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16.1 Introduction (s,empl,intro)s,empl,intro

Thischapterdescribes regularized versions of the ML algorithms described in the previous chapter for reconstructing
emission images from Poisson sinogram measurements.

16.1
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16.2 Problem statement(s,empl,state)s,empl,state

As described in§15.2, the goal is to estimate the coefficients (voxel values)x = (x1, . . . , xnp
) from projection

measurementsy = (y1, . . . , ynd
), under the usual Poisson statistical model described in Chapter 6,i.e.,

yi ∼ Poisson{ȳi(x)}, ȳi(x) , [Ax]i + r̄i, i = 1, . . . , nd.

The negative log-likelihood is:

Ł(x) ≡

nd
∑

i=1

ȳi(x) − yi log ȳi(x), (16.2.1)
e,L,emis

neglecting constants independent ofx. For penalized-likelihood image reconstruction, one seeks the image that mini-
mizes a cost function as follows:

x̂ = arg min
x�0

Ψ(x), Ψ(x) = Ł(x)+R(x), (16.2.2)
e,obj,pl

whereR(x) is a roughness penalty included for regularization. This penalty controls the resolution/noise tradeoff, as
elaborated in Chapter 22.

Most of the algorithms described in this chapter are examples of optimization transfer methods as described in
Chapter 11. As seen in Chapter 15, there are many possible derivations of “the EM” algorithm for ML emission
reconstruction. Similarly, one could derive the algorithms in this chapter from a variety of perspectives.

16.3 Uniqueness(s,empl,uniq)s,empl,uniq

todo: show thatΨ has a unique minimizer if null space ofA andC are disjoint and everyψk is strictly convex.

16.4 EM-based algorithms(s,empl,em)s,empl,em

The EM surrogate function described in§15.5.3 serves as a reasonable starting point for deriving penalized-likelihood
emission reconstruction algorithms. As derived in (15.5.10) and (15.5.7), the surrogate is

QEM(x;x(n)) =

np
∑

j=1

Qj(xj ;x
(n)) (16.4.1)

e,empl,em,Qem

Qj(xj ;x
(n)) = (xj + γj)aj − ej(x

(n))(x(n)

j + γj) log(xj + γj) (16.4.2)
e,empl,em,Qj

e(n)

j , ej(x
(n)) =

∑

i∈I+

aijyi/ȳi(x
(n)) (16.4.3)

e,empl,em,ejn

(see (15.4.3)). Recall thataj ,
∑nd

i=1 aij . One can useγj = 0 for simplicity; otherwise theγj ’s must satisfy (15.4.6).
The surrogateQEM satisfies the usual majorization conditions (11.1.3):

Ł(x) ≤ QEM(x;x(n))

Ł(x) = QEM(x;x) .

Using this EM surrogate, one can construct a surrogate function for the cost functionΨ as follows:

φEM(x;x(n)) = QEM(x;x(n)) +R(x) =

np
∑

j=1

Qj(xj ;x
(n)) + R(x),

in which case the M-step (11.1.1) of an optimization transfer algorithm becomes

x(n+1) = arg min
x�0

φEM(x;x(n)) . (16.4.4)
e,empl,em,sur
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One could attempt to find this minimizer by zeroing the gradient of φEM:

∂

∂xj

φEM(x;x(n)) = aj − e(n)

j

x(n)

j + γj

xj + γj

+
∂

∂xj

R(x) . (16.4.5)
e,empl,em,der,xj

Indeed, ifR(x) is aseparable penaltyfunction, such as the gamma prior used in [1], then often one can find the mini-
mizerx(n+1) of the surrogateφEM analytically. But for roughness penalty functions,R(x) is anonseparablefunction
of x, so zeroing the above partial derivatives leads to acoupledset of equations with no analytical solution. Thus,
additional analysis is needed to find method for minimizing the surrogateφEM(x;x(n)). In fact, usually we cannot
find the exact minimizer ofφEM, so we must use an iterative approach. In other words, we mustuse subiterations
to descendφEM within the outer iteration overn. This approach is still guaranteed to monotonically decreaseΨ.
Technically speaking, this type of approach belongs to the family of generalized EM(GEM) methods described in
§11.7.5.

The basic structure of any such GEM algorithm is as follows, whereM denotes the number of subiterations.

for n = 0, 1, 2, . . . {
Computee(n)

j using (16.4.3). (This requires forward- / back-projection.)
x(n,0) := x(n)

form = 0, 1, . . . ,M − 1 {

Findx(n,m+1) such thatφEM

(

x(n,m+1);x(n)
)

≤ φEM(x(n,m);x(n)) (16.4.6)
e,empl,em,descend

}
x(n+1) := x(n,M)

}

The key step of this algorithm is the descent (16.4.6), and there are a variety of possible strategies.

16.4.1 Coordinate descent GEM algorithm(s,empl,em,gem)
s,empl,em,gem

One of the earliest GEM methods used the coordinate descent algorithm (§10.11) to descendφEM [2]. This approach
is neither particularly fast nor parallelizable, so it is used infrequently.

