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Chapter 18

Emission ML Image Reconstruction
ch,eml
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18.1 Introduction (s,eml,intro)s,eml,intro

This chapter summarizes maximum-likelihood (ML) algorithms for reconstructing emission images from Poisson
measurements. The algorithms are applicable to PET, SPECT, and applications like photon-limited optical image
restoration [1], as well as in astronomical problems [2], electron microscopy [3], and nuclear imaging [4]. We fo-
cus primarily on algorithms that monotonically increase the likelihood, are globally convergent, and that naturally
accommodate the constraint that emission distributions are nonnegative1.

In the context of PET and SPECT, statistical methods for image reconstruction have been used routinely in clinical
practice since the mid 1990s. Not only do statistical methods yield images that “look better” than FBP images,
but also, with proper physical modeling, statistical methods lead to improved performance in tasks such as lesion
detection, e.g., [8], particularly with proper system models [9]. For many years, the only likelihood-based methods
available commercially for human scans were the unregularized ML methods of the kinds described in this chapter .
Regularized methods of the kind discussed in Chapter 19 became available commercially in human scanners in about
2012 [10, 11], although such methods have long been available commercially for animal PET scanners [12].

Rockmore and Macovski first proposed a statistical approach to this problem in 1976 [13]. However, in deriving
a solution they disregarded the nonnegativity constraint, leading circuitously to an unweighted least-squares estima-
tor, noted to be erroneous by Vermeulen in 1982 [14, 15]. The publication of an expectation-maximization (EM)
algorithm for ML estimation in emission tomography that same year by Shepp and Vardi [16] sparked a torrent of
research on statistical image reconstruction (SIR) for PET and SPECT. Within two years of the initial publication
of that E-ML-EM algorithm, the method had been extended to list-mode acquisitions [17] and to dynamic studies
[18], and methods for using anatomical side information were described [19]. The first results with real PET data also
appeared [20, 21]. A year later the SPECT problem with nonuniform attenuation and depth-dependent PSF was also
addressed [22]. These early papers charted the course of numerous subsequent investigations.

On a historical note, Chen and Metz observed in [23] that the Richardson-Lucy deconvolution procedure [24, 25],
which is algorithmically equivalent to E-ML-EM, had been proposed in the early 1970’s for scintigraphy, citing [26]
(an unpublished IPMI proceedings paper) and [27]. In a retrospective, Pizer [28] reiterates this statement. A similar
iteration was proposed as a “generalized iterative scaling” method in the statistics literature [29]. Historians will have
trouble sorting out “who was first” because Kosarev [30, eqn. (51)] cites a 1969 preprint (in Russian!) for an iteration
that is the special case of E-ML-EM when the columns of the system matrix sum to unity. The iteration has been
rediscovered more than once, e.g., [31, 32].

There have been several surveys of iterative methods for tomographic image reconstruction [33–38]. Here we
focus primarily on E-ML-EM type methods.

In the emission tomography literature, the kind of algorithm discussed here is usually called “the” ML-EM algo-
rithm. That terminology overlooks the fact that there are many EM algorithms in general, and many EM variants even
for emission tomography. This chapter uses the (non-standard) acronym E-ML-EM as reminder that it focuses on the
emission problem.

This chapter is organized as follows. First the problem is defined and analyzed generally. Then several derivations
of (a slight generalization of) the E-ML-EM algorithm are given, followed by a convergence proof. Acceleration meth-
ods are described, emphasizing the ordered-subsets or block-iterative approach. Then several alternative algorithms
are discussed.

1Modified algorithms have been proposed for problems like radar imaging where negative values can occur [5], or even in PET where absence
of attenuation correction leads to inconsistent data that can induce negative values [6, 7].
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18.2 Problem statement (s,eml,state)s,eml,state

As described in Chapter 8, the goal in emission tomography is to reconstruct an emission distribution λ(~x) from
recordings of emitted photons. We parameterize the emission distribution using a finite series expansion as in Chap-
ter 10:

λ(~x) =

np∑
j=1

xj bj(~x), (18.2.1)
e,eml,state,lamx

where xj denotes the jth basis coefficient (e.g., the mean number of emissions from the jth voxel for the pixel
basis). The goal is to estimate the vector x = (x1, . . . , xnp) from a realization y = (y1, . . . , ynd

) of the projection
measurement random vector Y = (Y1, . . . , Ynd

).
Throughout this chapter , we use the usual Poisson statistical model2 (as derived in Chapter 8) for the emission

measurements:
Yi ∼ Poisson{ȳi(xtrue)}, i = 1, . . . , nd, (18.2.2)

e,eml,Yi,poisson

where xtrue denotes the “true” unknown value of x and, following (8.4.9), we model the measurement means by:

ȳi(x) = E[Yi] =

np∑
j=1

aijxj + r̄i = [Ax]i + r̄i. (18.2.3)
e,eml,ybi

The vector r̄ = (r̄1, . . . , r̄nd
) denotes (the mean of) background events such as random coincidences [40] and scatter

[41]. The matrix A = {aij} represents the system model, including ray-dependent factors such as attenuation and
detector efficiency, where aij is proportional to the probability that an emission from the jth voxel (or jth basis
component more generally) is recorded by the ith detector. We assume the r̄i and aij values are known nonnegative
constants. Numerous papers have shown that accurate models for the aij values can lead to significant improvements
in image spatial resolution and accuracy, e.g., [12, 42].

In some cases we assume r̄ > 0, which is reasonable and realistic because any real PET scan will have nonzero
mean randoms. Similarly, any real SPECT scan will be contaminated by a nonzero mean scattered component and by
a nonzero (but possibly very small) mean component from background radiation. The assumption that r̄ > 0, when
used, is thus more physically realistic, and it also turns out to simplify the derivation of some algorithms.

To ensure that the problem is well-defined mathematically, we make the following assumption for the remainder
of this chapter .

as,eml,aj

Assumption 18.2.1

aj ,
nd∑
i=1

aij > 0, j = 1, . . . , np. (18.2.4)
e,eml,aj

The aj values are often called sensitivity factors because they are related to the system sensitivity pattern (8.5.13). If
any aj = 0, then the jth voxel does not contribute to any of the measurements and xj cannot be estimated meaningfully
(in the unregularized case considered here). Such voxels are invisible to the imaging system [43]. In other words, all
voxels in locations where the system sensitivity is zero must be excluded from the model and should not be estimated.
In contrast, regularized methods can form estimates of xj even if aj = 0; see Chapter 19.

For ML image reconstruction, we seek a vector x̂ that maximizes the log-likelihood:

x̂ = arg max
x�0

L(x), (18.2.5)
e,eml,xh

where x � 0 imposes the nonnegativity constraint xj ≥ 0. It follows from the Poisson model (18.2.2) and (18.2.3)
that the log-likelihood is3:

L(x)
c
=

nd∑
i=1

yi log ȳi(x)− ȳi(x), (18.2.6)
e,eml,L

where “ c
=” indicates that we neglect constants independent of x.

2For data that is not Poisson, the algorithms herein may still be useful provided one adjusts the data and the model so that the mean closely
matches the variance [39].

3To be completely precise, we should write (18.2.6) as L(x)
c
=

∑
i∈I+

yi log ȳi(x)−
∑nd

i=1 ȳi(x), where the first sum (but not the second!)
is restricted to measurements where yi > 0. To avoid that notational inconvenience, we adopt the convention that 0 log 0 = 0 in such expressions.

In the absence of noise one could simply eliminate the yi values that are zero and set the corresponding xj values (for which aij > 0) to zero
[44, p. 572], but this reasoning does not apply to the Poisson likelihood for noisy data in general.
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We take the domain of the log-likelihood L(x) to be the set

G+ , {x � 0 : [Ax]i + r̄i > 0, ∀i ∈ I+} , (18.2.7)
e,eml,Gp

where
I+ , {i = 1, . . . , nd : yi > 0} , (18.2.8)

e,eml,Ip

and L : G+ →
(
−∞,

∑nd

i=1 yi log yi − yi
]
. The restriction x � 0 in (18.2.7) is needed only on physical grounds,

rather than mathematical.
The ML problem is to find a maximizer x̂ using an algorithm that converges rapidly and that requires as little CPU

time per iteration as possible. Usually these are conflicting requirements, because often one can modify an algorithm
to converge in fewer iterations, but at the expense of more work per iteration.

To proceed, we rewrite the log-likelihood (18.2.6) as follows:

L(x) =

nd∑
i=1

hi([Ax]i), (18.2.9)
e,eml,L,hi

where

hi(l) ,

 yi log(l + r̄i)−(l + r̄i), yi > 0, l + r̄i > 0
−(l + r̄i), yi = 0, l + r̄i ≥ 0
−∞, otherwise.

