited signal interpolation, there have been several proposals for iterative methods
for estimating F (~ν) from y. Since our ultimate goal is to recover f , probably it is more logical to apply iterative
methods to estimate f directly, rather than to first iteratively estimate F (~ν) and then compute f̂ by an inverse Fourier
transform. That is, unless iterative estimation of F (~ν) is less expensive than estimating f . In the interest of complete-
ness we review some of the proposed iterative methods next.

Several authors [173–175] have discussed an iteration for band-limited signal interpolation that is equivalent to the
following algorithm for estimating F (~ν):

F (n+1)(~ν) = F (n)(~ν) + α

nd∑
i=1

S(~ν − ~νi) [yi − F (n)(~νi)] , (6.4.49)
e,four,freq,frame,F

where S(~ν) was defined in (6.1.7). This iteration, known as the frame algorithm, is a contraction for certain values
of α, under strong assumptions about the sample locations {~νi} [173–175]. Taking the inverse Fourier transform and
simplifying yields the following equivalent iteration

f (n+1) = f (n) +αA∗(y −A f (n)). (6.4.50)
e,four,freq,frame,f

In this form, it is clear that the iteration is trying to minimize the least-squares cost function ‖y −A f‖. However,
when nd is finite, there are a multitude of minimizers of that cost function, so this iteration is inappropriate in that
case. For steepest descent and conjugate gradient improvements, see [41, 176].

Other POCS-like iterations have also been proposed, e.g., [145]. In the context of the problem considered here,
these methods alternate between enforcing “data consistency,” i.e., yi = F (~νi), in the frequency domain, and the
space-limited assumption f(~x) = s(~x) f(~x) in the space domain. Specifically, the orthogonal projection onto the
convex set of data constraints

Ci , {F : F (~νi) = yi, F = F ∗S}

is given by
PCi F = F ∗S+S(· − ~νi) [yi − (F ∗S)(~νi)] .

This closed-form expression leads to a POCS algorithm as described in §11.18, although convergence is slow [167].
Aldroubi and Feichtinger [151] propose an iteration for a family of problems that includes our space-limited

situation as a special case. In our notation, their iteration has the following form:

F (n+1)(~ν) = F (n)(~ν) +

nd∑
i=1

Si(~ν) [yi − F (n)(~νi)]

F (0)(~ν) ,
nd∑
i=1

yi Si(~ν)

Si(~ν) ,
∑
k

∫
Vi
S(~ν′ − k/∆) d~ν′ S(~ν − k/∆)

Vi , {~ν : ‖~ν − ~νi‖ < ‖~ν − ~νj‖ , ∀j 6= i} ,

where ∆ is the “radius” ofD, i.e., ∆ , 2 max~x∈D ‖~x‖∞ . The set Vi is the Voronoi cell associated with the ith sample
~νi. This iteration works by first forming a simple interpolant, and then projecting that interpolant onto the space of
spaced-limited functions, and then iterating on the residual error. It is described as a “fast reconstruction procedure”
in [151].

Another approach is deconvolution-interpolation gridding (DING) in which one first iteratively estimates the
(smoothed) spectrum of an apodized version of the object, then inverse Fourier transforms and finally de-apodizes
[177]. See also [178].

6.4.3.5 Gridding methods (s,four,grid)s,four,grid

Examining the conjugate-phase estimator (6.4.2) in the frequency domain suggests the following frequency-domain
estimator:

F̂ (~ν) =

nd∑
i=1

wiyi S(~ν − ~νi) . (6.4.51)
e,four,grid,Fhat,S
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This estimator satisfies the convolution property (6.1.6), because S ∗S = S since s(~x) is an indicator function.
The frequency domain estimate (6.4.51) is the foundation of the gridding method for reconstruction from Fourier

samples. However, since S(~ν) is a sinc or sinc-like function that decays slowly, a direct implementation of (6.4.51)
would be computationally expensive. In practice, one replaces S(~ν) with a “convolution kernel” C(~ν) having finite
support, suggesting the following estimator initially:

F̂C(~ν) =

nd∑
i=1

wiyi C(~ν − ~νi) . (6.4.52)
e,four,grid,Fhat,C

Taking the inverse FT, the corresponding estimate in the space domain would be

f̂C(~x) =

nd∑
i=1

wiyi eı2π~νi·~x c(~x), c(~x)
FT←→ C(~ν) . (6.4.53)

e,four,grid,fhC

Because C(~ν) has finite support, its inverse Fourier transform c(~x) cannot be flat (like s(~x)), so one should apply a
post-correction for the shape of c(~x) as follows:

f̂(~x) =
s(~x)

c(~x)
f̂C(~x) =

s(~x)

c(~x)
F−1

{
nd∑
i=1

wiyi C(~ν − ~νi)

}
(~x), (6.4.54)

e,four,grid,fhat,ideal

where F−1 denotes an inverse d̄-dimensional Fourier transform. Using the shift-property of the Fourier transform, one
can show that this idealized expression simplifies back to the conjugate phase method (6.4.2). However, in practice,
rather than using (6.4.54) literally, one implements the transform by sampling F̂C(~ν) on a Cartesian grid and applying
an inverse fast Fourier transform (FFT). One can save computation in the sampling step by using precomputed look-up
tables [96, 179]. Specifically, letting {ν̃k} denote the Cartesian frequency sample locations, then one evaluates

Fk = F̂C(ν̃k) =

nd∑
i=1

wiyi C(ν̃k − ~νi) (6.4.55)
e,four,grid,Fk

for k = 0, . . . ,K − 1. Then one computes the image estimate at spatial sample locations {~xn} using an inverse DFT
followed by post-correction:

f̂(~xn) =
s(~xn)

c(~xn)
prod(4~ν)

