Chapter 16

Emission Image Reconstruction
(Regularized)

ch,empl
todo
Contents
16.1 Introduction (s,emplintro) . . . . . . . . L L 16.1
16.2 Problem statemen(s,empl,state) . . . . . . . . .. 16.2
16.3 Uniquenesgs,.empl,uniq). . . . . . . . . e e 16.2
16.4 EM-based algorithms(s,empl,em). . . . . . . . . . . . 16.2
16.4.1 Coordinate descent GEM algorithm (s,empl,em,gem) . . . .. ... ... ... .. 16.3
16.4.2 Green’s one step late (OSL) algorithm (s,empl,em,osl) . . . . . .. ... ... ... 16.3
16.4.3 De Pierro’s parallelizable GEM algorithms (s,empldp) . . . . ... . .. ... ... 16.4
16.4.3.1 Simplifications . . . . . . . .. 16.6
16.4.3.2 Ordered-subsets . . . . . . . . . .. . . ... e 16.6
16.4.4 Gammaprior (s,empl,em,gam) . . . . . . . . e 16.7
16.5 Quadratic surrogate approachegs,empl,ps) . . . . . . . . . . ... 16.8
16.5.1 Computing the;’s for the Poisson emissionmodel . . . . . .. ... ... ... .... 16.9
16.5.2 Separable Paraboloidal Surrogates (E-ML-SPS) Algorittem(d,sps) . . . . . . . . .. 16.10
16.5.3 Paraboloidal Surrogates Coordinate Ascent (E-ML-PSQggrahm . . . . . . . . . .. 16.12
16.6 ADSIract . . . . . . . . . e 16.12
16.7 The New Algorithm(s,empl,alg,psca). . . . . . . . . . . . 0 e e e 16.12
16.8 Resultgs,emplresult) . . . . . . . e e e 16.13
16.9 Discussion(s,empl,diSC) . . . . . . . .. e 16.14
16.100ther stuff(s,empl,other) . . . . . . . . . . e 16.14
16.11Alternating minimization procedure . . . . . . .. e e 16.15
16.12ML algorithms todo? (s,empl,alg.em). . . . . . . . . . . 16.16
16.12.1EMAIgorithm . . . . . . 16.16
16.12.2 Animproved EM algorithm . . . . . . . . . .. .. 16.17
16.13Notegs,empl,note) . . . . . . . . . 16.17

semplinte 16 1 Introduction (s,empl,intro)

This chapterdescribes regularized versions of the ML algorithms descrin the previous chapter for reconstructing
emission images from Poisson sinogram measurements.

16.1
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semplstae16.2 - Problem statements,empl,state)

As described ir§15.2, the goal is to estimate the coefficients (voxel valuesy (z1,...,z,,) from projection
measurements = (y1, - - ., Yn, ), Under the usual Poisson statistical model described ip&hé,i.e.,

y; ~ Poisson{y;(x)}, yi(z) = [Az], + 74, i=1,...,nq.

The negative log-likelihood is:

ng e,L,emis
L) =D gi(@) — yilogyi(), (16.2.1)
1=1
neglecting constants independentwfFor penalized-likelihood image reconstruction, one seb& image that mini-
mizes a cost function as follows:
e,obj,pl
& = argmin ¥V (x), U(x) = t(x)+ R(x), (16.2.2)
x>0

whereR(x) is a roughness penalty included for regularization. Thisaitg controls the resolution/noise tradeoff, as
elaborated in Chapter 22.

Most of the algorithms described in this chapter are exampfeoptimization transfer methods as described in
Chapter 11. As seen in Chapter 15, there are many possikilatigns of “the EM” algorithm for ML emission
reconstruction. Similarly, one could derive the algorithimthis chapter from a variety of perspectives.

semplunia 16 3 Uniquenesgs,empl,uniq)

todo: show thatl has a unique minimizer if null space df andC are disjoint and everyy, is strictly convex.

semplem 16 4 EM-based algorithms(s,empl,em)

The EM surrogate function describedsin5.5.3 serves as a reasonable starting point for derivinglized-likelihood
emission reconstruction algorithms. As derived in (19pdnd (15.5.7), the surrogate is

np e,empl,em,Qem
Qem(ziz™) = Y Qj(z;x™) (16.4.1)
j=1 e,empl,em,Qj
Qj(zjx™) = (xj+75)a; — e;(2™) (2" + ;) log(x; + ) (16.4.2) ,
e,empl,em,ejn
6;-") = ej(x™) = Z aijyi/Yi(x"™) (16.4.3)
i€l

(see (15.4.3)). Recall that = Y"1, a;;. One can use; = 0 for simplicity; otherwise they;’s must satisfy (15.4.6).
The surrogat&)g, satisfies the usual majorization conditions (11.1.3):

txz) < Qem(z;z™)
f_(ﬂ?) = QEM(:B;:I)).