(18.2.10)
e,eml,hi

This hi function is concave for l ∈ (−r̄i,∞), and is strictly concave over that interval if yi > 0. Because ȳi is
linearly related to the xj values (in contrast to the nonlinear relationship in in the transmission case in Chapter 9),
the emission reconstruction problem is considerably easier than the transmission problem. Many of the algorithms
described in Chapter 11 and Chapter 14 apply to both the emission problem and to other inverse problems having
log-likelihood functions of the general form (18.2.9). This chapter describes several algorithms for maximizing the
emission log-likelihood L(x). Extensions to the regularized problem are described in Chapter 19.

18.2.1 Gradients
One could attempt to find a maximizer x̂ of the log-likelihood L(x) by examining the following Karush-Kuhn-Tucker
(KKT) conditions (see §29.11) that correspond to the nonnegativity constraints:

∂

∂xj
L(x̂)

{
= 0, x̂j > 0
≤ 0, x̂j = 0,

(18.2.11)
e,eml,kkt

where the partial derivatives of the log-likelihood (18.2.6) are:

∂

∂xj
L(x) =

nd∑
i=1

(
yi

ȳi(x)
− 1

)
∂

∂xj
ȳi(x) =

nd∑
i=1

(
yi

ȳi(x)
− 1

)
aij

=

nd∑
i=1

aij

(
yi − [Ax]i − r̄i

ȳi(x)

)
=

nd∑
i=1

aij
1

ȳi(x)
(yi − r̄i − [Ax]i) .

The corresponding column gradient is

∇ L(x) = A′Diag{1/ ȳi(x)}(y − r̄)−A′ Diag{1/ ȳi(x)}Ax. (18.2.12)
e,eml,cgrad,L

Lemma 18.5.1 combines this equality with (18.2.11) for one of several derivations.

18.2.2 Nonnegativity
One can find in the literature, e.g., [2], incorrect expressions for the ML estimate of the form

x̂
?
= [A′ Diag{1/ ȳi(x̂)}A]−1A′Diag{1/ ȳi(x̂)}(y − r̄).

These are “derived” by zeroing the gradient of the log-likelihood in (18.2.12). However, such a “solution” x̂ is
rarely nonnegative, and it is even possible that ȳi(x̂) could be negative. As noted in [45], such derivations ignore the
nonnegativity constraint associated with x̂, or, at a minimum, the requirement that ȳi ≥ 0 (with equality possible
only if yi = 0). Furthermore, even if the above expression were correct, the right-hand side depends on x̂ so it is not
a direct solution. Thus, iterative algorithms are needed to find x̂, and such algorithms must consider both parts of the
KKT conditions (18.2.11).
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18.2.3 Uniqueness?
One can verify that the (negative) Hessian of the log-likelihood is

−∇2 L(x) = A′ Diag

{
yi

ȳ2
i (x)

}
A,

which is a positive-semidefinite matrix (Because yi ≥ 0). Thus the log-likelihood is a concave function (cf. §29.9), but
it is not strictly concave in general. There may be many maximizers of L(x), all of which are equally “satisfactory”
in terms of their log-likelihood. When multiple maximizers exist, it is an open problem whether any of them are
preferable in terms of image quality.

x,eml,nonunique

Example 18.2.2 Consider the case where A = [1 1], and y1 > r1 ≥ 0. Then there are multiple (nonnegative) ML
solutions of the form {(x1, x2) : x1 ∈ [0, y1 − r1], x2 = y1 − r̄1 − x1}.

Byrne [46] shows that if the system matrix A has full rank, then when np ≥ nd the ML estimate is unique in
the case where there are no nonnegative solutions to the system of equations y − r̄ = Ax. In practice this full rank
property seems quite difficult to verify, so one must be prepared for the ML estimate to be non-unique. See [47].

Philosophically, this non-uniqueness seems rather undesirable, and is addressed easily by including a regularizing
penalty function because most reasonable choices easily ensure uniqueness of x̂ [48] (see §19.4). In the absence
of such regularization, each convergent ML iterative algorithm could converge to a different ML solution, a state of
affairs that seems difficult to advocate. Furthermore, practitioners of unregularized ML often stop iterating before
convergence, and the properties of the intermediate images are also highly algorithm dependent.

18.3 ML estimates are bounded (s,eml,bound)s,eml,bound

To aid in proving convergence of some iterative algorithms, it is helpful to establish that the ML estimates x̂ are
bounded. The following theorem constructs an easily computable upper bound U = U(y,A) for which x̂j ≤ U, ∀j.
The physical intuition behind this bound is that the largest possible values for x̂j correspond to the case where all of
the counts recorded by the ith detector originated in the lowest-sensitivity pixel that contributes to the ith ray.

t,eml,bound

Theorem 18.3.1 Under the assumptions given above, the ML estimates in (18.2.5) satisfy the upper bound x̂j ≤
U, ∀j, where

U , U(y,A) = max
i

{
yi

minaij 6=0 aij

}
.

Proof:
Suppose x is a vector for which the set of “too large” elements J = {j = 1, . . . , np : xj > U} is nonempty. Define
the “clipped” estimate x̃j = min {xj , U} , j = 1, . . . , np. To establish that x̂ cannot have elements larger than U , it
suffices to show that L(x) < L(x̃) ≤ L(x̂) .

First, note that hi(l) in (18.2.10) is monotone decreasing when l + r̄i ≥ yi. Second, note that

x = x̃+
∑
j∈J

δjej ,

where δj = xj − U > 0 by construction. Now define I = {i ∈ {1, . . . , nd} : ∃j ∈ J such that aij > 0} . For i ∈ I
we have [Ax̃]i ≥ aij x̃j = aijU ≥ yi, and δi , [Ax̃]i − [Ax]i =

∑
j∈J aijδj > 0. Thus for i ∈ I,

hi([Ax]i) = hi([Ax̃]i + δi) < hi([Ax̃]i) .

For any i /∈ I, we have hi([Ax]i) = hi([Ax̃]i). By the assumptions that J is nonempty and that the sensitivity factors∑nd

i=1 aij are nonzero, we have that I is nonempty. Thus we have strict inequality of at least one of the hi functions,
so

L(x) =
∑
i∈I

hi([Ax]i) +
∑
i/∈I

hi([Ax]i) <
∑
i∈I

hi([Ax̃]i) +
∑
i/∈I

hi([Ax̃]i) = L(x̃) .

So “clamping” all elements of x greater than U will always increase the likelihood. 2

For the case of a regularized cost function with a penalty function that is based on differences of neighboring
pixels with a potential function ψ(t) that is nondecreasing in |t|, one can also show that “clipping” all elements of x
greater than U will always decrease the roughness penalty. So the same bound U applies to the regularized case for
one family of cost functions. Ahn [49, App. A.2] has established an upper bound U that applies to an even broader
family of penalty functions.
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18.4 E-ML-EM and E-ML-EM-3 algorithms (s,eml,em,intro)
s,eml,em,intro

We now turn to algorithms for finding a ML estimate. The classical expectation-maximization (EM) algorithm for
solving the ML estimation problem (18.2.5) has the following equivalent expressions.

E-ML-EM Algorithm

x(n+1)

j =
x(n)

j

aj

∑
i∈I+

aij
yi

ȳi(x(n))
(18.4.1)

e,eml,em,mult

= x(n)

j +
x(n)

j

aj

∑
i∈I+

aij

(
yi

ȳi(x(n))
− 1

)

= x(n)

j +
x(n)

j

aj

∂

∂xj
L(x(n)), j = 1, . . . , np. (18.4.2)

e,eml,em

This chapter presents several distinct derivations of the following modestly generalized form of this algorithm, origi-
nally called E-ML-EM-3 in [50].

E-ML-EM-3 Algorithm

ej(x) ,
∑
i∈I+

aijyi/ȳi(x), j = 1, . . . , np (18.4.3)
e,eml,ej

x(n+1)

j =

[
x(n)

j + γj

aj
ej(x

(n))−γj

]
+

, j = 1, . . . , np (18.4.4)
e,eml,em3

=

[
x(n)

j +
x(n)

j + γj

aj

∂

∂xj
L(x(n))

]
+

. (18.4.5)
e,eml,em3,ga

As explained in subsequent derivations, the γj values are any (user-selected) nonnegative constants that satisfy the
following constraints

np∑
j=1

aijγj ≤ r̄i, i = 1, . . . , nd. (18.4.6)
e,eml,csj

One way to specify the γj values is as follows:

γj = min
ai· 6=0

r̄i
ai·
, where ai· =

np∑
j=1

aij .

For other choices, see [51]. When the γj values are all zero, then the E-ML-EM-3 algorithm is identical to the classical
E-ML-EM algorithm. The [·]+ operator in (18.4.4) enforces the nonnegativity constraint. The form of (18.4.5) shows
that these algorithms are each diagonally preconditioned gradient projection methods (cf. (12.2.1)), having the
matrix-vector form

x(n+1) = [x(n) +D(x(n))∇ L(x(n))]+ ,

where the diagonal preconditioner here is: D(x(n)) , Diag

{
x
(n)
j +γj

aj

}
.