∑
k

Fk eı2π~xn·ν̃k . (6.4.56)
e,four,grid,fhat,prac

This inverse DFT is amenable to an inverse FFT provided one chooses the sample locations such that~xn ·ν̃k = ~n·~k/K.
For analytical insight, consider the continuous-space estimate corresponding to (6.4.56), in the 1D case and for an

infinite number of Cartesian frequency samples:

f̂(x) =
s(x)

c(x)
4ν

∞∑
k=−∞

Fk eı2πxk4ν =
s(x)

c(x)

nd∑
i=1

wiyi eı2πνix 4ν
∑
k

C(k4ν −νi) eı2πx(k4ν−νi)

=
s(x)

c(x)

nd∑
i=1

wiyi eı2πνix
∞∑

l=−∞

e−ı2πνil/4ν c(x− l/4ν) . (6.4.57)
e,four,grid,ideal1

In words: sampling in the Fourier domain causes replication of c(x) in the spatial domain.
One would like to choose a kernel C(~ν) that closely approximates S(~ν) yet has finite support, and for which c(~x)

closely approximates s(~x), i.e., is nearly flat over D and otherwise zero. These are conflicting goals. In practice,
Kaiser-Bessel functions have been found to be a useful compromise [16]. The importance of the choice of this kernel
depends on the Cartesian sampling used. If one uses substantial over sampling, then one may be able to use simple
nearest-neighbor interpolation (i.e., a rectangular kernel) at the price of more expensive FFT computations [180,
181]. This may be a reasonable trade-off in some cases since optimized hardware may be more readily available for
computing 2D FFTs than for the type of convolution required in (6.4.52). Conversely, if minimal over sampling is
used, then more care is needed in choosing the interpolator. In particular, Beatty et al. [179] recommend using a
Kaiser-Bessel interpolator, cf. (6.6.18), with order m = 0 and shape parameter

α = π

√
J2

(K/N)2

(
K

N
− 1

2

)2

− 0.8, (6.4.58)
e,four,grid,alf

where K/N ∈ [1.25, 2] denotes the FFT over-sampling factor and J denotes the width of the support of C(ν) relative
to4ν . This choice (approximately) minimizes the aliasing amplitude [179, eqn. (5)].
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6.4.3.6 Practical gridding implementation (s,four,freq,impl)s,four,freq,impl

In practice, one implements the frequency-domain gridding formula (6.4.52) using a finite set of Cartesian frequency
sample locations as described in (6.4.55). There are severals ways one can implement this type of operation, illustrated
in Fig. 6.4.2. To describe these methods mathematically, let C ⊂ Rnd denote the support of C(~ν).
• Pulling from a neighborhood (aka “output driven”)

Because C(~ν) has finite support C, the summation in (6.4.52) only involves a few nonzero terms. In particular,
defining

Ik , {i : ν̃k − ~νi ∈ C} ,

one can implement gridding by looping over each desired Cartesian location ν̃k and “pulling” values from the
neighbors in Ik as follows:

for k = 1, . . . ,K:
Fk =

∑
i∈Ik

wiyi C(ν̃k − ~νi) .

A disadvantage of this approach is that it requires determination of the set Ik which is inconvenient when the ~νi
values are arbitrary. See [182] for a GPU version and [140] for a helpful compartmentalization scheme; however, a
k-d tree is likely to be more efficient than the partition in [140].
• Pushing to a neighborhood (aka “input driven”)

An alternative approach is to move i to the outer loop and k to the inner loop. For each frequency sample location
~νi, we “push” the (weighted) value yi to the appropriate Cartesian neighbors, defined by the set

Ki , {k : ν̃k − ~νi ∈ C} .

One can implement this approach as follows.
Initialize Fk = 0, k = 1, . . . ,K
for i = 1, . . . , nd:

for k ∈ Ki:
Fk +=wiyi C(ν̃k − ~νi) . (6.4.59)

e,four,freq,impl,push

Mathematically, both pulling from and pushing to a neighborhood yield the same result, but pushing is easier to
implement because the set Ki is simple to form due to the regular spacing of the Cartesian sample locations {ν̃k}.
• Pulling from L nearest neighbors

Yet another option is to pull from the L nearest neighbors of each Cartesian point, defined by

Nk , {i1, . . . , iL : ~νilare closer to ν̃k than the others} .

The implementation would be

Fk =

∑
i∈Nk wiyi C(ν̃k − ~νi)∑
i∈Nk wi C(ν̃k − ~νi)

.

In this case, the interpolation operation is not equivalent to a convolution, so the post-correction in (6.4.56) is
inapplicable, so one should normalize the interpolator in the frequency domain as shown above.
One can also devise a pushing implementation of this L nearest neighbor approach, which requires two arrays, one
for accumulating the numerators and one for the denominators above.
Assessing the relative merits of these approaches is apparently an open problem. Historically the pushing approach
(6.4.59) seemed the most convenient for practical implementation [111], but parallel computing (e.g., GPU) can
favor pulling [182].

6.5 Summary (s,four,summ)
s,four,summ

This chapter has surveyed a variety of methods for image reconstruction from Fourier-domain samples. The gridding
method (§6.4.3.5) is among the fastest methods, and is thus used frequently for well-sampled data. However, gridding
requires density compensation factors, and there are many proposed approaches for choosing those factors. Iterative
methods do not require density compensation factors. Of such methods, the preconditioned conjugate gradient (PCG)
iteration (§6.2.9) using FFTs to perform Toeplitz matrix multiplication (§6.2.10) is particularly efficient for quadratic
regularization.
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Figure 6.4.2: Practical implementation of methods for gridding from non-Cartesian frequency samples (blue circles)
to a Cartesian grid (red squares).

fig_four_interp2_grid

https://creativecommons.org/licenses/by-nc-nd/4.0/


c© J. Fessler. [license] December 10, 2018 6.34

Although resolution noise trade-offs have been analyzed for density-weighted conjugate-phase reconstructions in
MR [183], such analyses are an open problem for more general reconstruction approaches such as the regularized
methods described here.

