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Chapter 8

Emission Imaging
ch,emis
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8.1 Introduction (s,emis,intro)s,emis,intro

This chapter describes statistical models for emission imaging, also known in the medical field as nuclear medicine
or nuclear imaging or radiotracer imaging. The presentation focuses on positron emission tomography (PET) and
single photon emission computed tomography (SPECT), but the methods are also useful in non-medical applications
such as imaging radioactive waste drums, [1] and detecting nuclear materials [2]. The primary purpose of this chapter
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is to provide a rigorous development of the Poisson log-likelihood model (8.4.12) that is used nearly ubiquitously
in statistical methods for PET and SPECT image reconstruction, articulating what quantities are imaged in emission
imaging.

8.2 Emission process (s,emis,proc)
s,emis,proc

The first goal in a statistical treatment of emission imaging is to define precisely the quantity of interest. This section
argues that, in emission imaging, we would like to form images of the radiotracer distribution. Ultimately we will
parameterize this quantity so that we can apply parametric estimation methods (although nonparametric estimation
methods are also of interest). Because estimation methods are built upon statistical models, we define the radiotracer
distribution in a statistical framework.

8.2.1 Radiotracer spatial distribution
At time t = 0, the patient is injected with (or inhales) a radiotracer, containing a very large number1,N , of metastable
atoms of some radionuclide family. We refer to these as tracer atoms2. Each tracer atom is a part of some compound
or molecule of physiological interest3 such as 11C glucose. The flow of blood, in conjunction with other physiological
processes, distributes the finite number of injected tracer atoms (and associated molecules) throughout the body. At
some time instant, say t0, after the onset of injection, these N tracer atoms are located in various distinct positions
within the body. Denote these positions ~X1(t0), ~X2(t0), . . . , ~XN (t0), where ~Xk(t) is the three-tuple describing the
spatial location (with respect to some fixed coordinate system) of the kth tracer atom at time t.

An ideal imaging instrument would have infinitesimal spatial resolution, 100% sensitivity, and would require an
infinitesimal scan duration. Such an ideal instrument would in principle provide a list of the N spatial locations of the
tracer atoms at any time t0 of interest, or at many such times if dynamic processes are of interest.

Even if a hypothetical system could provide the list ~X1(t0), ~X2(t0), . . . , ~XN (t0), this list would not constitute the
ultimate description of the behavior of the radiotracer (as influenced by the patient’s physiology). Imagine that the
patient were scanned again under “essentially identical” conditions, meaning that the same quantity of radiotracer is
injected, and that the patient’s physiological state is the same as in the first scan. In this second scan, the individual
tracer atoms would not occupy exactly the same spatial locations as in the first scan at a time t0 after onset of injection,
because there are many unpredictable phenomena that influence the trajectory of a given tracer atom, such as turbulent
blood flow and random diffusion (Brownian motion). If the imaging study were performed repeatedly under essentially
identical circumstances, there would be certain regions in the body which would tend to have more tracer atoms at
time t0, and other regions that have fewer, but the particular locations of the N tracer atoms in each replication
would be random variables. The distribution of these random variables is the quantity of most interest, rather than the
particular random values that they take on a given realization (scan), even if they could be determined [4]. So even
if a hypothetical scanner could provide a list of the exact locations of all injected tracer atoms, there would still be a
data-processing problem: estimating the general radiotracer distribution from these spatial locations.

Consider a hypothetical scenario where a single tracer atom (and molecule) is injected at time t = 0. At some time
t0 > 0 after the injection, that tracer atom could, in principle, be located anywhere in the body. But certain locations
in the body are more likely than other locations, depending on the patient’s physiology, anatomy, and the radiotracer
properties.

Define pt(~x) to be the probability density function (pdf) for the location of a single tracer atom at time t after
injection. When multiple tracer atoms are injected, we make the following assumption.

as,emis,loc,ind

Assumption 8.2.1 The spatial locations of individual tracer atoms at any time t ≥ 0 are statistically independent
random variables that are all identically distributed according to a pdf pt(~x).

This independence assumption should be very reasonable when trace quantities of radiotracer are injected. If a
very large quantity of a radiotracer such as a neuroreceptor agent were injected, then the first wave of tracer atoms (and

1I mean “large” in the statistical sense that for large N and small success probability, the probability mass function (PMF) of the Binomial
distribution approximates that of the Poisson distribution. However, in the biological sense N is tiny relative to the number of atoms in the body,
hence a “tracer.”

2We define tracer atoms to be those which were in the metastable state at time t = 0. Any previously metastable atoms of the radionuclide that
have already undergone radioactive decay by time t = 0 are irrelevant to our considerations.

3Generalizations to the case of multiple radionuclides, each bound to different compounds, are of interest as well, e.g., [3]. For simplicity we
focus the description on the single radionuclide case. However, all the mathematical formulas generalize directly to the case of a spectrum of
emitted photon energies [2] simply by letting ~Xk(t) and ~x denote 4-tuples of 3D spatial position and energy, i.e., ~x = (x, y, z, E).
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molecules) to reach the brain could occupy all or most available receptor sites, denying access to later arriving tracer
atoms. This would lead to a statistical dependence between the tracer atom locations. Rarely are such large quantities
injected, so this i.i.d. assumption is a reasonable starting point.

Thus, the quantity of interest in radiotracer imaging is the pdf pt(~x), which has units inverse volume, i.e., tracer
atoms per cm3. This pdf reflects the mean local “concentration” of radiotracer. We refer to this quantity as the
radiotracer distribution function or just radiotracer distribution, even though “density function” might be more
appropriate. Regions where the radiotracer distribution has relatively larger values are the “hot” regions of the object
where tracer atoms are more likely to be located.

An ideal imaging instrument and data processing method would provide pt(~x) for all spatial locations ~x and for
all times t spanning a large time interval so that one can investigate dynamic properties of the physiology. In practice
the instrument usually has a finite field of view (FOV) that is much smaller than the patient size, limiting the range
of ~x examined. In typical emission imaging instruments the scan time interval is split into several time segments, and
at best one can measure information related to the time integral of the radiotracer distribution over each time segment
i.e., ∫ t2

t1

pt(~x) dt .

Alternatively, some emission tomography systems collect “list mode” events [5–7] rather than “binned mode” ac-
quisitions. In principle, list-mode scans can provide something closer to continuous time information. We describe
statistical models for both types of scans in subsequent sections.

8.2.2 The density estimation problem (s,emis,dens)s,emis,dens

As an example, Fig. 8.2.1 illustrates the distinction between the underlying radiotracer distribution pt(~x) and the
particular spatial locations of tracer atoms that occur in one experiment that an “ideal” scanner would acquire. It is
difficult to see the ramp trend in the underlying density within the upper region. We really want a picture like on the
left of Fig. 8.2.1 rather than on its right.
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Figure 8.2.1: Left: an example of a radiotracer distribution function pt(~x). Right: collection of N = 2000 tracer
atom positions ~X1(t), . . . , ~X2000(t) (shown with dots) at some time t. Note the great dissimilarity between this repre-
sentation and the distribution.

fig_emis_dens_px_xn

8.2.3 Direct density estimation methods

Hypothetically, if we could observe directly the spatial locations
{
~Xk(t)

}N
k=1

at some time t, then a simple approach

to estimating the radiotracer distribution pt(~x) would be to discretize the spatial domain into small cubic voxels,
and simply count how many of the ~Xk(t) values fall within each voxel. Let Bj denote the spatial region of the jth
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voxel. The number of tracer atoms in the jth voxel at time t is

Nj(t) ,
N∑
k=1

I{~Xk(t)∈Bj},

where I{·} denotes the indicator function. The histogram density estimate is then

p̂t(~x) ,
∑
j

Nj(t)

N

I{~x∈Bj}

vol(Bj)
,

where vol(Bj) denotes the volume of the jth voxel (included so that density estimate integrates to unity).
Histogram density estimators are simple, but suboptimal [8]. A popular method for density estimation is the kernel

density estimator defined by

p̂t(~x) ,
1

N

N∑
k=1

g
(
~x− ~Xk(t)

)
(8.2.1)

e,emis,dens,kernelest

where g(~x) is some (typically smooth) function called the kernel, e.g., a gaussian function. Basically a “blob” is
centered at each “point” ~Xk(t) and these blobs are summed to form an estimate.

x,emis,dens2

Example 8.2.2 Fig. 8.2.2 illustrates the gaussian kernel density estimator (8.2.1), where g(~x) is a 2D gaussian kernel
with FHWM=0.5, computed from the data shown in Fig. 8.2.1. Fig. 8.2.3 shows a horizontal profile through the true
density pt(~x) and the two preceding density estimates. The ramp structure is much easier to identify in the kernel
density estimate.

The mean of a kernel density estimator (8.2.1) is a blurred version of the radiotracer distribution pt(~x):

E[p̂t(~x)] =

∫
g(~x− ~x′) pt(~x

′) d~x′ = pt(~x) ∗∗ g(~x)

where ∗∗ denotes 2D (or 3D) convolution. Choosing a narrower kernel g(~x) induces less blur (improving spatial
resolution), but at the expense of increased variance (noise).

