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21.1 Introduction (s,det,intro)s,det,intro

Classification is the task of assigning an object or event to one of a set of prespecified classes. This is performed by
observing one or more features of the object or event and deciding which class it belongs to through the evaluation of
those features [1]. Medical diagnosis tasks can very often be described as classification problems, e.g. classifying a
patient as normal or diseased, classifying a condition as mild, moderate or acute, etc. Our focus here is the case where
the features used for the purpose of such a classification are a set of tomographic data, or more appropriately an image
reconstructed from such data.

We will refer to the entity making the decision as the observer. In a clinical setting that would usually be a human,
although it may also be a computer program or a combination of the two. However, our ultimate goal in studying
observers here is a fast, automated means for adjusting the parameters of image reconstruction methods prior to the
reconstruction so as to improve performance in classification tasks. Therefore, we turn our attention to computer
(numerical) observers, which are simpler to study analytically. Of course, we would like them to perform in a manner
correlated to human observer performance, if our results are to be more broadly applicable.

This chapter analyzes the performance of numerical observers in signal detection tasks for the purpose of trying
to develop regularization methods that optimize this performance. (Much of this was published in [2, 3].)

21.2 The detection task
Let f be the true object being imaged (or an approximation of the true object in Rnp ). To express our uncertainty
about the object, we allow it to be a random field. In emission tomography this uncertainty stems from the variability
in patient physiology and radiotracer uptake.

Assume that the true object f belongs to exactly one of the classes Ci, i = 0, 1, . . . , L−1 andHi is the hypothesis
that f belongs to class Ci. We consider an observer that has to decide among the hypotheses Hi, i = 0, 1, . . . , L− 1
based on an observed feature vector v. The decision rules we focus on are deterministic, that is the observer must
make the same decision every time it is provided with the same v. Furthermore, the decision has to be on exactly
one of the Hi’s. Classification then corresponds to a partition of the observation space into non-overlapping regions,
each corresponding to one of the Hi’s [1, 4]. The decision rule can be represented as a comparison of a set of test
statistics ti, each of which is a function of the feature vector v, ti = gi(v), i = 0, 1, . . . , L− 1. The gi(·)’s are called
discriminant functions. The decision rule is then:

Decide Hi if gi(v) > gj(v) for all j 6= i.

In the binary-hypothesis case whereL = 2, this reduces to comparing a single test statistic t = g(v) to some threshold
T , where T is independent of v:

Decide H1 if g(v) > T , otherwise decide H0.

In the following we focus on the binary-hypothesis problem, since our main interest is optimizing reconstruction
methods with respect to performance in the task of detecting a signal of interest in the object. We therefore define
the task as a decision between the signal present hypothesis H1 and the signal absent hypothesis H0. Let fs be the
target signal, which we assume to be highly localized in space (e.g., a lesion). Thus the term “signal” does not refer
here to the entire object f . When the signal fs is contained in f , then we define fb , f−fs as the object background.
Otherwise, f consists only of the background. The detection task at hand is thus to determine between the following
pair of hypotheses:

H0 : f = fb (signal absent)
H1 : f = fb + fs (signal present). (21.2.1)

e,hypo

In emission tomography, where the target signal is typically a region of higher radioactivity concentration than the
normal (background) region of an organ, the additive model f = fb + fs is indeed a reasonable one [5].

Let y ∈ Rnd be the observed tomographic data. Then we can write without loss of generality

y = Af + ε, (21.2.2)
e,raw

where A is a linear operator modeling the imaging system (considered known) and ε ∈ Rnd is a random vector
representing imaging noise, which may or may not be dependent on f . If ε is independent of f , then we have the
additive noise problem. If it is not, then we could still simply define ε as ε , y − Af . For a given instance of
the object f , i.e., a given instance of patient physiology and radiotracer uptake, the measurement y is random due to
variability inherent in the imaging system. In emission tomography the conditional probability distribution of y given
f is Poisson as described in Chapter 8.

Depending on the model we adopt for the observer, the feature vector v on which the observer’s decisions are based
may be the tomographic data, an image of the object reconstructed from the data, or the output of a set of filtering
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operations on the image, as we will see later. Observers applied on the tomographic data y would be very likely
to grossly overestimate human observer performance, since humans have difficulty distinguishing small features in a
sinogram. Observers that are applied on reconstructed images are more realistic, since this situation better corresponds
to common imaging practice. An image reconstruction method is a mapping of the measurements y into an estimated
image f̂ ∈ Rnp and therefore an observer applied on the reconstructed image would use a test statistic of the form
t = t(f̂) = t(f̂(y)). In the following, we will denote discriminants that are applied on the reconstructed image with
a hat.

21.3 Figures of merit
One can quantify the detection performance of an observer by tracing its Receiver Operating Characteristic (ROC)
curve, a plot of the probability of a true positive (deciding that H1 is true when H1 is actually true) versus the
probability of a false positive (deciding that H1 is true when H0 is actually true). The trade-off between these two
probabilities can be plotted by varying the decision threshold T . A very common figure of merit for observers is the
Area Under the Curve (AUC).

Another figure of merit is the Signal-to-Noise Ratio (SNR), defined as

SNR =
E[t|H1]−E[t|H0]√

p1 Var{t|H1}+p0 Var{t|H0}
, (21.3.1)

e,obs,snr

where pi is the a priori probability of the hypothesis Hi, and E[·|Hi] and Var{·|Hi} denote the expected value and
variance respectively of some random variable under hypothesis Hi. In the case where the test statistic t is Gaussian-
distributed under both hypotheses, the SNR has a special significance, since it can be used to directly calculate the
AUC [5, p.819]:

AUC =
1

2

[
1 + erf

(
SNR

2

)]
. (21.3.2)

e,obs,auc,snr

By inverting (21.3.2), one can also define the detectability index dA as

dA = 2erf−1(2(AUC)− 1).

Obviously, SNR = dA when t is Gaussian-distributed under both hypotheses.

21.4 The ideal observer
The ideal observer uses all available information on the feature vector to make a decision that minimizes an average
Bayes cost (e.g., average probability of error). It can be shown that the corresponding discriminant function is the
well-known likelihood ratio [6]. When the feature vector considered is the data y, this is

g◦(y) =
p(y|H1)

p(y|H0)
, (21.4.1)

e,obs,ideal

where p(·|Hi) denotes the probability distribution of a random vector under hypothesis Hi. The threshold is equal to

T =
(c10 − c00)p1

(c01 − c11)p0
,

where cij is the Bayes cost associated with deciding on Hi when the truth is Hj . Conducting this test requires
full knowledge of the statistics of both the object and the imaging system, as well as the a priori probabilities of
the hypotheses, referred to in medical diagnosis as disease prevalence. In practice, this much information is never
known, so the ideal observer serves as a golden rule against which the detection performance of other observers can
be compared.