Using this EM surrogate, one can construct a surrogateibmir the cost functionl as follows:

dpm(a:z™) = Quai(m; ™) +R(@) = Y Q;(zj;2™) + R(=),

j=1

in which case the M-step (11.1.1) of an optimization tranafgorithm becomes
e,empl,em,sur
™Y = arg min ¢py (z; ™) . (16.4.4)
x>0
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One could attempt to find this minimizer by zeroing the gratl@ ¢g;:

9 2 4+ Vi 9 e,empl,em,der,xj
—_— ™) =a; —e™L L 4~ R(x). 16.4.5
Ox; drm( ) T xi oy O0x; (@) ( )

Indeed, ifR(x) is aseparable penaltfunction, such as the gamma prior used in [1], then often andiad the mini-

mizerz™+V of the surrogate sy analytically. But for roughness penalty functioRg:z) is anonseparabléunction

of x, so zeroing the above partial derivatives leads tmapledset of equations with no analytical solution. Thus,

additional analysis is needed to find method for minimizing surrogate gy (x; ™). In fact, usually we cannot

find the exact minimizer ofgy, SO we must use an iterative approach. In other words, we nsgssubiterations

to descendpgy; within the outer iteration oven. This approach is still guaranteed to monotonically desszda

Technically speaking, this type of approach belongs to #meilf of generalized EMGEM) methods described in

§11.7.5.

The basic structure of any such GEM algorithm is as followserg M denotes the number of subiterations.

forn=0,1,2,... {
Computee|™ using (16.4.3). (This requires forward- / back-projectjon
w(n,O) s = w(n)
form=0,1,...,M—1{

em,descend

o
o
3
xeX

Find 21 such thatggy (™™ ;™) < gy (@™™; 2™) (16.4.6)

w(n"!‘l) T = w(n,]\f)

The key step of this algorithm is the descent (16.4.6), aatkthre a variety of possible strategies.

s,empl,em,gem

16.4.1 Coordinate descent GEM algorithm(s,empl,em,gem)

One of the earliest GEM methods used the coordinate desigemithm (§10.11) to descendgy [2]. This approach
is neither particularly fast nor parallelizable, so it iedsnfrequently.

s,empl,em,osl

16.4.2 Green's one step late (OSL) algorithnis,empl,em,osl)

An ad hocmethod for attempting to solve the coupled system of eqnai{p6.4.5) is to replace the partial derivative of
R(x) with the partial derivativevaluated at the previous iteratiofhis is theone step lat¢OSL) approach proposed
by Green [3, 4], in which one “solves”

(n)
i T 0
O:a]‘ 7@37&) J ’YJ + R(.’B(n)>,
T+ Ox;

leading to the iterative update

(n+1) (n) eé'n) e,empl,em,osl
GRS § PSR P—— —— 16.4.7
J (J %>aj+%R(az<”>) Vg X ( )

This algorithm isnot guaranteed to converge or to decrease the cost funétioonotonically. Indeed, it is not even
well defined because the denominatgr+ % (™) can be zero or negative. Although this algorithm has the
appeal of looking very “EM like” in its simplicity, it shoulde avoided because more recent methods are only slightly

more complicated to implement but have better stability @aa/ergence properties.
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s,empl,dp
16.4.3 De Pierro’s parallelizable GEM algorithms(s,empl,dp)

This section describes slight generalizations of the feizdble penalized-likelihood algorithms for emissiomtog-
raphy developed by De Pierro [5]. The algorithm(s) desctibere are perhaps the most natural generalizations of
the ML-EM algorithm to the regularized case, and the ordetduset versions are a very reasonable practical choice.
De Pierro’s paper focused on the case of quadratic regatariz Using the quadratic surrogates developed by Hu-
ber [6, p. 184], as described §11.4.4.4, it is easy to generalize De Pierro’s method to #se @f nonquadratic
potential functions. This was done without fanfare in [ é&xample, and detailed later in [8]. Here we consider
a very general family of nonquadratic potential functionsaihich quadratics are simply a special case. We also
generalize De Pierro’s algorithm to use thg™factors described in (15.4.6).

We focus on penalty functions having the following form:

WE

R(z) =) vn([Cxly),

k=1

whereC' = {c;} is aK x n, matrix. We assume that each potential functignhas a quadratic surrogate. So for
eachk there exists a nonnegative curvature functipft) such that the parabola

01 (1:5) = Y(s) + (o)t — )+ 3 Ex(s)(t — 5

majorizesyy, i.e., qx(t;s) > ¥ (t) forall t,s > 0 (cf. §11.4), andy(¢;t) = ¥x(t) . The simplest case is when the
potential functions are themselves quadrate, 1 (t) = £5.t2/2, in which case®, = 3y, but the algorithm presented
below accommodates the more general nonquadratic ca$e easi

De Pierro’s optimization transfer algorithm is a GEM alglom of the form (16.4.6). For performing the descent
monotonically, we follow De Pierro and use optimizationnster by first finding aseparablequadratic surrogate
Rsqs(z; @) for the penalty functioR(x), where is shorthand for:™". We then implement (16.4.6) as follows:

w(n,m+l) = arg min (bDP (:B; w(n,m); x(n))
—. )y A ™) _ e,empl,dp,inner,min
dpp(z;2;2™) = Qem(z;z™)+Rsqs(z; @) . (16.4.8)

Our construction oRgqg (x; ) parallels§11.5.7.
Because each potential functigi has a quadratic surrogatg by assumption, we first construct a (nonseparable)
quadratic surrogate fdt(x) as follows:

K K

R(@) = > vi([Calr) < Rq(a;@) £ > qu([Cali; [Cl) -

k=1 k=1

Now we use De Pierro’s additivity trick [5] as describedil.5.7:
p Tp Crs
[Cale = ez =Y Wy [k],(xj —I;) + [Cw]k] ;
i=1 =1 Lk

where we must choose factoyg; > 0 for which Zyil ~k; = 1. Becausey; is convex, by the convexity inequality
(25.3.5):

% ([Cx]r;s) = qr im |:§]]zj_($j_$j)+[ca_3]k:|§5

np

Clk i _ _
> ks (J(xj - z;) + [C&]y; 8>’
= Vi

IN
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for anys € R. Summing these leads to the following separable quadnatiogate for the penalty function:

np e,empl,dp,Rsgs
Ro(;@) < Rsgs(a;@) £ Ry(z);®) (16.4.9)
j=1
. K rs e,empl,dp,Rj
Rj(zj;@) = Z Vij Qe <’Y1:(xj —zj) + [CZi; [C:ﬁ]k>, (16.4.10)
k=1 J
the derivatives of which are
0 K . Cki
——Ri(zj;@) = Y a [W([Ci]k) +—% & ([Cx]k) (25 — fﬂj)}
8x] b1 Ykj
b e,empl,dp,Rj,der
J
where we define the following penalty curvature function:
K 2 e,empl,dp,rj
C
(@) 2> g (Ca) . (16.4.12)
k=1 ki

Because both the surrogate for the negative log-likeliho@g) and the surrogatBsqs in (16.4.9) for the penalty

are separable, the inner minimization (16.4.8) becomefotlmving parallelizable update:
. e,empl,dp,xj,argmin
x;-"’m+ ' = argming;(z;; ™™ 2™), j=1,...,np (16.4.13)
#3120 e,empl,dp,surj

Qj(xj;2™) + Rj(zj;2). (16.4.14)

(1>

¢j(xj; &™)
Fortuitously for De Pierro (and us), we can find the minimiakp; analyticallyby zeroing its derivative:

9 - n n x<'n> + Vi 0 — _ _
%j (;Sj(xj;w;m( )) = a;— e;. )sz +7’yj + 87331 R(z) —|—(:Uj — xj)rj(m)

= 1 [(SL‘J + ’7j)2 T (il_:) +2($Cj + ’Yj) b; (il_:) — e;-n) (a:;n) + ’7]‘)] ,

i+
using (16.4.11), where we define
1 0 e,empl,dp,bj
bj(z) = 3 |v+ 3. R(z)—(z; +;)ri(@)] - (16.4.15)
J

Thus, zeroing the derivative is equivalent to finding therapgate root of the following quadratic formula:

0= (x5 +7)° rj(®) +2(z; + ;) bj(®) — e (2§ + ),

paying appropriate attention to the nonnegativity constia (16.4.13). We write the solution as follows:
e,empl,dp,xj,root

J;;"’WH) = [root(rj (™™, bj(x™™), e;-m (x;m + ’yj)) —Vj]+7 (16.4.16)

whereroot(a, 3,v) returns the nonnegative root of= az? + 23z — v, or equivalently o) = o + 263:}1 — 733]27
for a > 0. In particular, using the numerically stable forms [9, p31t8

VProy=8 o g0
«
root(a, B,7) = %7 a=0(B#0)

;7 a>0,82>0.
VB +ay+p
[IRT]| Seeeql _root. m

To synopsize, the essence of (our generalization of) DedSalgorithm is the update (16.4.16) with (16.4.15).
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16.4.3.1 Simplifications
A recommended choice foy; is the following:

s e,empl,dp,ck

Vij 5 cp 2 Z|C’w’|’ (16.4.17)
j=1

for which the penalty curvatures in (16.4.12) “simplify” to

K
(@) = lexs| ox & ([CE]k) -
k=1
It can be somewhat inconvenient to have to recompute ™™ ) every subiteration within a GEM algorithm.
Most potential functions have quadratic surrogates witlnoied curvatures.e., 0 < ¢éx(s) < &>, Vs € R. In such
cases, an alternative to continuously recomputir{g) is to use the following upper bound on each curvature:

. K e,empl,dp,rj,max
I EN o e G (16.4.18)
k=1
Because these curvatures are independent of the iteratesaa precompute them prior to iterating. Such precompu-
tation is always advisable for quadratic potential funesicbecausé,; is independent af in those cases.

x,empl,em,dp,1stExample 16.4.1As a concrete example, consider a 2R x N, imagex and roughness penalty of the form (1.10.1),
based on first-order differences and a first-order neighbouhi.e.,

N1 N2 Nl N2
R@) = >N 0(%ji1i0) = Tj(in—tiia) + D D O(Tj(irin) = Tj(insia1))5
11=212=1 11=112=2

wherey is a potential function with maximum parabola surrogatevaturec™* > 0. In this case(C'is a [No(N, —

1) + N1(N2 — 1)] x N1 N, matrix, as discussed i§il.10 and$1.19. Because the penalty uses first-order differences,
each row ofC has two nonzero entries: ongl and one—1. Thus in (16.4.17) we hawg, = 2. For each of the
(N1 — 1)(N, — 1) pixels that are not on the left or top edge of the image, theesponding column af' has two+1
entries and two-1 entries. Thus the penalty curvatures in (16.4.18) are simpl

K
T,;pax _ E |ij| 9 gmax _ g gmax
k=1

Similarly, for a 3D case using the 6 nearest neighbors, weltvbaver;** = 2. 6 ¢ma* = 12 ¢ma.