Many of the methods discussed here for finding density compensation factors appear impractical as proposed
initially, but some may become feasible if combined with the “block” approaches of §6.4.3.1. See [124] as an example.

Although the methods discussed herein are applicable to arbitrary sampling patterns, the quality of the results will
of course depend greatly on the sampling pattern. See [184] for discussion of stability of recovery in terms of the
sampling pattern.
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6.6 Appendix: NUFFT calculations (s,four,nufft)
s,four,nufft

For equally spaced basis functions, the matrix-vector multiplicationAx needed in (6.2.16) is

[Ax]i =

np∑
j=1

aijxj = B(~νi)

np∑
j=1

xj e−ı2π~νi·~xj ,

using (6.2.12). This operation involves a type of non-uniform FFT (NUFFT) calculation [50]. This section reviews
the 1D NUFFT; the extension to higher dimensions is fairly easy.

MIRT NUFFT software is available.
Consider the problem of computing the discrete-time Fourier transform (DTFT) of a discrete-time signal

x[n], n = 0, . . . , N − 1, at (unequally spaced) frequency samples ωm, m = 1, . . . ,M, as follows:

X(ωm) =

N−1∑
n=0

x[n] e−ıωmn . (6.6.1)
e,four,nufft,dtft

Directly evaluating (6.6.1) would require MN operations, or O(N2) in the usual case where M ≈ N . NUFFT
methods require roughly O(N logN) operations and work as follows.
• Multiply x[n] by some nonzero scaling factors s[n].
• Compute an over-sampled DFT of the scaled signal.
• Interpolate the DFT values onto the desired frequency locations.

Mathematically, the over-sampled (K-point) DFT is given by

Y [k] ,
N−1∑
n=0

s[n]x[n] e−ıγkn , k = 0, . . . ,K − 1, (6.6.2)
e,four,nufft,Yk

where K ≥ N and γ , 2π/K. Typically one uses N < K ≤ 2N [179]. Now the goal is to compute X(ωm) (usually
approximately) from the DFT values {Y [k]} via interpolation.

6.6.1 Basic ideal interpolator
It is instructive to first consider a simple ideal interpolator for calculating X(ωm) from {Y [k]}. Inverting (6.6.2) and
substituting into (6.6.1) and simplifying yields

X(ωm) =

N−1∑
n=0

(
1

s[n]

1

K

K−1∑
k=0

Y [k] eıγkn

)
e−ıωmn =

K−1∑
k=0

Y [k] Ĩc

(
ωm
γ
− k
)
, (6.6.3)

e,four,nufft,Xom,ideal

where an ideal interpolator (for given scaling factors s[n]) is the following K-periodic complex-valued function:

Ĩc(κ) ,
1

K

N−1∑
n=0

1

s[n]
e−ıγκn , κ ∈ R. (6.6.4)

e,four,nufft,Ic

Usually one chooses the scaling factors s[n] to be symmetric in the following sense: s[N − 1− n] = s[n], n =
0, . . . , N − 1, in which case the ideal interpolator simplifies (see Problem 6.26) to the product of a linear phase term
and a real, symmetric kernel:

Ĩc(κ) =
N

K
e−ıγκη0 Ir(κ), Ir(κ) ,

1

N

N−1∑
n=0

1

s[n]
e−ıγκ(n−η0) =

1

N

N−1∑
n=0

1

s[n]
cos(γκ(n− η0)), (6.6.5)

e,four,nufft,Ir

where η0 , (N − 1)/2 denotes the “midpoint” of the signal sample locations.
In particular, if s[n] = 1, then the interpolator is Ir(κ) = δN,K(κ), where δN,K(·) denotes the Dirichlet kernel:

1

N

N−1∑
n=0

e−ıγκ(n−η0) =
sin(πκN/K)

N sin(πκ/K)
, δN,K(κ) . (6.6.6)

e,four,nufft,diric

This function is 2K-periodic when N is even and is K-periodic when N is odd. See Fig. 6.6.1.
The function Ĩc is K-periodic, whereas the functions e−ıγκη0 and Ir(κ) are 2K-periodic in the usual case where

N is even. Because Y [k] is K-periodic, it seems more natural to work with K-periodic interpolators. The next section
addresses this issue.
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6.6.2 Generalized ideal interpolator
In the usual case where K > N , the fact that the sum in (6.6.2) involves only n = 0, . . . , N − 1 means that there are
many ideal interpolators! We generalize (6.6.3) as follows:

X(ωm) =

K−1∑
n=0

(
q[n]

1

K

K−1∑
k=0

Y [k] eıγkn

)
e−ıωmn =

K−1∑
k=0

Y [k] Ĩc

(
ωm
γ
− k
)
, (6.6.7)

e,four,nufft,Xom,ideal,gen

where q[n] =

{ 1
s[n] , n = 0, . . . , N − 1

arbitrary in R, n = N, . . . ,K − 1.
For any given choice of q[n] factors there is a corresponding

K-periodic ideal interpolation kernel defined similiarly to (6.6.4) as follows:

Ĩc(κ) ,
1

K

K−1∑
n=0

q[n] e−ıγκn . (6.6.8)
e,four,nufft,Ic,gen

We have considerable freedom in designing the q[n] factors, so it seems natural to make a choice that avoids the issues
with 2K-periodicity for even N that arose above.

A natural approach is to choose some M satisfying N ≤M ≤ K − 1 and select q[n] factors having the following

symmetry property: q[n] =

{
q[M − 1− n], n = 0, . . . ,M − 1
0, otherwise.