There are also penalized likelihood methods for density estimation, e.g., [8–11].
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Figure 8.2.2: Estimate of the radiotracer distribution pt(~x) formed by binning (left) and formed by a gaussian kernel
density estimator (right).

fig_emis_dens_fhist_fkern

8.2.4 Poisson N (s,emis,poisN)s,emis,poisN

In practice, one cannot control the exact number of tracer atoms administered, so it is appropriate to consider the actual
number N to be a random variable. (If the radionuclide production and radiotracer synthesis processes were repeated
under essentially identical conditions, the number of tracer atoms administered would vary between replications.)
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Figure 8.2.3: Horizontal profiles at x2 = 0.5 through density estimates in Fig. 8.2.2 and through the true density
shown in Fig. 8.2.1
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as,emis,N,poisson

Assumption 8.2.3 The number of administered tracer atoms N is a Poisson distributed random variable with some
mean

µN , E[N ] =

∞∑
n=0

nP{N = n} .

Furthermore, N is statistically independent of the tracer atom locations
{
~Xk(t)

}
.

Assumption 8.2.3 is reasonable because the tracer atoms are activated by various nuclear processes involving
enormous numbers of atoms and small probabilities (e.g., in a cyclotron target), so the Poisson approximation to the
Binomial distribution is well justified. There are other methods for formulating the problem that also lead to the same
Poisson spatial point-process model given below.

8.2.5 Poisson spatial point processes
Under the assumptions that a Poisson number of tracer atoms are administered and that these tracer atoms occupy
independent and identically distributed spatial locations at some time t after injection, the collection of such spatial
locations is called a Poisson spatial point process [12]. The following property of such processes is relevant to our
development. Let Nt(B) denote the number of tracer atoms that have spatial locations in set B ⊂ R3 at some time t
after injection. Specifically:

Nt(B) =

N∑
k=1

I{~Xk(t)∈B}.

l,emis,dens,point,mean

Lemma 8.2.4 For a Poisson spatial point process, Nt(B) is a Poisson random variable with mean

E[Nt(B)] = E[N ]

∫
B
pt(~x) d~x .

Proof:
Using iterated expectation: and the assumption of independence in Assumption 8.2.3:

E[Nt(B)] = EN [E[Nt(B) |N ]] = EN

[
E

[
N∑
k=1

I{~Xk(t)∈B} |N

]]
= EN

[
N P

{
~Xk(t) ∈ B

}]
= E[N ]P

{
~Xk(t) ∈ B

}
.

The remainder of the argument is a case of Bernoulli thinning described in §31.3.2. 2

In general we are interested in many regions (such as a collection of voxels), so we explore their statistics next.
l,emis,dens,multi

Lemma 8.2.5 If B1,B2, . . . ,BM are disjoint subsets of R3, then conditioned on N = n, the random variables
Nt(B1), Nt(B2), . . . , Nt(BM ) have a multinomial distribution with associated probabilities pm =

∫
Bm

pt(~x) d~x, for
m = 1, . . . ,M, i.e.,

P{Nt(B1) = n1, . . . , Nt(BM ) = nM |N = n} =

(
n

n1 . . . nM n0

)
pn1

1 · · · p
nM

M pn0
0 ,
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where p0 , 1− p1 − · · · − pM and n0 , n− n1 − · · · − nM .
Proof:
This follows from the independence of the ~Xk(t) variables and the definition of a multinomial distribution. 2

l,emis,dens,indep

Lemma 8.2.6 If B1,B2, . . . ,BM are disjoint subsets of R3, then Nt(B1), Nt(B2), . . . , Nt(BM ) are independent ran-
dom variables.
Proof:
We consider the case M = 2, leaving the more general case as an exercise (Problem 8.2).

Let N1 = Nt(B1) and N2 = Nt(B2). For n1 ≥ 0 and n2 ≥ 0,

P{N1 = n1, N2 = n2} =

∞∑
n=n1+n2

P{N1 = n1, N2 = n2|N = n}P{N = n}

=

∞∑
n=n1+n2

n!

n1!n2!(n− n1 − n2)!
pn1

1 pn2
2 (1− p1 − p2)n−n1−n2

[
e−µN µnN/n!

]
=

(µNp1)n1

n1!

(µNp2)n2

n2!
e−µN

∞∑
k=0

1

k!
[(1− p1 − p2)µN ]k

=

[
e−µNp1

(µNp1)n1

n1!

] [
e−µNp2

(µNp2)n2

n2!

]
= P{N1 = n1}P{N2 = n2},

using total probability, Lemma 8.2.5, k = n− n1 − n2, the Taylor series for ex, and finally Lemma 8.2.4. 2

In other words, the number of tracer atoms in disjoint regions are independent Poisson random variables. Fig. 8.2.4
illustrates this property.
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Figure 8.2.4: Illustration of four realizations of a Poisson spatial point process. The number of points within a fixed
ROI is a Poisson random variable, and is independent of the number of points in other regions.

fig_emis_pois_roi

8.3 Radioactive decay statistics (s,emis,decay)
s,emis,decay

The preceding description covers two of the random phenomena in nuclear imaging: the number of injected tracer
atoms, and the spatial locations of those tracer atoms. Unfortunately, we do not get to observe the spatial locations
of the tracer atoms at all times. We can only observe a tracer atom indirectly through its emitted photon(s) when it
decays (and even then only for some of the tracer atoms). By “decay” of a tracer atom, we mean the time at which
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the tracer atom emits a photon (or positron in PET) from its nucleus. The time at which any given tracer atom decays
is unpredictable, hence it is a random variable. (See [13, p. 267] for a nice introduction to decay.) For emission
tomography or nuclear imaging, we need to examine the statistics of the decay of radioactive materials.

We simplify the analysis by assuming that all decays consist of the emission of a single photon (or positron). One
can generalize the analysis to radionuclides having multiple modes of decay [14, p. 27] [15].

Suppose the patient contains N = n tracer atoms at time t = 0. For k = 1, . . . , n, let Tk ≥ 0 denote the random
variable that denotes the time at which the kth tracer atom decays, e.g., emits a γ photon.

as,emis,Tk,ind

Assumption 8.3.1 The Tk random variables are independent, k = 1, 2, . . . , n, and are independent of the ~Xk(·)
values.

The assumption of independence is reasonable physically except in cases of stimulated emissions, or chain disintegra-
tions [16] (sometimes called the parent-daughter problem [17]). In the usual circumstances of interest, the decay of a
given nucleus is not “affected to any significant extent by events occurring outside the nucleus” [14, p. 22].

as,emis,Tk,exp

Assumption 8.3.2 Each Tk has an exponential distribution with mean µT .

The cumulative distribution function of the exponential distribution is given by

P{Tk ≤ t} = 1− e−t/µT , t ≥ 0, (8.3.1)
e,emis,decay,exp

and is shown in Fig. 8.3.1. The half life t1/2 of a radionuclide is the time at which P
{
Tk ≤ t1/2

}
= 1/2. Solving

yields
t1/2 = µT ln 2. (8.3.2)

e,emis,half
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Figure 8.3.1: Cumulative distribution function of the exponential distribution for radioactive decay.
fig_halflife

The exponential distribution (8.3.1) is consistent with empirical observations [18]. Also, the exponential distri-
bution is the unique distribution that is consistent with the assumption that “the probability of decay of an atom is
independent of the age of that atom” [18, p. 470]. In statistical terms, this characteristic is called the memoryless
property, and can be expressed mathematically as follows:

P{Tk ≤ t |Tk ≥ t0} = P{Tk ≤ t− t0} for t ≥ t0.

See [19, p. 349] for further discussion of the “at random” property.
Assumption 8.3.2 is appropriate in typical cases that use only a single radioisotope. If multiple isotopes are present

with different half lives, then the conditional distribution of each Tk given the particular isotope is again exponential,
but the overall distribution of the Tk values is a mixture of exponential distributions with mixture proportions that
depend on the relative abundance of each isotope in the object. (See Problem 8.4.)

8.3.1 Statistics of an ideal decay counting process
We now combine the statistical model for the radiotracer distribution (Assumption 8.2.1) with the statistical model
for decay (8.3.1). Let B ⊆ R3 denote an arbitrary spatial set and let Kt(B) denote the random process that counts
the number of tracer atoms that have decayed by time t, relative to some arbitrary starting time t = 0, and that were
located in the set B at the time they decayed. By definition: K0(B) = 0 andK0(B) ≤ N.We can express this counting
process as

Kt(B) =

N∑
k=1

Zk(t;B), where Zk(t;B) =

{
1, Tk ≤ t and ~Xk(Tk) ∈ B
0, otherwise.