More generally, when using first-order differences betweach pixel and\V/ of its nearby neighbors, we have
riex = 2M ¢ Of course in the quadratic case whepét) = t°/2, we have™* = 1.

Consider the following modified quadratic regularizer [10]

np

Rx)=> > 51’%"%4% () — ;1)

j=11€0

whereO denotes the set of pixel index offsets corresponding toelyhors. Each row af” has one entry /55—
and the only other nonzero entry is,/3;x;x,—;. When thekth row of C' corresponds to paifj, j — }, we have

cr = 2y/Bikjkj_1. Thusri®™ =257 o Bikjk;—1.
16.4.3.2 Ordered-subsets

To implement an ordered subsets version of this algoritheth ubesq,set €qually sized blocks, we replaeé;f” in
the update (16.4.16) with its incremental version:

e™ ~ ngun, } :a Yi

i~ Ilsubset 1] —

J ; T gi(xm)’
€S
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whereS C {1,...,nq} denotes the subset of measurements to be used.

A complication is that the penalty function is involved irthpdate for every subset, so an efficient implementation
of the penalty function is important.

In [11] we showed that one can add relaxation to the certaiml@&ithms for penalized-likelihood image recon-
struction. However, that analysis didt include the algorithm described herein. The natural apgréa introducing
relaxation would be something like:

z{mD = [“’”;‘n’m) +an (YOOt (rj (™), by (™), e (2] +7;)) — (@™ — %’))L~

The convergence properties of this variation ar@pen problem
Seeeql _os_endp. mfor the case of quadratic regularization, apl _os_endp. mfor the nonquadratic case.

s,empl,em,gam ]
16.4.4 Gamma prior(s,empl,em,gam)

The M-step is simple in the case ogamma priori.e.,

np

R(x) = Zﬂj:rj — (jlogz;,
j=1

whereg; and(; are free parameters. In this case

(n)
i+ G
— zx™)=qa; — e + 8 — L.
O o )= Tj+ 7 & T
Forv; = 0, the minimization (16.4.4) is simply
(n+1) _ e 2" + ¢
i = ) _
a;j + f;

For~; # 0, one can find the minimizer by solving a simple quadratic faan
The primary virtue of the gamma prior would seem to be its $icitp of implementation.
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s,empl,ps

16.5 Quadratic surrogate approachegs,empl,ps)

The methods described in the previous section were basdabaratural separable EM surrogéle, for the negative
log-likelihood £ (x). An alternative approach is to apply the optimization tfanprinciple using quadratic surrogates
for £(x).

An advantage of quadratic surrogates is that the M-steprngeatat simpler than for the EM surrogate. The
disadvantage is that our construction of the quadraticogate holds only whef; > 0, i.e., when there is a strictly
nonzero background contributior.g, from randoms or scatter). And the surrogate curvature edarge (leading
to slow convergence rate) if thg's are close to zero. “Fortunately,” the randoms and scétietions in emission
tomography are often sufficiently large that > 0. But for cases where one to ignores (tisk tisk) or precosrect
by subtraction (ditto) the contributions of backgroundragethe EM surrogate may be preferable to the quadratic
surrogate described here.

todo: does most of this belong in c-eml?
basednthefollowing simpleidea,illustratedin onedimensionn Fig. 16.5.1.Becausehelog-likeli
difficult to maximizedirectly, we endeavorto find a surrogate function) (x; ™) thatis easierto maximize,and

e,empl,iter
2™ = argmax Q(x; ™) — BR(x) (16.5.1)

x>0

If we choose the sequence of surrogate functiQfs; ™) properly, then the sequence of iterafas™ } will con-
verge to the maximizet.
The SAGE algorithmis indirectly basedon this idea; the expectedconditionallog-likelihood of the “complete”

dataspacegiven the observeddatais a type of surrogatefunction that indeedsatisfiesthe conditionssufficientto
ensureconvergenceg12]. However, the statistical construction of the surteganctions for the SAGE and other EM

algorithms can seem somewhat mysterious.
In this section, we describe an alternate approach to aaristg surrogate functions that uses only basic calculus
principles. We can rewrite the log-likelihoddx) in (16.2.1) as follows:

ng

= Z hi([Gz];)

where

Np

(Gali = giju;
j=1

is the “geometric” projection of the object along thb ray, and
hl(l) =Y IOg(cil + 771') _(Cil + Fi)

is themarginal log-likelihoodof the ith measurement. The functions are concave, and strictly concave;it> 0.
To choose the surrogate functign we first find one-dimensional parabolic surrogate funtsti@ir(l;éi”’), as
illustrated in Fig. 16.5.1, where
gin) é [A:L'(n)]i.