The ideal observer for feature vectors in the reconstructed image space uses the discriminant function

t◦(y) =
p(f̂(y)|H1)

p(f̂(y)|H0)
. (21.4.2)

e,obs,ideal,rec

However, the ideal observer is invariant to nonsingular transformations of the data. Thus the performance of the
observer with discriminant (21.4.2) would only be inferior to the one with discriminant (21.4.1) if the image recon-
struction method discarded some of the information in the data by performing a noninvertible transformation. Since a
reasonable reconstruction method would not discard information, the ideal observer is not used to evaluate and rank
reconstruction methods. Instead, suboptimal observer models such as the ones mentioned below are used for this
purpose.
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21.5 Linear observers
The ideal discriminants from a Bayesian point of view for several detection problems are of complexity higher than
linear. However, researchers have found that human observers do not perform ideally and have proposed observer
models that account for human suboptimality [7–10]. As a result, various popular linear observer models exist in the
literature, either in their ideal form [11], or with the addition of frequency-selective channels and internal noise [5,
§14.2.2].

In general, a linear discriminant can be defined as the scalar product of some template w ∈ Rnp with the
observation f̂ (for observers applied on the reconstructed image):

t(y) = w′f̂(y). (21.5.1)
e,obs,lin

We list here some linear observers that are often encountered in the objective image quality literature.

21.5.1 The Hotelling observer
The Hotelling Observer (HO) [12] assumes knowledge of the first- and second-order statistics of the target signal
fs, the background fb, and the noise ε. This results in the ideal linear discriminant, that is the one that achieves
maximum SNR:

wHO = S†
f̂

(
E
[
f̂ |H1

]
−E
[
f̂ |H0

] )
, (21.5.2)

e,obs,hot

where
Sf̂ = p1 Cov

{
f̂ |H1

}
+p0 Cov

{
f̂ |H0

}
is the unconditional covariance of f̂ , equivalent to the intra-class scatter matrix in the pattern classification literature,
the superscript “†” denotes a pseudo-inverse, and E[·|Hi] and Cov{·|Hi} denote the mean and covariance respectively
of some random vector under hypothesis Hi. No linear transformation of the data can improve the SNR of this ideal
linear observer, just like no transformation of the data can improve the performance of the ideal observer.

21.5.2 The prewhitening observer
The PreWhitening Observer (PW observer) assumes knowledge of the second-order statistics of the background fb
and noise ε but not necessarily those of the target signal fs. The corresponding template is

wPW = Cov
{
f̂ |H0

}† (
E
[
f̂ |H1

]
−E
[
f̂ |H0

] )
. (21.5.3)

e,obs,pw

If the reconstruction method is linear and the target signal fs is deterministic, then the ideal linear discriminant (21.5.2)
reduces to the PW discriminant.

21.5.3 The non-prewhitening observer
The Non-PreWhitening Observer (NPW observer) assumes knowledge only of the first-order statistics of the target
signal fs, the background fb, and the noise ε. The corresponding template is

wNPW = E
[
f̂ |H1

]
−E
[
f̂ |H0

]
. (21.5.4)

e,obs,npw

If the reconstruction method is linear, the target signal fs is deterministic and the background fb and noise ε are white
and independent, then the ideal linear discriminant (21.5.2) reduces to the NPW discriminant.

21.5.4 The region-of-interest observer
The Region-of-Interest observer (ROI observer) assumes knowledge only of the first-order statistics of the target
signal fs. The corresponding template is that of a simple matched filter:

wROI = E[fs|H1] . (21.5.5)
e,obs,roi

21.5.5 Channelized linear observers
Channelized observers include a set of frequency-selective channels in an attempt either to construct an efficient basis
for the approximation of the ideal observer [13], or to model the frequency selectivity that is believed to characterize
human visual perception [10]. Here we are interested primarily in the latter type of channel, since suboptimal observers
are the focus for the purpose of image reconstruction optimization. However, our analysis applies to either channel
flavor.
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Figure 21.5.1: Profiles of CHO channel frequency responses for the three channel sets investigated in [17]: Square
(SQR), Sparse Difference-of-Gaussians (S-DOG), and Dense Difference-of-Gaussians (D-DOG).

fig:channels

Conceptually, channelized observers first pass the reconstructed image f̂ through a set of M bandpass filters. The
new feature vector ĉ ∈ CM is formed from the values of the filter outputs at the known location of the target signal
center and can include additive noise:

ĉ(y) = C′f̂(y) + εint,

where C is an 1 ×M collection of operators. The mth of these operators applies the impulse response of the mth
bandpass filter and samples the output at the center of the target signal. Typically this filtering step is not invertible and
it greatly reduces the dimensionality of the detection problem (e.g., M = 4 in [14]). Furthermore, the bandpass filters
involved in C typically correspond to distinct frequency bands, in which case the covariance of ĉ can be assumed to
be nonsingular. Nevertheless, we will use pseudo-inverses in the interest of generality. The internal noise vector εint

models inherent uncertainty in the observer’s decisions and is zero-mean Gaussian with covariance matrix Πint.
A generic channelized linear observer forms its test statistic tch by applying a template w ∈ CM to the output of

the filter bank:
tch(y) = w′ĉ(y). (21.5.6)

e,obs,ch

21.5.5.1 The channelized Hotelling observer

The Channelized Hotelling Observer (CHO) has been shown to be particularly successful in predicting human
observer performance in several detection tasks [14–17]. It applies the ideal linear discriminant with respect to the
output ĉ of the M -channel filter-bank. This corresponds to the template

wCHO = S†ĉ

(
E[ĉ|H1]−E[ĉ|H0]

)
, (21.5.7)

e,obs,cho

where
Sĉ = p1 Cov{ĉ|H1}+p0 Cov{ĉ|H0}

is the unconditional covariance matrix of ĉ. Examples of channel sets that have been used with the CHO are the Square
(SQR), Sparse Difference-of-Gaussians (S-DOG), and Dense Difference-of-Gaussians (D-DOG) channels defined
in [17]. Profiles through the frequency responses of these channels are shown in figure 21.5.1.