In such cases, the generalized ideal interpolator

(6.6.8) simplifies to the product of a linear phase term and a real, symmetric kernel as follows (see Problem 6.26):

Ĩc(κ) =
M

K
e−ıγκηM Ĩr(κ) (6.6.9)

Ĩr(κ) ,
1

M

M−1∑
n=0

q[n] e−ıγκ(n−ηM ) =
1

M

M−1∑
n=0

q[n] cos(γκ(n− ηM )), (6.6.10)
e,four,nufft,Ir,gen

where ηM , (M − 1)/2. If we choose q[n] = 1, n = 0, . . . ,M − 1, then

Ĩr(κ) =
sin(πκM/K)

M sin(πκ/K)
= δM,K(κ) .

In particular, as long as we always choose M to be odd, which is always possible when N < K, then both the phase
factor e−ıγκηM and the interpolator kernel Ĩr(κ) will be K-periodic. See Fig. 6.6.1.

Using the factorization in (6.6.10), we rewrite the interpolation expression (6.6.7) as

X(ωm) = e−ıωmηM X̄(ωm) (6.6.11)

X̄(ωm) ,
K−1∑
k=0

Ȳ [k]
M

K
Ĩr

(
ωm
γ
− k
)

(6.6.12)

Ȳ [k] , eıγkηM Y [k] . (6.6.13)
e,four,nufft,Xom,ideal,new

In this form we see that the ideal interpolator is essentially real; pre-multiplying Y [k] by eıγkηM and post-multiplying
by e−ıωmηM simply account for the limits of the sums in (6.6.1) and (6.6.2); if both of those sums were shifted by ηM
then the phase factors would disappear entirely. (This simplification was overlooked in [50].)

How might we use effectively the freedom in choosing the q[n] factors? Anticipating the practical interpolators in
the next section, one option is to try to minimize the energy in the kernel outside some interval:

∫K/2
J/2

Ĩ2
r (κ) dκ . For

example, we could maximize
∫ J/2

0
Ĩ2
r (κ) dκ /

∫K/2
0

Ĩ2
r (κ) dκ . This problem is related to prolate spheroidal wave

functions [185, 186] that seem inconvenient for practical use.

6.6.3 Practical interpolators
An ideal interpolator (6.6.13) or (6.6.7) would require KM operations, which is impractical. In practice, we replace
the interpolator in the interpolation step (6.6.13) by an approximation:

X̄(ωm) ≈
K−1∑
k=0

Ȳ [k] ψ̃

(
ωm
γ
− k
)
, (6.6.14)

e,four,nufft,forw

https://creativecommons.org/licenses/by-nc-nd/4.0/
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Figure 6.6.1: Comparison of ideal real interpolation kernels Ĩr for N = 8, K = 16 and M ∈ {8, 13}.
fig_four_diric

where ψ̃(·) is the K-periodic extension of a finite-support interpolation kernel ψ(·), i.e.,

ψ̃(κ) ,
∞∑

l=−∞

ψ(κ− lK) .

If the kernel ψ(·) has support [−J/2, J/2), then the summation (6.6.14) involves only J terms, i.e.,

K−1∑
k=0

Ȳ [k] ψ̃

(
ωm
γ
− k
)

=

J∑
j=1

Ȳ [(k0(ωm) +j) modK]ψ

(
ωm
γ
− [k0(ωm) +j]

)
, (6.6.15)

e,four,nufft,sumjJ

where7

k0(ω) ,

⌊
ω

γ
− J

2

⌋
, (6.6.16)

e,four,nufft,grid,koff

where b·c denotes the integer floor function. This offset satisfies the following (integer) shift invariance property:

k0(ω + lγ) = l + k0(ω), ∀l ∈ Z. (6.6.17)
e,four,nufft,grid,koff,shift

The interpolation (6.6.15) uses only the J nearest DFT neighbors, reducing the computation to JM operations, where
J � K.

A good choice for the kernel is the generalized Kaiser-Bessel function [188, 189]:

ψ(κ) = fmJ (κ)
Im(αfJ(κ))

Im(α)
, (6.6.18)

e,four,nufft,kb

where Im denotes the modified Bessel function of order m, and

fJ(κ) ,


√

1−
(

κ

J/2

)2

, |κ| < J/2

0, otherwise.

The shape of this function is related to the “shape parameter” α. Good choices are m = 0 and α = 2.34J for
K/N = 2 [50]. See also (6.4.58) from [179, eqn. (5)], and the formula recommended by Wajer et al. [190]. For the
Kaiser-Bessel interpolator, the corresponding scaling factors are

s[n] = 1/Ψ((n− η0)/K), (6.6.19)
e,four,nufft,sn,Psi

where [188]:
Ψ(x) = (1/2)mπd̄/2(J/2)d̄αmΛ(z(x))/Im(α)

FT←→ ψ(u), (6.6.20)
e,four,nufft,Psi,KB

where d̄ = 1 (for 1D case), ν = d̄/2 +m, z(x) =
√

(πJx)2 − α2, and Λ(z) = (z/2)−νJν(z), where Jν denotes the
Bessel function of the first kind of order ν. See [191] for an approach to optimize the scaling factors s[n]. See also
[192] for a mean-square optimal NUFFT approach.