Both of the above algorithms are parallelizable in the sense that they update all pixels simultaneously. They
both enforce the nonnegativity constraint naturally, and both increase the likelihood monotonically each iteration.
An interesting difference is that, when initialized with x(0) � 0, ordinary E-ML-EM iterates remain positive for all
iterations, (for j ∈ J+ defined below), whereas E-ML-EM-3 iterates can move on and off of the boundary of the
nonnegative orthant. This flexibility can help accelerate convergence somewhat [50].

https://creativecommons.org/licenses/by-nc-nd/4.0/
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18.4.1 E-ML-EM-3 iterates are well defined (s,eml,em,def)s,eml,em,def

The iteration (18.4.3)-(18.4.4) contains ratios, so before further analysis we must first verify that a “divide by zero”
condition cannot arise. This section confirms that (18.4.4) is well defined under conditions on A and y that are quite
reasonable in practice.

We begin by defining some more index sets (cf. [52]):

J+ ,

{
j :

nd∑
i=1

aijyi > 0

}
Ji , {j : aij > 0} , i = 1, . . . , nd

Ij , {i : aij > 0} , j = 1, . . . , np

F+ , {x � 0 : ∀j ∈ J+, either xj > 0 or γj > 0} .

a,eml,em,poisson

Assumption 18.4.1 For all i ∈ I+, the set Ji is nonempty or r̄i > 0 (or both).

This assumption is simply an expression of part of the Poisson statistical model; one cannot have yi > 0 yet have
ȳi = 0 under the Poisson model. We make this assumption explicit rather than relying on the Poisson model because
often these algorithms are applied to measurements that are not exactly Poisson distributed. In such cases, the user
must verify the validity of this assumption.

Here are two properties of ej(·) that follow immediately from these definitions and (18.4.3).
• On the set G+ defined in (18.2.7), the term ej in (18.4.3) is well defined because the denominators are nonzero.
• If j ∈ J+, then ej(x) > 0 for all x ∈ G+.

Thus, if x(n) ∈ G+, then the following refinement of (18.4.4) is well-defined:

x(n+1)

j =Mj(x
(n)) ,

{ [
(x(n)

j + γj) ej(x
(n)) /aj − γj

]
+
, j ∈ J+

0, j /∈ J+.
(18.4.7)

e,eml,em3,mod

(Recall aj > 0 by Assumption 18.2.1.) When using this algorithm, we will always choose x(0) > 0, so that x(0) ∈ G+.
To apply the above algorithm recursively, i.e., x(n+1) =M(x(n)), we must establish that x(n) ∈ G+ for all n ∈ N.

l,eml,em,1

Lemma 18.4.2 If i ∈ I+, then either r̄i > 0 or Ji ∩ J+ is nonempty (or both).
Proof:
Suppose not, i.e., suppose ∃i ∈ I+ such that r̄i = 0 and Ji ∩ J+ is empty. Then j ∈ Ji =⇒ j /∈ J+. By
Assumption 18.4.1, Ji is nonempty when r̄i = 0. Picking any j ∈ Ji we have aij > 0 by definition. But j /∈ J+

implies
∑nd

i=1 aijyi = 0, and hence aijyi = 0. Because yi > 0 for i ∈ I+, we have aij = 0, a contradiction. 2

l,eml,em,2

Lemma 18.4.3 If x(n) ∈ G+, then ∀j ∈ J+, if x(n)

j > 0 and γj = 0, then x(n+1)

j > 0.
Proof:
Suppose γj = 0 and x(n+1)

j = 0 for some j ∈ J+ with x(n)

j > 0. Because in this case x(n+1)

j = x(n)

j ej(x
(n)) /aj ,

having x(n+1)

j = 0 would imply ej(x(n)) = 0, which is impossible for j ∈ J+ and x(n) ∈ G+. 2

l,eml,em,3

Lemma 18.4.4 If x(n) ∈ F+ ∩ G+ then x(n+1) ∈ F+ ∩ G+.
Proof:
Suppose x(n) ∈ F+ and x(n) ∈ G+. For j ∈ J+, if γj = 0 then x(n)

j > 0, so by Lemma 18.4.3 x(n+1)

j > 0. Thus
x(n+1) ∈ F+.
Now we must show that x(n+1) ∈ G+, i.e.,

∑np

j=1 aijx
(n+1)

j + r̄i > 0 for all i ∈ I+.
Suppose not, i.e.,

∑np

j=1 aijx
(n+1)

j + r̄i = 0 for some i ∈ I+. Then r̄i = 0 and x(n+1)

j = 0 for all j ∈ Ji. Furthermore,
by (18.4.6), we have γj = 0 for all j ∈ Ji. By Lemma 18.4.2, Ji ∩J+ is nonempty, so there is some j ∈ J+ ∩Ji for
which γj = 0 and x(n+1)

j = 0. This contradicts the previous conclusion x(n+1) ∈ F+. 2

Thus, because x(0) > 0 implies x(0) ∈ F+ ∩ G+, it follows by induction that x(n) ∈ G+ for all n ∈ N, so the
iteration (18.4.7) is well defined. Because F+ and G+ are open sets, some care is required when examining limit
points of {x(n)} in convergence proofs.

The braces in (18.4.7) are a nuisance, so hereafter we assume that J+ is all np columns of A, i.e., the degenerate
columns where

∑nd

i=1 aijyi is zero have been removed prior to iterating. This assumption is implicit when writing
(18.4.4). This modification is needed only for unregularized EM algorithms.

https://creativecommons.org/licenses/by-nc-nd/4.0/


© J. Fessler. [license] August 13, 2020 18.8

18.4.2 E-ML-EM-3 iterates are bounded (s,eml,em,bound)s,eml,em,bound

When r̄ = 0 (and hence the γj values are all zero), one can show from (18.4.1) that

np∑
j=1

ajx
(n)

j =

nd∑
i=1

yi, ∀n > 0, (18.4.8)
e,eml,em,count

which is known as the (sensitivity weighted) “count preserving” property of the E-ML-EM algorithm. In fact (18.4.8)
is a property of the ML solution x̂ that E-ML-EM happens to inherit for each iterate x(n) when r̄ = 0. This property
has been used to simplify many E-ML-EM convergence proofs because it ensures that {x(n)} and x̂ lie in the simplex
described by (18.4.8). The simplex (18.4.8) is a bounded set (within the nonnegative orthant).

Unfortunately, the count-preserving property (18.4.8) does not hold when r̄ 6= 0. However, the following Lemma
provides a reasonable generalization.

e,eml,em,bounded

Lemma 18.4.5 The iterates produced by the E-ML-EM-3 algorithm (18.4.4) are bounded.
Proof:
Because aj > 0, ajx

(n+1)

j =
[
(x(n)

j + γj) ej(x
(n))−ajγj

]
+
≤ (x(n)

j + γj) ej(x
(n)) . Thus

np∑
j=1

ajx
(n+1)

j ≤
np∑
j=1

(x(n)

j + γj) ej(x
(n)) =

nd∑
i=1

yi
ȳ(n)

i −r̄i +
∑np

j′=1 aij′γj′

ȳ(n)

i

≤
nd∑
i=1

yi

provided (18.4.6) holds. Thus

0 ≤ x(n)

j ≤
1

aj

nd∑
i=1

yi. (18.4.9)
e,eml,em,bound,xj

2

Combining these inequalities yields the following bound on sensitivity-weighted total counts:

np∑
j=1

ajx
(n)

j ≤
nd∑
i=1

yi. (18.4.10)
e,eml,bound

Using Lemma 18.5.1, one can also show that all ML estimates x̂ satisfy the above upper bounds.
Finding a nontrivial lower bound to complement (18.4.10) is an open problem for r̄ 6= 0. Intuitively, we would

expect that as n increases, we should have ȳi(x(n)) ≈ yi, so
∑np

j=1 ajx
(n+1)

j ≈
∑nd

i=1 yi − r̄i. However, translating
this approximation into a suitable bound is an elusive open problem.

18.4.3 Relationship to Kullback-Leibler divergence (s,eml,em,kl)s,eml,em,kl

The Poisson emission log-likelihood (18.2.6) has a close relationship with the Kullback-Leibler divergence [53] and
the generalized KL divergence and this relation permeates papers on EM algorithms. This section summarizes some
of its properties because they will be used in subsequent derivations and in the convergence proof.

The KL divergence of two scalars is defined as follows [54, p. 67]:

κ(u, v) ,

{
v, u = 0, v ≥ 0
u log u

v − u+ v, u > 0, v > 0.
(18.4.11)

e,kl1

The domain of κ is Dκ = {(0,∞)× (0,∞)} ∪ (0, 0), so κ : Dκ → [0,∞). Sometimes one writes κ(u, 0) = ∞, for
u > 0.