(8.3.3)
e,emis,KtB
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The following theorem describes the statistics of this counting process in terms of the following emission rate
density function:

λt(~x) , µN

e−t/µT

µT

pt(~x) . (8.3.4)
e,emis,lamtx

The units of λt(~x) are “counts” (i.e., decays) per unit time per unit volume. Because
∫
λt(~x) d~x = µNe−t/µT /µT , we

can also express the pdf pt(~x) in terms of λt(~x) as follows

pt(~x) =
λt(~x)∫
λt(~x′) d~x′

. (8.3.5)
e,emis,f,lam

This expression is useful for formulating log-likelihoods in terms of λt(~x).
t,emis,decay,mean

Theorem 8.3.3 Under Assumptions 8.2.1-8.3.2, Kt(B) is a Poisson counting process with mean

E[Kt(B)] =

∫ t

0

∫
B
λs(~x) d~x ds, (8.3.6)

e,emis,KtB,mean

where λt(~x) was defined in (8.3.4). Note that Kt(B) is an inhomogeneous Poisson process because its rate varies
with time (due to decay).
Proof:
It is obvious from (8.3.3) that Kt(B) is a counting process. Because the Tk values and ~Xk(·) values are independent
by Assumption 8.3.1, Kt(B) has independent increments. Thus it suffices to show that the marginal distribution of
Kt(B) is Poisson with mean (8.3.6). For t ≥ 0 define

pt = P{Zk(t;B) = 1} = P
{
Tk ≤ t, ~Xk(Tk) ∈ B

}
=

∫ ∞
0

P
{
Tk ≤ t, ~Xk(Tk) ∈ B |Tk = s

}
pTk

(s) ds (8.3.7)

=

∫ t

0

P
{
~Xk(s) ∈ B |Tk = s

}
pTk

(s) ds =

∫ t

0

[∫
B
ps(~x) d~x

]
1

µT

e−s/µT ds . (8.3.8)
e,emis,pt

Because N is Poisson by Assumption 8.2.3, it follows from (8.3.6) and by the Bernoulli thinning discussed in
§31.3.2.2 that Kt(B) is Poisson with mean E[N ]P{Zk(t;B) = 1} . In particular, its mean is

E[Kt(B)] = µNpt =
µN

µT

∫ t

0

[∫
B
ps(~x) d~x

]
e−s/µT ds

and its rate is
d

dt
E[Kt(B)] =

∫
B

[
µN

e−t/µT

µT

pt(~x)

]
d~x .

We define the bracketed quantity to be the emission rate density function λt(~x) in (8.3.4). 2

Importantly, the conclusions of this theorem hold even for dynamic objects, i.e., even for time-varying radiotracer
distributions. Now we proceed from analyzing the statistics of one region to considering a collection of regions.

t,emis,decay,indep

Theorem 8.3.4 Under Assumptions 8.2.1-8.3.2, if B1,B2, . . . ,BM are disjoint subsets of R3, then the random pro-
cesses Kt(B1),Kt(B2), . . . ,Kt(BM ) are independent.

(See Problem 8.3.)
In summary, the preceding two theorems provide a rigorous mathematical justification for the generally held notion

that “radioactive decay is governed by Poisson statistics.” (See [20, Sec. 11.3] for more Poisson process details.)
However, these theorems alone do not ensure that the measurements made by emission imaging systems have Poisson
distributions. That conclusion requires additional assumptions discussed in §8.4.

8.3.2 Properties of decay counting processes
Because all tracer atoms must decay eventually (with probability one), one expects that

lim
t→∞

P
{
Kt

(
R3
)

= n |N = n
}

= 1. (8.3.9)
e,emis,KtR,limit
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Note that for B = R3, from (8.3.8):

pt =

∫ t

0

[∫
R3

ps(~x) d~x

]
1

µT

e−s/µT ds =

∫ t

0

1

µT

e−s/µT ds = 1− e−t/µT ,

so from (31.3.3) we can confirm (8.3.9) as follows:

P
{
Kt

(
R3
)

= n |N = n
}

=

(
n
n

)
pnt (1− pt)n−n = pnt =

(
1− e−t/µT

)n
→ 1 as t→∞.

To count all decays, we examine Kt

(
R3
)
, which is Poisson distributed with mean

E
[
Kt

(
R3
)]

= µNpt = µN(1− e−t/µT ).

The rate of this process, defined as d
dt E

[
Kt

(
R3
)]

, varies with time. However, by the Taylor series, 1− e−x ≈ x for
small x, for small t we have

E
[
Kt

(
R3
)]
≈ µN

µT

t,

so Kt

(
R3
)

behaves very much like a homogeneous Poisson process for t� µT , with rate λ = µN/µT , known as the
activity of the source. Furthermore, for small t:

E
[
Kt

(
R3
)
|N = n

]
≈ n

µT

t.

An alternative to the criterion P
{
Tk ≤ t1/2

}
= 1/2 used in deriving the half life (8.3.2) is to define t1/2 to be the

time at which E
[
Kt

(
R3
)
|N = n

]
= 1

2n. Solving for t again yields (8.3.2). Alternatively, t1/2 is the time at which
the rate of decays rt is half of initial rate r0.

rt =
d

dt
E
[
Kt

(
R3
)
|N = n

]
=

d

dt
n(1− e−t/µT ) =

n

µT

e−t/µT .

Solving rt1/2 = 1
2r0 again yields the same expression for t1/2.

8.3.3 Precision of source activity estimates
The fact that the variance of a Poisson random variable equals its mean sometimes creates confusion about whether a
“larger variance” is better or not. Given a source (such as tissue sample extracted from an animal previously injected
with a radiotracer) where λ is unknown, we can measure its radioactivity in a well counter for time t0 and observe
K(t0) (the total number of counts in t0 seconds), where K(t0) ∼ Poisson{λt0} . Then the (maximum-likelihood)
estimator (cf. Problem 1.11) for rate λ is

λ̂ =
K(t0)

t0
.

This ML estimator is unbiased:

E
[
λ̂
]

= E

[
K(t0)

t0

]
=

E[K(t0)]

t0
=
λt0
t0

= λ.

Furthermore, the estimator variance is

Var
{
λ̂
}

= Var

{
K(t0)

t0

}
=

Var{K(t0)}
t20

=
λt0
t20

=
λ

t0
,

so as the measurement time t0 increases, the variance of λ̂ decreases, i.e., the precision of the estimate improves. This
decrease occurs despite the fact that the variance of the counting process K(t0) increases with t0.
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8.4 Ideal counting detectors (s,emis,detect)
s,emis,detect

Nuclear imaging systems record measurements using at least one of two possible acquisition methods: list mode or
binned mode. This section focuses on the statistics of binned-mode scans, whereas §8.5 considers list-mode scans.

A nuclear imaging system operating in binned mode can be modeled as consisting of nd conceptual detector units,
each of which can record certain emitted photons. In our terminology, detector units need not correspond to physical
detectors. For example, in a 2D PET system consisting of a ring of n physical detectors, there could be as many as
nd = n(n − 1) detector units, each of which corresponds to a pair of physical detectors in electronic coincidence4.
(Or even more if the system is wobbled [22, 23].) In a SPECT system based on a single rotating gamma camera that
collects projection views of size nu×nv at each of nϕ projection angles, there would be nd = nunvnϕ detector units.
Systems that bin measurements into multiple energy windows have even more detector units [24–26], as do systems
that bin data temporally using some type of gating mechanism such as phase of respiration.

Usually imaging systems are configured deliberately so that different detector units are relatively more likely to
record photons originating from different spatial locations.

Typically each emitted photon (or pair in PET) that is recorded by the system is assigned (by the electronics and
binning circuitry) to a single detector unit, e.g., to a single sinogram bin. We make this an explicit assumption.

as,emis,single

Assumption 8.4.1 Each decay results in a recorded count in at most one detector unit.

This assumption is a key component of the argument below that leads to the conclusion that the measurements have
Poisson distributions. Systems that distribute fractions of each detected event over multiple detector units, or that
increment more than one detector unit for each event would almost certainly have non-Poisson measurements and
would need to be analyzed differently.

Let Sk ∈ {0, 1, 2, . . . , nd} be the random variable that denotes the index of the detector unit that records the kth
decay. If the kth decay goes undetected, assign Sk to be zero. Let si(~x) denote the probability that a single isolated
decay at spatial location ~x will be detected by the system and recorded (counted) by the ith detector unit, i.e.,

si(~x) = P
{
Sk = i | ~Xk(Tk) = ~x

}
, i = 1, . . . , nd. (8.4.1)

e,emis,detect,sipx

We refer to si(~x) as the detector unit sensitivity pattern, or simply as the system model. Typically si(~x) � 1.
Usually we assume that si(~x) is “known,” i.e., it is determined by considering the geometry of the imaging system and
the design of the system components such as the collimator. Ideally the detector unit sensitivity patterns si(~x) will
include all the physical effects that affect the detection of a single decay, such as scatter, attenuation, detector re-
sponse, and detector efficiency. In PET, factors that affect spatial resolution (and thus should be modeled in si(~x) for
best results) include positron range [27–29], positron non-colinearity, crystal penetration, inter-crystal scatter,
crystal identification error. The notation si(~x) is appropriate for a stationary imaging system. See Problem 8.6 for
consideration of moving imaging systems, e.g., a rotating SPECT system, where the sensitivity patterns si(~x, t) vary
with time.