21.6 Optimal reconstruction for signal detection (s,det,gau)
s,det,gau

To facilitate analysis, we consider here linear reconstructors. Many common tomographic reconstruction techniques
can be approximated as linear, except maybe when enforcing a nonnegativity constraint [18]. Here we will assume that
the target signal appears on a background that is sufficiently high to render any such nonnegativity constraint inactive
around the signal location. We denote a generic linear reconstructor by an operator Z . The reconstructed image is
then given by

f̂ = f̂(y) = Zy. (21.6.1)
e,det,recon,linear

We may view the reconstruction f̂ either as a vector in a Hilbert space, in which case Z is a general linear mapping
from Rnd to that Hilbert space, or as a discrete representation in Rnp , in which case Z is a matrix in Rnp×nd . (We
could also think of Z = I , the identity operator, for detection directly from the raw measurements.)

Our goal is to optimize the reconstructor Z with respect to the performance of various observers of interest in the
detection of fs.



c© A. Yendiki & J. Fessler. April 7, 2017 21.6

21.6.1 Assumptions of Gaussianity
In subsequent sections, we will assume Gaussian-distributed test statistics and focus on maximizing the SNR, in
which case the AUC is also maximized. For linear observers and linear reconstructors in particular, the test statistic is
a weighted sum of the measurements, so it can be approximated as Gaussian by the central limit theorem. Furthermore,
since we focus on observers that are applied to the reconstructed image rather than the raw data, we are mainly inter-
ested in the statistics of the reconstruction rather than the observation. The statistics of an image reconstructed from
Poisson data through a penalized-likelihood method can be described approximately by a Gaussian distribution [19].

We denote the expectations of the background fb and the signal fs by f̄b and f̄s respectively. We denote their
covariances by Kb and Ks respectively. In the general case where both background and signal are random, Kb and Ks

are positive definite. In the special case known as the signal known exactly (SKE) detection task, we have Ks = 0
and thus a deterministic signal fs = f̄s. Similarly, in the background known exactly (BKE) task, we have Kb = 0
and thus a deterministic background fb = f̄b. In all cases, we assume that Kb and Ks are known to the observer.
We also take the a priori probabilities of the hypotheses H1 and H0 to be known and equal to p1 and p0 = 1 − p1

respectively.
Finally, we will assume that the measurement noise ε is zero-mean with a known covariance matrix that is inde-

pendent of whether the target signal is present or not. These assumptions are less restrictive than may first appear.
In the case of emission tomography, the measurements y are independent and Poisson-distributed conditional on the
object f . The conditional mean and covariance of the measurement vector are, respectively,

E[Y |f ] = Af + r

Cov{Y |f} = diag{Af + r},
for some vector r ∈ Rnd that represents scatter and/or random coincidences and is assumed to be deterministic and
known. For hypothesis Hi, i = 0, 1, the data moments are given by:

E[Y |Hi] = E
[
E[Y |f , Hi]

∣∣Hi

]
= AE[f |Hi] + r (21.6.2)

e,det,m,hi

Cov{Y |Hi} = E
[
Cov{Y |f , Hi}

∣∣Hi

]
+ Cov

{
E[Y |f , Hi]

∣∣Hi

}
= diag{AE[f |Hi] + r}+ACov{f |Hi}A′. (21.6.3)

e,det,cov,hi

We assume that fb and fs are independent. Applying (21.6.2) and (21.6.3) to each of the two hypotheses in (21.2.1)
yields

E[Y |H1] = E[Y |H0] +Af̄s (21.6.4)
e,det,m,h0,h1

Cov{Y |H1} = Cov{Y |H0}+ diag
{
Af̄s

}
+AKsA′

≈ Cov{Y |H0}+AKsA′. (21.6.5)
e,det,cov,h0,h1

The approximation in the last step is reasonable, since it is safe to assume that the counts from the target signal will be
few compared to the counts from the background of the organ. From (21.6.4) and (21.6.5), the problem can be viewed
as one with additive noise that is independent of the target signal fs.

In general, problems with Poisson measurement statistics and nonlinear estimators can be analyzed using local
shift invariance approximations [19–21] and linearizations [18]. These local approximations and linearizations yield
expressions that correspond to the case of Gaussian noise and linear estimators, provided one uses appropriate (back-
ground signal dependent) covariance matrices.

21.6.2 Ideal observer (s,det,ideal)s,det,ideal

Assuming Gaussian reconstruction statistics and a linear reconstructor Z , the distribution of f̂ under each hypothesis
in (21.2.1) is

H0 : f̂ ∼ N (ZAf̄b,ZΠ0Z ′)

H1 : f̂ ∼ N (ZA(f̄b + f̄s),Z[Π0 + AKsA′]Z ′),
where Π0 , Π + AKbA′ is the covariance of the data under the signal-absent hypothesis and N (µ,K) denotes
the Gaussian probability law with mean µ and covariance K. We use “′” to denote the adjoint of an operator or
equivalently the complex transpose of a matrix.

Substituting these Gaussian likelihoods into the likelihood ratio (21.4.2), yields the discriminant function of the
ideal observer that uses f̂ as a feature vector:

t◦(f̂) =
1

2
f̂ ′
(
Cov

{
f̂ |H0

}†
−Cov

{
f̂ |H1

}† )
f̂ +

(
Cov

{
f̂ |H1

}†
E
[
f̂ |H1

]
−Cov

{
f̂ |H0

}†
E
[
f̂ |H0

] )′
f̂ .

(21.6.6)
e,det,tstat,ideal,quad

In general, this test statistic is quadratic in f̂ and thus not Gaussian-distributed (except in the SKE case, when the
observation covariance is equal under both hypotheses and the quadratic term vanishes). Therefore, one would have
to optimize the AUC directly rather than work with the SNR. However, the ideal observer is generally not used to
evaluate reconstruction methods, since its performance is invariant to any nonsingular data transformation [4, §10.1].
The observer models commonly used in the literature to evaluate image reconstruction methods are linear.
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21.6.2.1 Ideal observer for the SKE/BKE task

In the SKE/BKE case we have
Cov

{
f̂ |H1

}
= Cov

{
f̂ |H0

}
= ZΠZ ′

and so the quadratic term in (21.6.6) is eliminated and the ideal discriminant simplifies to a linear form:

t◦(f̂) = (ZAfs)′(ZΠZ ′)†f̂ . (21.6.7)
e,det,tstat,ideal

This is simply a classical matched filter applied to the reconstruction.
The distribution of the test statistic t = t◦(y) under each hypothesis is

H0 : t ∼ N (f ′sA
′Z ′(ZΠZ ′)†ZAfb,f ′sA

′Z ′(ZΠZ ′)†ZAfs)
H1 : t ∼ N (f ′sA

′Z ′(ZΠZ ′)†ZA(fb + fs),f
′
sA
′Z ′(ZΠZ ′)†ZAfs).