This function has the following simple but important properties.
• κ(u, v) ≥ 0 with equality iff u = v.

This is easily verified using the inequality log x ≤ x− 1 with equality if and only if x = 1.
•

If κ(u, v)→ κ(u, u) then v → u. (18.4.12)
e,kl,limit

If u = 0, then κ(u, v) = v, so the result is clear.
If u > 0, then κ(u, v)−κ(u, u) = u log u

v → 0 =⇒ u/v → 1 =⇒ v → u.
• For any u ≥ 0, the minimizer of κ(u, v) over v is the unique value v = u.

https://creativecommons.org/licenses/by-nc-nd/4.0/
http://en.wikipedia.org/wiki/Kullback-Leibler_divergence
http://en.wikipedia.org/wiki/Bregman_divergence#Examples
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• κ(u, v) is continuous (in both arguments) for (u, v) ∈ (0,∞)× (0,∞).
• The partial derivatives of κ are

∂

∂u
κ(u, v) = log

u

v
, u, v > 0

∂

∂v
κ(u, v) =

{
1− u

v
, u, v > 0

1, u = 0.
(18.4.13)

e,kl,deriv

(For the case u = 0, we can extend the domain of κ(0, v) to all of R so that ∂
∂v κ(0, v) = 1 for any v, including

v = 0.)
• ∂2

∂u2 κ(u, v) = 1/u for u > 0, v > 0; ∂2

∂v2 κ(u, v) = u/v2 for u ≥ 0, v > 0. So κ is convex in u and in v.
• One can also show that κ is jointly convex in u and v. (See Problem 18.1.)
• κ(αu, v) = ακ(u, v/α) for α > 0.
• In general, κ is not symmetric, hence the term divergence rather than distance.
• For (u, v) ∈ Dκ [55, Lemma 2.2]:

(u− v)2 ≤
(

2

3
u+

4

3
v

)
κ(u, v) . (18.4.14)

e,eml,em,kl,borwein

A special case of (18.4.14) is Pinsker’s inequality [56] [57, p. 88]:

(u− v)2 ≤ 2 max(u, v)κ(u, v) . (18.4.15)
e,eml,em,kl,pinsker

These properties have been central to most convergence proofs for E-ML-EM, including the one in §18.10. For
example, for x, z ∈ G+ one can express differences of the Poisson log-likelihood as follows:

L(x)− L(z) =

(
nd∑
i=1

yi log ȳi(x)− ȳi(x)

)
−

(
nd∑
i=1

yi log ȳi(z)− ȳi(z)

)

=

nd∑
i=1

yi log
ȳi(x)

ȳi(z)
− ȳi(x) + ȳi(z) =

nd∑
i=1

κ(yi, ȳi(z))−κ(yi, ȳi(x)) . (18.4.16)
e,eml,LL,kl

18.5 E-ML-EM-3 algorithm derivations (s,eml,em,derive)
s,eml,em,derive

This section presents several different derivations of the E-ML-EM-3 algorithm (18.4.4). Each distinct derivation
provides a unique approach that may be useful for future algorithm development.

18.5.1 Fixed-point “derivation” (s,eml,em,fix)s,eml,em,fix

As described in §11.2, a simple approach to “deriving” iterative algorithms is to examine the stationary points of the
cost function. A useful expression for the partial derivatives of the Poisson log-likelihood (18.2.6) is

∂

∂xj
L(x) =

nd∑
i=1

aij (yi/ȳi(x)− 1) = ej(x)−aj ,

where ej was defined in (18.4.3).
l,eml,kkt

Lemma 18.5.1 For any set of nonnegative values {γj}, if a nonnegative vector x̂ satisfies the KKT conditions
(18.2.11), then x̂ is a fixed point of the iteration (18.4.4), i.e.,

x̂j = [(x̂j + γj) ej(x̂) /aj − γj ]+ . (18.5.1)
e,eml,fixed

Proof:
Suppose x̂ � 0 satisfies the KKT conditions (18.2.11).
If x̂j > 0 then from (18.2.11) ej(x̂) = aj , so x̂j = (x̂j + γj) ej(x̂) /aj − γj > 0 and thus (18.5.1) holds.
If x̂j = 0, then from (18.2.11) ej(x̂) ≤ aj , so (0 + γj) ej(x̂) /aj − γj ≤ 0, so [(0 + γj) ej(x̂) /aj − γj ]+ = 0. 2

Convergence analysis would be simplified if the converse of this result held, but it need not. If (18.5.1) holds and
x̂j > 0 then x̂j = (x̂j + γj) ej(x̂) /aj − γj so

ej(x̂) = aj . (18.5.2)
e,eml,em,e=a

https://creativecommons.org/licenses/by-nc-nd/4.0/
http://en.wikipedia.org/wiki/Pinsker's_inequality
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However, if x̂j = 0 then γj ej(x̂) /aj − γj ≤ 0 and from this equality alone we cannot conclude that ej(x̂) ≤ aj ,
because we may have γj = 0. Consequently, convergence proofs must treat this issue more carefully.

The necessary condition (18.5.1) is suggestive of the “fixed point” iteration (18.4.4). However, this “derivation”
gives absolutely no insight into how to choose the γj values to ensure convergence, or even whether convergence is
possible. The rigorous derivations that follow overcome this shortcoming of fixed-point “derivations” [16].

18.5.2 Optimization transfer derivation (s,eml,em,adp)s,eml,em,adp

This section presents a derivation based on the optimization transfer principles described in Chapter 14. Although
this is not how E-ML-EM was derived originally, it is perhaps the simplest rigorous derivation that clearly illuminates
the monotonicity properties of E-ML-EM-3.

Considering the form of the log-likelihood (18.2.9), we can generalize an observation of De Pierro [58] to see that
if x(n) > 0, then (for i ∈ I+):

ȳi(x) = [Ax]i + r̄i =

np∑
j=1

aij(xj + γj) + ři

=

np∑
j=1

(
aij(x

(n)

j + γj)

ȳ(n)

i

)
xj + γj

x(n)

j + γj
ȳ(n)

i +

(
ři

ȳ(n)

i

)
ȳ(n)

i , (18.5.3)
e,eml,em,adp,trick

where ȳ(n)

i , ȳi(x
(n)) and we define the following nonnegative constants (due to (18.4.6)):

ři , r̄i −
np∑
j=1

aijγj ≥ 0. (18.5.4)
e,eml,rci

Recall from Lemma 18.4.4 that x(n) ∈ F+ ∩ G+, so ȳ(n)

i > 0 for i ∈ I+ and xj + γj > 0 for j ∈ J+, so the ratios
above are all well defined. Because hi(l) , yi log l − l is concave, by the convexity inequality (see §29.9 and cf.
§14.6.7) we have

L(x) =

nd∑
i=1

hi(ȳi(x)) =

nd∑
i=1

hi

 np∑
j=1

(
aij(x

(n)

j + γj)

ȳ(n)

i

)
xj + γj

x(n)

j + γj
ȳ(n)

i +

(
ři

ȳ(n)

i

)
ȳ(n)

i


≥ Q(x;x(n)) ,

nd∑
i=1

np∑
j=1

(
aij(x

(n)

j + γj)

ȳ(n)

i

)
hi

(
xj + γj

x(n)

j + γj
ȳ(n)

i

)
+

(
ři

ȳ(n)

i

)
hi
(
ȳ(n)

i

)
c
=

np∑
j=1

Qj(xj ;x
(n)), (18.5.5)

e,eml,em,adp,Q

where

Qj(xj ;x
(n)) =

nd∑
i=1

(
aij(x

(n)

j + γj)

ȳ(n)

i

)[
yi log

(
xj + γj

x(n)

j + γj
ȳ(n)

i

)
− xj + γj

x(n)

j + γj
ȳ(n)

i

]
c
= ej(x

(n))(x(n)

j + γj) log(xj + γj)−(xj + γj)aj . (18.5.6)
e,eml,em,adp,Qj

The “M-step” (cf. (14.1.1)) for the separable surrogate function Q reduces into np 1D maximization problems of the
form

x(n+1)

j = arg max
xj≥0

Qj(xj ;x
(n)).