16.4.2 Green’s one step late (OSL) algorithm(s,empl,em,osl)
s,empl,em,osl

An ad hocmethod for attempting to solve the coupled system of equations (16.4.5) is to replace the partial derivative of
R(x) with the partial derivativeevaluated at the previous iteration. This is theone step late(OSL) approach proposed
by Green [3,4], in which one “solves”

0 = aj − e(n)

j

x(n)

j + γj

xj + γj

+
∂

∂xj

R(x(n)),

leading to the iterative update

x(n+1)

j =

[

(x(n)

j + γj)
e(n)

j

aj + ∂
∂xj

R(x(n))
− γj

]

+

. (16.4.7)
e,empl,em,osl

This algorithm isnot guaranteed to converge or to decrease the cost functionΨ monotonically. Indeed, it is not even
well defined because the denominatoraj + ∂

∂xj
R(x(n)) can be zero or negative. Although this algorithm has the

appeal of looking very “EM like” in its simplicity, it shouldbe avoided because more recent methods are only slightly
more complicated to implement but have better stability andconvergence properties.
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16.4.3 De Pierro’s parallelizable GEM algorithms(s,empl,dp)
s,empl,dp

This section describes slight generalizations of the parallelizable penalized-likelihood algorithms for emission tomog-
raphy developed by De Pierro [5]. The algorithm(s) described here are perhaps the most natural generalizations of
the ML-EM algorithm to the regularized case, and the ordered-subset versions are a very reasonable practical choice.
De Pierro’s paper focused on the case of quadratic regularization. Using the quadratic surrogates developed by Hu-
ber [6, p. 184], as described in§11.4.4.4, it is easy to generalize De Pierro’s method to the case of nonquadratic
potential functions. This was done without fanfare in [7], for example, and detailed later in [8]. Here we consider
a very general family of nonquadratic potential functions in which quadratics are simply a special case. We also
generalize De Pierro’s algorithm to use the “γj” factors described in (15.4.6).

We focus on penalty functions having the following form:

R(x) =

K
∑

k=1

ψk([Cx]k),

whereC = {ckj} is aK × np matrix. We assume that each potential functionψk has a quadratic surrogate. So for
eachk there exists a nonnegative curvature functionc̆k(·) such that the parabola

qk(t; s) = ψk(s) + ψ̇k(s)(t− s) +
1

2
c̆k(s)(t− s)2

majorizesψk, i.e., qk(t; s) ≥ ψk(t) for all t, s ≥ 0 (cf. §11.4), andqk(t; t) = ψk(t) . The simplest case is when the
potential functions are themselves quadratic,i.e., ψk(t) = βkt

2/2, in which casĕck = βk, but the algorithm presented
below accommodates the more general nonquadratic case easily.

De Pierro’s optimization transfer algorithm is a GEM algorithm of the form (16.4.6). For performing the descent
monotonically, we follow De Pierro and use optimization transfer by first finding aseparablequadratic surrogate
RSQS(x; x̄) for the penalty functionR(x), wherex̄ is shorthand forx(n,m). We then implement (16.4.6) as follows:

x(n,m+1) = arg min
x�0

φDP(x;x(n,m);x(n))

φDP(x; x̄;x(n)) , QEM(x;x(n)) +RSQS(x; x̄) . (16.4.8)
e,empl,dp,inner,min

Our construction ofRSQS(x; x̄) parallels§11.5.7.
Because each potential functionψk has a quadratic surrogateqk by assumption, we first construct a (nonseparable)

quadratic surrogate forR(x) as follows:

R(x) =

K
∑

k=1

ψk([Cx]k) ≤ RQ(x; x̄) ,

K
∑

k=1

qk([Cx]k; [Cx̄]k) .

Now we use De Pierro’s additivity trick [5] as described in§11.5.7:

[Cx]k =

np
∑

j=1

ckjxj =

np
∑

j=1

γkj

[

ckj

γkj

(xj − x̄j) + [Cx̄]k

]

,

where we must choose factorsγkj ≥ 0 for which
∑np

j=1 γkj = 1. Becauseqk is convex, by the convexity inequality
(25.3.5):

qk([Cx]k; s) = qk





np
∑

j=1

γkj

[

ckj

γkj

(xj − x̄j) + [Cx̄]k

]

; s





≤

np
∑

j=1

γkj qk

(

ckj

γkj

(xj − x̄j) + [Cx̄]k; s

)

,



c© J. Fessler. October 17, 2007 16.5

for anys ∈ R. Summing these leads to the following separable quadratic surrogate for the penalty function:

RQ(x; x̄) ≤ RSQS(x; x̄) ,

np
∑

j=1

Rj(xj ; x̄) (16.4.9)
e,empl,dp,Rsqs

Rj(xj ; x̄) ,

K
∑

k=1

γkj qk

(

ckj

γkj

(xj − x̄j) + [Cx̄]k; [Cx̄]k

)

, (16.4.10)
e,empl,dp,Rj

the derivatives of which are

∂

∂xj

Rj(xj ; x̄) =
K
∑

k=1

ckj

[

ψ̇k([Cx̄]k) +
ckj

γkj

c̆k([Cx̄]k)(xj − x̄j)

]

=
∂

∂xj

R(x̄) +(xj − x̄j) rj(x̄), (16.4.11)
e,empl,dp,Rj,der

where we define the following penalty curvature function:

rj(x̄) ,

K
∑

k=1

c2kj

γkj

c̆k([Cx̄]k) . (16.4.12)
e,empl,dp,rj

Because both the surrogate for the negative log-likelihoodŁ(x) and the surrogateRSQS in (16.4.9) for the penalty
are separable, the inner minimization (16.4.8) becomes thefollowing parallelizable update:

x(n,m+1)

j = arg min
xj≥0

φj(xj ;x
(n,m);x(n)), j = 1, . . . , np (16.4.13)

e,empl,dp,xj,argmin

φj(xj ; x̄;x(n)) , Qj(xj ;x
(n)) +Rj(xj ; x̄). (16.4.14)

e,empl,dp,surj

Fortuitously for De Pierro (and us), we can find the minimizerof φj analyticallyby zeroing its derivative:

∂

∂xj

φj(xj ; x̄;x(n)) = aj − e(n)

j

x(n)

j + γj

xj + γj

+
∂

∂xj

R(x̄) +(xj − x̄j) rj(x̄)

=
1

xj + γj

[

(xj + γj)
2 rj(x̄) +2(xj + γj) bj(x̄) − e(n)

j (x(n)

j + γj)
]