7 The following expressions were given in [50] and [187] respectively: k0(ω) ,

{
(argmink∈Z |ω/γ − k|)− J+1

2
, J odd

(max {k ∈ Z : ω/γ ≥ k})− J
2
, J even,

and k0(ω) ,

{
[ω/γ]− J+1

2
, J odd

bω/γc − J
2
, J even,

where [·] denotes rounding to the nearest integer. Both of these simplify to (6.6.16).
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Combining the interpolation and the over-sampled DFT, we have

X(ωm) ≈
K−1∑
k=0

e−ıγ(ωm/γ−k)η0 ψ̃

(
ωm
γ
− k
)[N−1∑

n=0

s[n]x[n] e−ıγkn

]

=

N−1∑
n=0

x[n]

[
s[n]

K−1∑
k=0

e−ıγ(ωm/γ−k)η0 ψ̃

(
ωm
γ
− k
)

e−ıγkn

]
.

This requires O(K logK) operations for the FFT step and JM operations for the interpolation step. Comparing this
expression with the original DTFT expression (6.6.1) reveals the following underlying approximation:

e−ıω(n−η0) ≈ s[n]

K−1∑
k=0

ψ̃

(
ω

γ
− k
)

e−ıγk(n−η0) . (6.6.21)
e,four,nufft,exp,approx

To evaluate the gradient in (6.2.16), we also need the ability to perform the adjoint operationA′y, where

[A′y]j =

nd∑
i=1

a∗ijyi =

nd∑
i=1

B(~νi) eı2π~νi·~xj yi.

This is an “adjoint NUFFT” operation. In 1D, the equivalent expression in signal processing notation is

x̄[n] =

M∑
m=1

Xm eıωmn .

Using the complex conjugate of the approximation (6.6.21), we have the following NUFFT adjoint operation:

x̄[n] ≈ s∗[n]

K−1∑
k=0

[
M∑
m=1

X̄m ψ̃

(
ωm
γ
− k
)]

e−ıγkη0 eıγkn , (6.6.22)
e,four,nufft,adj

where X̄m , eıωmη0 Xm. The bracketed expression is called gridding, and the outer summation is an inverse DFT
(to within a scale factor).

MIRT The approximation (6.6.22) is implemented in nufft_adj.m and newfft.m.
The extension from 1D to 2D and higher is relatively straightforward [50]. For image reconstruction purposes,

each ~ωm is the product of 2π~νi and the pixel size.
MIRT The Gnufft object encapsulates these operations so that one can type A * x and A’ * y to invoke (6.6.14) and

(6.6.22).

6.7 Appendix: NUFFT-based gridding (s,four,nufft,grid)
s,four,nufft,grid

The section describes details about how to implement the conjugate phase method (6.4.2). For simplicity we describe
a 1D version of the problem. One would like to evaluate summations of the form8

f [n] =

M∑
m=1

Fm eıωmn , n = 0, . . . , N − 1. (6.7.1)
e,four,nufft,grid,type1

This is the “type 1” NUFFT as defined for example in [54]. One can assume without loss of generality, that |ωm| ≤ π.
The central approximation that underlies all gridding methods is the following:

eıωn ≈ en(ω) , s[n]

K−1∑
k=0

ψ̃k(ω/γ) eıγkn , (6.7.2)
e,four,nufft,grid,approx

for someK ≥ N,where γ , 2π/K and
{
ψ̃k(ω/γ)

}K−1

k=0
denotes interpolation coefficients associated with frequency

ω. The (positive) s[n] values are called scaling factors [105]. The design problem is to choose the scaling factors
s = (s[0], . . . , s[N − 1]) and the interpolator ψ̃k to minimize the approximation error in (6.7.2).

8 In MRI, a summation of the form
∑M
m=1 Fm eıωm(n−N/2) may be needed, but this is equivalent to (6.7.1) by modifying Fm.
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If one imposed no constraints on ψ̃k, then (6.7.2) could be made to be exact by using the following ideal interpo-
lator:

ψ̃k(κ) =
1

K

N−1∑
n=0

1

s[n]
eıγκn e−ıγkn =

N

K

1

N

N−1∑
n=0

1

s[n]
eıγ(κ−k)n = ψ̃0(κ− k), (6.7.3)

e,four,nufft,grid,tpsik

for k = 0, . . . ,K − 1, where

ψ̃0(κ) ,
N

K
e−ıγκη0 δN,K(κ), (6.7.4)

e,four,nufft,grid,tpsik_0

where η0 , (N − 1)/2 and δN,K denotes the following K-periodic Dirichlet kernel:

δN,K(κ) ,
1

N

N−1∑
n=0

eıγκ(n−η0) =


sin(πκN/K)

N sin(πκ/K)
, κ/K /∈ Z

1, κ/K ∈ Z.
(6.7.5)

e,diric

Note that δN,K(κ), which is the “core” of the interpolator is real; the only complex aspect of (6.7.4) is the linear phase
term. Furthermore, the κ − k argument in (6.7.3) indicates an (integer) shift invariance. It is logical therefore to
expect that other useful interpolators will have such integer shift invariance and will have the same form as (6.7.4),
namely, the product of a linear phase term with a real interpolation kernel.

The ideal interpolator (6.7.4) would be computationally impractical, so in practice one allows ψ̃k(κ) to have at
most J � K nonzero values for each ω. In particular, for simplicity one uses the J neighbors that are nearest to ω (in
a modulo-2π sense). Using the integer offset defined in , we replace (6.7.2) by the equivalent expression

eıωn ≈ ên(ω;u) = s[n]

J∑
j=1

uj(ω) eıγ(k0(ω) +j)n , (6.7.6)
e,four,nufft,grid,approx,J

where u(ω) = (u1(ω), . . . , uJ(ω)) denotes the vector of length J of interpolation coefficients associated with fre-
quency ω.