Under Assumption 8.4.1, the system sensitivity pattern, defined as the overall probability that a decay at location
~x is recorded by some detector unit, is given by:

s(~x) ,
nd∑
i=1

si(~x) = 1− s0(~x) ≤ 1, ∀~x. (8.4.2)
e,emis,detect,s

When nd is large, computing s(~x) exactly can be impractical; see §8.5.4.
x,emis,si

Example 8.4.2 Appendix §8.9 derives example si(~x) functions for SPECT imaging using an Anger camera with
parallel hole collimation in front of a flat pane of scintillator.

Fig. 8.4.1 shows two examples of such si(~x) patterns. These patterns are somewhat “tube shaped” and this
characteristic distinguishes tomography from image restoration problems where the impulse response is usally much
more localized [30]. One can also examine si(~x) as a function of i for a fixed spatial location ~x0, as illustrated in
Fig. 8.4.2. Fig. 8.4.1 shows the corresponding overall system sensitivity pattern s(~x) for a 180◦ SPECT scan with
uniform attenuation. The sensitivity is higher in the portion of the FOV that is closer to the camera.

Next we analyze the statistics of the recorded counts, assuming that the recorded bin for the kth tracer atom’s
decay depends only on its position when it decays, and is independent of all other tracer atoms.

4Or triplets of detectors for 3-gamma annihilation imaging [21]
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x2

s1(~x) s2(~x)

x1

s(~x)

Figure 8.4.1: Illustration of two si(~x) functions (left, middle) and of a system sensitivity pattern s(~x) (right) for a
collimated Anger camera model including uniform attenuation for a 180◦ SPECT scan.

fig,emis,sixfig,emis,sx

x2

ϕ

si(~x0)

~x0

x1 r

Figure 8.4.2: Illustration of si(~x0) vs detector unit index i (right) for a particular spatial location ~x0 (left). Each ϕ, r
pair corresponds to a unique value of i.

fig,emis,sii

as,emis,rec,ind

Assumption 8.4.3 The Sk values are statistically independent, and Sk is statistically independent of Tj , for j 6= k.
Specifically, we assume

P
{
S1, . . . , Sn |N = n, T1, . . . , Tn, ~X1(·), . . . , ~Xn(·)

}
=

n∏
k=1

P
{
Sk | ~Xk(Tk)

}
.

This assumption is reasonable when deadtime losses and detector pileup conditions are minimal. For high count rates,
the detection probabilities are reduced due to deadtime losses, meaning that Sk in fact becomes dependent on the other
Tk values. Counting statistics in the presence of deadtime were analyzed in [31, 32]. The overall conclusion in those
analyses is that the Poisson model is reasonable even in the presence of deadtime, provided that the “first-order” effect
of deadtime losses is included in si(~x). Therefore we assume deadtime losses are included in si(~x) hereafter if needed.

Under Assumption 8.4.3, each Sk has the following conditional distribution:

P
{
Sk = i | ~Xk(Tk) = ~x

}
=

 si(~x), i = 1, . . . , nd

s0(~x) = 1− s(~x), i = 0
0, otherwise.

8.4.1 Statistics of ideal detector units (binned mode)
So far we have analyzed the statistics of unobservable random variables. Now we turn to the statistics of the recorded
measurements. Suppose we scan (i.e., record emissions) over the time interval [t1, t2] for 0 < t1 < t2. Let Yi denote
the number of events recorded by the ith detector unit during this scan interval. Mathematically:

Yi =

N∑
k=1

I{Sk=i, Tk∈[t1,t2]}. (8.4.3)
e,emis,detect,Yi
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This is called a binned mode acquisition, because both the spatial position on the detector and the time of decay are
quantized. To characterize the distribution of Yi, it is helpful to first use (8.3.4) to define the average emission rate
density function over the scan:

λ(~x) ,
1

τ

∫ t2

t1

λt(~x) dt =
µN

τ

∫ t2

t1

pt(~x)
1

µT

e−t/µT dt, (8.4.4)
e,emis,lamx

where the scan duration is τ = t2− t1. Hereafter we refer to λ(~x) as simply the emission density. It has units counts
per unit time per unit volume and reflects the average rate of decays per unit volume during the scan interval. It is
a function of the injected dose, µN , of the radiotracer distribution, pt(~x), and (in the bracketed exponential terms) of
the radionuclide decay during the scan.

If the radiotracer distribution pt(~x) is static (time invariant) over the time interval [t1, t2], then the expression
(8.4.4) for the emission density λ(~x) simplifies to the following:

λ(~x) =
µN

τ
pt1(~x)

[
e−t1/µT − e−t2/µT

]
. (8.4.5)

e,emis,lamx,static

The following theorem characterizes the distribution of the Yi values in the general case where the emission density
need not be static.

t,emis,detect

Theorem 8.4.4 Under Assumptions 1-6, each Yi has a Poisson distribution with mean

E[Yi] = E[N ]P{Sk = i, Tk ∈ [t1, t2]} (8.4.6)
e,emis,yi,mean1

= τ

∫
si(~x) λ(~x) d~x . (8.4.7)

e,emis,yi,mean

Furthermore, the Yi values are statistically independent random variables.
Proof:
Because Yi is a sum of a Poisson number of independent Bernoulli random variables, the fact that Yi is Poisson with
mean (8.4.6) follows from §31.3.2.2.

To show that (8.4.7) is the mean, we must evaluate the probability in (8.4.6). By total probability:

P{Sk = i, Tk ∈ [t1, t2]}

=

∫ ∞
0

P{Sk = i, Tk ∈ [t1, t2] |Tk = t} pTk
(t) dt

=

∫ t2

t1

P{Sk = i |Tk = t} e−t/µT

µT

dt

=

∫ t2

t1

[∫
P
{
Sk = i |Tk = t, ~Xk(Tk) = ~x

}
pt(~x) d~x

]
e−t/µT

µT

dt

=

∫ t2

t1

[∫
si(~x) pt(~x) d~x

]
e−t/µT

µT

dt

=
τ

µN

∫
si(~x)

[
µN

τ

∫ t2

t1

pt(~x)
e−t/µT

µT

dt

]
d~x .

The bracketed term is simply λ(~x) defined in (8.4.4), thus establishing (8.4.7).
Showing that the Yi values are statistically independent is left as an exercise (Problem 8.7). 2

c,emis,detect,total

Corollary 8.4.5 The total number of recorded events

M ,
nd∑
i=1

Yi

has mean, using (8.4.2):

E[M ] = τ

∫
s(~x) λ(~x) d~x =

∫ τ2

τ1

∫
s(~x) λt(~x) d~x . (8.4.8)

e,emis,detect,total,mean
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8.4.2 Background events (s,emis,ri)s,emis,ri

In practice, nuclear imaging systems record not only photons that are emitted from the object, but also photons from
normal background radiation.

as,emis,background

Assumption 8.4.6 The recorded background events are all statistically independent Poisson random variables that
are independent of the emission process.

Let r̄i denote the mean number of background events recorded by the ith detector unit during the scan. Then by
Assumption 8.4.6, the Poisson model (8.4.7) is replaced by the following model:

Yi ∼ Poisson{ȳi(λ)}, ȳi(λ) = E[Yi] = τ

∫
si(~x) λ(~x) d~x +r̄i. (8.4.9)

e,emis,ybi

In operator-vector notation, we write
E[Y ] = ȳ(λ) = A λ+ r̄, (8.4.10)

e,emis,yb

where Y = (Y1, . . . , Ynd
) and

[A λ]i = τ

∫
si(~x) λ(~x) d~x . (8.4.11)

e,emis,Aop,lam

When estimating the emission density λ(~x), usually one assumes that the r̄i values are “known,” meaning that
they are determined separately. For example, in PET scans, the r̄i values denote the mean number of recorded random
coincidence events. These r̄i values can be estimated using delayed coincidence counting, as well as other methods
[33–37].

It is important to note that r̄i is not a random variable, so the expression “ + r̄” in (8.4.10) above must not be
interpreted as “additive noise.” The noise arises from the Poisson variability, not from r̄. To elaborate on this point,
we could rewrite (8.4.9) as

Yi = Y true
i + Y back

i ,
Y true
i ∼ Poisson

{
τ
∫
si(~x) λ(~x) d~x

}
Y back
i ∼ Poisson{r̄i} .

Even in this form, Y back
i is not additive noise in the usual sense because Y true

i is also random.