,

using (16.4.11), where we define

bj(x̄) ,
1

2

[

aj +
∂

∂xj

R(x̄)−(x̄j + γj) rj(x̄)

]

. (16.4.15)
e,empl,dp,bj

Thus, zeroing the derivative is equivalent to finding the appropriate root of the following quadratic formula:

0 = (xj + γj)
2 rj(x̄) +2(xj + γj) bj(x̄) − e(n)

j (x(n)

j + γj),

paying appropriate attention to the nonnegativity constraint in (16.4.13). We write the solution as follows:

x(n,m+1)

j =
[

root
(

rj(x
(n,m)), bj(x

(n,m)), e(n)

j (x(n)

j + γj)
)

−γj

]

+
, (16.4.16)

e,empl,dp,xj,root

whereroot(α, β, γ) returns the nonnegative root of0 = αx2 + 2βx− γ, or equivalently of0 = α+ 2βx−1
j − γx−2

j ,
for α ≥ 0. In particular, using the numerically stable forms [9, p. 183]:

root(α, β, γ) =



























√

β2 + αγ − β

α
, α > 0, β < 0

γ

2β
, α = 0 (β 6= 0)

γ
√

β2 + αγ + β
, α > 0, β ≥ 0.

IRT Seeeql_root.m.
To synopsize, the essence of (our generalization of) De Pierro’s algorithm is the update (16.4.16) with (16.4.15).
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16.4.3.1 Simplifications

A recommended choice forγkj is the following:

γkj =
|ckj |

ck
, ck ,

np
∑

j=1

|ckj | , (16.4.17)
e,empl,dp,ck

for which the penalty curvaturesrj in (16.4.12) “simplify” to

rj(x̄) =

K
∑

k=1

|ckj | ck c̆k([Cx̄]k) .

It can be somewhat inconvenient to have to recomputerj(x
(n,m)) every subiteration within a GEM algorithm.

Most potential functions have quadratic surrogates with bounded curvatures,i.e., 0 ≤ c̆k(s) ≤ c̆max
k , ∀s ∈ R. In such

cases, an alternative to continuously recomputingrj(·) is to use the following upper bound on each curvature:

rmax
j ,

K
∑

k=1

|ckj | ck c̆
max
k . (16.4.18)

e,empl,dp,rj,max

Because these curvatures are independent of the iterates, one can precompute them prior to iterating. Such precompu-
tation is always advisable for quadratic potential functions, becausĕck is independent ofx in those cases.

x,empl,em,dp,1stExample 16.4.1As a concrete example, consider a 2DN1 ×N2 imagex and roughness penalty of the form (1.10.1),
based on first-order differences and a first-order neighborhood,i.e.,

R(x) =

N1
∑

i1=2

N2
∑

i2=1

ψ
(

xj(i1,i2) − xj(i1−1,i2)

)

+

N1
∑

i1=1

N2
∑

i2=2

ψ
(

xj(i1,i2) − xj(i1,i2−1)

)

,

whereψ is a potential function with maximum parabola surrogate curvaturec̆max > 0. In this case,C is a [N2(N1 −
1) +N1(N2 − 1)] ×N1N2 matrix, as discussed in§1.10 and§1.19. Because the penalty uses first-order differences,
each row ofC has two nonzero entries: one+1 and one−1. Thus in (16.4.17) we haveck = 2. For each of the
(N1 − 1)(N2 − 1) pixels that are not on the left or top edge of the image, the corresponding column ofC has two+1
entries and two−1 entries. Thus the penalty curvatures in (16.4.18) are simply

rmax
j =

K
∑

k=1

|ckj | 2 c̆
max = 8 c̆max .

Similarly, for a 3D case using the 6 nearest neighbors, we would havermax
j = 2 · 6 c̆max = 12 c̆max .

More generally, when using first-order differences betweeneach pixel andM of its nearby neighbors, we have
rmax
j = 2M c̆max . Of course in the quadratic case whereψ(t) = t2/2, we havĕcmax = 1.

Consider the following modified quadratic regularizer [10]:

R(x) =

np
∑

j=1

∑

l∈O

βlκjκj−l

1

2
(xj − xj−l)

2
,

whereO denotes the set of pixel index offsets corresponding to the neighbors. Each row ofC has one entry
√

βlκjκj−l

and the only other nonzero entry is−
√

βlκjκj−l. When thekth row of C corresponds to pair{j, j − l}, we have
ck = 2

√

βlκjκj−l. Thusrmax
j = 2

∑

l∈O βlκjκj−l.

16.4.3.2 Ordered-subsets

To implement an ordered subsets version of this algorithm that usesnsubset equally sized blocks, we replacee(n)

j in
the update (16.4.16) with its incremental version:

e(n)

j ≈ nsubset

∑

i∈S

aij

yi

ȳi(x(n))
,
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whereS ⊂ {1, . . . , nd} denotes the subset of measurements to be used.
A complication is that the penalty function is involved in the update for every subset, so an efficient implementation

of the penalty function is important.
In [11] we showed that one can add relaxation to the certain OSalgorithms for penalized-likelihood image recon-

struction. However, that analysis didnot include the algorithm described herein. The natural approach to introducing
relaxation would be something like:

x(n,m+1)

j =
[

x(n,m)

j + αn

(

root
(

rj(x
(n,m)), bj(x

(n,m)), e(n)

j (x(n)

j + γj)
)

−(x(n,m+1)

j − γj)
)]

+
.

The convergence properties of this variation are anopen problem.
IRT Seeeql_os_emdp.m for the case of quadratic regularization, andepl_os_emdp.m for the nonquadratic case.

16.4.4 Gamma prior(s,empl,em,gam)
s,empl,em,gam

The M-step is simple in the case of agamma prior, i.e.,

R(x) =

np
∑

j=1

βjxj − ζj log xj ,

whereβj andζj are free parameters. In this case

∂

∂xj

φEM(x;x(n)) = aj − e(n)

j

x(n)

j + γj

xj + γj

+ βj −
ζj
xj

.