By substituting the moments above into (21.3.1), we conclude that the SNR of the SKE/BKE ideal observer is

SNR2
◦ = f ′sA

′Z ′(ZΠZ ′)†ZAfs = t◦(f̂s), (21.6.8)
e,det,snr,ideal

where f̂s , ZAfs is the reconstructed sinogram of the target signal.
For an invertible Z , the SNR in (21.6.8) becomes SNR2

◦ = f ′sA
′Π−1Afs, which corresponds to the SNR for

direct detection from the sinogram.

21.6.3 Generic linear observers (s,det,linear)s,det,linear

Linear observer models facilitate analysis and they have been found to approximate the suboptimality of human ob-
servers [22, 23]. For a linear discriminant of the form (21.5.1), the distribution of t = t(y) under each hypothesis
is

H0 : t ∼ N (w′ZAf̄b,w′ZΠ0Z ′w)

H1 : t ∼ N (w′ZA(f̄b + f̄s),w
′Z[Π0 + AKsA′]Z ′w).

Substituting these moments into (21.3.1) yields the SNR of this general linear observer:

SNR2
lin =

(w′Z ȳ)2

w′ZΠ̌Z ′w
=
w′Z(ȳ ȳ′)Z ′w
w′ZΠ̌Z ′w

, (21.6.9)
e,det,snr,linear

where ȳ , Af̄s is the expected sinogram of the target signal,

Π̌ , Π + AKfA′ (21.6.10)
e,det,linear,bPich

is the unconditional covariance of the data, and Kf , Kb + p1Ks is the unconditional covariance of the object. Since
Π, Kb and Ks are positive definite, the ratio in (21.6.9) will be well-defined provided Z ′w is nonzero.

The left-hand side of (21.6.9) has the form of a generalized Rayleigh quotient. This form is maximized with respect
to Z ′w when (e.g., see [1, p.120])

Z ′w ∝ Π̌−1 ȳ . (21.6.11)
e,det,Zw

Substituting (21.6.11) into (21.6.9) gives the upper bound of the SNR for any linear observer and any linear recon-
structor:

SNR2
lin ≤ ȳ′ Π̌−1 ȳ = f̄ ′sF̌ f̄s , SNR2

lin◦ ,

where we define

F̌ , A′Π̌−1A = A′(Π + AKfA′)−1A (21.6.12)
e,det,Fch

= (I + FKf )−1F = F(I + KfF)−1, (21.6.13)
e,det,Fch2

where F , A′Π−1A, and I is the identity operator. From (21.6.12) we derive (21.6.13) using the identity A(I +
BA)−1 = (I + AB)−1A.

A simple combination that satisfies (21.6.11) is Z = I (which is not a reconstruction method) and w = Π̌−1 ȳ,
which corresponds to the Hotelling observer (see section 21.6.5) for detection in the sinogram rather than the recon-
struction domain. However, even when we restrict attention to observers that are applied to reconstructed images,
usually there are still many ways to satisfy (21.6.11), as the analysis that follows indicates.



c© A. Yendiki & J. Fessler. April 7, 2017 21.8

10 20 30 40 50 60

0

0.2

0.4

0.6

0.8

1
p = 0
p = 0.5
p = 1

Figure 21.6.1: Profiles through the center of (normalized) Fisher observer templates wp for p = 0, 0.5, 1.
fig:template

21.6.4 Fisher observers and Fisher reconstructors (s,det,fisher)s,det,fisher

As shown in more detail below, several of the mathematical observers that have been proposed in the literature can
achieve the optimal SNR when paired with simple reconstructors that correspond to some power of F̌ applied to a
backprojection of the data. For lack of a better term, we refer to the family of Fisher observers, whose templates have
the following form:

wp , F̌p
f̄s (21.6.14)

e,det,w,fisher

for some p ∈ R. We allow p to be negative, in which case we interpret F̌p
= (F̌†)−p.

Are there (linear) reconstruction methods that provide optimal detection performance when combined with a Fisher
observer? The answer is “yes,” and we refer to the corresponding reconstruction methods as Fisher reconstructors,
defined by

Zq , F̌qA′Π̌−1 = F̌qA′(Π + AKfA′)−1 (21.6.15)
e,det,B,fisher

for some q ∈ R. The corresponding estimator is

f̂ = Zqy = F̌qA′Π̌−1y = F̌qA′(Π + AKfA′)−1y,

which is a kind of weighted backprojection with a (perhaps somewhat unusual) postfilter. (For q < 0, this postfilter is
something like a deconvolver.) For example, in the case q = −1 for the SKE/BKE task (F̌ = F and Π̌ = Π), the
Fisher reconstructor is

f̂ = F†A′Π−1y , f̂WLS, (21.6.16)
e,det,wls

which is the unregularized weighted least-squares (WLS) estimator.
For the family of reconstructors (21.6.15) and the family of observers (21.6.14) we have

Z ′qwp = Π̌−1AF̌qF̌p
f̄s.

By comparing the above with (21.6.11) we see that the choice p = −q leads to the optimal SNR, i.e., for any Fisher
observer, there is a corresponding Fisher reconstructor that achieves the ideal SNR. Furthermore, these Fisher re-
constructors appear to be largely devoid of regularization1, so it appears that regularization is not essential for a
large family of linear observers for the detection task at hand. Fig. 21.6.1 shows template profiles for some of these
observers. The profile shape for p = 0.5 especially is reminiscent of those estimated from human observers (e.g.,
see [24]). Next we explore some specific observer examples.

21.6.5 Hotelling observer (s,det,ho)s,det,ho

Substituting the moments of f̂ in the Hotelling template (21.5.2) yields

wHO = (ZΠ̌Z ′)†Z ȳ (21.6.17)
e,obs,hot,Z

and thus
Z ′wHO = Z ′(ZΠ̌Z ′)†Z ȳ = Π̌−1/2PΠ̌1/2Z′(Π̌

−1/2 ȳ),

where PΠ̌1/2Z′(·) denotes the orthogonal projection of a vector onto RΠ̌1/2Z′ , the range space of Π̌1/2Z ′. By
comparing the above with (21.6.11) we find that the optimal SNR is achieved when Π̌−1/2 ȳ ∈ RΠ̌1/2Z′ . There
are a multitude of choices of Z that satisfy this mild condition. For example, for a Zq of the Fisher reconstructor
family (21.6.15), the HO template in (21.6.17) becomes wHO = F̌−qf̄s, which corresponds to the Fisher observer

1 If q > −1, then one could construe the Fisher reconstructor as being marginally regularized since it entails somewhat “less deconvolution”
than the WLS reconstructor. However, this type of “regularization” does not improve the condition number in the case of singular F̌ , and it is unlike
most regularization methods described in the literature.
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in (21.6.14) with p = −q. In other words, any Fisher reconstructor achieves the ideal SNR for the Hotelling observer
applied in the image domain. This is consistent with the fact that linear transformations of the data do not affect the
performance of the optimal linear observer [4, §10.2] (except when the transformation operator does not have a right
inverse, in which case performance degrades).