8.4.3 Compton scattered photons (s,emis,scatter)s,emis,scatter

In both PET and SPECT, a large fraction of the emitted photons will undergo Compton scatter before leaving the
object [38]. (Some will also scatter in the detector.) Fortunately, using energy-sensitive detectors will exclude many
of these photons. Nevertheless, the energy resolution of practical detector materials is imperfect so a non-negligible
fraction of scattered photons will also be recorded, i.e., included in the measurement Y . There are several possible
approaches to dealing with scatter.
• Ignore scatter. This expedient option leads to biased estimates of λ(~x), resulting in inaccurate quantification and

reduced contrast.
• Estimate the scatter contribution, e.g., by using convolution / deconvolution methods [39, 40] [41, 42], model-based

methods [43–45], multiple energy windows [25, 46–50], and a wide variety of other methods, e.g., [24, 51, 52].
Then one could subtract the scatter estimate from the measurements Y . However, such subtraction corrupts the
Poisson statistical model for the measurements.
• Estimate the scatter contribution (prior to iterating, using one of the above methods for example) and then include

that scatter estimate in the additive background (r̄) term in (8.4.10). This increases the computation per iteration
only very slightly relative to the two previous approaches, but preserves the Poisson statistical model [53]. If the
scatter estimate is accurate, the resulting estimate of λ(~x) should be free of scatter-induced bias. This approach
treats the scattered photons as being non-informative, so an increased scatter fraction would increase the noise in
the estimate of λ(~x).
• At each iteration, first forward project the current object estimate to compute “ideal” projections, and then estimate

the scatter contribution from those projections. This approach was investigated in PET with cylindrical phantoms
using a convolution method in [53]. This approach may be insufficiently accurate when imaging objects with more
complicated attenuation properties.
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• Include the effects of scatter in the system model si(~x). This is an active area of research, e.g., [54–60]. These
approaches attempt to treat scattered photons as bearing information [61] about the underlying object λ(~x), and
in essence try to “put the scattered photons back where they originated.” If one can model si(~x) accurately, then
this approach has the potential to reduce the variance in estimates of λ(~x) because all recorded events are used.
In fact, an increased scatter fraction could potentially decrease the noise in the estimate of λ(~x) if the scattering
model is accurate, because every recorded photon (scattered or unscattered) bears information about the activity
distribution. On the other hand, if the system model is inaccurate, the previous two approaches may be more robust.
In particular, the detectors can record counts from scattered photons that originate from outside of the field of view.
The contribution of such photons cannot be calculated from the portion of λ(~x) seen within the field of view.
Another complication of including scatter in the system model A in (8.4.10) is that in principle one should then
also include the effects of scatter in the corresponding back projector (the adjoint of A or the transpose of its
discretized version A). This could increase computation substantially and can slow algorithm convergence, lead-
ing to proposals to use a mismatched back projector that ignores scatter [62]. This simplification accelerates
computation but invalidates convergence conditions in general.

8.4.4 Poisson log-likelihood for binned data (s,emis,like)s,emis,like

Under the above assumptions, the joint distribution of the recorded events Y is given by

P{Y = y} =

nd∏
i=1

P{Yi = yi} =

nd∏
i=1

1

yi!
e− ȳi(λ) (ȳi(λ))yi ,

where λ(~x) was defined in (8.4.4) and ȳi was defined in (8.4.9). It follows that the log-likelihood for λ has the following
form:

L(λ;y) =

nd∑
i=1

yi log ȳi(λ)− ȳi(λ) . (8.4.12)
e,emis,L(lam)

The goal in emission tomography is to reconstruct λ(~x) from y, usually by using this log-likelihood [63–67].

8.5 List-mode likelihood (s,emis,list)s,emis,list

The statistical analysis in the preceding section was for the case of binned-mode scans. Some nuclear imaging systems
collect measurements in a list-mode format [5–7, 68, 69]. List-mode formats have the advantage of retaining complete
temporal information, at the price of increased data storage for scanners with a small number of bins. However, for
scanners with numerous bins, such as 3D PET systems and Compton imaging systems, the number of recorded events
can be fewer than the number of bins, so the list-mode format can in fact require less storage.

There are two types of list-mode scans: preset-time scans, where the scan time is predetermined but the total
number of recorded events is a random variable, and preset-counts scans, where scan continues until a predetermined
number of events are recorded so the total duration of the scan is a random variable [70]. We focus here on the preset-
time case. The present-count mode is less common, but has been used in practice for some transmission scans to avoid
image quality degradation as the radioisotope transmission source decays [71].

Suppose the system records a total of M events over the time interval [τ1, τ2]. For each recorded event, the
system records a time Tm and an attribute vector Vm that typically includes position information and possibly other
characteristics such as recorded energy5. The log-likelihood associated with these observations is

L(λ) = log
(
p((v1, t1), . . . , (vn, tn) |M = n; λ)P{M = n; λ}

)
. (8.5.1)

e,emis,list,L1

To develop model-based reconstruction methods we need to simplify this log-likelihood expression.
By Corollary 8.4.5, in the absence of background events, the total number of recorded events M would have a

Poisson distribution with mean given by (8.4.8). In practice, the system will record not only events that originated
from the object but also events originating from the natural background (or from random coincidences in PET). Let
λb(t) denote the rate of the Poisson counting process associated with recorded background events, which has units
counts per second. Then the mean of M is

Eλ[M ] =

∫ τ2

τ1

λs(t) + λb(t) dt, (8.5.2)
e,emis,list,M

5For example, for a system composed of detectors with multiple recording elements, e.g., [72], the attribute vector could include all of the
individual values recorded by each element

https://creativecommons.org/licenses/by-nc-nd/4.0/


© J. Fessler. [license] March 11, 2021 8.15

where, using (8.4.8), the counting rate associated with recorded events that originated in the object of interest is

λs(t) ,
∫

s(~x) λt(~x) dt . (8.5.3)
e,emis,list,lams

Thus the distribution of M is
P{M = n; λ} =

1

n!
e− Eλ[M ] (Eλ[M ])

n
.

Rewrite the joint distribution of the event times and attributes as

p((v1, t1), . . . , (vn, tn) |M = n; λ) = p(v1, . . . ,vn |M = n, t1, . . . , tn; λ) p(t1, . . . , tn |M = n; λ) .

We assume that the recorded attributes {Vm} are conditionally independent random variables given the event times,
(i.e., we ignore deadtime):

p(v1, . . . ,vn |M = n, t1, . . . , tn; λ) =

n∏
m=1

p(vm | tm, D; λ), (8.5.4)
e,emis,list,pv

where p(v | t,D; λ) denotes the distribution of a recorded attribute vector v given that the event is detected at time t.
A concrete example of this distribution is derived in §8.5.5 for a simple 2D disk detector.

For a Poisson process, the conditional distribution of the (ordered) arrival times T1 < T2 < · · · < Tn is [73, p. 37,
53]:

p(t1, . . . , tn |M = n; λ) =

{
n!
∏n
m=1 q(tm; λ), τ1 < t1 < t2 < · · · < tn < τ2

0, otherwise,

where

q(t; λ) ,


λs(t) + λb(t)∫ τ2

τ1
λs(t′) + λb(t′) dt′

τ1 ≤ t ≤ τ2

0, otherwise

=


λs(t) + λb(t)

Eλ[M ]
τ1 ≤ t ≤ τ2

0, otherwise.

In words, the unordered arrival times are independently and identically distributed on the interval [τ1, τ2] according to
q(t; λ) whereas the ordered arrival times follow the usual distribution of order statistics. In practice there might be
some error (e.g., due to quantization) in the recorded value of the time Tm, but for simplicity we ignore such errors. As
long as those errors are small relative to the time scale of the temporal changes of λt(~x) and λb(t), this approximation
should be adequate. Note that the time measurement Tm cannot be absorbed into the attribute vector Vm because
T1 < T2 < . . . < TM which precludes independence. The influence of the recorded times Tm was not considered in
[6, 7], but they are important for time-varying objects or systems [69].

Substituting these distributions into the list-mode log-likelihood (8.5.1) leads to the following considerably sim-
plified form:

L(λ) =

M∑
m=1

log
(
p(vm | tm, D; λ) (λs(tm) + λb(tm))

)
− Eλ[M ] . (8.5.5)

e,emis,list,L2

To further simplify, we must analyze the distribution of recorded attributes p(v | t,D; λ).
In general, the recorded attributes for background events may differ from those associated with emissions from the

object, so p(v | t,D; λ) is a mixture distribution:

p(v | t,D; λ) = p(v | t,D,RS; λ)P{RS | t,D; λ}+ p(v | t,D,RB; λ)P{RB | t,D; λ},

where RS and RB denote the events that a recording originated from the source object and background respectively.
Because λs and λb denote the source and background rates for recorded events respectively:

P{RS | t,D; λ} =
λs(t)

λs(t) + λb(t)

P{RB | t,D; λ} =
λb(t)

λs(t) + λb(t)
= 1− P{RS | t,D; λ} .