Forγj = 0, the minimization (16.4.4) is simply

x(n+1)

j =
e(n)

j x(n)

j + ζj

aj + βj

.

Forγj 6= 0, one can find the minimizer by solving a simple quadratic formula.
The primary virtue of the gamma prior would seem to be its simplicity of implementation.
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16.5 Quadratic surrogate approaches(s,empl,ps)s,empl,ps

The methods described in the previous section were based on the natural separable EM surrogateQEM for the negative
log-likelihoodŁ(x). An alternative approach is to apply the optimization transfer principle using quadratic surrogates
for Ł(x).

An advantage of quadratic surrogates is that the M-step is somewhat simpler than for the EM surrogate. The
disadvantage is that our construction of the quadratic surrogate holds only when̄ri > 0, i.e., when there is a strictly
nonzero background contribution (e.g., from randoms or scatter). And the surrogate curvature can be large (leading
to slow convergence rate) if thēri’s are close to zero. “Fortunately,” the randoms and scatterfractions in emission
tomography are often sufficiently large thatr̄i � 0. But for cases where one to ignores (tisk tisk) or precorrects
by subtraction (ditto) the contributions of background events, the EM surrogate may be preferable to the quadratic
surrogate described here.

todo: does most of this belong in c-eml?

:::

As
:::::::::

described
::::::

above,
:::

an
:::::::::

approach
::

to
:::::::::::

maximizing
:::

the
::::::::

emission
:::::::::::::

log-likelihood
::::::::::

(statistical
:::::::::

surrogate)
:

::::::

based
::

on
::::

the
:::::::::

following
::::::

simple
:::::

idea,
:::::::::

illustrated
::

in
::::

one
:::::::::

dimension
::

in
::::

Fig.
:::::::

16.5.1.
::::::::

Because
:::

the
:::::::::::::

log-likelihood
:::::::

L(x) is

:::::::

difficult
::

to
::::::::::

maximize
::::::::

directly,
:::

we
:::::::::

endeavor
::

to
::::

find
::

a
:::::::::::::::::

surrogate function
::::::::::

Q(x;x(n))
::::

that
::

is
::::::

easier
:::

to
::::::::::

maximize,
::::

and

:::::::::

maximize
:::

that
::::::::

function
::

at
::::

the
::::::::::::

nth iteration,
:::

i.e.:
:

x(n+1) = arg max
x�0

Q(x;x(n)) − βR(x) (16.5.1)
e,empl,iter

If we choose the sequence of surrogate functionsQ(x;x(n)) properly, then the sequence of iterates{x(n)} will con-
verge to the maximizer̂x.

::::

The
:::::::

SAGE
:::::::::

algorithm
::

is
:::::::::

indirectly
:::::

based
:::

on
::::

this
:::::

idea;
:::

the
:::::::::

expected
::::::::::

conditional
:::::::::::::

log-likelihood
:::

of
:::

the
:::::::::::

“complete”

::::

data
:::::

space
::::::

given
:::

the
:::::::::

observed
::::

data
:::

is
:

a
:::::

type
:::

of
::::::::

surrogate
::::::::

function
:::::

that
::::::

indeed
::::::::

satisfies
:::

the
::::::::::

conditions
:::::::::

sufficient
:::

to

::::::

ensure
:::::::::::

convergence
:

[12]. However, the statistical construction of the surrogate functions for the SAGE and other EM
algorithms can seem somewhat mysterious.

In this section, we describe an alternate approach to constructing surrogate functions that uses only basic calculus
principles. We can rewrite the log-likelihoodL(x) in (16.2.1) as follows:

L(x) =

nd
∑

i=1

hi([Gx]i)

where

[Gx]i =

np
∑

j=1

gijxj

is the “geometric” projection of the object along theith ray, and

hi(l) = yi log(cil + r̄i)−(cil + r̄i)

is themarginal log-likelihoodof theith measurement. Thehi functions are concave, and strictly concave ifyi > 0.
To choose the surrogate functionQ, we first find one-dimensional parabolic surrogate functions qi

(

l; `(n)

i

)

, as
illustrated in Fig. 16.5.1, where

`(n)

i , [Ax(n)]i.

We then combine these 1D surrogate functions to form an overall surrogate function as follows:

L(x) ≥ Q(x;x(n)) ,

nd
∑

i=1

qi
(

[Gx]i; `
(n)

i

)

. (16.5.2)
e,empl,Q

Provided that the 1D surrogate functions satisfy the following three properties:
• qi

(

`(n)

i ; `(n)

i

)

= hi

(

`(n)

i

)

,

• q̇i
(

`(n)

i ; `(n)

i

)

= ḣi

(

`(n)

i

)

• qi
(

l; `(n)

i

)

≤ hi(l), ∀l ≥ 0,
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then it can be shown that the recursive algorithm given by (16.5.1) will monotonically increaseL(x), and in fact can
be shown to converge globally by a proof similar to that in [12].

Using the fact that thehi’s are concave and that the first derivatives of thehi’s are convex, one can show [13] that
the above three conditions will be satisfied if we choose parabolic surrogate functions as follows:

qi
(

l; `(n)

i

)

= hi

(

`(n)

i

)

+ ḣi

(

`(n)

i

)

(l − `(n)

i ) −
1

2
ni(`

(n)

i )
(

l − `(n)

i

)2
, (16.5.3)

e,empl,qi

where

ni(l) ,

{ 2

l2

[

hi(l)− hi(0)−l ḣi(l)
]

, l > 0

− ḧi(0), l = 0.
(16.5.4)

e,empl,ni

The basic idea is illustrated in Fig. 16.5.1. The parabolic surrogate functionqi
(

l; `(n)

i

)

has the same value as the
marginal log-likelihoodhi(l) at the current projection valuel = `(n)

i , and has the same slope at that point. This
is evident from (16.5.3). In addition, the parabolic function liesbelowhi(l) for all nonnegativel. This is the key
to having a monotonic algorithm1. The proof that thisqi choice satisfies the third of the above three conditions is
somewhat detailed, and is described in [13]. When the parabolic qi functions are “assembled” as in (16.5.2) to form an
overall surrogate function, the final form ofQ is a paraboloid,i.e., a quadratic form. One can maximize this quadratic
form by any number of different methods. (Exact maximization is not necessary, due to the iteration (16.5.1).)