We then combine these 1D surrogate functions to form an theenaogate function as follows:

e,empl,Q
L(z) > Q(a; ™) Zqz (Ga]; () . (16.5.2)

Provided that the 1D surrogate functions satisfy the falhgithree properties:
°q; (g(n) K(M) (E(M)

° Qz (g(n) E(n)) (é(?ﬂ)

o ai(l;4") < hi(l), VI >0,
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then it can be shown that the recursive algorithm given by5(1$ will monotonically increask(x), and in fact can
be shown to converge globally by a proof similar to that in][12

Using the fact that the;’s are concave and that the first derivatives oftitie are convex, one can show [13] that
the above three conditions will be satisfied if we chooselpam@asurrogate functions as follows:

: 1 2 e,empl,qi
g (1 67) = hi(67) +hs(G7) (1 = €7) = Sna67) (1= 67)", (16.5.3)
where 5
ZARh(D = hi(0) =1 h: e,empl,ni
ni(l) 2 { 12 ..[hz(l) hi(0) ”"(Z)} , >0 (16.5.4)

The basic idea is illustrated in Fig. 16.5.1. The parabdlicagate functiony; (; £;"’) has the same value as the

marginal log-likelihoodh; (1) at the current projection value= ¢, and has the same slope at that point. This
is evident from (16.5.3). In addition, the parabolic funatiiesbelowh; () for all nonnegativd. This is the key

to having a monotonic algorithin The proof that thisy; choice satisfies the third of the above three conditions is
somewhat detailed, and is described in [13]. When the paafdunctions are “assembled” as in (16.5.2) to form an
overall surrogate function, the final form ¢fis a paraboloidi.e., a quadratic form. One can maximize this quadratic
form by any number of different methods. (Exact maximizai®not necessary, due to the iteration (16.5.1).)

Parabolic Surrogate Function

—  Log-likelihoodh; (1)
Surrogatey; (1; ;™)

h; (1) andg; (Z; Eém)

_15.

=20

K [ —

fig,hiqi
Figure 16.5.1: lllustration of 1D parabolic surrogate ftime. Note thaig; (1; ¢;) < h;({) for I > 0.

16.5.1 Computing then;’s for the Poisson emission model
h(l) = ylog(cl + 1) —(cl+ 1)

10ne could also findipproximatingparabolas using Newton’s method, but these parabolas caslgi@), and the result is a nonmonotonic
algorithm that is not guaranteed to converge. Our constmucising (16.5.4) avoids this problem.
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h(l)_c[czir ]
~hi) = 2(czir)

Assuming that > 0, the curvature fronf e,hakar) is

n(l)_{ %[h(l)—h(o)—lh(l) , 1>0 :CQ{ &yf(d), 1>0

—h(D), 1=0 y/r2, 1=0
where fy .
r
t) &1 _
F(t) = log T t+r
Can we show (1) > 0 for [ > 0? It suffices to show that(¢) > 0 for ¢ > 0.
Fort >0 ) ( )
. t+r)—t t
t = —_ =
1) t+r (t+41)? (t+71)?’
o)
d f(t) ) —2tf(t) tft)—2f1t) 1 12 t+r t
— = = = == |—=5—2log— —
dt t2 t4 t3 3| (t+7r)? r t+r
L[ +2t(t+7) t4r
= —|———_—2 2] .
B (t+r)2 o8 ]
In particular,
(0) =
needs work!
s,empl,sps

16.5.2 Separable Paraboloidal Surrogates (E-ML-SPS) Algotim (s,empl,sps)

In the spirit of the fully parallelizable algorithms devpkd in§( s,Is,em), we would also like a fully parallelizable
algorithm for the E-ML problem. To derive such an algorithwe begin with the paraboloidal surrogate (16.5.2), and
use the convexity of its constituent parabolas to form arsdypa surrogate function.

From (13.6.21)
Gz); = Zgijxj = ZT(U [ -gij(; — ") + [Aw(")]l}
j=1

where ther;;’s are any nonnegative constants for WhEﬁL m; = 1,Vi, asin (13.6.22).
Thus, due to the convexity of parabolas:

Np 1
a([Gzl;: ") = @ (Z Tij [ngj(l"j *93;'”)) + [Az™]; ] ﬂn))

j=1

Np 1

2 Zﬂ'u q; (ﬂ_”gij(mj - ‘T_(jn)) [Am(n)] Em))
=1 Y
Qz;z™) > ZQJ(SUWQC( ’)
j=1
where \5ps.0i
np ! . . . e,empl,sps,Qj
Qj(zj;x™) 2 Zm:j qi <mgij(xj —z{") + [Az™]; £ )> (16.5.5)
ij
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(n+1) _ . (M) -
; = arg max Q;(z;; ™), j=1,...,np.