In principle the interpolation coefficients could be shift variant, but we will show shortly that u satifies a shift-
invariance property equivalent to that of (6.7.3), contrary to the implication of [193, Fig. 1]. Having made the approx-
imation (6.7.6) we can evaluate the NUFFT (approximately) as follows:

f [n] ≈ f̂ [n] ,
M∑
m=1

Fm

s[n]

J∑
j=1

uj(ωm) eıγ(k0(ωm) +j)n


= s[n]

J∑
j=1

[
M∑
m=1

Fm uj(ωm) eıγ(k0(ωm) +j)n

]

= s[n]

K−1∑
k=0

[
M∑
m=1

Fm uk−k0(ωm)(ωm) I{1≤k−k0(ωm)≤J}

]
eıγkn .

The inner summation is gridding from the nonuniform frequency space sample locations {ωm} onto the nearby
Cartesian samples {γk}, and the outer summation is an inverse FFT.

The approximation (6.7.2) leads to the following bounds on the average weighted squared error:

1

N

N−1∑
n=0

w[n]
∣∣∣f [n]− f̂ [n]

∣∣∣2 =
1

N

N−1∑
n=0

w[n]

∣∣∣∣∣
M∑
m=1

Fm (eıωmn − ên(ωm;u))

∣∣∣∣∣
2

≤ 1

N

N−1∑
n=0

w[n]

M∑
m=1

|Fm|2 |eıωmn − ên(ωm;u)|2

≤

(
M∑
m=1

|Fm|2
)

max
ω

E2(ω; s;u),

where

E2(ω; s;u) ,
1

N

N−1∑
n=0

w[n] |eıωn − ên(ω;u)|2 . (6.7.7)
e,four,nufft,grid,Eomsu
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This upper bound is tight because it would be achieved for a spectrum Fm that concentrates entirely on the worst-case
frequency. In light of this tight bound, it is desirable to design the scaling factors s and the interpolation coefficients
u(ω) to minimize the worst-case error by the following min-max criterion (cf. [50, eqn. (10)]):

min
s∈CN

max
ω

min
u∈CJ

E(ω; s;u). (6.7.8)
e,four,nufft,grid,minmaxmin

In particular, for a given choice of s, we design u(ω) for each ω as follows

u(ω) , arg min
u∈CJ

E(ω; s;u).

Having optimized u(ω), the worst-case error is the following:

Emax(s) , max
ω

E(ω; s;u(ω)). (6.7.9)
e,four,nufft,grid,Emax

Finding u(ω) by minimizing (6.7.7) is simply a weighted least-squares problem that is linear in u. Solving that
minimization directly leads to complex expressions, e.g., [193, eqn. (7)] that obscure the nature of the interpolator.
Instead we rewrite the error as follows (cf. [50, eqn. (14)]:

E2(ω; s;u) =

N−1∑
n=0

w[n]

∣∣∣∣∣∣eıωn − s[n]

J∑
j=1

uj(ω) eıγ(k0(ω) +j)n

∣∣∣∣∣∣
2

= ‖b− SCΛ(ω)u(ω)‖2W 1/2

where

W ,
1

N
diag{w[n]}

bn(ω) , eı(ω−γ k0(ω))(n−η0)

S , diag{s[n]} (6.7.10)

Cnj , eıγj(n−η0)

Λjj(ω) , e−ı(ω−γ(k0(ω) +j))η0 . (6.7.11)
e,four,nufft,grid,Lamj

Clearly the (weighted) LS minimizer is
u(ω) = Λ∗(ω)T−1 r(ω),

because Λ−1 = Λ∗, where
T , C ′S′WSC

r(ω) , C ′S′Wb(ω).

The elements of the J × J Toeplitz matrix T and the N -vector r(ω) are given by

Tlj =
1

N

N−1∑
n=0

w[n] s2[n] eıγ(l−j)(n−η0)

rj(ω) =
1

N

N−1∑
n=0

w[n] s[n] eı(ω−γ(k0(ω) +j))(n−η0) .

The key to this representation is the following fact: in the usual case where w[n] and s[n] are chosen to be symmetric
about η0, then T is a real matrix, and r(ω) is a real vector. In particular, the elements simplify to

Tlj =
1

N

N−1∑
n=0

w[n] s2[n] cos(γ(l − j)(n− η0))

rj(ω) =
1

N

N−1∑
n=0

w[n] s[n] cos((ω − γ (k0(ω) +j))(n− η0)) .

Thus the core of this LS optimal interpolator is real; the only complex aspects are the linear phase factors in (6.7.11),
and these correspond directly to the phase of the ideal interpolator in (6.7.4). Furthermore, the frequency ω enters
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the expressions above only in the form ω − γ k0(ω), so this LS optimal interpolator also satisfies the integer shift
invariance seen in the ideal interpolator (6.7.4).

Having optimized the coefficients u(ω), the next step is to design s to minimize the worst-case error in (6.7.9).
Unfortunately there is no apparent analytical optimizer for s. Therefore, one must use numerical methods to optimize
s. In the literature, several choices for s have been proposed, all of which have the form (6.6.19) for various choices
for the function Ψ(t), such as the following:
• uniform factors, i.e., Ψ(t) = 1,
• cosine factors [105]: Ψ(t) = cos(πt),

• Gaussian factors [98]: Ψ(t) = σ
√

2π e−π(tσ
√

2π)
2

, with σ chosen to minimize Emax,
• and Kaiser-Bessel factors (6.6.20), with parameters optimized per (6.4.58) [179, eqn. (5)].