0 2 4 6 8 10
−20

−15

−10

−5

0

5

Parabolic Surrogate Function

h
i
(l

)
an

d
q i
(

l;
`(

n
)

i

)

Log-likelihoodhi(l)

Surrogateqi
(

l; `(n)

i

)

lni l →

Figure 16.5.1: Illustration of 1D parabolic surrogate function. Note thatqi
(

l; `(n)

i

)

≤ hi(l) for l ≥ 0.

fig,hiqi

16.5.1 Computing theni’s for the Poisson emission model

h(l) = y log(cl + r)−(cl + r)

1One could also findapproximatingparabolas using Newton’s method, but these parabolas can crosshi(l), and the result is a nonmonotonic
algorithm that is not guaranteed to converge. Our construction using (16.5.4) avoids this problem.
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ḣ(l) = c

[

y

cl + r
− 1

]

− ḧ(l) = c2
y

(cl + r)2

Assuming thatr > 0, the curvature from
:

(
:::::::

e,hakan
:

) is

n(l) =

{ 2

l2

[

h(l) − h(0) − l ḣ(l)
]

, l > 0

− ḧ(l), l = 0
= c2







2

(cl)2
yf(cl), l > 0

y/r2, l = 0

where

f(t) , log
t+ r

r
−

t

t+ r

Can we shown(l) > 0 for l > 0? It suffices to show thatf(t) > 0 for t > 0.
For t > 0

ḟ(t) =
1

t+ r
−

(t+ r) − t

(t+ r)2
=

t

(t+ r)2
,

so

d

dt

f(t)

t2
=

t2ḟ(t) − 2tf(t)

t4
=
tḟ(t) − 2f(t)

t3
=

1

t3

[

t2

(t+ r)2
− 2

(

log
t+ r

r
−

t

t+ r

)]

=
1

t3

[

t2 + 2t(t+ r)

(t+ r)2
− 2 log

t+ r

r

]

.

In particular,
ṅ(0) =

needs work!

16.5.2 Separable Paraboloidal Surrogates (E-ML-SPS) Algorithm (s,empl,sps)
s,empl,sps

In the spirit of the fully parallelizable algorithms developed in
::

§(
::::::

s,ls,em
::

), we would also like a fully parallelizable
algorithm for the E-ML problem. To derive such an algorithm,we begin with the paraboloidal surrogate (16.5.2), and
use the convexity of its constituent parabolas to form a separable surrogate function.

From (13.6.21)

[Gx]i =

np
∑

j=1

gijxj =

np
∑

j=1

πij

[

1

πij

gij(xj − x(n)

j ) + [Ax(n)]i

]

where theπij ’s are any nonnegative constants for which
∑np

j=1 πij = 1,∀i, as in (13.6.22).

:::::

THIS
::::::::

NEEDS
:::

TO
:::

BE
:::::::::::

CHECKED
:::::::

SINCE
:::::

THE
::::::::::::::

PARABOLOID
:::

IS
::

A
:::::::::::::

SURROGATE
:::::::

ONLY
::::

FOR
:::::::

l >= 0
::::

!!!!
Thus, due to the convexity of parabolas:

qi
(

[Gx]i; `
(n)

i

)

= qi





np
∑

j=1

πij

[

1

πij

gij(xj − x(n)

j ) + [Ax(n)]i

]

; `(n)

i





≥

np
∑

j=1

πij qi

(

1

πij

gij(xj − x(n)

j ) + [Ax(n)]i; `
(n)

i

)

.

Q(x;x(n)) ≥

np
∑

j=1

Qj(xj ;x
(n))

where

Qj(xj ;x
(n)) ,

np
∑

j=1

πij qi

(

1

πij

gij(xj − x(n)

j ) + [Ax(n)]i; `
(n)

i

)

(16.5.5)
e,empl,sps,Qj



c© J. Fessler. October 17, 2007 16.11

x(n+1)

j = arg max
xj≥0

Qj(xj ;x
(n)), j = 1, . . . , np.

BecauseQj is quadratic, it is maximized by Newton’s formula (see (
:::::::

newton
::

)):

x(n+1)

j =






x(n)

j +

∂
∂xj

Qj(xj ;x
(n))
∣

∣

∣

xj=x
(n)
j

− ∂2

∂x2
j

Qj(xj ;x(n))







+

,

which will be the nonnegative-constrained maximizer ofQj regardless of the value ofx(n)

j .
In particular, from (16.5.5):

∂

∂xj

Qj(xj ;x
(n)) =

nd
∑

i=1

gij q̇i

(

1

πij

gij(xj − x(n)

j ) + [Ax(n)]i

)

−
∂2

∂x2
j

Qj(xj ;x
(n)) = −

nd
∑

i=1

g2
ij

πij

q̈i

(

1

πij

gij(xj − x(n)

j ) + [Ax(n)]i

)

∂

∂xj

Qj(xj ;x
(n))

∣

∣

∣

∣

xj=x
(n)
j

=

nd
∑

i=1

gij q̇i([Ax(n)]i)

=

nd
∑

i=1

gij ḣi([Ax(n)]i) =
∂

∂xj

Φ(x)