Because
∂

∂xj
Qj(xj ;x

(n)) = ej(x
(n))

x(n)

j + γj

xj + γj
− aj ,

equating to zero and considering the nonnegativity constraint yields

x(n+1)

j =

[
x(n)

j + γj

aj
ej(x

(n))−γj

]
+

,

which is exactly (18.4.4).

https://creativecommons.org/licenses/by-nc-nd/4.0/
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18.5.3 Expectation-Maximization (EM) derivation (s,eml,em,em)s,eml,em,em

This section presents a derivation based on the general form of the EM algorithm described in §14.10.
Recall that to derive an EM algorithm, one must first define a collection of random variables called the complete

data. This collection need not correspond to anything physical, and indeed it does not in the approach taken here,
following [50]. Define the complete data to be the following collection of independently distributed Poisson random
variables:

Z =
{
{Mij}np

j=1 , Bi

}nd

i=1
,

where

Mij ∼ Poisson{aij(xj + γj)} (18.5.7)
e,eml,em,Mij

Bi ∼ Poisson

r̄i −
np∑
j=1

aijγj

, (18.5.8)
e,eml,em,Bi

where the condition (18.4.6) ensures that the mean of each Bi is nonnegative. With these definitions, clearly

Yi =

np∑
j=1

Mij +Bi

has the appropriate distribution (18.2.2). The complete-data log-likelihood is given by

log p(Z;x)
c
=

nd∑
i=1

np∑
j=1

Mij log(aij(xj + γj))−aij(xj + γj),

ignoring constants independent of x as always, including p(Bi).
By the multinomial property (31.3.4) for conditional distributions of Poisson sums, we have

E[Mij |Y = y;x(n)] =
E[Mij ;x

(n)]

E[yi;x(n)]
yi =

 yi
aij(x

(n)
j +γj)

ȳ
(n)
i

, ȳ(n)

i > 0

0, ȳ(n)

i = 0, yi = 0.
(18.5.9)

e,eml,em,Mij|yi;xn

To avoid writing braces, we treat yi/y
(n)

i as zero when both are zero hereafter. So the surrogate “Q” function of the
E-step (14.10.5) of the EM algorithm is

Q(x;x(n)) = E[log p(Z) |Y = y;x(n)]

=

nd∑
i=1

np∑
j=1

E[Mij |Y = y;x(n)] log(aij(xj + γj))−aij(xj + γj)

=

nd∑
i=1

np∑
j=1

yi
aij(x

(n)

j + γj)

ȳ(n)

i

log(aij(xj + γj))−aij(xj + γj)

c
=

np∑
j=1

ej(x
(n))(x(n)

j + γj) log(xj + γj)−aj(xj + γj). (18.5.10)
e,eml,em,Q

This EM-based surrogate function is identical (to within constants independent of x) to the surrogate (18.5.6) derived
by the concavity property using De Pierro’s optimization transfer approach. Thus, the M-step (14.10.6) of the EM
algorithm is identical to (18.4.4) once again.

In the context of image reconstruction, every EM algorithm I have seen can be derived by an alternate algebraic
approach using optimization-transfer principles. In contrast, however, there are many optimization-transfer methods
for which no equivalent EM algorithm is apparent. Thus, the optimization-transfer approach seems more fruitful for
deriving algorithms than the EM approach, although familiarity with EM-based surrogates can be helpful in designing
surrogates by algebraic methods.

https://creativecommons.org/licenses/by-nc-nd/4.0/
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18.5.4 Posinomial derivation (s,eml,em,pos)s,eml,em,pos

Matt Jacobson [59] and Arkadi Nemirovski4 independently re-derived the E-ML-EM algorithm by using the (non-
obvious) convexity of the posinomial functions described below. The derivation in this section is generalized to
include the γj values and r̄i values. Despite being a remarkably different approach, it leads to the same iteration once
again!

Define the reparameterization
zj = log(xj + γj),

for some γj > 0, where clearly zj ≥ log γj for xj ≥ 0. Then

F (z) , − L(ez − γ)
c
=

np∑
j=1

aj(e
zj − γj)−

nd∑
i=1

yi log

 np∑
j=1

aij(e
zj − γj) + r̄i

.
By examining the Hessian, one can verify that the following posinomial function

fi(z) , log

 np∑
j=1

aij(e
zj − γj) + r̄i

 = log

 np∑
j=1

aij ezj + ři


is convex in z if the γj values satisfy (18.4.6). Thus, by the support property of convex functions (cf. §29.9),

fi(z + δ) ≥ fi(z) +∇fi(z)δ,

i.e., the tangent plane can provide a majorizer of −fi. So a surrogate function for F is

F (z + δ) ≤ G(z + δ) ,
np∑
j=1

aj(e
zj+δj − γj)−

nd∑
i=1

yi (fi(z) +∇fi(z)δ)

c
=

np∑
j=1

aj ezj eγj −
nd∑
i=1

yi

np∑
j=1

δjaij ezj / ȳi(z) =

np∑
j=1

aj ezj eγj −
np∑
j=1

δj ezj ej(z),

where ej(·) was defined in (18.4.3). This approach is also related to the difference of convex functions (DC) approach
to optimization (see §14.9) [60–62]. Now

∂

∂δj
G(z + δ) = aj ezj eδj − ezj ej(z),

so the unconstrained minimizer over δ is
eδ

(n)
j = e(n)

j /aj .

Thus, following (14.1.1), the update is

x(n+1)

j =
[
ez

(n+1)
j − γj

]
+

=
[
ez

(n)
j +δ

(n)
j − γj

]
+

=
[
(x(n)

j + γj) eδ
(n)
j − γj

]
+

=
[
(x(n)

j + γj) ej(x
(n)) /aj − γj

]
+
,

which is exactly (18.4.4). (One easily makes the presentation rigorous by considering carefully the domain of each
function involved.)

In this derivation, the sufficient condition (18.4.6) on the γj values arises as a sufficient condition for ensuring
convexity of each fi. To verify this convexity, consider:

∂

∂zk
fi(z) =

1

ȳi
aik ezk ,

∂2

∂zk∂zl
fi(z) =

1

ȳ2
i

{
−aikail ezk ezl , l 6= k

ȳi aik ezk − [aik ezl ]
2
, l = k

=

{
−αkαl, k 6= l
αk − α2

k, k = l

where αk , aijezk

ȳ2i
. Thus

∑
k

∑
l

βkβl
∂2

∂zk∂zl
fi =

∑
k

αkβ
2
k −

[∑
k

αkβk

]2

≥ 0

because
∑
k αk ≤ 1 using the convexity inequality (29.9.7) since g(β) = β2 is convex.

4In July 2001 email forwarded to me by Matt Jacobson.
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18.5.5 Alternating minimization derivation (s,eml,em,amp)s,eml,em,amp

Several authors have used the alternating minimization approach [63] to derive the classical version of the E-ML-EM
algorithm and some regularized variants, e.g., [46, 64]. Most such derivations have ignored the r̄i values and often
make unnecessary assumptions about the aij values. This section presents an extension of those previous treatments
to derive the algorithm (18.4.4) yet again. This derivation is more complicated than using optimization transfer, but is
important because it seems to facilitate convergence proofs.

Following §14.8, define the following convex sets

P =

p = {pij ≥ 0} :
np∑
j=0

pij = yi


Q = {q = {qij} : ∃x � 0 s.t. qij = qij(x)}

where, using (18.5.4):

qij(x) ,

{
aij(xj + γj), j = 1, . . . , np

ři, j = 0.

Also define the divergence

D(p ‖ q) =

nd∑
i=1

np∑
j=0

κ(pij , qij), (18.5.11)
e,eml,Dpq

where κ was defined in (18.4.11). Starting with a previous guess x(n) ∈ G+, the first step of the alternating mini-
mization algorithm (14.8.2) is

p(n+1) = arg min
p∈P

D(p ‖ q(x(n))) . (18.5.12)
e,eml,amp,vpnn

Because of the constraints imposed by the set P , we perform the constrained minimization using Lagrange multipliers
via the following augmented functional:

F (p) , D(p ‖ q(x(n)))−
nd∑
i=1

λi

 np∑
j=0

pij − yi

 .
Using (18.4.13), for i ∈ I+:

∂

∂pij
F (p) = log(pij/qij(x

(n)))−λi.

Equating to zero and solving yields pij = qij(x
(n))eλi , and applying the constraints we have

yi =

np∑
j=0

qij(x
(n))eλi = eλi ȳ(n)

i ,

where ȳ(n)

i was defined in (18.2.3). Thus eλi = yi/ ȳ
(n)

i , so for i ∈ I+:

p(n+1)

ij = qij(x
(n))yi/ ȳ

(n)

i = pij(x
(n)),

where we define (for x ∈ G+):

pij(x) ,

 aij(xj + γj)yi/ ȳi(x), i ∈ I+, j = 1, . . . , np

řiyi/ ȳi(x), i ∈ I+, j = 0
0, otherwise.