Typically p(v | t,D,RB; λ) is independent of λ and must be determined separately by some type of calibration process.
An exception is in PET where most background events are accidental coincidences whose distribution does depend
on λ. We leave implicit the dependence on D and write p(v | t, RB) hereafter. If the background does not vary with
time, then we could write simply p(v |RB), the distribution of recorded attributes for background events.
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Next we consider recorded events that that originate from the source object. By total probability:

p(v | t,D,RS; λ) =

∫
p
(
v |T = t, ~X(T ) = ~x, D,RS; λ

)
p~X(T )(~x |T = t,D,RS; λ) d~x . (8.5.6)

e,emis,list,v:t,s

The first term in the integral is simply

p
(
v |T = t, ~X(T ) = ~x, D,RS; λ

)
= p(v |~x),

which is the distribution of attributes of recorded events emitted from source location ~x. It is independent of the
emission density λ. For a motionless measurement system (with ideal components that do not drift over time), this
function is independent of time. See Problem 8.6 and Problem 8.8 for generalizations to systems that change with
time, e.g., SPECT systems with rotating Anger cameras or rotating slat collimators, or hand-held detectors in security
applications. The function p(v |~x) is the key part of the system model in a list-mode framework.

The second term in the integral in (8.5.6) is more subtle, because of the conditioning on D (recorded events).
Recall that (8.3.5) relates the distribution of tracer atom locations pt(~x) to the emission rate density function λt(~x).
However, an attribute is recorded for a decay event only if the photon is detected. For an event detected at time t, the
conditional distribution of the decay spatial location is

p~X(T )(~x |T = t,D,RS; λ) =
P
{
D | ~X(T ) = ~x, T = t, RS; λ

}
p~X(T )(~x |T = t, RS; λ)

P{D |T = t, RS; λ}

=
s(~x) pt(~x)

P{D |T = t, RS; λ}
=

s(~x) pt(~x)∫
s(~x′) pt(~x′) d~x′

=
s(~x) λt(~x)∫

s(~x′) λt(~x′) d~x′
=

s(~x) λt(~x)

λs(t)
,

(8.5.7)
e,emis,list,posit

by Bayes rule and (8.3.5), because s(~x) denotes the overall detection probability for a decay at position~x. The function
s(~x) is the other key part of the system model in a list-mode framework. Substituting into (8.5.6) yields

p(v | t,D,RS; λ) =

∫
p(v |~x)

s(~x) λt(~x)

λs(t)
d~x =

∫
p(v |~x) s(~x) λt(~x) d~x

λs(t)
.

Finally, substituting into (8.5.5) and simplifying yields the following general expression for the list-mode log-
likelihood for M and {(vm, tm) :m = 1, . . . ,M}:

L(λ) =

M∑
m=1

log

(∫
p(vm |~x) s(~x) λtm(~x) d~x + p(vm | tm, RB) λb(tm)

)
−Eλ[M ], (8.5.8)

e,emis,list,dyn

where Eλ[M ] is defined above in (8.5.2).

8.5.1 Static object
The list-mode log-likelihood expression simplifies when the scan duration is sufficiently small relative to the radionu-
clide’s half life and any other temporal variations of the emission rate density function λt(~x) and the background rate
λb(t). If λt(~x) can be considered static, then λt(~x) = λ(~x), where λ(~x) is the emission density defined in (8.4.4) In
this case Eλ[M ] = τ

∫
s(~x) λ(~x) d~x +τ λb, where τ is the (preset) scan duration. The list-mode log-likelihood (8.5.8)

simplifies to:

L(λ) ≡
M∑
m=1

log

(
τ

∫
p(vm |~x) s(~x) λ(~x) d~x + p(vm |RB) τ λb

)
−
(
τ

∫
s(~x) λ(~x) d~x +τ λb

)
. (8.5.9)

e,emis,list,static

One can parameterize λ(~x) using a finite series and perform statistical reconstruction of the series coefficients using
this log-likelihood.

Often the attributes Vm are stored as integers and hence are discrete random variables. If the dimension of Vm is
not too large, then a natural data format is the timogram approach of Nichols et al. [68].
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8.5.2 Object discretizations,emis,list,disc

For numerical implementation we parameterize the emission density of the object using a finite set of basis functions
(see Chapter 10) as follows:

λ(~x) =

np∑
j=1

xj bj(~x) .

So now the unknown parameter vector is x = (x1, . . . , xnp
). Recall that λ(~x) has units counts per unit volume per

unit time, which must also be the units of the product of the units of xj and bj(~x). One option is for xj to have the
same units as λ(~x) and bj(~x) to be unitless. However, for later simplicity, we choose to define xj to have units of
counts per unit time and bj(~x) to have units of inverse unit volume. Substituting into (8.5.9) and simplifying yields
the discrete-object list-mode log likelihood:

L(x) =

M∑
m=1

log

 np∑
j=1

āj(vm)xj + p(vm |RB) τ λb

−
 np∑
j=1

ajxj + τ λb

 , (8.5.10)
e,emis,list,Lx,disc

where {āj(vm)} is a kind of n× np system matrix and

āj(v) , τ

∫
p(v |~x) s(~x) bj(~x) d~x (8.5.11)

e,emis,list,ajv

aj , τ

∫
s(~x) bj(~x) d~x =

∫
āj(v) dv . (8.5.12)

e,emis,list,sensj,int

When bj(~x) has units of inverse unit volume as mentioned above, then the following sensitivity map is unitless:

sj , aj/τ. (8.5.13)
e,emis,sensj

It can be interpreted as a probability in the usual cases where bj(~x) ≥ 0. In such cases, s =
(
s1, . . . , snp

)
is a discrete

sensitivity map that describes the probability that an emission from the jth “voxel” is recorded.
Demo See demo_list_mode_em.m.

8.5.3 Binned-mode data revisited
We can partition the attribute space V into nd disjoint sets or “bins” as follows: V = V1 ∪ · · · ∪ Vnd

and define
binned-mode measurements to be the number of recorded attributes that fall within each bin as follows:

Yi =

M∑
m=1

I{vm∈Vi}.

Note that
∑nd

i=1 Yi = M . It follows from Theorem 8.4.4 that the Yi random variables are independent, and by (8.5.11):

Yi ∼ Poisson{ȳi}, ȳi = E[Yi] = Eλ[M ]P{v ∈ Vi |D},

where

Eλ[M ] =

np∑
j=1

ajxj + τ λb .

By total probability:

P{v ∈ Vi |D} = P{v ∈ Vi |D,RS}P{RS |D}+P{v ∈ Vi |D,RB}P{RB |D}

=

(∫
Vi

∑np

j=1 āj(v)xj∑np

j=1 ajxj
dv

)(∑np

j=1 ajxj

Eλ[M ]

)
+

(∫
Vi

p(v |RB) dv

)(
τ λb

Eλ[M ]

)

=
1

Eλ[M ]

 np∑
j=1

aijxj + r̄i

 ,
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where

aij ,
∫
Vi
āj(v) dv (8.5.14)

e,emis,list,disc,aij

r̄i , τ λb

∫
Vi

p(v |RB) dv . (8.5.15)
e,emis,list,disc,randi

Combining, the mean is

ȳi = E[Yi] =

np∑
j=1

aijxj + r̄i.

In the literature, the system matrix elements aij are often described as the probability pij that a decay in the jth voxel is
recorded in the ith bin. This interpretation is correct only if the units of bj(~x) are chosen to be inverse unit volume per
unit time so that aij becomes a unitless probability (and xj becomes unitless “counts”). More typically, the elements
aij are proportional to pij .

For binned-mode data, the sensitivity map in (8.5.13) “simplifies” to

sj =
1

τ
aj =

1

τ

nd∑
i=1

aij , i.e., s =
1

τ
A′1, (8.5.16)

e,emis,list,sensj,sum

using (8.5.12).
In the binned-mode case, the log-likelihood (8.5.9) simplifies to the usual binned-mode log likelihood:

L(x) =

nd∑
i=1

Yi log([Ax]i + r̄i)−([Ax]i + r̄i) = Y ′ log(Ax + r̄)−1′(Ax + r̄). (8.5.17)
e,emis,list,binned

For systems where list-mode acquisitions are used, typically nd � Eλ[M ] and (8.5.10) is more practical than (8.5.17).
For such systems, most of the terms in the first sum in (8.5.17) are zero, and for efficient implementation we write

nd∑
i=1

Yi log([Ax]i + r̄i) =
∑

i :Yi>0

Yi log([Ax]i + r̄i) .

Many of the “list mode” methods in the literature are simply this “binned” version of list mode [74]. Note however
that by (8.5.16) the second term in (8.5.17) depends on all rows of the system matrix:

1′Ax = τs′x = τ

np∑
j=1

sjxj .

Unfortunately, no simplification is possible here without making approximations.

8.5.4 Sensitivity calculations (s,emis,sens)s,emis,sens

When nd is large, computing the sensitivity map s(~x) or sj exactly per (8.4.2) or (8.5.13) or (8.5.16) is particularly
challenging if not completely impractical. Typically the only viable option is to estimate or approximate the sensitivity
map using some form of Monte Carlo simulation.