∣

∣

∣

∣

x=x
(n)

and

dj , −
∂2

∂x2
j

Qj(xj ;x
(n)) =

nd
∑

i=1

g2
ij

πij

ni(`
(n)

i ). (16.5.6)
e,empl,sps,dj

Thus the general EPL-SPS algorithm is

x(n+1)

j = x(n)

j +

∂
∂xj

Φ(x)
∣

∣

∣

x=x
(n)

dj

,

which can be expressed in matrix vector form as

x(n+1) = x(n) + D−1∇Φ(x(n)) (16.5.7)
e,alg,empl,sps

where
D = diag{dj}

anddj is defined in (16.5.6).
This E-ML-SPS algorithm is fully parallelizable (we can update all pixels in parallel), it easily accommodates both

the nonnegativity constraint, and is easily extended to include both quadratic and nonquadratic penalty functions (see

:

(
::::::

e,empl
:

)).
In words, the algorithm alternates between two steps. The first step is to find the coefficients of the surrogate

parabolas in (16.5.3) using (16.5.4). This involves a single-pass over the sinogram with trivial computation.

:::::

Then
::::

the
:::::::::

paraboloid
::::::::

(16.5.2)
::

is
::::::::

partially
::::::::::

maximized
:::

by
:

a
::::::

single
:::::

cycle
::

of
::::::::::

coordinate
:::::::

ascent.
This step requires roughly the equivalent of one forward andone backprojection, similar to most iterative algo-

rithms.
As described in

:

§(
::::::::::

e,ls,alg,sps
::

), a reasonable choice for theπij ’s is πij =
gij

gi
wheregi ,

∑np

j=1 gij . In this case
we can explicitly write the E-ML-SPS algorithm as follows:

x(n+1)

j =

[

x(n)

j +

∑nd

i=1 gij ḣi([Ax(n)]i)
∑nd

i=1 gijgini(`
(n)

i )

]

+

=









x(n)

j +

∑nd

i=1 gijci

[

yi

ci[Ax(n)]i + r̄i
− 1

]

∑nd

i=1 gijgini(`
(n)

i )









+

.
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16.5.3 Paraboloidal Surrogates Coordinate Ascent (E-ML-PSCA) Algorithm

16.6 Abstract

We present a new algorithm for penalized-likelihood emission image reconstruction. The algorithm monotonically
increases the objective function, converges globally to the unique maximizer, and easily accommodates the nonneg-
ativity constraint and nonquadratic but convex penalty functions. The algorithm is based on finding paraboloidal
surrogate functions for the log-likelihood at each iteration: quadratic functions that are tangent to the log-likelihood
at the current image estimate, and lie below the log-likelihood over the entire nonnegative orthant. These conditions
ensure monotonicity. The paraboloidal surrogates are maximized easily using existing algorithms such as coordinate
ascent. Simulation results show that the proposed algorithm converges faster than the SAGE algorithm, yet the new
algorithm is somewhat easier to implement.

16.7 The New Algorithm (s,empl,alg,psca)s,empl,alg,psca

We had previously recommended the SAGE algorithm [12] as a fast globally-convergent algorithm for this problem.
The construction of the SAGE algorithm requires certain minimizations that are somewhat unusual in the tomographic
literature, and must be implemented carefully to achieve reasonable CPU time per iteration.

The algorithm described below requires less CPU time per iteration than the space-alternating generalize EM
(SAGE) algorithm [12].

For reconstruction problems (such as 2D PET and SPECT) wherethe system matrixG can be precomputed
and stored, we recommend this new algorithm over our previously published algorithms for penalized-likelihood
reconstruction. For reconstruction problems where the system matrix is represented in factored form [14], methods
that can better exploit this representation, such as the conjugate-gradient algorithm, appear to remain preferable.

The new algorithm we propose is based on the following simpleidea, illustrated in one dimension in Fig. 16.5.1.
Because the log-likelihoodL(x) is difficult to maximize directly, we endeavor to find asurrogate functionQ(x;x(n))
that is easier to maximize, and maximize that function at thenth iteration,i.e.:

x(n+1) = arg max
x�0

Q(x;x(n)) − βR(x) (16.7.1)
e,iter

If we choose the sequence of surrogate functionsQ(x;x(n)) properly, then the sequence of iterates{x(n)} will con-
verge to the maximizer̂x The SAGE algorithm is indirectly based on this idea; the expected conditional log-likelihood
of the “complete” data space given the observed data is a typeof surrogate function that indeed satisfies the conditions
sufficient to ensure convergence [12]. However, the statistical construction of the surrogate functions for the SAGE
and other EM algorithms can seem somewhat mysterious.

In this paper, we propose a new approach to constructing surrogate functions that uses only basic calculus princi-
ples. We can rewrite the log-likelihoodL(x) in (16.2.1) as follows:

L(x) =

nd
∑

i=1

hi([Ax]i)

where

[Ax]i =

np
∑

j=1

aijxj

is the projection of the object along theith ray, and

hi(l) = yi log(l + r̄i)−(l + r̄i)

is themarginal log-likelihoodof theith measurement. Thehi functions are concave, and strictly concave ifyi > 0.
Our new proposed strategy for choosing the surrogate functionQ is to first find one-dimensional parabolic surro-

gate functionsqi
(

l; `(n)

i

)

, as illustrated in Fig. 16.5.1, where

`(n)

i , [Ax(n)]i.
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We then combine these 1D surrogate functions to form an overall surrogate function as follows:

Q(x;x(n)) ,

nd
∑

i=1

qi
(

[Ax]i ; `(n)

i

)

. (16.7.2)
e,Q

Provided that the 1D surrogate functions satisfy the following three properties:
• qi

(

`(n)

i ; `(n)

i

)

= hi

(

`(n)

i

)

,

• q̇i
(

`(n)

i ; `(n)

i

)

= ḣi

(

`(n)

i

)

• qi
(

l; `(n)

i

)

≤ hi(l), ∀l ≥ 0,
then it can be shown that the recursive algorithm given by (16.7.1) will monotonically increaseL(x), and in fact can
be shown to converge globally by a proof similar to that in [12].