(18.5.13)
e,eml,pij

The second step of the alternating minimization algorithm (14.8.2) is

x(n+1) = arg min
x : q(x)∈Q

D(p(x(n)) ‖ q(x)) . (18.5.14)
e,eml,amp,xnn

For x ∈ F+ ∩ G+ and z ∈ G+, we have

D(p(z) ‖ q(x)) =

nd∑
i=1

 np∑
j=1

κ

(
aij(zj + γj)

yi
ȳi(z)

, aij(xj + γj)

)+ κ

(
ři

yi
ȳi(z)

, ři

) (18.5.15)
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=

 np∑
j=1

nd∑
i=1

aij(zj + γj)
yi

ȳi(z)
log

(zj + γj)yi
(xj + γj) ȳi(z)

− aij(zj + γj)
yi

ȳi(z)
+ aij(xj + γj)


(18.5.16)

+

(
nd∑
i=1

ři
yi

ȳi(z)
log

yi
ȳi(z)

− ři
yi

ȳi(z)
+ ři

)
(18.5.17)

=

np∑
j=1

nd∑
i=1

[
aij(zj + γj)

yi
ȳi(z)

log
yi

ȳi(z)
+ aij(zj + γj)

yi
ȳi(z)

log
zj + γj
xj + γj

]
(18.5.18)

−
nd∑
i=1

yi +

nd∑
i=1

ři
yi

ȳi(z)
log

yi
ȳi(z)

+

nd∑
i=1

ȳi(x) (18.5.19)

=

nd∑
i=1

yi log
yi

ȳi(z)
+

np∑
j=1

ej(z)(zj + γj) log
zj + γj
xj + γj

−
nd∑
i=1

yi +

nd∑
i=1

ȳi(x) (18.5.20)

=

nd∑
i=1

κ(yi, ȳi(z)) +

np∑
j=1

ej(z)(zj + γj) log
zj + γj
xj + γj

− aj(zj + γj) + aj(xj + γj). (18.5.21)
e,eml,D,pz,qx

Ignoring irrelevant constants independent of x, this function is equivalent to the optimization transfer surrogate
(18.5.6) and the EM-based surrogate (18.5.10). Substituting z = x(n), for x ∈ F+ ∩ G+:

∂

∂xj
D(p(x(n)) ‖ q(x)) = aj −

x(n)

j + γj

xj + γj
e(n)

j ,

where e(n)

j was defined in (18.4.3). Equating to zero while enforcing the nonnegativity constraint in Q again leads
directly to the iteration (18.4.4).
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18.6 E-ML-EM acceleration

18.6.1 Slow convergence (s,eml,em,slow)s,eml,em,slow

The E-ML-EM algorithm is notorious for its slow convergence, and the generalization E-ML-EM-3 given in (18.4.4)
provides only modest acceleration [50]. Using classical convergence-rate analysis, one can show that the original E-
ML-EM algorithm can converge at sublinear rates [65]. This slow convergence can be understood through frequency-
domain analysis, as described by Tanaka et al. [66]. First rewrite (18.4.2) as follows:

x(n+1) = Diag

{
1 +

1

aj

nd∑
i=1

aij
yi − ȳi(x(n))

ȳi(x(n))

}
x(n). (18.6.1)

e,eml,em,slow,xnn

Now suppose x(n) = x̂+δ where δ is small and where

0 ≈ ∇ L(x̂) =

nd∑
i=1

aij
yi − ȳi(x̂)

ȳi(x̂)
.

(This approximation ignores the nonnegativity constraint.) Then the multiplicative correction factor in (18.6.1) is

nd∑
i=1

aij
yi − ȳi(x(n))

ȳi(x(n))
=

nd∑
i=1

aij
yi − ȳi(x̂)− [Aδ]i

ȳi(x(n))
≈

nd∑
i=1

aij
yi − ȳi(x̂)− [Aδ]i

ȳi(x̂)

≈
nd∑
i=1

aij
1

ȳi(x̂)
[Aδ]i = A′ Diag

{
1

ȳi(x̂)

}
Aδ. (18.6.2)

e,eml,em,slow

So the correction factor is related to δ after passing δ through the operator A′ Diag{ȳi(x̂)}A. This operator signif-
icantly attenuates high spatial frequencies; for ordinary tomography, A′A has a frequency response of 1/ρ. Thus the
E-ML-EM algorithm adjusts high spatial frequency components more slowly than the low frequencies.

18.6.2 Acceleration methods (s,eml,em,accel)s,eml,em,accel

Numerous authors have attempted to accelerate the convergence rate of E-ML-EM by various numerical methods.
None of these methods gained wide popularity, either due to potential algorithm instabilities, inconvenience of imple-
mentation, and/or the paltry gains that resulted. This section reviews some of those attempts.

18.6.2.1 Algorithm variations

Many acceleration methods modify the iterative algorithm.

18.6.2.1.1 Grid refinement Instead of using the same parameterization (18.2.1) throughout the iterations, one can
use a multiresolution strategy with larger pixels in early iterations [67] [68], or a closely related multigrid strategy
[69–71].

18.6.2.1.2 Raised powers One can raise the multiplicative correction factor in (18.4.1) to a power to attempt
acceleration [66, 72–77].

18.6.2.1.3 Over-relaxation Many forms of over-relaxation have been attempted [78–82] including using bigger
step sizes [83] and enhancing high-spatial-frequency components [66, 84]. Another variation uses vector extrapola-
tion, based on multiple previous iterates, [85]. All such methods have potential problems with stability.

18.6.2.1.4 Line search Most acceleration methods lose the monotonicity property of E-ML-EM. One way to pre-
serve it is to use a modified line search [68, 84, 86]. Enforcing nonnegativity can be more challenging.

18.6.2.2 Implementation tricks

Another family of acceleration methods focus on the implementation.

https://creativecommons.org/licenses/by-nc-nd/4.0/


© J. Fessler. [license] August 13, 2020 18.16

18.6.2.2.1 System matrix Because the projection and back-projection operations are the computational bottleneck
in E-ML-EM, many methods have been proposed for accelerating these operations such as precomputing A and
storing it in sparse format [74, 87, 88], exploiting symmetries of the system matrix, and factoring the system matrix
as a product of several simpler terms [12, 72]. Some of these techniques are used routinely.

18.6.2.2.2 Factoring attenuation In PET, by factoring attenuation as a diagonal matrix: A = Diag{ci}G, it
partly disappears from the iteration in the ratio part (without randoms) [89]. Letting aij = cigij :

ej(x) =

nd∑
i=1

aij
yi

ȳi(x)
=

nd∑
i=1

cigij
yi∑np

j′=1 cigij′xj′ + r̄i
=

∑
i : y+i >0

gij
y+
i∑np

j′=1 gij′xj′ + r̄+
i

where

y+
i ,

{
yi, ci > 0
0, otherwise,

r̄+
i ,

{
r̄i/ci, ci > 0
0, otherwise.

This eliminates one array of length nd from the iteration.

18.6.2.2.3 Hardware acceleration Many special-purpose computing hardware and parallel processing methods
have been explored (a partial list) [90–99] including using finite-field arithmetic [100].

18.6.2.2.4 Removing low-intensity pixels Instead of updating all pixels every iteration, one might identify pixels
that fall below threshold, set them to zero, and exclude from further updates [101].

18.6.2.2.5 Mismatched back-projectors For some system models, implementing the back-projectorA′ as the ex-
act adjoint (transpose) of the forward projector can be expensive. Many researchers have investigated mismatched
back-projectors that are simplified compared to the forward projector [102–104]. Such modifications void the con-
vergence assurances of E-ML-EM, but may be useful in unregularized cases where the iterations are aborted before
convergence anyway.

MIRT The back-projectors in MIRT are all exact transposes, verified using test_adjoint.m
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18.7 Block iterative variations

18.7.1 Ordered-subsets methods (s,eml,os,intro)s,eml,os,intro

Of all the iterative image reconstruction methods described in this book , the E-ML-OSEM algorithm published5 in
1994 by Hudson and Larkin [106] has had perhaps the greatest impact in the field of nuclear medicine. This algorithm
was introduced for commercial use in PET and SPECT scanners only a few years after its publication, and remains the
de facto standard reconstruction method in commercial PET scanners.

The essential idea of the OSEM method is to replace summations over all projection views with summations over
only a subset of those views. Hudson and Larkin’s paper caught the attention of the imaging community, but with the
benefit of hindsight one can usually find precedents. As noted by Lewitt and Muehllehner [78], Tanaka et al. proposed
using subsets of projection angles for acceleration [74], as did D. Politte in his 1983 dissertation [67]. Hebert et al. also
suggested using ordered subsets for EM [107]. Schmidlin [108] also proposed a related method. The “subsets” ideas
in these earlier papers were secondary considerations that did not capture attention the way that Hudson and Larkin’s
paper did. Independently, Brown et al. [109] and Desmedt et al. [110] used a subset of the acquired measurements to
begin iterations prior to the completion of a SPECT or PET scan.