Becaus&; is quadratic, it is maximized by Newton’s formula (se@e{vton)):

9 (e pp(M)

e QJ(xww ) _(n)
x(_n+1) _ .%‘(-n)—F . Ti=%;
J J 0 ((E ™ ))
87"2 J\I

+

which will be the nonnegative-constrained maximizet)Qfregardless of the value m;").
In particular, from (16.5.5):

0
87]_ x]am( ) Zng%( gz]

~ )+ [Aa)

—gij(z; — ) + [Aw(m]i)

71'1']'

0
- — Qi x™) = 95 @i([Az™]:)
oz, J\&g . =x§.”’ ; J
nq a
= Y gy hi((Az)) = S—0(@)
i=1 'rJ r=x(n)
and )
d? < 93
dj £ -5 Qj(zj;2™) =} —Eni(}")
O] =
Thus the general EPL-SPS algorithm is
9
=—®
.fL';-n+1) _ .%‘;-n) + Ox (:I:) = m(n)7
d;

which can be expressed in matrix vector form as
z™th =2 + D'V (x™)

where
D = diag{d;}
andd; is defined in (16.5.6).

16.11

e,empl,sps,dj
(16.5.6)

e,alg,empl,sps
(16.5.7)

This E-ML-SPS algorithm is fully parallelizable (we can @apel all pixels in parallel), it easily accommodates both
the nonnegativity constraint, and is easily extended tlu@teboth quadratic and nonquadratic penalty functions (se

(e.emp).

In words, the algorithm alternates between two steps. Thediep is to find the coefficients of the surrogate
parabolas in (16.5.3) using (16.5.4). This involves a sifggss over the sinogram with trivial computation.

Thenthe paraboloid(16.5.2)is partially maximizedby a singlecycle of coordinateascent.

This step requires roughly the equivalent of one forward @mel backprojection, similar to most iterative algo-

rithms.

As described irg( e ls,alg,sp3, a reasonable choice for the;’s is m;; = i;'?' whereg; £ 2?21 gij- In this case

we can explicitly write the E-ML-SPS algorithm as follows:

n
Z?:dl 9ijCi

ci[Ax™); + 7

2D = 00 4 2?21 gij hi([Az™];)

(n)
’ ’ Z?:dl 9ijgiTi (fim) ’

n Zi:l gijgini(gi ’)
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16.5.3 Paraboloidal Surrogates Coordinate Ascent (E-ML-PSCPAIgorithm
16.6 Abstract

We present a new algorithm for penalized-likelihood enoissmage reconstruction. The algorithm monotonically
increases the objective function, converges globally éouhique maximizer, and easily accommodates the nonneg-
ativity constraint and nonquadratic but convex penaltycfioms. The algorithm is based on finding paraboloidal
surrogate functions for the log-likelihood at each iterati quadratic functions that are tangent to the log-lileedith

at the current image estimate, and lie below the log-likedthover the entire nonnegative orthant. These conditions
ensure monotonicity. The paraboloidal surrogates aremiagi easily using existing algorithms such as coordinate
ascent. Simulation results show that the proposed algorithnverges faster than the SAGE algorithm, yet the new
algorithm is somewhat easier to implement.

semplalgpscaj g 7 The New Algorithm (s,empl,alg,psca)

We had previously recommended the SAGE algorithm [12] astagfabally-convergent algorithm for this problem.
The construction of the SAGE algorithm requires certainimipnations that are somewhat unusual in the tomographic
literature, and must be implemented carefully to achieasaaable CPU time per iteration.

The algorithm described below requires less CPU time peatitsn than the space-alternating generalize EM
(SAGE) algorithm [12].

For reconstruction problems (such as 2D PET and SPECT) whersystem matrixG can be precomputed
and stored, we recommend this new algorithm over our prelyopublished algorithms for penalized-likelihood
reconstruction. For reconstruction problems where theegysnatrix is represented in factored form [14], methods
that can better exploit this representation, such as thgigate-gradient algorithm, appear to remain preferable.

The new algorithm we propose is based on the following sirig@e, illustrated in one dimension in Fig. 16.5.1.
Because the log-likelihood(x) is difficult to maximize directly, we endeavor to findsarrogate functiorQ(x; ™)
that is easier to maximize, and maximize that function atiteteration,i.e.:

e,iter
™Y = arg max Q(x; ™) — BR(x) (16.7.1)

x>0

If we choose the sequence of surrogate functiQfs; ™) properly, then the sequence of iterafas™ } will con-
verge to the maximizet The SAGE algorithm is indirectly based on this idea; the etgconditional log-likelihood
of the “complete” data space given the observed data is adfyg@rrogate function that indeed satisfies the conditions
sufficient to ensure convergence [12]. However, the siegistonstruction of the surrogate functions for the SAGE
and other EM algorithms can seem somewhat mysterious.