Using the fact that thehi’s are concave and that the first derivatives of thehi’s are convex, one can show [13] that
the above three conditions will be satisfied if we choose parabolic surrogate functions as follows:

qi
(

l; `(n)

i

)

= hi

(

`(n)

i

)

+ ḣi

(

`(n)

i

)

(l − `(n)

i ) −
1

2
ni(`

(n)

i )(l − `(n)

i )2, (16.7.3)
e,qi

where

ni(l) ,

{ 2

l2

[

hi(l)−h(0) − l ḣi(l)
]

, l > 0

− ḧi(l), l = 0.
(16.7.4)

e,ni

The basic idea is illustrated in Fig. 16.5.1. The parabolic surrogate functionqi
(

l; `(n)

i

)

has the same value as the
marginal log-likelihoodhi(l) at the current projection valuel = `(n)

i , and has the same slope at that point. This
is evident from (16.7.3). In addition, the parabolic function liesbelowhi(l) for all nonnegativel. This is the key
to having a monotonic algorithm2. The proof that thisqi choice satisfies the third of the above three conditions
is somewhat detailed, and is described in [13]. When the parabolic qi functions are “assembled” as in (16.7.2) to
form an overall surrogate function, the final form ofQ is a paraboloid,i.e., a quadratic form. One can maximize
this quadratic form by any number of different methods. (Exact maximization is not necessary, due to the iteration
(16.7.1).) We have chosen to use successive over-relaxation or coordinate ascent [15] for this maximization, because
it easily accommodates both the nonnegativity constraint as well as nonquadratic penalty functions.

In words, the algorithm alternates between two steps. The first step is to find the coefficients of the surrogate
parabolas in (16.7.3) using (16.7.4). This involves a single-pass over the sinogram with trivial computation. Then
the paraboloid (16.7.2) is partially maximized by a single cycle of coordinate ascent. This step requires roughly the
equivalent of one forward and one backprojection, similar to most iterative algorithms.

16.8 Results(s,empl,result)s,empl,result

We used the same brain emission simulation reported in [12] to evaluate the proposed algorithm. In [12], the SAGE
algorithm was compared to many alternatives, including Green’s one-step late (OSL) method [3], Kaufman’s bounded
line search [16], and the generalized EM (GEM) algorithm of Hebert and Leahy [2]. We found that the SAGE algorithm
converged faster than all of the above methods, so here we focus on comparing the proposed algorithm to just the SAGE
algorithm.

Figure 16.9.1 plots the increase in the log-likelihoodΦ(x(n)) − Φ(x(0)) versus CPU time on a DEC AlphaSta-
tion 600 5/333 workstation. The proposed algorithm (paraboloidal surrogates coordinate ascent (PSCA) algorithm)
converges a little bit faster than SAGE, in part because it requires about 10% less CPU time per iteration, and in
part because it increasesΦ more each iteration. The differences are modest because both algorithms converge quite
quickly, so there is limited room remaining for improvement. The new algorithm is simpler to implement than SAGE
as well.

The resulting images are indistinguishable from those shown in [12] because we used the same objective function
and both PSCA and SAGE algorithms are globally convergent.

2One could also findapproximatingparabolas using Newton’s method, but these parabolas can crosshi(l), and the result is a nonmonotonic
algorithm that is not guaranteed to converge. Our construction using (16.7.4) avoids this problem.
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16.9 Discussion(s,empl,disc)s,empl,disc

The proposed algorithm is based on the “optimization transfer” principle. Because the original objective functionΦ is
cannot be maximized directly, we instead maximize a sequence of surrogate functionsφ(n)(x). The key is to choose
surrogate functions that are easier to maximize thanΦ, but have low curvature (high curvature surrogate functions lead
to slow convergence rate [13,17]). Many algorithms in the literature are based (implicitly or explicitly) on optimization
transfer ideas, include EM, SAGE, grouped coordinate ascent [18], the convex algorithm [19], and ISRA [20–22]. In
almost all cases, the surrogate functions areseparable, which makes them trivial to maximize, but also means that
they have very high curvature and hence poor convergence rate. The paraboloidal surrogate functions that we have
proposed here and in [13] are the first that we are aware of thatare nonseparable. Generally nonseparable functions
are harder to maximize. Fortunately, a notable exception isquadratic surrogate functions, which is the choice we have
made. This choice may be suboptimal; it is possible that there exist other nonseparable surrogate functions that are
easily maximized but have even lower curvature and hence yield faster convergence rates.
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Figure 16.9.1: Comparison of convergence rate of proposed paraboloidal surrogate coordinate ascent (PSCA) algo-
rithm versus SAGE algorithm.

fig,cpu

16.10 Other stuff (s,empl,other)s,empl,other

Most of the other methods for developing reconstruction algorithms described in thischapterhave counterparts for the
emission problem. Monotonic acceleration is possible using line searches [16]. Replacing the sums overi in (16.12.4)
with sums over subsets of the projections yields the emission OSEM algorithm [23]; see also the related variants
RAMLA [24] and RBBI [25,26]. Although the OSEM algorithm fails to converge in general, it often gives reasonable
looking images in a small number of iterations when initialized with a uniform image. Sequential updates rather than
parallel updates leads to the fast converging SAGE algorithms [12] and coordinate ascent algorithms [27], including
paraboloidal surrogate variations thereof [28]. The conjugate gradient algorithm has been applied extensively to the
emission problem and is particularly effective provided one carefully treats the nonnegativity constraints [29].
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16.11 Alternating minimization procedures,empl,amp
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16.12 ML algorithms todo? (s,empl,alg,em)s,empl,alg,em

16.12.1 EM Algorithm

One can derive the classical EM algorithm for the emission problem by a formal complete-data exposition [30],
which is less complicated than the transmission case but still somewhat mysterious to many readers, or by fixed-point
considerations [31] (which do not fully illustrate the monotonicity of the emission EM algorithm). Instead, we adopt
the simple concavity-based derivation of De Pierro [22], which reinforces the surrogate function concepts woven
throughout this chapter.