Richard Larkin (personal communication) has described the development of OSEM as something of a fortuitous
programming “accident.” In the course of developing software to implement the E-ML-EM algorithm, he first im-
plemented a version that updated the image immediately after the reprojection of each view. Later he implemented
“correctly” the classical E-ML-EM algorithm but was surprised to find that it gave worse images (in the early itera-
tions, due of course to its slow convergence). The “immediate update” version turns out to be OSEM with 1 view per
subset. Of course, as in the famous saying by Louis Pasteur “le hasard ne favorise que les esprits préparés” (chance
favors only the prepared mind). Brian Hutton (personal communication) has pointed out that Larkin’s work was sup-
ported by a grant, held by Malcolm Hudson and Brian from 1990-92, specifically to investigate and develop methods
for acceleration. In this context, the “accidental” discovery of OSEM’s acceleration was readily noticed!

18.7.1.1 E-ML-OSEM (s,eml,os)s,eml,os

A simple expression for E-ML-OSEM is obtained by replacing the summations in the E-ML-EM algorithm (18.4.1)
with partial summations as follows:

x
(n+m/M)

j = x
(n+(m−1)/M)

j

1∑
i∈Sm aij

∑
i∈Sm

aij
yi[

Ax(n+(m−1)/M)
]
i
+ r̄i

for m = 1, . . . ,M , where x(n+1) = x(n+M/M). However, the above expression can fail if implemented directly
because the partial sensitivity factors

smj ,
∑
i∈Sm

aij

can be zero. To rectify this, first define the “preconditioning factors”

pmj ,

{
1/smj , smj 6= 0
0, otherwise.

Next define the partial E-step factors
emj(x) ,

∑
i∈Sm

aij
yi

[Ax]i + r̄i
,

where 0/0 is treated as zero. Then E-ML-OSEM is defined by

x(n+m/M) =M(m)

(
x(n+(m−1)/M)

)
,

where

M(m)

j (x) ,

{
xjpmj emj(x), pmj 6= 0
xj , otherwise = xj + xjpmj [emj(x)−smj ] .

Because the algorithm is a multiplicative update, if the initial estimate is positive, then all subsequent iterates also
remain positive.

5It was presented in 1992 by Hudson, Hutton and Larkin [105] which means that the idea was developed by late 1991.
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If we define the partial log-likelihood function

Lm(x) =
∑
i∈Sm

hi([Ax]i),

then one can verify that

emj(x)−smj =
∂

∂xj
Lm(x) .

Thus E-ML-OSEM is an incremental gradient algorithm with diagonal scaling matrices Dm(x) = Diag{xjpmj} .
As shown in [48], subiteration-dependent scaling matrices preclude convergence even when relaxation is included.

Although E-ML-OSEM fails to converge in general, it often gives reasonable looking images in a small number of
iterations when initialized with a uniform image.

18.7.1.2 RBI

Several variants of E-ML-OSEM have been proposed, including the rescaled block-iterative (RBI) method [111–116].

18.7.1.3 RAMLA

See also the related variants: the row-action maximum likelihood algorithm (RAMLA) [117]

x(n+1,k)
j = x(n,k)

j (1− λkaij) + x(n,k)
j λk

∑
i∈Sn

aij
yi

ȳi(x(n,k))
= λkx

(n,k)
j

∑
i∈Sn

aij

(
yi

ȳi(x(n,k))
− 1

)
where 0 < λkaij ≤ 1 whenever aij 6= 0. This iteration converges to an ML estimate if λk → 0 yet

∑
k λk =∞.

For generalizations of these block iterative EM-type algorithms, see dynamic RAMLA (DRAMA) [118] in which
the relaxation parameters change not only with iteration but also between each subset update. See also [119].

18.7.1.4 BSREM

A generalization of RAMLA is the block sequential regularized expectation maximization (BSREM) algorithm
[48, 117, 120].

18.7.2 Incremental EM methods (s,eml,em,inc)s,eml,em,inc

As described in §14.10.8, an interesting generalization of the EM approach is the incremental EM algorithm pro-
posed by Neal and Hinton [121], which has been shown to converge [122], albeit non-monotonically in L(·) [123]. It
has been applied to PET [124, 125]. Here we describe a slight generalization for ML emission reconstruction.

First let S1, . . . ,SM denote a partition of the data indices {1, . . . , nd}. Extending the notation in §18.5.3, define

Zm =
{
{Mij}np

j=1 , Bi : i ∈ Sm
}
, m = 1, . . . ,M,

where Mij was defined in (18.5.7), and

Ym = {Yi : i ∈ Sm} , m = 1, . . . ,M.

It follows from the construction of Z and Poisson statistical properties that

P{Z = z |Y = y;x} =

M∏
m=1

P{Zm = zm |Ym = ym;x}

P{Zm = zm |Ym = ym;x} =
∏
i∈Sm

P
{
{Mij = mij}np

j=1 , Bi = bi |Yi = yi;x
}
,

where

P
{
{Mij = mij}np

j=1 , Bi = bi |Yi = yi;x
}
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=

(
yi

mi1 . . . minp bi

)(
r̄i −

∑np

j=1 aijγj

ȳi(x)

)bi np∏
j=1

(
aij(xj + γj)

ȳi(x)

)mij

I{yi=bi+∑np
j=1mij}

=

(
yi

mi1 . . . minp
bi

)(
1

ȳi(x)

)yi r̄i − np∑
j=1

aijγj

bi np∏
j=1

(aij(xj + γj))
mij I{yi=bi+∑np

j=1mij}.

(18.7.1)
e,eml,em,inc,MB|Y

Thus
P{Zm = zm |Ym = ym; x̄}
P{Zm = zm |Ym = ym;x}

=
∏
i∈Sm

(
ȳi(x)

ȳi(x̄)

)yi np∏
j=1

(
x̄j + γj
xj + γj

)mij

and hence

log
P{Zm = zm |Ym = ym; x̄}
P{Zm = zm |Ym = ym;x}

=
∑
i∈Sm

yi log
ȳi(x)

ȳi(x̄)
−

np∑
j=1

mij log

(
xj + γj
x̄j + γj

) ,
so

Dm(x̄ ‖x) , D(P{Zm = zm |Ym = ym; x̄} ‖ P{Zm = zm |Ym = ym;x})

c
=
∑
i∈Sm

yi log
ȳi(x)

ȳi(x̄)
−

np∑
j=1

[∑
i∈Sm

E[Mij |Yi = yi; x̄]

]
log

(
xj + γj
x̄j + γj

)

=
∑
i∈Sm

yi log
ȳi(x)

ȳi(x̄)
−

np∑
j=1

fmj(x̄) log

(
xj + γj
x̄j + γj

)
,

where we define

fmj(x) ,
∑
i∈Sm

E[Mij |Yi = yi;x] = (xj + γj)emj(x), emj(x) ,
∑
i∈Sm

aij
yi

ȳi(x)
. (18.7.2)

e,eml,em,inc,fmj

Defining the partial negative log-likelihood

L- m(x) ,

[∑
i∈Sm

ȳi(x)−yi log ȳi(x)

]
,

we see that

fmj(x) = (xj + γj)

[
∂

∂xj
L- m(x)−

∑
i∈Sm

aij

]
. (18.7.3)

e,eml,em,inc,fmj,vs,Lm

Now consider the augmented cost function

F (x, x̄1, . . . , x̄M ) = L- (x) +

M∑
m=1

Dm(x̄m ‖x) =

M∑
m=1

[L- m(x) +Dm(x̄m ‖x)] ,

where

L- m(x) +Dm(x̄m ‖x) =
∑
i∈Sm

ȳi(x)−yi log ȳi(x) +
∑
i∈Sm

yi log
ȳi(x)

ȳi(x̄m)
−

np∑
j=1

fmj(x̄m) log

(
xj + γj
x̄mj + γj

)
c
=
∑
i∈Sm

ȳi(x)−
np∑
j=1

fmj(x̄m) log(xj + γj) .

Because D(x̄m ‖x) is minimized over x̄m when x̄m = x, the ML estimate can be expressed as follows

x̂ = arg min
x�0

min
x̄1,...,x̄M

F (x, x̄1, . . . , x̄M ).

This suggests the following iterative algorithm. Start with an initial collection of estimates
{
x(0+(m−1)/M)

}
for

m = 1, . . . ,M , and apply a block-coordinate descent approach to F (·) as follows.
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form = 1, . . . ,M :

x(n+1+(m−1)/M) = arg min
x�0

F
(
x,x(n+1+0/M), . . . ,x(n+1+(m−2)/M),x(n+(m−1)/M), . . .x(n+(M−1)/M)

)
.

For minimization over x, observe that

∂

∂xj
F (x, x̄1, . . . , x̄M ) =

M∑
m=1

∑
i∈Sm

aij −
1

xj + γj

M∑
m=1

fmj(x̄m) = aj −
1

xj + γj

M∑
m=1

fmj(x̄m),

where aj was defined in (18.2.4). Equating to zero (while considering the KKT conditions), one can implement this
algorithm efficiently as follows. As usual, x(n+1) = x(n+M/M).