21.6.6 PW observer
Substituting the moments of f̂ in the PW template (21.5.3) yields

wPW = (ZΠ0Z ′)†Z ȳ

and thus by (21.6.11) the Z that achieves the optimal SNR must satisfy

Z ′(ZΠ0Z ′)†Z ȳ ∝ Π̌−1 ȳ,

or equivalently
P
Π

1/2
0 Z′(Π

−1/2
0 ȳ) ∝ Π

1/2
0 Π̌−1 ȳ,

which in turn implies that Π
−1/2
0 ȳ−cΠ1/2

0 Π̌−1 ȳ must be orthogonal to R
Π

1/2
0 Z′ for any constant c. This finally

leads to the requirement that
Z ȳ ∝ ZΠ0Π̌

−1 ȳ,

i.e., that the sinograms ȳ and Π0Π̌
−1 ȳ yield the same reconstructed image but for a scaling constant. Thus, in general

there are no linear reconstructors that can achieve the optimal SNR when paired with the PW observer.
An exception to this is the SKE case, where Π̌ = Π0 and the PW observer is the same as the HO, so there are

infinitely many linear reconstructors that achieve optimal SNR. The minimal dependence of the SNR on Z for the HO
is consistent with the observation of Qi et al. that performance of the PW observer in the SKE task is independent of
smoothing method in the MAP case [25].

21.6.7 NPW observer
Substituting the moments of f̂ in the NPW template (21.5.4) yields

wNPW = Z ȳ (21.6.18)
e,obs,npw,Z

and thus by (21.6.11) the optimal reconstructor must satisfy

Z ′Z ȳ ∝ Π̌−1 ȳ . (21.6.19)
e,det,npw,Zopt

For a Zq of the Fisher reconstructor family (21.6.15), the NPW template becomes wNPW = F̌q+1
ȳ, which corre-

sponds to the Fisher observer in (21.6.14) with p = q + 1. Since q = −1/2 satisfies p = −q, the optimal SNR is
achieved by the somewhat unusual Fisher reconstructor

Z = F̌−1/2A′Π̌−1, (21.6.20)
e,det,B,npw

where F̌−1/2
= (F̌†)1/2 as defined earlier. Whether there are other solutions that satisfy (21.6.19) is an open

problem. (There is also the choice of Z = Π̌−1/2, which is not a reconstruction method. It is equivalent to the
Hotelling observer for sinogram-based detection.)

The reconstruction method (21.6.20) corresponds to the estimator

f̂ = F̌−1/2A′Π̌−1y,

or for the SKE/BKE task
f̂ = F−1/2A′Π−1y = F1/2f̂WLS,

which is a type of “post-filtered” WLS estimate, with an unusual shift-variant post-filter. This estimator is very im-
practical for two reasons. Firstly, even if A happens to have full rank, F is usually very ill conditioned, so computing
the WLS solution f̂WLS will require a multitude of iterations for any practical iterative algorithm. Secondly, the shift-
variant post-filter F1/2 would be very complicated to implement.
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21.6.8 ROI observer
From (21.5.5) the template of the ROI observer is given by

wROI = f̄s.

Then by (21.6.11) the optimal reconstructor must satisfy

Z ′f̄s ∝ Π̌−1 ȳ .

Since the ROI template corresponds to the Fisher observer with p = 0, the optimal SNR is achieved by the Fisher
reconstructor with q = 0, i.e.,

Z = A′Π̌−1. (21.6.21)
e,det,B,roi

Curiously, in this case
f̂ = Zy = A′Π̌−1y,

which for the SKE/BKE task reduces to f̂ = A′Π−1y. This is a very blurry estimate of f , being simply unfiltered
backprojection. Yet for the ROI observer it is optimal, and no amount of deconvolution will improve the SNR for this
detection task, which is an indication that the task is too simple.

The optimality of Z = A′Π−1 is consistent with the demonstration in Qi et al. of the ROI observer (for a
MAP (aka PWLS) reconstructor with R = βI in (21.6.29) below) approaching the PW observer’s performance as
β →∞ [25].

21.6.9 Summary of Fisher observers and reconstructors
For three of the specific observer examples considered above, at least one reconstructor of the Fisher family (21.6.15)
was found to achieve the highest SNR possible for linear observers. The following table summarizes these examples.

Observer q Best estimator Interpretation
Hotelling R F̌qA′Π̌−1y any Fisher reconstructor (e.g., WLS)

NPW -1/2 F̌−1/2A′Π̌−1y partly deconvolved backprojection
ROI 0 A′Π̌−1y backprojection

Thus the optimizing Z for any of these observers need not include any form of regularization, even in the case that the
system operator A is a matrix with less than full column rank. We conclude on theoretical grounds that regularization
is not absolutely essential for the task of detecting a statistically varying signal on a statistically varying background
for any of the observers considered above.

Furthermore, there is a strong dependence of the optimal reconstruction method on the type of observer considered.
This implies that there is no universally optimal reconstruction method, even for the simple detection task considered
here, so it seems essential to consider observer models whose performance correlates well with human observers. As
we mentioned above, the apparent premise of human-observer studies in the literature is that humans do not perform
as well as the ideal observer. Therefore, the fact that there exist “simple” reconstruction methods that allow the
observers considered above to achieve the ideal linear-detection SNR (which is also the overall ideal SNR for SKE
tasks) suggests that these observers, the tasks, or both are somehow inappropriate.

21.6.10 Channelized linear observers (s,det,cho)s,det,cho

For a channelized linear discriminant of the form (21.5.6) and a linear reconstruction method Z , the distribution of
the test statistic t = tch(y) is

H0 : tch ∼ N (w′C′ZAf̄b,w′C′ZΠ0Z ′Cw +w′Πintw)

H1 : tch ∼ N (w′C′ZA(f̄b + f̄s),w
′C′Z[Π0 + AKsA′]Z ′Cw +w′Πintw).

Combining the above with (21.3.1) yields the SNR of the channelized observer:

SNR2
ch =

(w′C′Z ȳ)2

w′C′ZΠ̌Z ′Cw +w′Πintw
. (21.6.22)

e,det,snr,chan

In the absence of internal noise (Πint = 0), the SNR is maximized when Z ′Cw ∝ Π̌−1 ȳ, similarly to the non-
channelized version in section 21.6.3. The presence of internal noise will always decrease the SNR. The problem with
optimizing (21.6.22) with Πint 6= 0 over an unconstrained Z is that a Z of infinitely large norm will be optimal. Thus
one would need some constraint on Z to optimize (21.6.22) in the presence of internal noise. This, however, is beyond
the scope of our analysis.
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21.6.11 Channelized Hotelling observer
Substituting the statistics of the M -channel output ĉ in the CHO template (21.5.7) yields

wCHO = (C′ZΠ̌Z ′C + Πint)
†C′Z ȳ .