The key to the derivation is the following “multiplicative”trick, which applies ifx(n)

j > 0:

[Ax]i + r̄i =

np
∑

j=1

(

aijx
(n)

j

ȳ(n)

i

)

xj

x(n)

j

ȳ(n)

i +

(

r̄i

ȳ(n)

i

)

ȳ(n)

i . (16.12.1)
e,mult

Thenp + 1 terms in parentheses are nonnegative and sum to unity, so we can apply the concavity inequality. Because

gi(m) , yi logm−m

is concave on(0,∞), it follows that

L(x) =

nd
∑

i=1

gi([Ax]i + r̄i)

=

nd
∑

i=1

gi





np
∑

j=1

(

aijx
(n)

j

ȳ(n)

i

)

xj

x(n)

j

ȳ(n)

i +

(

r̄i

ȳ(n)

i

)

ȳ(n)

i





≥

nd
∑

i=1

np
∑

j=1

(

aijx
(n)

j

ȳ(n)

i

)

gi

(

xj

x(n)

j

ȳ(n)

i

)

+

(

r̄i

ȳ(n)

i

)

gi(ȳ
(n)

i ) , Q(x;x(n)).

The surrogate functionQ is separable:

Q(x;x(n)) =

np
∑

j=1

Qj(xj ;x
(n)), Qj(xj ;x

(n)) ≡

nd
∑

i=1

aijx
(n)

j

ȳ(n)

i

gi

(

xj

x(n)

j

ȳ(n)

i

)

. (16.12.2)
e,Qj,emis

Thus the the following parallelizable maximization step isguaranteed to monotonically increase the log-likelihood
L(x) each iteration:

x(n+1)

j = arg max
xj≥0

Qj(xj ;x
(n)). (16.12.3)

e,xjnn,emis

The maximization is trivial:

∂

∂xj

Qj(xj ;x
(n)) =

nd
∑

i=1

aij ġi

(

xj

x(n)

j

ȳ(n)

i

)

=

nd
∑

i=1

aij

[

x(n)

j

xj

yi

ȳ(n)

i

− 1

]

.

Equating to zero and solving forxj yields the famous update:

x(n+1)

j = x(n)

j

∑nd

i=1 aijyi/ȳ
(n)

i
∑nd

i=1 aij

, j = 1, . . . , np. (16.12.4)
e,alg,em,emis

Unfortunately, the emission EM algorithm (16.12.4) usually converges painfully slowly. To understand this, con-
sider the curvatures of the surrogate functionsQj :

−
∂2

∂x2
j

Qj(xj ;x
(n)) =

x(n)

j

x2
j

nd
∑

i=1

aij

yi

ȳ(n)

i

. (16.12.5)
e,ddQj,emis

For any pixels converging towards zero, these curvatures grow without bound. This leads to very slow convergence;
even sublinear convergence rates are possible [32].
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16.12.2 An improved EM algorithm

One can choose a slightly better decomposition than (16.12.1) to get slightly faster converging EM algorithms [12].
First find any set of nonnegative constants{γj}

np

j=1 that satisfy

r̄i ≥

np
∑

j=1

aijγj ,∀i. (16.12.6)
e,ri,csj

Then an alternative to (16.12.1) is:

[Ax]i + r̄i =

np
∑

j=1

(

aij(x
(n)

j + γj)

ȳ(n)

i

)

xj

x(n)

j + γj

ȳ(n)

i +

(

r̂i

ȳ(n)

i

)

ȳ(n)

i , (16.12.7)
e,mult,new

wherer̂i = r̄i −
∑np

j=1 aijγj ≥ 0. Again the terms in parentheses in (16.12.7) are nonnegativeand sum to unity. So a
similar derivation as that yielding (16.12.2) leads to a newsurrogate function:

Qj(xj ;x
(n)) =

nd
∑

i=1

aij(x
(n)

j + γj)

ȳ(n)

i

gi

(

xj + γj

x(n)

j

ȳ(n)

i

)

.

Maximizing as in (16.12.3) leads to the following algorithm

x(n+1)

j =

[

(x(n)

j + γj)

∑nd

i=1 aijyi/ȳ
(n)

i
∑nd

i=1 aij

− γj

]

+

, j = 1, . . . , np. (16.12.8)
e,alg,em,emis,3

This algorithm was derived by a more complicated EM approachin [12], and called ML-EM-3. The surrogate function
derivation is simpler to present and understand, and more readily generalizable to alternative surrogates.

The curvatures of the secondQj ’s just derived are smaller than those in (16.12.2), due to the γj ’s (replacexj

with xj + γj in the denominator of (16.12.5)). The convergence rate improves as theγj ’s increase, but of course
(16.12.6) must be satisfied to ensure monotonicity. Becausethe EM algorithm updates all parameters simultaneously,
theγj values must be “shared” among all pixels, and typically are fairly small due to (16.12.6). In contrast the SAGE
algorithm [12] updates the pixels sequentially, which greatly relaxes the constraints on theγj ’s, allowing larger values
and hence faster convergence rates.

16.13 Notes(s,empl,note)s,empl,note

[33] - regularized? and look at T-MI block Fisher paper
[34]

:::::::::

C-OSEM
:::

for
:::::

MAP
::::::::::::

(incremental
::::

EM)
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