In this paper, we propose a new approach to constructinggate functions that uses only basic calculus princi-
ples. We can rewrite the log-likelihoddx) in (16.2.1) as follows:

L) = D hi(lAz])

where

[AQZ]Z = Zaijacj
j=1
is the projection of the object along tkih ray, and

is themarginal log-likelihoodof the ith measurement. The functions are concave, and strictly concavg;it> 0.
Our new proposed strategy for choosing the surrogate fam@iis to first find one-dimensional parabolic surro-
gate functionsy; (; i), as illustrated in Fig. 16.5.1, where

0 & [Az™),.
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We then combine these 1D surrogate functions to form an theenaogate function as follows:

e,
z; ™) Z g ([Az],; 67) . (16.7.2) N
Provided that the 1D surrogate functions satisfy the falhgathree properties:
o g (675 07) = hy (67,
o Gi(65 67) = hi(67)
e ¢;(1;4"") < hy(l), VI >0,
then it can be shown that the recursive algorithm given by7(1% will monotonically increask(x), and in fact can
be shown to converge globally by a proof similar to that in][12
Using the fact that the;’s are concave and that the first derivatives oflifie are convex, one can show [13] that
the above three conditions will be satisfied if we chooselpam@asurrogate functions as follows:
. 1 e,qi
@i (L 07) = hi (6) +hs (67 (1 — £) — 5ni(zy”)(l — )2, (16.7.3)
where
2 - e,ni
na(l) 2 { 2 [P =h(0) ~1h(D)], 1> 0 (16.7.4)
—h;(1), l=0.

The basic idea is illustrated in Fig. 16.5.1. The parabadlicagate functiony; (; £;"’) has the same value as the
marginal log-likelihoodh; (1) at the current projection value= ¢, and has the same slope at that point. This
is evident from (16.7.3). In addition, the parabolic funatiiesbelowh; () for all nonnegativd. This is the key

to having a monotonic algorithtn The proof that thisy; choice satisfies the third of the above three conditions
is somewhat detailed, and is described in [13]. When the péitaly functions are “assembled” as in (16.7.2) to
form an overall surrogate function, the final form @fis a paraboloidj.e., a quadratic form. One can maximize
this quadratic form by any number of different methods. @aaximization is not necessary, due to the iteration
(16.7.1).) We have chosen to use successive over-relaxaticoordinate ascent [15] for this maximization, because
it easily accommodates both the nonnegativity constraimtell as nonquadratic penalty functions.

In words, the algorithm alternates between two steps. Thediep is to find the coefficients of the surrogate
parabolas in (16.7.3) using (16.7.4). This involves a sifgass over the sinogram with trivial computation. Then
the paraboloid (16.7.2) is partially maximized by a singlele of coordinate ascent. This step requires roughly the
equivalent of one forward and one backprojection, simdanbst iterative algorithms.

s,empl,result 16.8 RGSUltS(S,empI , resu|t)

We used the same brain emission simulation reported in flayaluate the proposed algorithm. In [12], the SAGE
algorithm was compared to many alternatives, includinge@'seone-step late (OSL) method [3], Kaufman’s bounded
line search [16], and the generalized EM (GEM) algorithm ebErt and Leahy [2]. We found that the SAGE algorithm
converged faster than all of the above methods, so here we @ccomparing the proposed algorithm to just the SAGE
algorithm.

Figure 16.9.1 plots the increase in the log-likelihabte ™) — ®(z®) versus CPU time on a DEC AlphaSta-
tion 600 5/333 workstation. The proposed algorithm (pal@tal surrogates coordinate ascent (PSCA) algorithm)
converges a little bit faster than SAGE, in part becauseqtires about 10% less CPU time per iteration, and in
part because it increasésmore each iteration. The differences are modest becaubealguirithms converge quite
quickly, so there is limited room remaining for improvemefihe new algorithm is simpler to implement than SAGE
as well.

The resulting images are indistinguishable from those shia12] because we used the same objective function
and both PSCA and SAGE algorithms are globally convergent.

20ne could also findipproximatingparabolas using Newton’s method, but these parabolas castgr@), and the result is a nonmonotonic
algorithm that is not guaranteed to converge. Our constnucising (16.7.4) avoids this problem.
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sempldse 16,9 Discussior(s,empl,disc)

The proposed algorithm is based on the “optimization trtigfrinciple. Because the original objective functidrs
cannot be maximized directly, we instead maximize a sequehsurrogate functiong™ (x). The key is to choose
surrogate functions that are easier to maximize thalput have low curvature (high curvature surrogate functiead

to slow convergence rate [13,17]). Many algorithms in thexrditure are based (implicitly or explicitly) on optimiizat
transfer ideas, include EM, SAGE, grouped coordinate a$&8h the convex algorithm [19], and ISRA [20-22]. In
almost all cases, the surrogate functions segparable which makes them trivial to maximize, but also means that
they have very high curvature and hence poor convergenee Téie paraboloidal surrogate functions that we have
proposed here and in [13] are the first that we are aware ofiteatonseparable. Generally nonseparable functions
are harder to maximize. Fortunately, a notable exceptiguaslratic surrogate functions, which is the choice we have
made. This choice may be suboptimal; it is possible thaktlegist other nonseparable surrogate functions that are
easily maximized but have even lower curvature and hende faster convergence rates.