Combining this template with (21.6.22), we find that the CHO observer has the following SNR:

SNR2
CHO(f̄s,Z) = ȳ′Z ′C(C′ZΠ̌Z ′C + Πint)

†C′Z ȳ . (21.6.23)
e,det,snr,cho

In the absence of internal noise, the usual SNR inequality holds:

SNR2
CHO(f̄s,Z) = (Π̌−1/2 ȳ)′PΠ̌1/2Z′C(Π̌−1/2 ȳ)

≤ (Π̌−1/2 ȳ)′Π̌−1/2 ȳ = f̄ ′sF̌ f̄s = SNR2
lin◦ .

The ideal SNR is achieved when Π̌−1/2 ȳ ∈ RΠ̌1/2Z′C . It is easy to check that this is satisfied by any reconstructor
of the form

Z = WC(C′WC)−1G′A′Π̌−1,

where W is any image-domain weighting operator and G is a mapping from CM to object space that satisfies f̄s = G u
for some u ∈ CM . An obvious way to satisfy this requirement is to choose G so that one of its “columns” is
proportional to f̄s. This rather unconventional family of reconstructors does not produce what we usually consider to
be reconstructed images. Furthermore, in the presence of internal noise the SNR will always be strictly less than the
ideal. Nevertheless, we can still gain insight by using local Fourier-domain approximations to examine whether more
conventional reconstructors can be combined with the CHO to achieve SNR values close to the ideal. In the following
sections we examine one unregularized and one regularized example.

21.6.11.1 Local Fourier analysis of CHO performance

In the following we will use local shift invariance approximations. Circulant approximations of A′Π−1A have
proven to be useful and accurate when this operator is approximately locally shift-invariant [19–21, 25–28]. Here
we adopt the more general, angle-dependent analysis followed in [29, 30]. Since a practical implementation would
employ DFT’s, we use here a discretized version of the frequency response derived in Chapter 4. Thus we adopt the
following approximation around the location of the target signal:

F = A′Π−1A ≈ U−1 Λ U , (21.6.24)
e,det,F,approx

where U is here a continuous-to-discrete Fourier operator and Λ = diag{λk}. The λk, k = 1, ..., np are a discretized
version of the frequency response λ(ρ,Φ) around the location of the target signal, as given in (4.4.7). Since F is
symmetric positive-semidefinite, we force the λk’s to be real and nonnegative by discarding imaginary parts and
setting negatives to zero.

Similarly, we take Kf ≈ U−1N U , where N = diag{νk}. The νk’s contain the frequency response of Kf (i.e.,
the object power spectrum) local to the target signal position. Using these approximations, we can start from (21.6.13)
to derive the following form for the Fisher information matrix F̌ :

F̌ = F(I + KfF)−1 ≈ U−1 Λ(I +N Λ)
−1 U = U−1Λ̌ U , (21.6.25)

e,det,Fch,approx

where Λ̌ , diag
{
λ̌k
}

and λ̌k , λk

1+νkλk
, which reduces to Λ̌ = Λ in the SKE/BKE case.

As in [31–33], we also use the fact that C is a collection of filters to get its frequency-domain representation.
Let tm ∈ Cnp denote the frequency response of the mth bandpass filter. Then the mth operator in C has the form
U−1 diag{tm}Ue0, where e0 is an impulse centered at the same location as f̄s. Without loss of generality, we can
choose the target signal center to correspond to the “0” coordinate for the DFT matrix, in which case Ue0 = 1√

np
1,

where 1 is the vector of np ones. Thus we have

C = U−1T , T =
1
√
np

[
t1 . . . tM

]
. (21.6.26)

e,det,channels

21.6.11.2 CHO and Fisher reconstructors (s,det,cho,fisher)s,det,cho,fisher

For a Fisher reconstructor Zq of the form (21.6.15), we can use (21.6.25) and (21.6.26) to obtain the approximations

C′Zq ȳ = C′F̌1+q
f̄s ≈ T ′Λ̌

1+q
X

C′ZqΠ̌Z ′qC = C′F̌1+2qC ≈ T ′Λ̌1+2q
T ,

where we assume that the mean target signal f̄s is spatially localized and where X = U f̄s is its spectrum. The
accuracy of the second approximation will depend on how localized in space the channel responses are. However, it
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is exact for q = −1/2, so it may be reasonable for q near −1/2 (including q = −1 and q = 0, which are the two cases
of greatest practical interest). Approximation error plots for some values of q were presented in [32].

Substituting the above approximations into (21.6.23), we get the following approximation for the SNR of the CHO
when combined with a Fisher reconstructor:

SNR2
CHO,F ≈X ′Λ̌

1+q
T (T ′Λ̌

1+2q
T + Πint)

†T ′Λ̌
1+q
X.

21.6.11.3 Special case: Disjoint passbands

The CHO filters are sometimes assumed to be bandpass filters with disjoint passbands. In that case, the vectors tm
have disjoint nonzero entries and the M ×M matrix T ′Λ̌

1+2q
T is diagonal, so we have

[T ′Λ̌
1+q
X]m =

1
√
np

∑
k∈Tm

(tmk )∗λ̌1+q
k Xk

[T ′Λ̌
1+2q

T ]mm =
1

np

∑
k∈Tm

|tmk |2λ̌
1+2q
k ,

where Tm = {k : tmk 6= 0} is the passband of the mth filter. The SNR approximation then simplifies to

SNR2
CHO,F ≈ SNR2

1 ,
M∑
m=1

1
np

∣∣∣∑k∈Tm Xk(tmk )∗λ̌1+q
k

∣∣∣2
1
np

∑
k∈Tm |t

m
k |2λ̌

1+2q
k + σ2

int

, (21.6.27)
e,det,cho,snr1

where we have assumed, following convention, that the components of εint are i.i.d. and σ2
int is their variance. (This is

equivalent to noise being added to the test statistic after the template is applied [34].) We examine now whether there
are conditions under which maximum SNR can be achieved for σ2

int = 0.

21.6.11.4 Achievability of the optimal SNRs,det,cho,fisher,opt

To determine an upper bound on SNR1, define

umk , Xkλ̌
1/2
k 1{k∈Tm}

vmk , tmk λ̌
q+1/2
k .