The simplest approach conceptually is to simulate several emissions from each voxel and propagate the emissions
through the physics of the imaging system and count how many of the emissions are recorded. Then an unbiased
estimate of the system sensitivity sj for the jth voxel is simply the ratio of recorded counts over simulated emissions.
If N emissions are simulated, then the variance of this simple estimate is Var{ŝj} = sj(1 − sj)/N. This image-
domain approach would require a very large number of simulated emissions to generate reasonably precise estimates.
(Simulating 100 emissions per voxel would provide only 10% precision, which is probably insufficient.) Thus this
image domain is impractical and usually alternative methods are used.

The sensitivity map is the back projection of a uniform measurement vector: s = P′1nd
,where we define P , 1

τA.
Practical Monte Carlo methods are based on approximations to this expression. Instead of back projecting every
possible measurement, suppose we select a random subset of the indices {1, . . . , nd}. Let qi ∈ (0, 1) denote the
probability that we select the ith index, where

∑nd

i=1 qi = M � nd and M is the number of events to be simulated.
Let Bi denote a Bernoulli random variable with success probability qi. Then an unbiased estimate of the sensitivity
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image is ŝj =
∑nd

i=1
Bi

qi
pij because E[Bi] = qi. Of course the practical implementation of this expression uses only

the nonzero terms:
ŝj =

∑
i∈I

pij
qi
, I = {i : Bi 6= 0} ,

where typically |I| ≈M � nd. The simplest option would be a uniform distribution [75] qi = M/nd, but this choice
is suboptimal [76]. Other options include qi = Mai·/

∑nd

k=1 ak· where ai· ,
∑np

j=1 aij is the forward projection of a
uniform image and qi = M

√
ci/
∑nd

k=1

√
ck where ci =

∑np

j=1 a
2
ij .

Yet another alternative is to simulate (via Monte Carlo) a set ofM recorded events of list-mode data from a uniform
image, i.e., x = M

np
1. Let im ∈ {i = 1, . . . , nd} denote the index of recorded events and set im = 0 if the mth event

is not recorded. Then estimate s as follows: [77, p. 130]:

ŝj ,
np

M

M∑
m=1
im 6=0

aim,j
aim·

. (8.5.18)
e,emis,list,smap,hat

This estimator was motivated by the multiplicative form of the ML-EM algorithm (18.4.3). It is invariant to i-
dependent scale factors [77] and can be shown to be unbiased [77, p. 132]. (See Problem 8.10.)

Examining how system model mismatch (errors in the aij values) will propagate into errors in the sensitivity map
estimates is an interesting open problem. The effects of sensitivity map errors on the reconstructed image has been
analyzed [78]. The image domain approach yields sensitivity map estimates that are independent, whereas the other
methods yield correlated errors.

8.5.5 Disk detector: 2D sensitivity and position distribution (s,emis,disk)s,emis,disk

This section derives an concrete example of the recorded attribute distribution p(v |D) introduced in (8.5.4), for a
hypothetical 2D problem. This presentation illustrates that such derivations can be subtle due to the conditioning on
the event D that something was recorded, i.e., an emission was detected.

Consider a 2D disk of radius R with attenuation coefficient µ centered at the origin of the 2D plane, as illustrated
in Fig. 8.5.1. Due to the circular symmetry, it is natural to use polar coordinates for the location of a point source in
the 2D plane: ~x = (r, φ). Using total probability, the sensitivity pattern of such a disk detector is

s(~x) = s(r, φ) = s(r) = p(D; r) =
1

2π

∫ θr

−θr
p(D | θ; r) dθ,

where θr , arcsin(R/r) for r > R and D denotes the event that an emission is recorded. The intersection length of
a ray at angle θ from the source through the detector is 2

√
R2 − r2 sin2 θ so

p(D | θ; r) =
(

1− e−µ2
√
R2−r2 sin2 θ

)
I{|θ|≤θr}, (8.5.19)

e,emis,disk,pdtr

and

s(r) =
1

π

∫ θr

0

p(D | θ; r) dθ =
θr
π
− 1

π

∫ θr

0

e−2µ
√
R2−r2 sin2 θ dθ .

Making the change of variables t = r
R sin θ yields:

s(r) =
θr
π
− 1

π

∫ 1

0

e−2α
√

1−t2 R

r
√

1− (Rt/r)2
dt, (8.5.20)

e,emis,disk,sr

where α , µR. Thus, as r →∞:

r s(r)→ R

π

(
1−

∫ 1

0

e−2α
√

1−t2 dt

)
,

so the far-field sensitivity decreases as 1/r.
Fig. 8.5.2 compares the exact sensitivity and the far-field approximation for µ = 2. There is very good agreement

between the two for r > 3R.
Suppose that each recorded attribute vector v is simply the interaction location within the disk: v = (x, y). To

derive the distribution of interaction locations (x, y) ∈ SR ,
{

(x, y) : x2 + y2 ≤ R
}

for recorded events emitted
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from ~x = (r, 0), we first consider the alternative coordinate system (l, φ) over the disk SR for which (x, y) =

(r − l sinφ, l sinφ) , where l =
√

(r − x)2 + y2 is the distance from the point (r, 0) to (x, y) and φ = arctan
(

y
r−x

)
is the corresponding angle.

Using Beer’s law:

p(l |φ,D; r) =
µ e
−µ
(
l−r cosφ+

√
R2−r2 sin2 φ

)
1− e−µ2

√
R2−r2 sin2 φ

I{
r cosφ−

√
R2−r2 sin2 φ≤ l≤ r cosφ+

√
R2−r2 sin2 φ

}, (8.5.21)
e,emis,disk,p,l|p

and using Bayes rule and (8.5.19):

p(φ |D; r) =
p(D |φ; r) p(φ; r)

p(D; r)
=

p(D |φ; r) 1
2π

s(r)
=

1

2π s(r)

(
1− e−2µ

√
R2−r2 sin2 φ

)
I{|φ|≤θr}. (8.5.22)

e,emis,disk,pdf,ang

Thus by the definition of conditional probability:

p(l, φ |D; r) = p(l |φ,D; r) p(φ |D; r)

=
µ e
−µ
(
l−r cosφ+

√
R2−r2 sin2 φ

)
2π s(r)

I{
r cosφ−

√
R2−r2 sin2 φ≤ l≤ r cosφ+

√
R2−r2 sin2 φ

}I{|φ|≤θr}.
(8.5.23)

e,emis,disk,plp

Now using the formula for transformation of random variables (31.4.4) yields our final expression for the attribute
distribution p(v |D; r):

p(x, y |D; r) =
1

l
p(l, φ |D; r)

∣∣∣∣
l=
√

(r−x)2+y2, φ=arctan( y
r−x )

. (8.5.24)
e,emis,disk,pxy

Fig. 8.5.3 illustrates this pdf for µ = 2 and r/R = 3.

r
R

(x+, y+)

x

(x−, y−)

l

y

θr

φ

Figure 8.5.1: Geometry of simple 2D disk detector.
fig,emis,disk1
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Figure 8.5.2: Sensitivity of a radial disk detector of radius R and absorption coefficient µ.
fig_emis_disk1a

To derive the pdf (8.5.24) properly, it is essential to use the probability of φ conditional on the event D that the
emission was recorded, as in (8.5.22).

Fig. 8.5.4 compares the conditional distribution of φ given D in (8.5.22). to the distribution where we are given
only that the emitted photon was incident on the detector:

p(ϕ | incident; r) =
1

2θr
I{|φ|≤θr}. (8.5.25)

e,emis,disk,p,ang,incident
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Figure 8.5.3: Distribution of recorded positions for emissions from point (3R, 0) when µ = 2.
fig_emis_disk1b
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Figure 8.5.4: Conditional distribution p(φ |D; r) of emission angle φ compared to the simpler distribution of φ given
only that the emitted photon was incident on the detector. Conditioning onD leads to a highly nonuniform distribution.

fig_emis_disk1c
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Conditioning on D leads to a highly nonuniform distribution for φ where smaller angles are more probable.
If we ignore the “|D” part of (8.5.22) and use (8.5.25) instead, then we get the (inaccurate) model

p̃(l, φ; r) =
1

2θr

µ e−µ(l−r cosϕ+
√
R2−r2 sin2 ϕ)

1− e−2µ
√
R2−r2 sin2 ϕ

I{
r cosφ−

√
R2−r2 sin2 φ≤ l≤ r cosφ+

√
R2−r2 sin2 φ

}I{|φ|≤θr}.
This model has singularities for φ ≈ ±θr; therefore it is crucial to condition on D when deriving the probability
models for list-mode data.

Note that the distribution expression (8.5.23) depends on the sensitivity s(r). In this case the sensitivity has
the relatively simple expression (8.5.20). Typically the sensitivity is a much more complicated function and the
dependence of the distribution (8.5.23) on it is an unfortunate but apparently unavoidable complication.