Incremental emission EM algorithm (E-ML-INC-EM-3)
Initialize

{
x(0+(m−1)/M) :m = 1, . . . ,M

}
using, for example, subiterates of E-ML-OS-EM.

Initialize {fmj} using (18.7.2) as follows:

fmj := fmj(x
(0+(m−1)/M)), m = 1, . . . ,M, j = 1, . . . , np

Initialize the following sum:

fj :=
M∑
m=1

fmj , j = 1, . . . , np.

for n = 1, 2, . . .
form = 1, . . . ,M

x
(n+1+(m−1)/M)

j =

[
fj
aj
− γj

]
+

, j = 1, . . . , np (18.7.4)
e,eml,em,inc,update

fj -= fmj

fmj := fmj(x
(n+1+(m−1)/M))

fj += fmj . (18.7.5)
e,eml,em,inc,fj,sum

end
end

MIRT See eml_inc_em.
This algorithm monotonically decreases F (·). For convergence analysis, see [124, 125]. Empirically, it has been

found to converge faster than E-ML-EM, albeit non-monotonically in L(x). However, in the early iterations the OS-
EM algorithm tends to “converge” faster, so the incremental EM method is perhaps most useful after first applying
several OS-EM iterations, if one wishes to converge to the ML estimate.

Like OS-EM, in every subiteration (18.7.4), the entire parameter vector x is updated. In contrast, the SAGE
algorithm only updates a subset of the parameters for each subiteration. Whereas OS-EM only uses a subset of the
data for each subiteration, the incremental EM method always uses the most recent estimates of all of the complete
data. This incremental approach requires one to store M image-sized arrays fmj .

Using (18.7.3), we can also write the update (18.7.4) in terms of the gradients of L- m, but the expression seems not
particularly insightful.

18.8 Alternative algorithms (s,eml,alg)
s,eml,alg

A variety of other algorithms largely unrelated to EM methods have been applied to emission image reconstruction.

18.8.1 General-purpose optimization methodss,eml,alg,opt

Several of the general-purpose optimization methods discussed in Chapter 11 have been investigated, including: steep-
est descent with step size chosen approximately [126], CG and PCG [42].

More advance optimization algorithms have also been studied, such as primal-dual methods [127].
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18.8.2 Special-purpose methods
Lantéri et al. present a general method to devise maximum-likelihood multiplicative algorithms with non-negativity
constraints [77, 133]. First write the cost function as follows: ∇ L- (x) = u(x)−v(x), where u and v are both
positive. Then try the iteration x(n+1) = x(n) uk(x(n)) /vk(x(n)), where k is a power (applied element-wise) that
affects convergence. Choosing u(x) = A′(y/Ax), v(x) = A′1nd

yields the conventional ML-EM algorithm.
Lane [134] proposes to let xj = z2

j and to use gradient descent or a CG algorithm to optimize with respect to zj .
The usual gradient descent update would be

z(n+1) = z(n) − αn∇Ψ(z(n)) = z(n) − αn2Diag{z(n)}A′ (y � ȳ(z(n))−1) .

This is remarkable similar to E-ML-EM, but it loses the guarantee of monotonicity and of ensuring nonnegativity of
the iterates. But the final step will be to let x̂j = ẑ2

j which enforces nonnegativity at the end. Being a gradient descent
method, one must use a line search to find αn to ensure continuity.

18.8.3 Nested or cascade EM algorithms (s,eml,nested)s,eml,nested

In some applications, the image x may itself be modeled as a function of other parameters, e.g., x = Bθ where B is
a blurring matrix, or a kinetic model x(θ) for radiotracers [135–137]. In these applications one can derive a nested
EM algorithm or cascade EM algorithm [138]. For the E-step, one first (re)derives the Q function in (18.5.10), but
now written as follows:

Q(θ;θ(n)) =

np∑
j=1

ej(x
(n))

(
x(n)

j + γj
)

log(xj(θ) + γj)−aj (xj(θ) + γj) ,

where x(n) , x(θ(n)). Then for the M-step one maximizes Q with respect to the parameters θ:

θ(n+1) = arg max
θ

Q(θ;θ(n)).

In general this maximization also requires an iterative algorithm.
One can also use an inner EM loop to compute a search direction followed by a line-search for an outer (P)CG

loop [135, 139]. In this form, the EM inner loop serves as a type of implicit preconditioner.

18.9 E-ML-EM modifications

18.9.1 Stopping rules (s,eml,em,stop)s,eml,em,stop

For typical emission tomography scans, unregularized algorithms like E-ML-EM lead to very noisy images as the
iterations proceed. Several papers have described stopping rules that describe criteria for terminating the iteration
before the noise becomes too excessive. Examples include [141–151].

The results of such methods are completely algorithm dependent, because the trajectory {x(n)} taken from the ini-
tial guess x(0) to the limit x̂ depends on the type of iteration. In particular, because of effects like the “Diag{1/ ȳi(x̂)}”
term in (18.6.2), the spatial-resolution properties of iterations like E-ML-EM converge nonuniformly, so terminating
prematurely leads to nonuniform spatial-resolution properties. For such reasons, the trend of late is to run many iter-
ations (particularly with OSEM), thereby hopefully largely eliminating the algorithm-dependent component, and then
post-filter to reduce noise—thereby maintaining good control of the spatial-resolution properties.

18.9.2 Smoothing and EMS (s,eml,ems)s,eml,ems

Many variations of of the ML-EM algorithm have been proposed that involve smoothing in an attempt to reduce noise,
including sieves [152], inter-update filtering [153, 154], post-backprojection filtering [155], and the expectation-
maximization smooth (EMS) approach [156–163]. Of all such methods, the one used most frequently in practice is
to “over iterate” until the image becomes a bit “too noisy” and then post-filter the final iterate to reduce noise.
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18.10 E-ML-EM convergence proof (s,eml,em,proof)
s,eml,em,proof

An elegant proof of convergence of E-ML-EM-3 is given in [43].

18.11 Problems (s,eml,prob)s,eml,prob

p,kl,convex

Problem 18.1 Show that κ is jointly convex in u and v over (0,∞)× (0,∞).
p,eml,surr

Problem 18.2 For simplicity, consider r̄i = 0 and consider trying to generalize (18.5.3) as follows:

[Ax]i =

np∑
j=1

aijxj =

np∑
j=1

(
bijx

(n)

j

[Bx(n)]i

)[
aijxj

bijx
(n)

j

[Bx(n)]i

]

where bij ≥ 0 and bij is zero only if aij is zero. (But in generalB could be different thanA.) The terms in parentheses
sum to unity, so we have the inequality

ψi([Ax]i) ≤
np∑
j=1

(
bijx

(n)

j

[Bx(n)]i

)
ψi

(
aijxj

bijx
(n)

j

[Bx(n)]i

)
.

Can we use this to design a surrogate function and hence a new, broader family of optimization transfer methods?
Explain why or why not.

p,eml,inc,mby

Problem 18.3 Prove (18.7.1). (Need typed.)
p,eml,diff

Problem 18.4 Veklerov [189] proposes an EM algorithm for estimating the difference (assumed to be nonnegative) of
two emission distributions, from the model Y 1

i ∼ Poisson
{∑np

j=1 aijxj
}
, Y 2

i ∼ Poisson
{∑np

j=1 aij(xj + δj)
}
, where

the goal is to estimate δj ≥ 0.He used the complete data spaces
{
X1
ij , X

2
ij , X

3
ij

}
whereX1

ij ∼ Poisson{aijxj}, X2
ij ∼

Poisson{aijxj}, X3
ij ∼ Poisson{aijδj} and Y 1

i =
∑np

j=1X
1
ij , Y

2
i =

∑np

j=1X
2
ij + X3

ij . Using the principles in this
chapter, propose a better choice for the complete data that leads to faster convergence.

p,eml,kl,back,min

Problem 18.5 From (18.4.16) it is clear that minimizing
∑nd

i=1 κ(yi, ȳi(x)) yields a ML estimate. Suppose instead we
minimize

∑nd

i=1 κ(ȳi(x), yi), for some ad hoc reason. Derive a monotone iterative algorithm for this cost function.
p,eml,alpha-em

Problem 18.6 Study the α-EM algorithm of [191] and derive an iterative algorithm for the Poisson log-likelihood
(18.2.2) based on α-EM. The possibility of such a derivation (for list-mode data) is mentioned in the closing paragraph
of [192]. Hint: see (31.3.5).

p,eml,list-mode

Problem 18.7 Apply the optimization transfer derivation of §18.5.2 to the list-mode likelihood function (8.5.10) to
derive a list-mode E-ML-EM algorithm.

(Need typed.)
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