Penalized-Likelihood

900 T T r r
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)i
e
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300 Y G—oO PSCA
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200 : : : y
0 1 2 3 4 5

CPU Seconds, DEC AlphaStation 600 5-333
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Figure 16.9.1: Comparison of convergence rate of proposeabploidal surrogate coordinate ascent (PSC%) %lgo—
rithm versus SAGE algorithm.

semplofer16.10  Other stuff(s,empl,other)

Most of the other methods for developing reconstructioonmtigms described in thishaptetave counterparts for the
emission problem. Monotonic acceleration is possiblegibie searches [16]. Replacing the sums aver(16.12.4)
with sums over subsets of the projections yields the emis®8EM algorithm [23]; see also the related variants
RAMLA [24] and RBBI [25, 26]. Although the OSEM algorithm faito converge in general, it often gives reasonable
looking images in a small number of iterations when inii@dl with a uniform image. Sequential updates rather than
parallel updates leads to the fast converging SAGE algustfi2] and coordinate ascent algorithms [27], including
paraboloidal surrogate variations thereof [28]. The cgaja gradient algorithm has been applied extensively to the
emission problem and is particularly effective provide@ carefully treats the nonnegativity constraints [29].
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semplamP 16 11 Alternating minimization procedure
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semplalgemy 5 12 ML algorithms todo? (s,empl,alg,em)

16.12.1 EM Algorithm

One can derive the classical EM algorithm for the emissiasblgm by a formal complete-data exposition [30],
which is less complicated than the transmission case bg@thewhat mysterious to many readers, or by fixed-point
considerations [31] (which do not fully illustrate the mamwoicity of the emission EM algorithm). Instead, we adopt
the simple concavity-based derivation of De Pierro [22]jchtreinforces the surrogate function concepts woven
throughout this chapter.

The key to the derivation is the following “multiplicativetick, which applies ifa:;.”) > 0:

e n) = e,mult
_ Qi Ti _n T o )
(Aal, + 7, = Z( ) () o (1612.)

=i\ i

Then, + 1 terms in parentheses are nonnegative and sum to unity, samepply the concavity inequality. Because
gi(m) £ y;logm —m

is concave orf0, co), it follows that

ng

L@) = 3 uillAal +7)

_ < @ij ;n) ) Ti \
= Zgz Z ) <n>y7 + 7™ Yi

Jj=1 v
o~ [ @i T _(ny Ti )y A (n)
2 22 (T ) o wol” ) + (e ) 9 ") £ Qe
=1 j=1 Z yz
The surrogate functio® is separable:
i ™ e,Qj,emis
n n CL” Ty _
;) ZQJ eia™), Qylaya™) =3 g ( Lo y> . (16.12.2)
i=1 z
Thus the the following parallelizable maximization steisaranteed to monotonically increase the log-likelihood
L(x) each iteration: e,xjnn,emis
x}"H) = argmax Q;(z;; ™). (16.12.3)
X j ZO

The maximization is trivial:

(7')
i z™) )
61’ . 33], ab]gb (n) yz a’ZJ . 7(11) .
J

Yi

Equating to zero and solving far; yields the famous update:

e,alg,em,emis

2t = <">—le‘“7yz/yz j=1,...mp. (16.12.4)

! Zz 1 @ij 7

Unfortunately, the emission EM algorithm (16.12.4) uspabnverges painfully slowly. To understand this, con-
sider the curvatures of the surrogate functighs

92 (n) nq e, ddQj,emis
~ o2 2Q (zj;2™) = Zam 7 (16.12.5)

For any pixels converging towards zero, these curvatures giithout bound. This leads to very slow convergence;
even sublinear convergence rates are possible [32].
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16.12.2 Animproved EM algorithm

One can choose a slightly better decomposition than (1B).1@.get slightly faster converging EM algorithms [12].

First find any set of nonnegative constafg}’”, that satisfy

e e,ri,csj
T > Zaij’Yj,W~ (16.12.6)
j=1
Then an alternative to (16.12.1) is:
) np a; ‘(x(?’” + ,-Y) T o ﬁ o e, mult,new
[Az], + 7 = Z( Tl e e T >+<(m> g, (16.12.7)
i=1 Yi Tj Yi

where?; = 7; — Z;’;l ai;v; > 0. Again the terms in parentheses in (16.12.7) are nonnegatiesum to unity. So a
similar derivation as that yielding (16.12.2) leads to a senmrogate function:

nqd

)
c (M) Gij (mén + ,Yj) Tj+ Y _m
Qj(xj;2™) = Z —m gi\ —pm Y |-

i=1 Yi J

Maximizing as in (16.12.3) leads to the following algorithm

o 2 a1

(m+1) __ (n) =1 ") It/ Jq .

Z; = [(CU] +) Ta . _FYJ'] s =1 np.
D isy @ij +

This algorithm was derived by a more complicated EM appraa¢i?], and called ML-EM-3. The surrogate function
derivation is simpler to present and understand, and mawtlyegeneralizable to alternative surrogates.

The curvatures of the secorfg;’s just derived are smaller than those in (16.12.2), due ¢oyifs (replacez;
with z; + +; in the denominator of (16.12.5)). The convergence rate ongs as they;’s increase, but of course
(16.12.6) must be satisfied to ensure monotonicity. BectiesEM algorithm updates all parameters simultaneously,
the~; values must be “shared” among all pixels, and typically andyfsmall due to (16.12.6). In contrast the SAGE
algorithm [12] updates the pixels sequentially, which gyeelaxes the constraints on the's, allowing larger values
and hence faster convergence rates.

e,alg,em,emis,3
(16.12.8)

semplrote 16,13 Notegs,empl,note)

[33] - regularized? and look at T-MI block Fisher paper
[34] C-OSEMfor MAP (incrementaEM
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