8.6 PET-specific topics

8.6.1 Randoms-precorrected PET scans (s,emis,randoms)s,emis,randoms

In PET scans, true coincidence events are those that originate from a single positron-electron annihilation, whereas
random coincidence events are those that originate from two or more positron-electron annihilations [33]. PET
scanners usually detect two types of events: prompt coincidences are coincidences that occur within a small time
interval that is just large enough to include all true coincidence events; delayed coincidences are those that occur with
a time delay that is large enough to exclude all true coincidence events. Random coincidence events will contaminate
both such measurements, and because of the time scales involved, the mean contribution of randoms to the two types
of coincidences will be essentially equal. Thus, the standard statistical model for prompt and delayed coincidence
measurements is:

Y prompt
i ∼ Poisson{[A λ]i + r̄i}

Y delay
i ∼ Poisson{r̄i},

using (8.4.11). One can form an unbiased estimate of the true coincidences by subtracting the delayed events from the
prompt events:

Y diff
i , Y prompt

i − Y delay
i .

Many PET scanners perform this subtraction in real time during the scan, recording only the difference Y diff
i . Unfor-

tunately, this subtraction destroys the Poisson statistics. In particular, the variance and the mean differ:

E
[
Y diff
i

]
= [A λ]i

Var
{
Y diff
i

}
= [A λ]i + 2r̄i. (8.6.1)

e,emis,randoms,var

The exact log-likelihood for Y diff
i is complicated, so approximations have been investigated for both transmission

scans [79–82] and emission scans [83–85]. The conclusion of this work is that the “ordinary Poisson” approach of
assuming that Y diff

i has a Poisson distribution with mean E
[
Y diff
i

]
leads to suboptimal estimates. The most useful

approximation is to first form estimates r̂i of the r̄i values, for example using the block singles events that usually are
recorded in PET scanners [86], and then use the following shifted Poisson model:

Y diff
i + 2r̂i ∼ Poisson{[A λ]i + 2r̂i} . (8.6.2)

e,emis,Yi,shift

There can still be negative values even after “shifting” by adding 2r̂i, but this can be accommodated with appropriate
algorithms [84, 85].

An alternative approach would be to use model-weighted least squares (MWLS) [87–90] where the weights
depend on the mean and variance in (8.6.1), as follows:

L- (λ) =

nd∑
i=1

hi([A λ]i), hi(l) =
1

2

(yi − l)2

l + 2r̄i
.

Interestingly, this function is convex and

ḧi(l) =
y2
i + 4r̄iyi + 4y2

i

(l + 2r̄i)3
.
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Nevertheless, it seems no more convenient for optimization than the shifted Poisson log-likelihood (8.6.2).
Yet another approach is related to iteratively reweighted least-squares (IRLS) methods [91]. First use some

method to form an initial reconstructed image λ̂
(0)

. Then estimate the variances of Y diff
i as follows:

σ̂2
i ,

[
A λ̂

(0)
]
i
+ 2r̂i.

Finally, estimate a refined reconstructed image using a weighted least-squares (WLS) cost function of this form:

L- (λ) =

nd∑
i=1

hi([A λ]i), hi(l) =
1

2

(yi − l)2

σ̂2
i

. (8.6.3)
e,emis,randoms,irwls

Because the weights wi = 1/σ̂2
i are held fixed while (re)estimating λ, the cost function L- is quadratic (and convex).

One could iterate this process by estimating σ2
i from the new λ̂, but often this is unnecessary [91].

8.6.2 Time-of-flight PET (s,emis,tof)s,emis,tof

In the 1980’s, some PET systems were investigated that could measure time of flight (TOF) information, e.g., [92–94].
Although TOF information has the potential to improve spatial resolution and reduce noise, the scintillators used in
these systems had other significant disadvantages. More recently, TOF systems are being reconsidered due to advances
in scintillator technology and electronics [95]. The principles of statistical reconstruction for TOF PET are the same
as for non-TOF PET [5, 35, 96, 97]. The primary difference is the system model.

8.7 Summary (s,emis,summ)
s,emis,summ

Applying the various assumptions made throughout this chapter, the main results presented are the Poisson log-
likelihood for binned-mode data (8.4.12) (8.5.17) and for list-mode data for dynamic (8.5.8) and for static (8.5.9)
objects. These statistical models form the foundation of the reconstruction algorithms developed in Chapter 18 and
Chapter 19.

8.8 Problems (s,emis,prob)s,emis,prob

p,emis,list,fish,disc

Problem 8.1 Find an expression for the Fisher information for the discrete-object list-mode log-likelihood (8.5.10).
p,emis,dens,indep

Problem 8.2 Generalize the proof of Lemma 8.2.6 to the case M > 2.
p,emis,decay,indep

Problem 8.3 Prove Theorem 8.3.4.
p,emis,decay,mixture

Problem 8.4 Generalize the analysis in §8.3 to the case of radiotracers containing multiple radioisotopes.
p,emis,detect,multi

Problem 8.5 Generalize the analysis in §8.4 to the case of radioisotopes that produce multiple photons (with various
probabilities) that are emitted and recorded [15]. (Solve?)

p,emis,sixt

Problem 8.6 Generalize Theorem 8.4.4 and Corollary 8.4.5 for the case of a moving imaging system, where the
detector sensitivity patterns vary with time, i.e., si(~x, t).

p,emis,yi,indep

Problem 8.7 Complete Theorem 8.4.4 by showing that the random variables Yi are statistically independent.
p,emis,list,lamtx

Problem 8.8 Generalize §8.5 to the case of a dynamic or time-varying object model λt(~x) with a possibly moving
or time-varying system described by time-varying sensitivity function st(~x) and time-varying recording distribution
pt(v |~x).

p,emis,scat

Problem 8.9 After studying Chapter 25, use Fisher information matrices to justify the claims made in §8.4.3 about
the noise effects of Compton scatter.

p,emis,sens

Problem 8.10 The sensitivity map estimate (8.5.18) uses a uniform distribution in the image domain (x = M/np1)
which may be suboptimal. Generalize (8.5.18) to the case of a nonuniform distribution pj , j = 1, . . . , np for sampling
from the voxels, and prove that your proposed estimator is unbiased.
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8.9 Appendix A: 2D gamma camera (s,emis,spect2)
s,emis,spect2

To provide a concrete example of a detector unit sensitivity pattern si(~x), consider the 2D SPECT geometry illustrated
in Fig. 8.9.1. The scintillator of a collimated Anger camera is placed at a distanceD0d from the origin of the coordinate
system (typically the center of rotation). Assume that the scintillator is very thin but has a very high attenuation
coefficient so that each gamma ray that reaches it is recorded in one of the pixels behind it. The ith detector element
covers the interval [y−i , y

+
i ]. In front of the scintillator is a parallel-hole collimator having holes of length l and width

w.
Consider a given position ~x = (x, y) and let Di denote the event that an emission from position ~x is recorded by

the ith detector element. Then by total probability:

si(~x) = P{Di} =

∫ π

−π
P{Di |ϕ}

1

2π
dϕ =

∫ ϕ+
i

ϕ−
i

P{Di|ϕ}
1

2π
dϕ,

where ϕ denotes the (random) angle of γ-ray emission within the 2D plane, and ϕ±i = arctan
(
y±i −y
d

)
, where d =

d(~x) , D0d − x is the distance from the point ~x to the detector.
The exact response of a collimator is quite complicated so we simplify by assuming infinitesimal collimator septa

and averaging over all possible translations of the collimator along the vertical axis [98]. Then one can show that the
probability that a photon at angle ϕ reaches the scintillator is

P{Di |ϕ} =

[
1− l

w
tan |ϕ|

]
+

, (8.9.1)
e,emis,spect2,coll

so

si(~x) =

∫ ϕ+
i

ϕ−
i

[
1− l

w
tan(|ϕ|)

]
+

1

2π
dϕ =

∫ y+i −y

y−i −y

1

2π

[
1− l

w

|r|
d

]
+

1

d

1

1 + (r/d)2
dr,

making the change of variables r = d tanϕ. The FWHM of the integrand is 2d
(√

1 + (l/w)2 − l/w
)
. This width

increases with distance d from the point to the detector, as seen in Fig. 8.4.1. Fig. 8.9.2 illustrates how the detector
unit sensitivity pattern changes as a function of the ratio l/w. Profiles of these functions along the y direction appear
nearly triangular.

The overall system sensitivity pattern is

s(~x) =

nd∑
i=1

si(~x) =

∫
1

2π

[
1− l

w

|r|
d

]
+

1

d

1

1 + (r/d)2
dr ≈ 1

2π

w

l
.

Increasing the collimator aspect ratio l/w improves spatial resolution but decreases sensitivity.

y−i
y

x

d

D0d

w

l

r
y+
i

~x

ϕ

Figure 8.9.1: Illustration of geometry of 2D collimated gamma camera.
fig,emis,spect2
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