Fig. 6.7.1 shows the error E(ω, s,u(ω)) for each of the above choices of the scaling factors. The worst-case error
is smallest for the Kaiser-Bessel scaling factors.
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J=5, K/N=2 Uniform
Cosine
Gaussian
KB
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Figure 6.7.1: Plots of the error E(ω, s,u(ω)) vs ω/γ for various choices of the scaling factors s.
fig_nufft_emax_err_5

The results in Fig. 6.7.1 were for the unweighted error criterion with w[n] = 1. This criterion seems the most
natural because usually we lack prior information that would favor weighting the error in some parts of the field of
view more or less than other parts. However, note that if we choose w[n] = 1/ s2[n], then the matrix T becomes
independent of s, and leads to a simple closed-form solution [50, eqn. (29)]:

Tlj = δN,K(j − l),

where δN,K was defined in (6.7.5). Furthermore, if we expand 1/ s[n] in terms of a suitable Fourier series, then a
closed-form solution for rj(ω) is also available [50, eqn. (30)]. However, because u(ω) can be tabulated easily for a
finely sampled grid of ω values, closed-form expressions for T and r(ω) are unessential. The convenience of such
expressions is offset by the subjectivity in choosing w[n] values that depend on s.
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fig_nufft_emax_core_5

6.8 Appendix: Toeplitz matrix-vector multiplication (s,four,toep)
s,four,toep

This section summarizes how to perform matrix-vector multiplication Tx when T is a Toeplitz matrix, using FFT
operations, focusing on the 2D case. Computing y = Tx, where T is Toeplitz, is equivalent to the following operation
in signal processing notation:

y[m,n] =

M−1∑
m=0

[k]

N−1∑
n=0

[l]h[m− k, n− l]x[k, l]

form = 0, . . . ,M−1 and n = 0, . . . , N−1. Note that−(M−1) ≤ m−k ≤M−1 and−(N−1) ≤ n− l ≤ N−1
in the above convolution expression. We would like to express that convolution as a circular convolution so that it
can be implemented using FFT operations. We embed both x and h in 2D arrays of size 2M × 2N as follows:

x2[m,n] =

{
x[m,n], m = 0, . . . ,M − 1, n = 0, . . . , N − 1
0, m = M, . . . , 2M − 1 or n = N, . . . , 2N − 1,

h2[m,n] =

{
h0[m,n], m = 0, . . . , 2M − 1, n = 0, . . . , 2N − 1, m 6= M, n 6= N
0, m = M or n = N,

where
h0[m,n] , h[((m+M) mod 2M)−M, ((n+N) mod 2N)−N ] .

Now define the 2M × 2N point circular convolution of h2 and x2 as follows:

y2[m,n] = h2[m,n] ~(2M,2N) x2[m,n] =

2M−1∑
k=0

2N−1∑
l=0

h2[(m− k) mod 2M, (n− l) mod 2N ]x2[k, l].

Then one can verify that y[m,n] = y2[m,n] for m = 0, . . . ,M − 1 and n = 0, . . . , N − 1. So we can compute
y[m,n] as follows.
• Precompute the 2M × 2N array h2[m,n] and its 2D FFT H2[k, l].
• Zero pad the signal x[m,n] to size 2M × 2N and compute its 2D FFT X[k, l].
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• Multiply H2 and X to form Y2[k, l] = H2[k, l]X[k, l]. Compute the inverse 2D FFT of Y2 and extract the 1st
M ×N quadrant.

For iterative image reconstruction, we must computing Tx several times. Using the above recipe, each such multi-
plication requires only one 2D FFT and one inverse 2D FFT (not counting the single 2D FFT that is needed to form
H2[k, l] prior to iterating). See also [194].

6.9 Problems (s,four,prob)s,four,prob

Problem 6.1 For A defined in (6.1.8), show that |||A|||2 ≤
√
nd |D| = |||A|||Frob where |D| =

∫
D d~x .

Find analogous results forA in (6.2.4).
p,four,mnls,fill

Problem 6.2 For the case of Cartesian sampled k-space data with under-sampling, show that the minimum-norm
least squares (MNLS) solution (6.3.4) is equivalent to zero-filling the missing k-space data and applying an inverse
FT or DFT.

p,four,frob

Problem 6.3 Variations on the following minimization problem arise repeatedly in §6.4.2:

ŵ = arg min
w

Ψ(w), Ψ(w) = |||C −BD(w)A|||2Frob.

Using the Frobenius norm property (26.5.6) that |||A|||2Frob = trace{A′A}, show that

Ψ(w) = trace{C ′C}−2 real{w′ v}+w′Mw (6.9.1)
Mli = [B′B]li[AA

′]il, l, i = 1, . . . , nd (6.9.2)
vi = [B′CA′]ii, i = 1, . . . , nd. (6.9.3)

e,four,frob,min

Show furthermore that the Hermitian symmetric matrixM is positive-semidefinite, and that ifM u = 0, then u′ v =
0, i.e., v ∈ RM .
Show therefore that the minimizer of Ψ(w) satisfiesMw = v .
Note: if one wants to restrict the minimization to real-valued w, then the solution satisfies real{M}w = real{v} .

p,four,grid

Problem 6.4 Prove the gridding replication property (6.4.57).
p,four,dens,frob,data

Problem 6.5 Find choices for the weighting matrices W1 and W2 in the data-domain criterion (6.4.20) that lead to
solutions corresponding to each of the examples of ŵ for the image domain criteria in §6.4.2.3.4. (In other words,
these two formulations are closely related.)

p,four,partial

Problem 6.6 For (Cartesian) partial k-space data as shown in Fig. 6.1.1, compare three types of reconstruction
approaches: (i) one of the methods described in [195], (ii) an iterative regularized LS estimation approach based on
the standard quadratic roughness penalty in (1.10.1), and (iii) based on a regularizer that penalizes the magnitude
and phase separately [196]. Focus on the following model:

y = Af + ε,

where f = D(φ)x andD(φ) = diag
{

eıφj
}
.

The standard approach computes a “low-resolution” phase estimate φ̂ from the central k-space data, which may be
reasonable when the phase is expected to be spatially smooth. (Here, low resolution means truncated k-space, but
still the number of pixels matches that of the image x.) Given this phase estimate, there are several approaches for
reconstructing x.
POCS approach (ignores noise): find f̂ ∈ C1 ∩ C2 where

C1 , {f ∈ Cnp :Af = y}

and
C2 ,

{
f ∈ Cnp : ∠fj = φ̂j , j = 1, . . . , np

}
.