Then rewriting (21.6.27) for σ2
int = 0 and using Cauchy’s inequality yields

SNR2
1 =

M∑
m=1

|〈um, vm〉|2

‖vm‖2
≤

M∑
m=1

‖um‖2 =
∑
k∈T

|Xk|2λ̌k (21.6.28)
e,det,fisher,cho,bound1

≤
∑
k

|Xk|2λ̌k ≈ f̄ ′sF̌ f̄s = SNR2
lin◦ ,

where T = ∪Mm=1Tm denotes the combined passbands of all the channels. If the combined passbands do not contain
all of the signal energy, then the SNR will be strictly less than the ideal SNR. This suboptimality is expected due to
the dimensionality decrease caused by the channels.

When can the upper bound in (21.6.28) be achieved? Suppose that each channel filter has a flat passband, i.e.,
tmk = 1{k∈Tm}. Then there are two obvious cases where this SNR achieves the upper bound in (21.6.28), as can be
verified by substitution or by using the requirement um ∝ vm ∀m.
• If the Xk’s are constant over each passband, then q = 0 will be optimal.
• If the λ̌k’s are also constant over each passband, then any q ∈ R will be optimal.

In practice, it may be unlikely that either the λ̌k’s or the Xk’s are exactly uniform over each channel’s passband, but
if the passbands are reasonably narrow, then it is likely that these spectra will be approximately uniform over each
passband. So to within the accuracy of the approximations considered above, one or more of these unregularized
reconstructors will nearly achieve the highest SNR obtainable for the given CHO channels. Once again, in the absence
of internal observer noise, regularization does not seem to play a crucial role, even for the CHO.

21.6.11.5 CHO and PWLS reconstructors (s,det,cho,pwls)s,det,cho,pwls

The preceding analysis has shown several cases in which one or more unregularized reconstructors lead to the op-
timal SNR in the detection task at hand. We next examine the penalized weighted least-squares (PWLS) family of
regularized reconstructors, to explore how closely one can approach the optimal SNR with a practical reconstruction
method.
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An unconstrained PWLS estimator has the following form:

f̂(y) = arg min
x
{(y −Ax)′W (y −Ax) + x′Rx} = (A′WA + R)−1A′Wy (21.6.29)

e,det,pwls,w

for some regularization operator R that we would like to design to optimize detectability. The usual weighting for
the PWLS estimator is the one corresponding to MAP estimation, i.e., W = (Cov

{
y|fb = f̄b

}
)−1 = Π−1. In this

case, (21.6.29) becomes
f̂(y) = (F + R)−1A′Π−1y, (21.6.30)

e,det,pwls

which corresponds to the choice Z = (F + R)−1A′Π−1. We assume throughout that the regularization operator R
is chosen such that F + R is positive definite.

To analyze CHO performance with PWLS reconstruction, we assume that both F and R are diagonalized locally
by a common operator (the Fourier operator U ). Specifically, following (21.6.24) we assume that

F ≈ U−1 Λ U and R ≈ U−1Ω U , (21.6.31)
e,det,diag,pwls

where Λ = diag{λk} as defined in the previous section, Ω = diag{ωk} and the ωk, k = 1, ..., np are the frequency
response of the regularizer local to the target signal. Both the λk’s and the ωk’s are real and nonnegative. The
assumption of simultaneous diagonalization of F and R is reasonable. Similar approximations were used by other
researchers who have analyzed observer performance with penalized-likelihood reconstruction [27, 31, 33].

Substituting the PWLS reconstructor (21.6.30) in the SNR of the CHO (21.6.23) yields

SNR2
CHO,PWLS = f̄ ′sF(F + R)−1C[C′(F + R)−1(F + FKfF)(F + R)−1C + Πint]

†

C′(F + R)−1F f̄s. (21.6.32)
e,det,snr,pwls

Following section 21.6.11.2, we use the local Fourier decompositions in (21.6.31) to obtain the following approxima-
tions:

C′(F + R)−1F f̄s ≈ T ′(Λ +Ω)−1 ΛX

C′(F + R)−1(F + FKfF)(F + R)−1C ≈ T ′(Λ +Ω)−1(Λ + Λ2N)(Λ +Ω)−1T . (21.6.33)
e,det,cho,pwls,TDT

Substituting the above into (21.6.32) yields the following approximation for the SNR of the CHO when combined
with a PWLS reconstructor:

SNR2
CHO,PWLS ≈X ′Λ(Λ +Ω)

−1
T (T ′(Λ +Ω)−1(Λ + Λ2N)(Λ +Ω)−1T + Πint)

†T ′(Λ +Ω)−1 ΛX. (21.6.34)
e,det,snr,pwls,local

21.6.11.6 Special case: Disjoint passbands

When the CHO channels are bandpass filters with disjoint frequency responses, the M ×M matrix in (21.6.33) above
becomes diagonal. We assume that its diagonal elements are nonzero, which implies that the system has some nonzero
λk for each passband. (If not, the noninformative passband could be eliminated.) Combining the approximations
above yields the following approximate expression for the SNR in (21.6.32):

SNR2
CHO,PWLS ≈ SNR2

2 ,
M∑
m=1

1
np

∣∣∣∑k∈Tm Xk(tmk )∗ λk

λk+ωk

∣∣∣2
1
np

∑
k∈Tm |t

m
k |2

λ2
k

λ̌k(λk+ωk)2
+ σ2

int

, (21.6.35)
e,det,snr,pwls,approx

where Tm = {k : tmk 6= 0} is the passband of the mth filter.

21.6.11.7 Achievability of the optimal SNRs,det,cho,pwls,opt

To determine an upper bound on the SNR in (21.6.35) in the absence of internal noise, define vectors um, vm with
elements

umk , Xkλ̌
1/2
k 1{k∈Tm},

vmk , tmk λk/λ̌
1/2
k (λk + ωk),

respectively. Then for σ2
int = 0, the SNR in (21.6.35) simplifies to

SNR2
2 =

M∑
m=1

|〈um, vm〉|2

‖vm‖2
≤

M∑
m=1

‖um‖2 =
∑
k∈T

|Xk|2λ̌k (21.6.36)
e,det,pwls,cho,bound1

≤
∑
k

|Xk|2λ̌k ≈ f̄ ′sF̌ f̄s = SNR2
lin◦ , (21.6.37)

e,det,pwls,cho,bound2
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where the combined passband of all the filters is given by T = ∪Mm=1Tm. If the combined passband does not contain
all of the signal energy, then the SNR will be strictly less than the ideal SNR.