Iterative approach based on phase correction: f̂ = D(φ̂) x̂, where

x̂ = arg min
x∈Rnp

1

2

∥∥∥y −AD(φ̂)x
∥∥∥2

2
+ βR(x) .
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Bydder approach [197]: f̂ = D(φ̂) x̂, where

arg min
x∈Cnp

1

2

∥∥∥y −AD(φ̂)x
∥∥∥2

2
+ α ‖imag{x}‖2 + βR(x)

Joint estimation approach (based on phase regularization) [196]:

arg min
x∈Rnp ,φ∈Rnp

1

2
‖y −AD(φ)x‖22 + αR(φ) +βR(x),

where α is “large” to provide a smooth phase estimate.
(Solve?)

p,four,basi,indep

Problem 6.7 Prove that the functions φi in (6.1.4) are linearly independent. Hint. One simple proof for the 1D case
where d̄ = 1 uses the fact that Vandermonde matrices are invertible. If needed, assume that ~0 ∈ D.

Problem 6.8 Implement iterative reconstruction from Fourier samples using Dirac, rect, and sinc bases as described
in §6.2.6 and compare reconstructed image quality. Use a true object that consists of shapes with analytical Fourier
transform expressions such as triangles. (Solve?)

p,four,nonp,qpwls,srp

Problem 6.9 Analyze E
[
f̂
]

for the nonparametric QPWLS estimator in (6.3.7) for the case where W = I and the

frequencies {~νi} are equally spaced. (Solve?)
p,four,natural

Problem 6.10 Considering (6.2.9) and (6.2.10) as an approximation to (6.3.7), compute (and display) some of the gi
functions in (6.3.8). Compare the nature of these “basis functions” to the usual choices such as pixels and B-splines.
(Solve?)

p,four,qpwls,B

Problem 6.11 Using (6.2.13), for the unweighted case with W = I , and no regularization (R = 0), the mean of the
QPWLS estimator is E[x̂] = [E′B′BE]−1E′B′A f . Suppose the frequency samples are equally spaced and E is
orthonormal. If f is a rect function of width ∆, compare E[x̂] for a model whereB corresponds to np � 1 rect basis
functions of width ∆, and a model whereB corresponds to Dirac impulse functions spaced ∆ apart.

p,four,a,exp

Problem 6.12 For the complex exponential basis (6.2.15), determine the general form of the elements of the system
matrix A in (6.2.4). Then consider the specific 1D case where D = [−FOV/2,FOV/2] and nd = np, and the
frequency samples ~νi are uniformly spaced with4ν = 1/FOV. Comment on the relative complexity of implementing
iterative reconstruction from nonuniform frequency samples using a complex exponential basis versus using equally
spaced basis functions such as rects.

p,four,limit

Problem 6.13 Prove the conjecture about diminishing basis function widths at the end of §6.2.11. (Solve?)
p,four,support

Problem 6.14 Requiring W in (6.3.1) to map into L2(D) is a subtle restriction because it would seem to preclude
“convolution-like” characteristics that might expand the support of a function originally in L2(D). We might prefer
to assume only W : L2 → L2, but this would appear to require allowing f̂ ∈ L2(Rd̄), thereby losing the benefit of
the support constraint. Resolve this dilemma. (Solve?)

p,four,dens,sinc

Problem 6.15 Prove the sinc property (6.4.8).
p,four,dens,im,minmax,range

Problem 6.16 Prove the simplified image domain criterion (6.4.19).
p,four,dens,im,sedarat

Problem 6.17 Prove the “generalized Sedarat” solution (6.4.24). (It may be easier to use a discrete approximation
A to A.)

p,four,dens,im,same

Problem 6.18 Prove that (6.4.24) is more general than (6.4.21) even in the special case where we choose Z = KA∗.
p,four,dens,im,frob,wtd,sedarat

Problem 6.19 Prove the “weighted Sedarat” solution (6.4.28). (Need typed.)
p,four,dens,freq,frob,den

Problem 6.20 Prove the regularized solution (6.4.43).
p,four,dens,radial

Problem 6.21 Consider a (2D) polar sampling pattern in Fourier space with samples that are equally spaced by4ν
along ρ with NA equally spaced radial lines over 2π. Determine analytically some reasonable values for density
compensation factors for samples where ρ = k4ν , for k = 0, 1, . . .. Hint: think of (approximate) Voronoi cells for
NA large. See [198–200].
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p,four,circ,samp

Problem 6.22 Given samples of a function f(x, y) on equally spaced rings {f(n∆, φ) : n ∈ Z, φ ∈ [0, 2π)}, deter-
mine conditions under which f(x, y) can be recovered and describe a recovery procedure.
(This problem is related to the PSF of spiral and radial sampling; see [198].)

(Solve?)
p,four,dens,lino

Problem 6.23 Determine analytically some reasonable values for density compensation factors for the linogram sam-
pling pattern shown in Fig. 3.8.1. (Solve?)

p,four,cond,radial

Problem 6.24 Using ideas similar to §25.7.12, develop an analytical approximation to the condition number of
A′WA for the case of radial samping.

(Solve?)
p,four,potts

Problem 6.25 Use the fast summation method in [201] to develop a fast (?) gridding algorithm of the form (6.4.51)
or (6.4.52) even for a kernel with a large support. (Solve?)

p,four,nufft,ideal

Problem 6.26 Derive the ideal real-valued interpolators (6.6.5) and (6.6.10).
Optional: also attempt a similar derivation when s[N − 1] = s[n] .
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