The intermediate upper bound in (21.6.36) is achieved if um ∝ vm ∀m. Suppose that each channel filter is an
ideal bandpass filter over some frequency band, i.e., tmk = 1{k∈Tm}. Then, for λ̌k 6= 0, Xk 6= 0, the intermediate
upper bound in (21.6.36) is achieved for example when

ωk = α
λk

Xkλ̌k
− λk, (21.6.38)

e,det,pwls,cho,omopt

where the constant α 6= 0 can be chosen arbitrarily. Using α , 2 maxk(Xkλ̌k) would keep the ωk’s positive. To within
approximation (21.6.31), the local frequency response in (21.6.38) corresponds to the following positive-semidefinite
regularizer:

R = α(I + FKf )(U−1 diag{1/Xk}U)−F .

This R will usually have a high-pass characteristic, so it could be construed as a regularization matrix, but it is quite
different from standard forms of regularization studied in the literature. With this R, the corresponding “PWLS”
reconstruction yields

f̂ =
1

α
(U−1 diag{Xk}U)A′Π̌−1y,

which is simply a weighted backprojection followed by application of a “matched” filter (convolution with the mean
signal shape). This agrees with our conclusion from the previous section that regularization is not essential even for
the CHO observer, when the passbands of the CHO channels are flat and there is no internal noise.

Similarly to the previous section, a degenerate case occurs when the channel passbands are flat and the mean
signal spectrum {Xk}, system spectrum {λk}, and object power spectrum {νk} are all constant over each channel’s
passband. Then the first upper bound in (21.6.36) is achieved for any choice of regularization {ωk} that is also constant
over each passband, including ωk = 0. So apparently, in the absence of internal noise, the choice of regularization may
be important only if there is significant within-passband variation of the mean signal spectrum, the system spectrum,
the object power spectrum, and/or the channel response itself.

21.6.11.8 Example

We now present a practical example of how the regularizer’s frequency response Ω affects the SNR of the CHO
with overlapping or non-overlapping passbands in the presence of internal noise. We consider the case where A
corresponds to a 2-D PET system model with the characteristics of a CTI ECAT 931 scanner (matrix size 128× 128,
pixel size 4.7mm, 192 radial samples with 3.1mm spacing, 160 projection angles over 180o). We assume that the
target signal fs has a known Gaussian shape with FWHM 2 pixels and amplitude 0.1, the background fb has a
Gaussian autocorrelation function with FWHM 4 pixels and standard deviation 0.05, and the mean background f̄b is
the anthropomorphic phantom shown in figure 21.6.2. We determine imaging noise variance by assuming a total of
5× 105 counts.

We consider the non-overlapping square channels withM = 4 (SQR) and the overlapping difference-of-Gaussians
channels with M = 3 (S-DOG) and M = 10 (D-DOG), as defined by Abbey et al. [17] and shown in figure 21.5.1.
Fig. 21.6.3 shows plots of the SNR for PWLS with uniform regularization within a first-order neighborhood and
various values of the regularization parameter. The SNR is plotted for the three channel sets mentioned above and
internal noise variance σ2

int = 0.005. All the SNR values in these plots are normalized with respect to the SNR upper
bound in (21.6.37).

The sharp SNR drop for very large amounts of regularization, as seen in figure 21.6.3, occurs only when internal
noise is present. Thus the SNR is somewhat sensitive to the choice of regularization parameter in the presence of inter-
nal noise. This is in agreement with what has been reported by Qi [33] and implies that observer noise is an important
factor to consider when optimizing regularization methods with respect to detectability. However, no similar drop
occurs for very small amounts of regularization, i.e., the peak SNR achieved by PWLS with the optimal regularization
parameter is not much higher than the SNR achieved by unregularized WLS. Varying the amount of imaging noise
and/or background variability does not eliminate this effect. Thus, even when the CHO comes with internal noise
and overlapping channel passbands, regularization does not appear to be essential in this detection task for the system
considered here.

Fig. 21.6.3 also compares the exact SNR, computed from (21.6.32), to the approximate SNR, computed from (21.6.34).
We compute here the approximate SNR using the angle-dependent local certainties κϕj

, j = 1, . . . , nϕ, from (4.4.3),
as we did in Chapter 5 with penalty design. The agreement between the exact and approximate SNR values reinforces
the results that we obtained analytically in sections 21.6.11.4 and 21.6.11.7 using the approximate expressions.

21.7 Discussion (s,det,discuss)s,det,discuss

Our analysis shows that, for the task of known-location signal detection, there are unregularized reconstruction meth-
ods that can achieve the optimal SNR for several linear observer models, including the CHO in the absence of internal
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Figure 21.6.2: Mean background and profile through the mean background with the target signal superimposed.
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Figure 21.6.3: Exact and approximate SNR of CHO versus PWLS reconstruction resolution for three different channel
sets. All SNR values are normalized with respect to the upper bound (ideal SNR for the non-channelized and internal-
noise-free observer) in (21.6.37).
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observer noise. The presence of internal observer noise makes the SNR somewhat more sensitive to the choice of
regularization parameter, in the sense that the SNR drops for large amounts of regularization, as shown by the PET
example considered above. However, even in that case, optimizing regularized reconstruction does not lead to a
significant improvement of SNR performance in comparison to unregularized reconstruction.

The relatively small significance of regularization throughout our analysis indicates that detection tasks where
the target signal location is known exactly are most probably not suitable for optimizing regularized reconstruction
methods. Apparently, resolution is not an essential image quality as far as known-location detectability is concerned.
This indicates the importance of introducing location uncertainty in the analysis of image reconstruction methods with
respect to detectability, a direction that recent work is in the process of exploring [3, 35, 36].

Another interesting area is signal detection in multimodality imaging [37].

21.8 Problems (s,det,prob)s,det,prob

p,det,loc,glrt

Problem 21.1 In the case where the signal shape is known but the signal location is unknown, a possible model is
H0 : f(~x) = fb(~x)

H1 : f(~x) = fb(~x) +s(~x− ~θ)
where ~θ denotes the unknown spatial location of the known signal s(~x). Consider regularized nonparametric image
reconstruction of f(~x), and assume that f̂(~x) is a gaussian random field, with mean and covariance function that we
can approximate by local shift invariance analysis. Then one can estimate ~θ by maximum likelihood (ML) from f̂(~x),
and perform a generalized likelihood ratio test (GLRT) to decide between H0 and H1. The asymptotic performance
of that GLRT test can be analyzed as in [38, p. 239], and involves chi-squared and noncentral χ2 distributions. Use
this sketch to investigate the performance as a function of the regularization parameter β.
This is an alternative approach to the analysis in [2, 3, 39]. The details are an open problem. (Solve?)
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